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Abstract
Retrosynthesis, the task of identifying precursors
for a given molecule, can be naturally framed
as a conditional graph generation task, with
diffusion models being a particularly promising
approach. We show mathematically that permu-
tation equivariant denoisers severely limit the
expressiveness of graph diffusion models and thus
their adaptation to retrosynthesis. To address this
limitation, we relax the equivariance requirement
such that it only applies to aligned permutations
of the conditioning and the generated graphs
obtained through atom mapping, resulting in a
diffusion model with state-of-the-art results in
template-free retrosynthesis.

1. Introduction
Single-step retrosynthesis plays a pivotal role in chemistry,
as it focuses on identifying appropriate precursors for a
given target compound which can then be chained to form
complex synthesis plans (Corey and Cheng, 1996). Ap-
proaches to retrosynthesis have steadily moved from rely-
ing on explicit expert-curated rules or simplifying assump-
tions (template-based (Corey and Wipke, 1969) and synthon-
based (Shi et al., 2020; Somnath et al., 2021)), to adopting
purely data-driven machine-learning models (template-free
(Wan et al., 2022; Igashov et al., 2024)).

Diffusion-based generative models promise several advan-
tages in template-free retrosynthesis. For instance, trading
off generation speed and quality on a per sample basis
(Song et al., 2021) and the possibility to add additional
conditions even post-training (Song et al., 2021; Chung
et al., 2023; Li et al., 2022) could be used by a multi-step
retrosynthetic planner as additional controls. Furthermore,
a simple adaptation of diffusion models to retrosynthesis
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Figure 1. Aligned permutation equivariance. We use atom-
mapping information (visualized by highlighting atoms with
matching colors) as an input to the neural network denoiser to
generalize permutation equivariance to aligned permutation equiv-
ariance between reactant and product graphs.

holds the promise of all future advances diffusion model
methodology being opened up to the retrosynthesis domain
as well. To enable all of these advantages, however, we
need to understand how to properly apply diffusion models
in this graph-conditional setting.

In this paper, we: 1) characterize a serious limitation
of neural network expressivity that occurs when using
standard permutation equivariant denoiser architectures for
graph diffusion models in retrosynthesis. 2) we introduce
aligned permutation equivariance, where the reactants and
products are aligned with atom-mapping information, and
equivariance to permutations only holds when the alignment
through atom mapping remains intact (see Fig. 1 with an ex-
ample sketch). 3) We propose multiple methods to achieve
this alignment with standard GNN-based denoisers. 4) We
show that our method achieves excellent top-k accuracy,
with state-of-the-art results in template free retrosynthesis.

2. Related Work
There are three main types of retrosynthesis models (Liu
et al., 2023): Template-based (Segler and Waller, 2017;
Xie et al., 2023) and synthon-based (Yan et al., 2020; Shi
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et al., 2020; Wang et al., 2023) models use explicit chem-
ical rules, also restricting their generality. Template-free
methods (Wan et al., 2022; Seo et al., 2021) do not make
these assumptions, and our work falls in this category. Re-
cently, Igashov et al. (2024) proposed a Schrödinger-bridge
inspired method for retrosynthesis sharing similarities with
diffusion models. In another concurrent work (Wang et al.,
2023), the authors propose to use a synthon-based hierarchi-
cal diffusion model for multi-stage generation.

A fundamental inductive bias with neural networks operat-
ing on graphs is permutation equivariance (Wu et al., 2021),
which ensures that the network only uses topological connec-
tivity information and does not process the order of nodes
in an input graph X. It is widely used in graph diffusion
models to parameterize the reverse process (Niu et al., 2020;
Vignac et al., 2023; Hoogeboom et al., 2022; Huang et al.,
2022). Recently, Yan et al. (2023) showed that relaxing
permutation equivariance in graph diffusion using absolute
positional encodings can improve performance empirically.

3. Methods
We consider a database of Nobs known chemical reactions
D = {(Xn,Yn,P

Y→X
n )}Nobs

n=1 , where Xn are reactants,
Yn are products and PY→X

n are matrices defining atom
mappings between products and reactants. The retrosynthe-
sis task is: given that the data is sampled from an unknown
distribution p(X,Y,PY→X), predict the valid reactant
molecules X ∼ p(X |Y) for a given product molecule
Y. In our data encoding (also illustrated in Fig. A4 in
App. A) we model the reactants and products as molecular
graphs with nodes and edges representing atoms and bonds,
respectively. Formally, we define the reactant graph X as a
tuple (XN ,XE) of a node feature matrix XN ∈ RNX×Ka

and an edge feature matrix XE ∈ RNX×NX×Kb , s.t.
Ka and Kb are atom and edge feature dimensions re-
spectively. The product graph Y is similarly defined as
(YN ,YE) with a potentially different number of nodes
NY . The node features are one-hot vectors over atom types
(⊥,C,N,O,P, . . .) and edges are one-hot vectors over bond
types (⊥, 1, 2, 3). Both include an empty value ⊥ that rep-
resents a missing node or edge. Usually, NX ≥ NY , as the
data is defined to only include the main product molecule.

