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Abstract. Making an informed and right decision poses huge challenges
for drivers in day-to-day traffic situations. This task vastly depends on
many subjective and objective factors, including the current driver state,
her destination, personal preferences and abilities as well as surround-
ing environment. In this paper, we present CoSI (Context and Situa-
tion Intelligence), a Knowledge Graph (KG)-based approach for fusing
and organizing heterogeneous types and sources of information. The KG
serves as a coherence layer representing information in the form of entities
and their inter-relationships augmented with additional semantic axioms.
Harnessing the power of axiomatic rules and reasoning capabilities en-
ables inferring additional knowledge from what is already encoded. Thus,
dedicated components exploit and consume the semantically enriched
information to perform tasks such as situation classification, difficulty
assessment, and trajectory prediction. Further, we generated a synthetic
dataset to simulate real driving scenarios with a large range of driv-
ing styles and vehicle configurations. We use KG embedding techniques
based on a Graph Neural Network (GNN) architecture for a classifica-
tion task of driving situations and achieve over 95% accuracy whereas
vector-based approaches achieve only 75% accuracy for the same task.
The results suggest that the KG-based information representation com-
bined with GNN are well suited for situation understanding tasks as
required in driver assistance and automated driving systems.

Keywords: Situation Comprehension - Knowledge Graph - Knowledge
Graph Embedding - Graph Neural Network.

1 Introduction

Safe driving requires an understanding of the current driving situation which in-
cludes perceiving the current traffic situation, comprehending their meaning and
predicting what could happen in the near future. Situation Awareness (SA) is a
concept that attempts to describe and integrate these cognitive processes [12].
SA is the driver’s useful moment-to-moment knowledge and understanding of the
driving environment but does not include the decision making. SA by machine
could assist the driver and reduce accidents by warning about difficult driving



situations. However, the behaviour of the driver in the vast range of situations
is not well understood [7].

Vehicles with driver assistance systems (DAS) [4] aim to take some work-load
off the driver to improve comfort and efficiency and to enhance driving safety.
These systems are aware of the driving situation and benefit from the concept
of SA at different task levels of perception, decision making and action [33]. A
shared control driver assistance system based on driver intention identification
and situation assessment has been proposed in [28]. The application of driver
safety warning, particularly collision warning, has been described in [25].

Automated Driving Systems (ADS) require the system rather than the driver
to maintain high safety performance. A number of metrics to define the driving
safety performance of ADS and compare it to that of human driven vehicles have
been proposed in [42]. Currently, in many highly automated driving scenarios,
the driver is required to take-over the driving task in cases where the system is
not capable to handle the situation safely [1]. This requires machine perception
to assess the current driving situation, followed by scene understanding and
decision making. Whereas much progress has been made in machine perception,
scene understanding and prediction of the next actions of the traffic participants
is still subject to extensive research [10].

In this paper, we propose CoSI, a Knowledge Graph (KG)-based approach
for representing numerous information sources relevant for traffic situations. It
includes information about driver, vehicle, road infrastructure, driving situation,
and interacting traffic participants. We built an ontology to encapsulate the core
concepts crucial for the driving context. Concepts from external ontologies are
reused, enabling an easy extension and interlinking with different data sources,
as well as facilitating data extraction. We describe how the knowledge in the KG
is utilized via an embedding method such as Graph Neural Networks (GNN) to
implement typical classification and prediction tasks used in DAS and ADS. Our
approach is evaluated on a synthetically generated dataset comprising a large
number of traffic situations and driving styles. We also compare the performance
of our proposed approach with classic vector-based feature representations.

2 Related Work

Some key tasks in DAS and ADS are the detection and tracking of the relevant
traffic participants, prediction of their possible actions, understanding of the
traffic situation and planning of the next movement based on the current context.
According to [26], approaches for vehicle motion prediction can be grouped into
Physics-based, Maneuver-based and Interaction-based.