The atom mapping matrices PY→X ∈ RNX×NY give us
additional information about how atoms that ended up in the
product were reconfigured in the reaction, and are defined
such that PY→X

i,j = 1 if the ith atom of the reactant corre-
sponds with the jth atom of the product, and zero otherwise.
Thus, PY→XYN equals XN with the non-atom-mapped
atoms zeroed out. Correspondingly, PY→XYE(PY→X)⊤

equals XE with edges to non-atom-mapped atoms zeroed
out.

We propose to model the problem with a discrete vari-
ant of the standard denoising diffusion probabilistic model
(DDPM, (Ho et al., 2020)) where the reactants X0 are
diffused in a Markov chain q(Xt |Xt−1) for t ∈ [1, T ],
and we learn how to transform noise back to reactants
pθ(Xt−1 |Xt,Y), while conditioning on the fixed product
Y. Specifically, we adapt discrete diffusion models (Sohl-
Dickstein et al., 2015; Hoogeboom et al., 2022; Austin et al.,
2021) to graphs, following Vignac et al. (2023).

We use a discrete diffusion framework, following (Austin
et al., 2021; Vignac et al., 2023) with a Markov forward
process on the nodes and edges of the graph

q(Xt+1 |Xt) =
∏NX

i=1 q(X
N ,i
t+1 |X

N ,i
t )

∏NX

i,j=1 q(X
E,ij
t+1 |X

E,ij
t ),

(1)
to diffuse the reactant to noise, and a reverse process

pθ(Xt−1 |Xt) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,ij
t−1 |Xt,Y),

(2)
defining our generative model. The full generative distri-
bution is pθ(X0:T |Y) = p(XT )

∏T
t=1 pθ(Xt−1 |Xt,Y),

where p(XT ) is a predefined prior such that p(XT ) =
q(XT |X0). We use the neural network specifically to pre-
dict ground truth labels from noised samples, so that the
neural net directly outputs a distribution p̃θ

(
X0 |Xt,Y

)
.

Following (Vignac et al., 2023), train the model by min-
imizing the cross-entropy between denoised X0 proba-
bility vectors and the true X0. We adopt the absorbing-
state formulation from Austin et al. (2021), where nodes
and edges gradually transfer to the absorbing state, de-
fined as the empty state ⊥. For more details on the
discrete diffusion formalism, see App. A. Throughout
the paper, we denote the direct output of the neural
network as Dθ(Xt,Y) = (Dθ(Xt,Y)N , Dθ(Xt,Y)E),
where Dθ(Xt,Y)N ∈ RNX×Ka and Dθ(Xt,Y)E ∈
RNX×NX×Kb , s.t. we have a probability vector for each
node and edge. An overview of the approach is shown in
Fig. 2.

3.1. Theoretical results on permutation equivariance

In this section, we consider a data set D =
{(Xn,Yn,P

Y→X
n )}Nobs

n=1 , dubbed the ‘identity reaction
data’, where for all data points Xn = PY→X

n Yn. In the
data, both sides of the reaction are equivalent, up to some
permutation, as defined in the atom mapping matrix PY→X

n .
We use this toy scenario to reason about the expressive-
ness of our denoiser neural network. Furthermore, chemi-
cal reactions often induce limited changes to the precursor
molecules (Zhong et al., 2022), motivating the identity reac-
tion data as an important base case that the model should be
able to handle.

In our first result, we show that the denoisers in standard
graph diffusion models are constrained to output ‘mean’
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Figure 2. An overview of our approach to retrosynthetic graph diffusion. We adopt absorbing state diffusion (Austin et al., 2021), and
use atom mapping information (highlighted with the matching colours) as an input to the neural network denoiser to align the product
condition with the reactant data.

solutions, such that the outputs for all nodes and all edges
are equal in the early stages of generation. This is formalized
in the following Theorem:

Theorem 1. (The optimal permutation equivariant
denoiser) Let Dθ(XT ,Y) be permutation equivariant
s.t. Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT ) be
permutation invariant. The optimal solution with respect
to the cross-entropy loss with the identity reaction data is,
for all nodes i and j{
Dθ(XT ,Y)Ni,: = ŷN , ŷN

k =
∑

i Yi,k/
∑

i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(3)
where ŷN

k and ŷE
k are the marginal distributions of node

and edge values in Y.

The proof is given in App. B.1, and the Theorem is illus-
trated in ??. Clearly, this is a severe limitation. Ideally,
we would like the model to handle the copy-paste task in
a single denoising step, leaving the capacity of the diffu-
sion model for modelling the parts of the reaction that are
more difficult to handle. To solve the issue, we propose to
relax the standard permutation equivariance constraint to
aligned permutation equivariance, verbally defined as: if
we permute X and/or Y, and accordingly permute the atom
mapping PY→X such that the matching between Y and X
remains, the model output should be the same. Formally,
we use the atom-mapping permutation matrix PY→X as
an input to the denoiser and consider denoisers that satisfy
the following constraint: Dθ(RX,QY,RPY→XQ⊤) =
RDθ(X,Y,PY→X), where R and Q are permutation ma-
trices of shapes (NX ×NX) and (NY ×NY), respectively.
With PY→X and Y as an input, an unconstrained denoiser
can output the ground-truth permutation PY→XY for the
identity reaction task.

The question arises: With the relaxation, do we lose the in-
ductive bias provided permutation equivariance? In partivu-
lar, with permutation equivariant denoisers for graph dif-
fusion, we know that if the prior for XT is permutation
invariant, then our distribution for X0 is permutation in-

variant as well (Niu et al., 2020; Vignac et al., 2023). In
our second theoretical result, we show that a generalized
permutation invariance also holds for aligned denoisers:
Theorem 2. (Aligned denoisers induce aligned permuta-
tion invariant distributions) If the denoiser function Dθ

has the aligned equivariance property and the prior p(XT )
is permutation invariant, then the generative distribution
pθ(X0 |Y,PY→X) has the corresponding property for any
permutation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X).
(4)

A proof is given in App. B.2. Informally, the theorem states
that the chemical reaction has the same probability for all
isomorphisms of the reactant and product graphs, as long
as the atom mapping is not reassigned to different atoms.
Thus, during training, we can use the permutations present
in the data, and be sure that the model generalizes to other
permutations. Initially, during sampling, we only have ac-
cess to Y without atom mapping information. The theorem
ensures we can assign atom mappings arbitrarily during
sampling and still obtain effectively the same distribution
over reactant graphs.

3.2. Methods for Alignment in GNNs

We show multiple simple methods to turn a regular, per-
mutation equivariant denoiser into an aligned permutation
equivariant denoiser. Here, we present the implementation
details, and in App. B.3 we prove for each method that they
belong to the class of aligned equivariant models. Fig. A5
visualizes the methods.

Atom-mapped positional encodings In the first method,
we match pairs of atoms via the atom-mapping matrix
in both Xt and Y by adding a positional encoding vec-
tor to each unique atom pair. We first create the po-
sitional encodings based on the products with φ =
g(Y) (g being some function) and copy them to the re-
actant input to the denoiser as Dθ(Xt,Y,PY→X) =
fθ([X

N
t PY→Xφ],XE

t , [Y
N φ],YE), where fθ is the
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neural network that takes as inputs the augmented node
features and regular edge features.

Direct skip connection In the second method, we mod-
ify the network to include a direct connection from the
product to the reactant output: Dθ(Xt,Y,PY→X) =

softmax(f logit
θ (Xt,Y) + λPY→XY) where f logit

θ (Xt,Y)
are the logits at the last layer of the neural network for the
nodes and edges, λ is a learnable parameter and PY→XY =
(PY→XYN ,PY→XYE(PY→X)⊤).

Aligning Y in the input In the third method,
we align Y in the input by concatenating X and
PY→XY along the feature dimension before passing
it to the neural network with Dθ(Xt,Y,PY→X) =
fθ([X

N
t PY→XYN ], [XE

t PY→XYE(PY→X)⊤]).

4. Experiments
Data and preprocessing We use the reaction data bench-
mark data set USPTO-50k for our experiments. To generate
precursor sets of various sizes, we set the reactant blocks to
a fixed size of NY + d, where d is a hyperparameter we set
empirically to 15, with a ’blank’ node type for non-atoms.
We use the graph transformer architecture introduced by
(Dwivedi and Bresson, 2021) and used by (Vignac et al.,
2023). More details in App. C.1, App. C.3 and App. C.5.