Classical Rule-based decision-making systems in automated driving are lim-
ited in terms of generalization to unseen situations. Deep reinforcement learning
(DRL) is therefore used to learn decision policies from data and has shown to
improve rule-based systems [29]. Different deep neural approaches and feature
combinations for trajectory prediction are described in [27], in which surrounding
vehicles and their features are extracted from fixed grid cells. Convolutional neu-
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Fig.1: Driving Dimensions. Categories of driving dimensions: 1) Objective Di-
mensions, further divided in Out-Cabin and In-Cabin; and 2) Subjective Dimensions,
grouped in Personal, Driving, and Plans.

ral networks (CNN) that use fixed occupancy grids are limited by the grid size
and the number of vehicles considered [30]. Recurrent neural networks (RNN)
are able to model temporal information and variable input size, but are not well
suited to handle a variable number of objects permutation-invariant w.r.t. the
input elements [20]. When RNNs are combined with an Attention mechanism,
they can be used to create a representation which is permutation-invariant w.r.t.
the input objects [38]. Deep Sets provide a more flexible architecture that can
process inputs of varying size [43] and are used for DRL in Automated Driv-
ing [20]. One limiting factor of these approaches is the implicit and informal
representation of entities and relational information between entities.

Ontologies on the other hand encompass the formal definition of entities and
their relations. Authors in [6] present an approach that uses ontologies to rep-
resent knowledge for driver assistance systems. A traffic intersection description
ontology for DAS is described in [21]. It also uses logic inference to check and
extend the situation description, and to interpret the situation, e.g. by reasoning
about traffic rules. An ontology-based driving scene modeling, situation assess-
ment, and decision making for ADS is proposed in [19].

Graph Neural Networks (GNN) have been applied to model traffic participant
interaction[11,8]. VectorNet, a hierarchical graph neural network is used for
behaviour prediction in traffic situations [15]. A behaviour interaction network
that captures vehicle interactions has been described in [13].



Our approach in comparison is overarching, consisting of phases for percep-
tion, knowledge ingestion, and situation comprehension. It exploits relationships
between the ego and foe vehicles from a graph-based representation. Personal
and subjective aspects of the driver and other involved participants are covered
as well. Our motivation is that explicit encoding of information might lead to im-
proved modelling of interactions between vehicles. We use multi-relational graph
convolution networks [41] that are able to encode multi-modal node features.

3 Driving Dimensions

Assisting the driver with fully-informed decisions about steering, acceleration,
braking, or more complex tasks like lane changing requires a high level of situ-
ation understanding. Figure 1 illustrates an overview of dimensions divided in
two main groups, namely Objective Dimensions and Subjective Dimensions.

Objective Dimensions There exist a number of dimensions that can be explic-
itly perceived from sensors or derived via specific methods. This group comprises
dimensions presented in [16], which are related to dynamics, complexity, and un-
certainty impacting the drivability of a driving scene irrelevant of the driver’s
personality. The ability to scrutinize them in a right manner directly influences
the comprehension of the occurring events. Potential hazardous situations can
only be identified by further investigating the interactions and the intent of road
participants [36]. This information is rather implicit and has to be inferred by
combining observations with additional algorithmic procedures.

Considering the origin of these dimensions, they are divided into two cate-
gories: 1) Out-Cabin; and 2) In-Cabin. The Out-Cabin category comprises in-
formation happening outside the vehicle boundaries. Such information include
the actual traffic, road and weather conditions, static objects, illumination, and
others. All kind of information pertaining to what is happening inside the vehi-
cle belongs to the In-Cabin category. It consists of information related to driver
status, occupant behavior, vehicle status, and others.

An exhaustive list of the objective dimensions including their categorization
and further details which impact the drivability of a scene are presented in [16].

Subjective Dimensions Objective dimensions alone are not sufficient for a
personalized situation assessment. It heavily depends on the individuality of the
driver itself. Not each explicitly perceived situation occurring in a given driving
scenario is considered the same or has the equal level of difficulty. Therefore,
a number of subjective dimensions are crucial in determining correct situation
classification or difficulty level. The subjective subcategories cover information
pertaining to personal, driving, and current plans.

In general, each subcategory belonging to the outer circle can have tens of sig-
nals coming from sensors through different transmission channels like Controller
Area Network (CAN) bus. These signals include information such as gaze direc-
tion, drowsiness, inside- and outside-temperature, fuel consumption, number of
occupants. Next, special processing units consume and manage retrieved signals
to generate appropriate notifications to the driver or actions to the vehicle.