Results We experiment with 1) an equivariant model 2) a
model with input alignment 3) a model with positional en-
coding alignment 4) a model with positional encoding align-
ment + output skip connection alignment. We sample 100 re-
actants for each condition in the test data set with T = 100,
rank them based on the frequency and ELBO (details in
App. C.2) and measure how often the ground-truth reactant
was in the top-k samples. Quantitative results are in Table 1.
While the unaligned, permutation equivariant model strug-
gles to get any reactions correct, our best aligned model
beats other template-free models in all top-k values, and
even the template-based and synthon-based models in top-1.

We also visualize the output of an aligned denoiser vs. the
output of the permutation equivariant denoiser in Fig. 1. The
aligned model correctly copies the product structure to the
output, whereas the unaligned model output does not have
any structure.

Other results. In the Appendix, we also show that the
model performs well with small step counts and show how
to apply post-training conditioning mechanisms for diffu-
sion models (inpainting and property-guided generation)
for interactive applications and as additional controls for
multi-step retrosynthesis.

Table 1. Top-k accuracy and MRR on the USPTO-50k test data
set. For comparison to other models, including ones pretrained on
larger data sets, see App. C.6.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑

Te
m

p. Retrosym (Coley et al., 2017b) 37.3 54.7 63.3 74.1
GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9
LocalRetro (Chen and Jung, 2021) 52.6 76.0 84.4 90.6

Sy
nt

ho
n G2G (Shi et al., 2020) 48.9 67.6 72.5 75.5

GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4
RetroDiff (Wang et al., 2023) 52.6 71.2 81.0 83.3

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3
GTA_aug (Seo et al., 2021) 51.1 67.6 74.8 81.6
Graph2SMILES (Tu and Coley, 2022) 52.9 66.5 70.0 72.9
Retroformer (Wan et al., 2022) 52.9 68.2 72.5 76.4
DualTF_aug (Sun et al., 2021) 53.6 70.7 74.6 77.0
Unaligned 4.1 6.5 7.8 9.8
DiffAlign-input 44.1 65.9 72.2 78.7
DiffAlign-PE 49.0 70.7 76.6 81.8

Te
m

pl
at

e-
fr

ee
O

ur
s

DiffAlign-PE+skip 54.7 73.3 77.8 81.1

Aligned Denoiser Unaligned Denoiser
Sample with AM Product Sample Product

Sample from p̃θ(X0 |XT ,Y, PY→X) Sample from p̃θ(X0 |XT ,Y)

= blank = absorbing = atom mapping

(a) Visualizing the output of an aligned denoiser by taking
a sample from the one-step denoising distribution, and the
output of an unaligned denoiser. Colours = atom mappings.

4.1. Conclusion

In this work, we studied an important aspect of the design
space of conditional graph diffusion models: the equivari-
ance of the denoiser. We showed that a permutation equiv-
ariant model converges to a ‘mean’ distribution for all com-
ponents of the graph, which ultimately impedes the perfor-
mance of the model. We propose aligned permutation equiv-
ariance to force the model to only consider permutations
which maintain the intrinsic alignment between the condi-
tioning and generated graphs. This modification allowed us
to achieve state-of-the-art results in retrosynthesis among
template-free methods, reaching a top-1 accuracy beyond
that of template-based methods. Our wider vision is that
our work opens up all the future advances in the diffusion
paradigm itself to retrosynthesis, now that the fundamentals
of how to apply diffusion models in this context are cleared.
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Appendices
This appendix is organized as follows. App. A provides additional details on the setup for conditional graph diffusion,
including the transition matrices, noise schedule, and data encoding as graphs. App. B presents our theoretical results on
aligned permutation equivariance and accompanying proofs. App. C includes additional details to replicate our experimental
setup. App. D develops a method to apply arbitrary post-training conditioning with discrete diffusion models, and presents
case studies showcasing the usefulness of post-training conditional inference in applications relevant to retrosynthesis. This
includes generating samples with desired properties and refining the generation interactively through inpainting.

A. Details on Conditional Graph Diffusion
We start out with a review of the method as outlined in the main paper, and continue with additional details.

We propose to model the problem with a discrete variant of the standard denoising diffusion probabilistic model (DDPM,
(Ho et al., 2020)) where the reactants X0 are diffused in a Markov chain q(Xt |Xt−1) for t ∈ [1, T ], and we learn how
to transform noise back to reactants pθ(Xt−1 |Xt,Y), while conditioning on the fixed product Y. Specifically, we adapt
discrete diffusion models (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2022; Austin et al., 2021) to graphs, following
Vignac et al. (2023).

We assume a Markov forward process

q(Xt+1 |Xt) =
∏NX

i=1 q(X
N ,i
t+1 |X

N ,i
t )

∏NX

i,j=1 q(X
E,ij
t+1 |X

E,ij
t ), (5)

to diffuse the reactant to noise, and a reverse process

pθ(Xt−1 |Xt) =
∏NX

i=1 pθ(X
N ,i
t−1 |Xt,Y)

∏NX

i,j pθ(X
E,ij
t−1 |Xt,Y), (6)

defining our generative model. Here, θ represents neural network parameters. Note we implicitly always have time
conditioning pθ(Xt−1 |Xt,Y, t), but we drop the explicit t for notational convenience. We also condition on the atom
mapping PY→X in the case of aligned models, but we will not include it in the notation in this section. The full
generative distribution is pθ(X0:T |Y) = p(XT )

∏T
t=1 pθ(Xt−1 |Xt,Y), where p(XT ) is a predefined prior such that

p(XT ) = q(XT |X0). Following (Hoogeboom et al., 2021; Austin et al., 2021), we use the neural network specifically
to predict ground truth labels from noised samples, so that the neural net directly outputs a distribution p̃θ

(
X0 |Xt,Y

)
.

The reverse process is then given by

pθ(Xt−1 |Xt,Y) =
∑

X0
q
(
Xt−1 |Xt,X0

)
p̃θ
(
X0 |Xt,Y

)
. (7)

Throughout the paper, we denote the direct output of the neural network as Dθ(Xt,Y) = (Dθ(Xt,Y)N , Dθ(Xt,Y)E),
where Dθ(Xt,Y)N ∈ RNX×Ka and Dθ(Xt,Y)E ∈ RNX×NX×Kb , s.t. we have a probability vector for each node and
edge.

The single-step transition for nodes (resp. for edges) is defined with a transition matrix QN
t as

q(XN ,i
t |XN ,i

t−1) = Cat(XN ,i
t ;p = XN ,i

t−1Q
N
t ). (8)

To define QN
t (resp. QE

t ), we adopt the absorbing-state formulation from Austin et al. (2021), where nodes and edges
gradually transfer to the absorbing state, defined as the empty state ⊥. Formally, Qt = (1 − βt)I + βt1e

⊤
⊥, where βt

defines the diffusion schedule and e⊥ is one-hot on the absorbing state. Then, the marginal q(Xt |X0) and conditional
posterior q(Xt−1 |Xt,X0) also have a closed form for the absorbing state transitions. The prior p(XT ) is correspondingly
chosen to be a delta distribution at a graph with no edges and nodes set to the ⊥ state. The noise schedule βt is defined
using the mutual information criterion proposed in Austin et al. (2021).

We use the cross-entropy loss, as discussed in Austin et al. (2021) and Vignac et al. (2023):

−Eq(X0,Y)q(t)q(Xt |X0)[log p̃θ(X0 |Xt,Y)], (9)

where q(t) is a uniform distribution over t ∈ {1 . . . T}.
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Algorithm 1 Loss calculation
Input: product Y, reactant X0, and optional permutation ma-
trix PX→Y for alignment
t ∼ Uniform({0, . . . , T})
Xt ∼ q(Xt |X0)

X̃0 = Dθ(Xt,Y,PY→X)

Return Cross-Entropy(X0, X̃0)

Algorithm 2 Sampling
Input: product Y
Choose (for alignment): PY→X ∈ RNX×NY

XT ∝ p(XT )
for t = T to 1 do

X̃0 = Dθ(Xt,Y,PY→X)

Xi
t−1 ∼

∑
k q(X

i
t−1 |Xi

t,X
i
0)X̃

i
0

Return X0

The training and sampling procedures with graph diffusion models are presented in Alg. 1 and Alg. 2, along with optional
conditioning by PY→X, as described in Sec. 3.2.