4 Approach

Achieving a high level of intelligence is possible by fusing and enriching collected
data from different sources such as connected sensors. This enables autonomous
vehicles to react according to the situation within a driving environment [9].
With the aim of covering the entire process, we designed a flow-oriented ar-
chitecture composed of three main phases, namely: 1) Contextual Observation;
2) Knowledge Ingestion; and 3) Situation Comprehension. Each phase comprises
a number of components dedicated to perform specific tasks as shown in Figure 2.

4.1 Contextual Observation

Intelligent vehicles are equipped with a number of sophisticated sensors that
sense the surrounding of the vehicle. Typically, the average number of sensors
in a smart vehicle is ranging from 70 up to 100 [18], monitoring various types of
events as well as stationary and mobile objects. This includes observing the driver
and occupant(s), engine status, and the road network. Spatial and temporal
information is obtained for each observed object. A wide range of sensors, e.g.
light and rain sensors, internal and external cameras, Radar and Lidar, are used
for perception tasks. Each sensor may be built via a specific technology and
standard, thus generating data in various formats with a different granularity.

4.2 Knowledge Ingestion

Situation comprehension requires integrating and structuring the abundance of
information from various sources. Raw signals from sensors are transformed and
enriched with additional semantics. Further, contextual information and user
characteristics are injected to support a personalized situation assessment.

Knowledge Graph The KG serves as a coherence component comprising fun-
damental ontologies to capture information about entities and their relation-
ships. We see a KG as a set of triples G = H, R, T, where H is a set of entities,
T C E x L, a set of entities E or literal L values and R, a set of relationships
connecting H and T. These triples are represented using Resource Definition
Framework (RDF) as a modeling language. Encoding additional formal axioms
enables inferring new facts out of given ones via automated reasoning techniques.

Once the transformation process is realized, i.e. converting input data of any
format to triples, the output is stored in a knowledge graph. Information in the
KG is aggregated and organized in an intuitive and hierarchical way, making it
easy to exploit and understand by humans. An excerpt of the CoSI KG (CKG) is
given in Figure 3, showing how scenery information is represented via instances
(assertional boz) of ontological concepts (terminological box). Apart from sensor
data, it captures the information related to the driver, such as preferences and
abilities modeled according to the CoSI ontology, as described in the following.

Ontology We developed the CoSI ontology based on the dimensions and their
respective categories described in Section 3. It captures relevant information
coming from sensors mounted in a given vehicle. The human description of crucial
concepts: Scene, Situation and Scenario given in [37] are used as a basis to create
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Fig. 2: CoSI Pipeline. The pipeline is comprised of three consecutive phases: 1) Con-
textual Observation - capture information about the surroundings and the user; 2)
Knowledge Ingestion - transform, enrich and ingest information on the KG; and 3) Sit-
uation Classification - assess the situation type considering the contextual knowledge.

formal definitions using ontological axioms. Additionally, the ontology models
different user characteristics, such as preferences (e.g., preferred driving style or
safety measures), experience, and (dis)abilities. In the following, the respective
definitions of core concepts of the CoSI ontology are given:

— Scene: A scene describes a snapshot of the environment including the scenery
and dynamic elements, as well as all actors’ and observers’ self-representations,
and the relationships among those entities [37].

— Situation: A situation is the entirety of circumstances considered for the
selection of an appropriate behavior pattern at a particular point of time. It
entails all relevant conditions, options, and determinants for behavior [37].

— Scenario: A scenario describes the temporal development between several
scenes in a sequence of scenes. Actions, events, and goals may be specified
to characterize this temporal development in a scenario [37].

— Observation: Act of carrying out an (Observation) Procedure to estimate or
calculate a value of a property of a FeatureOfInterest [17].

— Driver: A driver is a specific type of user. It encapsulates all relevant at-
tributes associated to a driving context where driver is the main subject.

— Profile: A user profile is a structured data representation that is used to
capture certain characteristics about an individual user?.

— Preference: A preference is a technical term in psychology, economics and
philosophy usually used in relation to choosing between alternatives. For
example, someone prefers A over B if they would rather choose A than B*.
The CoSI ontology is built on principles for an easy extension and explo-

ration. Concepts from external ontologies such as Schema.org and SOSA ontol-
ogy®, are reused to enable interlinking with different data sources. Currently, it
contains 51 classes, 57 object datatype properties, and 3 annotation properties.