Our transition matrices To define QN
t and QE

t , we adopt the absorbing-state formulation from Austin et al. (2021),
where nodes and edges gradually transfer to the absorbing state ⊥. Formally, we give the generic form of the transition
matrix Qt for node input XN ∈ RNX×NX 1

Qt = (1− βt)I+ βt1e
⊤
⊥, (10)

where βt defines the diffusion schedule and e⊥ is one-hot on the absorbing state ⊥. For completeness, we list the other two
common transitions relevant to our application. The first is the uniform transition as proposed by Hoogeboom et al. (2021)

Qt = (1− βt)I+ βt
11

⊤

K
(11)

where βt, I are as before and K is the number of element (edge or node) types, i.e. the number of input features for both
nodes and edges. Vignac et al. (2023) also proposed a marginal transition matrix

QN
t = (1− βt)I+ βt

1
(
mN )⊤

and QE
t = (1− βt)I+ βt

1
(
mE

)⊤
(12)

which they argued leads to faster convergence. In this case, mN ∈ RKa and mE ∈ RKb are row vectors representing
the marginal distributions for node and edge types respectively. We tested all three types of transition matrices in early
experiments and noted the absorbing state model to be slightly better than the others. The marginal q(Xt |X0) and
conditional posterior q(Xt−1 |Xt,X0) also have a closed form for all of these transition matrices.

Noise schedule We use the mutual information noise schedule proposed by Austin et al. (2021), which leads to

t

T
= 1− I(Xt;X0)

H(X0)
=

H(X0,Xt)−H(Xt)

H(X0)
=

∑
X0,Xt

p(X0)q(Xt |X0) log
q(Xt |X0)∑

X′
0
p(X′

0)q(Xt |X′
0)∑

X0
p(X0) log p(X0)

(13)

For absorbing state diffusion, these equations lead to βt =
1

T−t+1 . Similarly, the total transition probability to the absorbing
state at time t has a simple form: q(Xt =⊥ |X0) =

t
T .

Forward process posterior For transition matrices that factorize over dimensions, we have

q(Xt−1,i,: |Xt,i,:,X0,i,:) ∼
XtQ

⊤
t ·X0,i,:Q̄t−1

X0,i,:Q̄tX⊤ (14)

where Xi,: is the one-hot encoding of ith node/edge of the graph, in row vector format. The formula outputs the correct
distribution

Variational lower-bound loss Diffusion models are commonly trained by minimizing the negative variational lower-bound
on the model’s likelihood (Ho et al., 2020). Austin et al. (2021) discuss the difference between optimizing the ELBO
and cross-entropy losses and show that the two losses are equivalent for the absorbing-state transition. We choose to use
cross-entropy, similar to Vignac et al. (2023), due to faster convergence during training. We include the formula for the

1The only difference between QN
t and QE

t for the absorbing-state and uniform transitions is the dimensions of I , e, 1 and the value
of K. We therefore give a generic form for both and imply choosing the right dimensions for each case.
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ELBO in Eq. (15) for completeness.

Lvb = EX0∼q(X0)

[
KL

[
q(XT |X0) ∥ p(XT )

]︸ ︷︷ ︸
LT

+

T∑
t=2

EXt∼q(Xt |X0)KL
[
q(Xt−1 |Xt,X0) ∥ pθ(Xt−1 |Xt)

]
︸ ︷︷ ︸

Lt−1

− EX1∼q(X1 |X0) log pθ(X0 |X1)︸ ︷︷ ︸
L0

]
(15)

We also note that we use this quantity as part of the scoring function mentioned in Sec. 4.

Data encoding and atom-mapping We illustrate our graph encoding using atom-mapping and permutation matrices.

B. Theoretical Results on Aligned Permutation Equivariance
B.1. Proof that Permutation Equivariant Denoisers Do Not Implement the Identity Reaction

Definitions Let us consider a data set D = {Xn,Yn,P
Y→X
n }Nobs

n=1 , where for all data points, Xn = PY→X
n Yn, that is,

both sides of the reactions are equivalent, up to some permutation, as defined in the atom mapping matrix PY→X
n . It is

always possible to preprocess the data such that the rows of Yn are permuted with Yn ← PY→X
n Yn so that the resulting

atom mapping between Yn and Xn is always identity. For simplicity, we assume such a preprocessed data set in this section.

Let us assume that the one-step denoiser probability, pθ(X0 |XT ,Y), is parameterized by the neural network Dθ(XT ,Y) ∈
RN×K such that the probability factorises for the individual nodes and edges (so there is one output in the network for each
node and each edge): pθ(X0 |XT ,Y) =

∏
i

∑
k X

N
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k X

E
0,i,j,kDθ(XT ,Y)Ei,j,k.