Transformation and Enrichment This component performs a semi-automatic
conversion of sensor data to the RDF representation via both declarative and

3 https://en.wikipedia.org/wiki/User_profile
4 https://en.wikipedia.org/wiki/Preference
5 https://schema.org/, https://www.w3.org/TR/vocab-ssn/
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Fig. 3: CoSI Knowledge Graph. An excerpt of the CoSI KG representing respective
situations occurring in two consecutive scenes: 1) the bottom layer depicts scenery
information among participants; 2) the top layer includes concepts such as classes
and relationships representing the domain knowledge; and 3) the middle layer contains
concrete instances capturing the scenery information based on the ontological concepts.

imperative approaches. Using the declarative approach, a number of mappings
of sensor data to the ontological concepts are defined. The imperative approach
is realized in cases when it is necessary to perform complex transformations. In
these cases, additional queries are executed on-the-fly to enrich sensor data with
new relationships. For instance, raw data generated from sensors are augmented
with additional semantic information in order to establish new type definitions
or missing relationships between scenes, e.g. occursAfter.

Knowledge Extraction Performing tasks such as knowledge graph comple-
tion, link prediction, classification, or other types of downstream tasks requires
knowledge to be consumed based on various perspectives. This component allows
for execution of complex queries and traversing the graph to retrieve relevant
information. Various views of the information can be created on the fly while
the underlying knowledge structure remains unchanged. For instance, while orig-
inally the information is organized from the perspective of a Scene, i.e. partici-
pants, their position, speed, as well as the type of situation happening in it; by
traversing the graph through specific queries, another view from the ego vehicle
perspective can easily be generated as illustrated in Figure 4. As a result, em-
bedding techniques that operate on graph level, can efficiently learn the vector
representation of symbolic knowledge from the ”new perspective”.

4.3 Situation Comprehension

A number of specialized components perform dedicated tasks related to situa-
tion comprehension, such as Situation Classification, Difficulty Assessment, and
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Fig. 4: Ego Vehicle Perspective. a) A traffic situation from the ego vehicle (green)
perspective in the center and eight foe vehicles in its vicinity. b) A SPARQL query
constructing a graph-based view on the fly from ego perspective.

Table 1: Simulation Parameters. Simulation parameters of the driver and vehicle
that were varied to generate a large range of driving situations.

Parameter Description

lcSpeedGain Driver’s eagerness for speed gain by overtaking
lcCooperative Driver’s cooperativeness in reducing speed for other vehicles
o (sigma) Driver’s imperfection in realizing desired speed

T (tau) Driver’s reaction time in seconds

minGap Driver’s target gap between ego and foe vehicle

maxSpeed Vehicle’s maximum speed

maxAccel Vehicle’s maximum acceleration

Trajectory Prediction. These components can be built on different paradigms,
namely 1) Rule-based; and 2) Learning-based classification.

— Rule-based Classification Components following this paradigm rely on a num-
ber of declarative rules to perform logic-based classification tasks. They har-
ness the expressive power of the knowledge graph structure which in combi-
nation with reasoning techniques provide interpretable results.

— Learning-based Classification Components employ a number of techniques
that learn common patterns from a large number of observations. Therefore,
it is possible to make predictions or classifications based on a given sample
data used for training without pre-defining explicit rules.

5 Implementation

Our objective is to evaluate how well our KG-model can represent traffic situ-
ations. Particularly, we focus on situations with interacting vehicles, where ve-
hicles base their behaviour on current and predicted behaviour of other nearby
vehicles, considered a notoriously challenging task. We thus define driving situ-
ation classification as our evaluation task. To validate the benefit of our model
with as little influence from other factors, we deliberately define the task on sin-
gle scenes. Models that exploit temporal information are very likely to lead to
better results, since some situations such as merging or overtaking are manifested
via a gradual change of the lane ID over time. However, here we only validate
the underlying static knowledge and exclude effects of temporal information.



(a) Gothenburg’s Highway  (b) Lane change situation (c) Collision situation

Fig.5: Sumo traffic simulations. Examples of traffic simulations using SUMO: a) A
snapshot of a highway around the city of Gothenburg; b) A situation where ego vehicle
is switching the most left lane; and ¢) An example with a collision situation happening.