The ideal denoiser Clearly, the correct one-step denoiser Dθ(XT ,Y) = Y. This can be shown with the Bayes’ rule by
q(X0 |XT ,Y) = q(XT |X0,Y)q(X0 |Y)

q(XT |Y) = q(XT )q(X0 |Y)
q(XT ) = q(X0 |Y). Because one X always matches with exactly one

Y in the data, this is a delta distribution q(X0 |Y) =
∏

i δx0,i,yi , where we define x0,i and yi as the value of the i:th node /
edge. It is also easy to see that Dθ(XT ,Y) = Y is the optimal solution for the cross-entropy loss:

−
∑

(X0,Y)

q(X0) log pθ(X0 |XT ,Y) ∝ −
∑
Y

log pθ(Y |XT ,Y)

= −
∑
Y

log

∏
i

∑
k

YN
0,i,kDθ(XT ,Y)Ni,k

∏
i,j

∑
k

YE
0,i,j,kDθ(XT ,Y)Ei,j,k

 . (16)

All of the sums
∑

k Y
N
0,i,kDθ(XT ,Y)Ni,k and

∑
k Y

E
0,i,j,kDθ(XT ,Y)Ei,j,k are maximized for each i, j and Y if

Dθ(XT ,Y) = Y. In this case, the loss goes to zero.

The following theorem states that if the neural net is permutation equivariant, it will converge to a ‘mean’ solution, where
the output for each node and each edge is the marginal distribution of nodes and edges in the conditioning product molecule,
instead of the global optimum Dθ(XT ,Y) = Y.

Theorem 3. The optimal permutation equivariant denoiser Let Dθ(XT ,Y) be permutation equivariant s.t.
Dθ(PXT ,Y) = PDθ(XT ,Y), and let q(XT ) be permutation invariant. The optimal solution with respect to the
cross-entropy loss with the identity reaction data is, for all nodes i and j{

Dθ(XT ,Y)Ni,: = ŷN , ŷN
k =

∑
i Yi,k/

∑
i,k Yi,k,

Dθ(XT ,Y)Ei,j,: = ŷE , ŷE
k =

∑
i,j Yi,j,k/

∑
i,j,k Yi,j,k,

(17)

where ŷN
k and ŷE

k are the marginal distributions of node and edge values in Y.
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Reactants Product

Atom mapping from the nodes of Y to the nodes of X

Atom mapping from the edges of Y to the edges of X

C O N F C O N F

C O N F

XN PY→XYN PY→X

YN

Non-atom-
mapped atoms

NX NY

XE PY→XYE(PY→X)⊤
PY→X

YE (PY→X)⊤

Figure A4. Illustrating atom mapping-based permutations and the tensor-based encoding of the reaction graph. The colours highlight the
atom-mapped atoms and the elements that link them in the atom-mapping matrix PY→X. YN and XN are the one-hot encoded products
and reactants, respectively. YE and XE show the edge tensors, where 1=single bond, 2=double bond, 3=triple bond and 0=no bond. The
grey boxes highlight links that connect to atom-mapped atoms in the visualization.

Proof. Nodes. The cross-entropy denoising loss for the nodes can be written as

CE = −
∑

(X0,Y)

Eq(XT |X0)

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (18)

= −
∑

(X0,Y)

Eq(XT )

∑
i,k

XN
0,i,k logDθ(XT ,Y)i,k (19)

= −
∑
Y

Eq(XT )

∑
i,k

YN
i,k logDθ(XT ,Y)i,k, (20)

where the first equality is due to q(XT |X0) containing no information about X0 at the end of the forward process, and the
second equality is due to X0 = Y in the data. Since q(XT ) is permutation invariant, that is, all permuted versions PXT of
XT are equally probable, we can split the expectation into two parts Eq(XT )[·] ∝ Eq(X′

T )

∑
P[·], where X′

T contain only
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graphs in distinct isomorphism classes, and
∑

P sums over all permutation matrices of size N ×N ,

CE ∝ −
∑
Y

Eq(X′
T )

∑
P

∑
i,k

YN
i,k logDθ(PX′

T ,Y)Ni,k. (21)

Due to the permutation equivariance, Dθ(PX′
T ,Y)N = PDθ(X

′
T ,Y)N , and Dθ(PX′

T ,Y)Ni,k = Dθ(X
′
T ,Y)Nπ(i),k,

where π(i) denotes the index the index i is mapped to in the permutation P. Thus,

CE ∝ −
∑
Y

Eq(X′
T )

∑
π

∑
i,k

YN
i,k logDθ(X

′
T ,Y)Nπ(i),k (22)

= −
∑
Y

Eq(X′
T )

∑
i,k

∑
π

YN
π−1(i),k logDθ(X

′
T ,Y)Ni,k, (23)

where the equality is due to all permutations being in a symmetric position: What matters is the relative permutation between
YN and Dθ(X

′
T ,Y). Now,

∑
π Y

N
π−1(i),k =

∑
π Y

N
π(i),k = C

∑
i Y

N
i,k, because for each node index i, all the nodes in Y

are included equally often due to symmetry. This is proportional to the marginal distribution ŷN up to some constant, and
thus we have:

CE ∝ −
∑
Y

Eq(X′
T )

∑
i,k

ŷN
k logDθ(X

′
T ,Y)i,k. (24)

Clearly, the optimal value for each node output i is the empirical marginal distribution Dθ(X
′
T ,Y)Ni,: = (ŷN )⊤.