5.1 Dataset Generation

Experimental Setup Experiments on recorded test drives is prohibitive [22]
as it would require huge amounts of test data without assurance that enough
examples of critical driving situations are included. We therefore use simulated
data for our experiments. An advantage of this approach is that it allows to
specifically generate critical driving scenes which we are interested in, both in
terms of driving behaviour and situation criticality.

We use Simulations of Urban Mobility (SUMO)®, an open source, highly
portable, microscopic and continuous multi-modal traffic simulation package to
generate driving data. We generated a dataset” comprising more than 50’000
driving examples on a 40 km long highway section around the Gothenburg city
as shown in Figure 5a. It is circular in shape with three lanes in each direction.

Scenarios We varied simulation parameters such as time-to-collision (TTC) (i.e.
the time until a collision between two entities would occur if both continue with
the present velocities) of drivers and vehicles to simulate different driving styles
and vehicle types as listed in Table 1. This leads to the generation of various
driving scenarios as described in Table 2.

Car Following Model The standard car following model in SUMO is described
in [24]. Tt is based on the assumption that the speed of the ego vehicle is adapted
according to the speed of the preceding vehicle. Further, a desired gap between
the ego and the leading vehicle as well as reaction and braking time are taken
into account to ensure that no collision will occur. Figure 5¢ depicts a situation
where a collision between the ego and the foe is happening.

Lane Change Model The lane change model considers different motivations of the
driver (route, speed gain, rule-following, cooperativeness and other factors) for
lane changes on multi-lane roads and related speed adjustments [14]. Figure 5b
shows an example where the ego vehicle is performing a lane change.

5.2 CoSI Knowledge Graph

Data generated from SUMO are provided in XML format which are then trans-
formed and enriched on-the-fly to RDF representation. As a result, the CoSI

6 https://www.eclipse.org/sumo/
https://github.com/siwer/Retra



Table 2: Driving Scenarios. Different driving scenarios are simulated by varying
simulation parameters of vehicle and the driving style.

Driving scenario Description

Successful lane change

Abandoned lane change

Dangerous lane change (small gap, small TTC values)

Dangerous close car following (small gap, small TTC values)
Unexpected stopping of leading vehicle

Unexpected pedestrians on road

Collision between ego and foe vehicle

N U R W N

Knowledge Graph (CKG) is created with over 915 million triples. There are more
than 84K Conflict Scenarios containing millions of instances of different types of
situations, such as Following Leader, Following Follower, Crossing, Merge etc.
These instances consist of information about the conflict points, speed of ego
and foe vehicle, and the direction of movement, respectively. Further, CKG has
more than 10K Lane Change Scenarios, which also contains millions of instances
of different lane change situations, categorized in respective ontological classes,
such as Speed Gain, Keep Right, or Sublane.

5.3 KG-based Situation Classification

This component is implemented according to the principles of the learning-based
paradigm. It uses a Relational Graph Convolutional Network [34] (R-GCN), an
extension of Graph Convolutional Network (GCN) [23], to directly operate on a
graph and learn its embeddings. Each layer [ of the R-GCN calculates:

H = (Y ArHOW D) (1)
reR

where A" is the normalized adjacency matrix of the graph G, W is the
weight matrix for layer (1) and o the activation function, such as ReLU. H ¢
RN*D is the matrix of activation’s in the I*" layer and H° the N x D matrix of
D-dimensional node embeddings for nodes N in the graph. Similar as in [41], we
extend the matrix of node embeddings H with feature embeddings for each node,
forming a Multimodal Relational Graph Convolutional Network (MRGCN):

g+ :U(Z ATHI(Z)WI(Z) +ATH§7Z)W1(;§)) (2)
reR

where Wl(l) and Wl(g,l ) are the learnable weights for the structural and feature
components, respectively.

5.4 Vector-based Situation Classification

To compare the performance of the KG-based classification with traditional fea-
ture based classifiers we implemented three methods described below. The fea-
tures are extracted from our KG to represent vector-based features. To deal with



a varying number of foe vehicles, we formed samples with tuples of the ego ve-
hicle, a foe vehicle and their relational information such as TTC and distance.

— Support Vector Machine (SVM) SVMs are a set of supervised learning meth-
ods that use a subset of the training samples, the so-called support vectors,
in the decision function.

— Decision-Tree Classifier (DTC) The fact that we have both, numerical and
categorical features representing driving situations, the application of deci-
sion tree fits well to our classification task.

— Multi-Layer Perceptron (MLP) Finally, we use a multi-layer perceptron neu-
ral network and train in with back-propagation for the classification task.

6 Evaluation

We empirically study the accuracy of our knowledge graph-based approach in a
situation classification task. In this section, we describe in detail the experiment
configuration for both, the KG-based as well as for the vector-based approaches,
as well as the achieved results. To evaluate the performance of our KG-model, we
compare classification results with vector-based feature representation in com-
bination with different classifiers.

6.1 Experiment Configuration

For our experiments, we used a sub-set of the CKG with 6.4 million triples,
representing around 226K Conflict Situations, each described with 28 triples on
average. This is further divided in 134K for training, 46K for validation and
46K for testing. To investigate the relative importance of different features, we
performed experiments with single features and combined features as shown in
Table 3. The 5 most important features were selected based on heuristics. For
each vehicle we have about 10 features on average (e.g., position, speed, accel-
eration, steering angle). The number of other features (e.g., minTTC, velocity
difference, etc.) depends on the number of vehicles in the vicinity (50m radius)
around ego. The numeric features are normalized before further processing by
the classifiers. MRGCN is implemented using one hidden layer with 40 nodes®,
trained in full batch mode with an ADAM optimizer. MLP uses 2 hidden layers
with 40 hidden neurons per layer trained in full batch mode with an ADAM
optimizer. SVM is implemented with radial basis function kernels and DTC uses
the Classification And Regression Trees algorithm.

6.2 Results and Discussion

Results for the different methods and different number of features are shown in
Table 3. The overall best results are obtained by the MRGCN method using the
5 most important features. For MRGCN, the performance using all features is
slightly lower than for the 5 most important ones. For the vector-based methods
SVM and DTC, best results are obtained using all features. When only one
feature is used, DTC and MLP achieve the best performance.

8 https://gitlab.com/wxwilcke/mrgen



Table 3: Classification accuracy. Accuracy for different features and different al-
gorithms for the task of situation classification.

MRGCN SVM DTC MLP

Single Features

Vehicle signal 0.468 0.510 0.511 0.511
Longitudinal lane position 0.501 0.566 0.507 0.569
Steering angle 0.607 0.524 0.641 0.510
Distance between vehicles 0.673 0.529 0.491 0.542
Lane ID 0.883 0.520 0.890 0.514
Combined features

ALL 36 features 0.938 0.708 0.750 0.733
5 most important features 0.953 0.648 0.746 0.742

The experiments show that our KG-based classifier achieves considerably
better results than all vector-based classifiers, in case when 5 most important or
all features are used, respectively. This suggests that the graph-based represen-
tation provides more discriminating information compared to the classic feature
vector-based representation.

Classification experiments with single features show that vector-based meth-
ods are superior to KG-based classifier for all features except Distance between
vehicles. This suggests that KG-based methods have no clear advantage in sim-
ple situations but outperform vector-based methods in complex situations where
multiple relationships and interactions exist between participants. It indicates
that KG-based methods could also perform well in more complex tasks that
consider much rich context as well as domain knowledge about the driver.

We did not consider temporal information for our classification experiment.
We believe that a superior performance of the KG-based method in learning re-
lational information suggests that the method will also be able to learn temporal
relations between nodes. The conducted experiments were the first attempts to
prove the advantage of our CoSI approach and further experiments for tasks in
automated driving will be the subject of future research.

7 Usage and Lessons Learned

7.1 Usage

Bosch has been pushing research in automated driving for many years and as a
result, many technologies are ready for highly automated driving today [5]. For
example, Bosch has developed automated valet parking, the first fully automated
system (SAE level 4). Therefore, the approach described here is one of the many
ongoing activities to address the challenges in automated driving [3]. It represents
one component of the overall architecture for an autonomous driving system [2].

The behavior of highly automated driving (HAD) systems especially in crit-
ical driving situations is crucial for their validation [39]. However, the validation
based on recorded test drives would require millions or billions of test kilometers
which makes it unfeasible [22]. Thus, alternate methods of validation including



simulation are a common practice [44]. We therefore used simulated data to val-
idate our approach. On the other hand, HAD vehicles will contain sensors and
perception units providing information about the driving scene surrounding the
ego-vehicle, similar to the information provided by the simulation tool (e.g. po-
sition, speed, and driving direction of nearby vehicles). We therefore expect that
our approach is generic enough and will also perform well on real-world data.

7.2 Lessons Learned

Maturity of semantic technologies For many years now, semantic technolo-
gies are widely used in specific domains e.g. education, life sciences and cul-
tural heritage [31]. Recent advances of vendors such as Stardog, OntoText, and
Cambridge Semantics? on their respective solutions offer support for many use
cases with different requirements and scenarios. Their primary function as triple
stores is improved considerably, being now able to manage and query knowl-
edge graphs with trillions of triples without experiencing significant degradation
in performance. Other features such as knowledge exploration, visualization, or
validation techniques are now inseparable and fully integrated in many triple
stores. A wide range of industry related solutions can be implemented and fully
operate in production, instead of a prototypical level. Therefore, we also consider
their application in the automotive domain to be promising.

Integration with existing data sources Typically, the sophisticated triple
stores provide support for the Ontology-Based Data Access (OBDA) princi-
ples [32]. OBDA enables accessing heterogeneous data sources via ontologies
and a set of mappings, that interlink this data with the ontological concepts.
There are two main forms for realizing a data integration scenario: 1) virtual
data access - data are kept in the original format but are transformed on-the-fly
and accessed as RDF triples; 2) materialization of triples - data from relational
tables are materialized in RDF triples to special named graphs. We followed a hy-
brid approach using both forms depending on the requirements and constraints:

— Virtual data access is seen as a preferred solution in cases when it is crucial to
avoid: 1) synchronization issues with data frequently changing; 2) replicating
resources; and 3) issues with migrating legacy systems.

— Materialization of triples is applied to prevent from: 1) performance degra-
dation of running systems while executing complex queries; 2) safety and
security issues with read/write permissions; and 3) issues with heavyweight
reasoning for non-RDF data.

Applicability of knowledge graph embeddings Knowledge graphs are pow-
erful in encapsulating and representing prior knowledge, leveraging rich seman-
tics and ontological structures. Additional rules and axioms encoded manually
support the reasoning process where new facts are inferred from the existing ones.
On the other hand, a number of knowledge graph embedding (KGE) methods

9 https://www.stardog.com, https://www.ontotext.com, https://www.cambridgesemantics.com



are presented for learning latent information in a KG using low dimensional
vectors [40]. They perform tasks such as knowledge graph completion, entity
recognition and classification, as well as downstream tasks like recommendation
systems, question answering, and natural language processing.

Despite the fact that from their intrinsic nature, knowledge graphs are very
flexible, we faced a number of challenges while preparing the data to be optimally
processed by KGE methods. In particular, we had to define special queries each
time when the information is scattered in n-ary relationships more than one hop
away from the main node. A number of slightly different views are created on the
fly comprising additional information encapsulated in main nodes. As a result,
the KGE methods performed better in terms of achieving a higher accuracy.

8 Conclusions

This article presents CoSI, an approach for enabling situation comprehension
using knowledge graphs. The CoSI ontology as the skeleton of CKG provides a
semantic representation of core concepts in a driving context. Thus, our approach
is able to effectively integrate data from heterogeneous sources and structures
it into a common knowledge graph. To demonstrate the applicability of our ap-
proach, we performed a number of empirical evaluations with different machine
learning methods. Results show that our approach achieves higher accuracy in
the task of situation classification compared to traditional methods. This indi-
cates that CKG can well represent complex information of the driving domain
and when combined with graph-based neural networks leads to superior perfor-
mance, achieving over 95% accuracy.

As future work, we plan to further expand the CoSI ontology with more fine-
grained entities covering additional objective and subjective dimensions. Next,
we will complement our approach via implementing the classification based on
axiomatic rules described in [35]. Therefore, tasks such as difficulty assessment
and trajectory prediction can be performed following rule- and learning-based
paradigms, respectively. In order to improve tasks related to situation compre-
hension, we will further exploit objective dimensions, i.e. related to the context
and time. Another goal is to include subjective dimensions in KGE methods for
achieving a more personalized situation comprehension.
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