Edges With the exact same steps, we can get the equivalent of Eq. (21) for the edges:

CE ∝ −
∑
Y

Eq(X′
T )

∑
P

∑
i,j,k

YE
i,j,k logDθ(PX′

T ,Y)Ei,j,k. (25)

The permutation equivariance property for the edges is now written as Dθ(PX′
T ,Y)E = PDθ(X

′
T ,Y)EP⊤, and

Dθ(PX′
T ,Y)Ni,jk = Dθ(X

′
T ,Y)Nπ(i),π(j),k. Thus,

CE ∝ −
∑
Y

Eq(X′
T )

∑
π

∑
i,j,k

YE
i,j,k logDθ(X

′
T ,Y)Eπ(i),π(j),k (26)

= −
∑
Y

Eq(X′
T )

∑
i,j,k

∑
π

YE
π−1(i),π−1(j),k logDθ(X

′
T ,Y)Ei,j,k, (27)

with the equality holding again due to symmetry. Now, for any pair of node indices i and j, the set of all permutations
contains all pairs of node indices (π(i), π(j)) equally often due to symmetry. These pairs correspond to edges in YE , and
thus

∑
π Y

E
π−1(i),π−1(j),k =

∑
π Y

E
π(i),π(j),k

= D
∑

i,j Y
E
i,j,k, where D is a constant that counts how many times each

edge pair appeared in the set of all permutations. This is again proportional to the marginal distribution over the edges ŷE

CE ∝ −
∑
Y

Eq(X′
T )

∑
i,j,k

ŷE
k logDθ(X

′
T ,Y)i,j,k. (28)

Again, the optimal value for each edge output (i, j) is Dθ(X
′
T ,Y)Ei,j,: = (ŷE)⊤.

B.2. Proof of the Generalized Distributional Invariance with Aligned Equivariance

We start by proving a useful lemma, and then continue and continue to the proof of the main theorem.

Lemma 1. (An aligned denoiser induces aligned distribution equivariance for a single reverse step)

If the denoiser function Dθ has the aligned equivariance property Dθ(RX,QY,RPY→XQ⊤) =
RDθ(X,Y,PY→X), then the conditional reverse distribution pθ(Xt−1 |Xt,Y,PY→X) has the property
pθ(RXt−1 |RXt,QY,RPY→XQ⊤) = pθ(Xt−1 |Xt,Y,PY→X).
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Proof. First, let us denote the transition probabilities from t to t − 1 with Fθ(Xt,Y,PY→X), where for-
mally Fθ(Xt,Y,PY→X)Ni,k =

∑
k′ q(XN

t−1,i,k |XN
t,i,k,X

N
0,i,k)Dθ(Xt,Y,PY→X)Ni,k′ and Fθ(Xt,Y,PY→X)Ei,j,k =∑

k′ q(XE
t−1,i,j,k |XE

t,i,j,k,X
E
0,i,j,k)Dθ(Xt,Y,PY→X)Ei,j,k′ . Clearly, since the values of Fθ depend only pointwise on the

values of Dθ, Fθ is aligned permutation equivariant as well.

We continue by directly deriving the connection:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (29)

=
∏
i

∑
k

(RXt−1)
N
i,kFθ(RXt,QY,RPY→XQ⊤)i,k

×
∏
i,j

∑
k

(RXt−1)
E
i,j,kFθ(RXt,QY,RPY→XQ⊤)Ei,j,k (30)

=
∏
i

∑
k

(Xt−1)
N
π(i),kFθ(Xt,Y,PY→X)π(i),k

×
∏
i,j

∑
k

(Xt−1)
E
π(i),π(j),kFθ(Xt,Y,PY→X)Eπ(i),π(j),k, (31)

where in the last line we used the aligned permutation equivariance definition, and the the effect of the permutation matrix
R on index i was denoted as π(i). Now, regardless of the permutation, the products contain all possible values i and pairs
i, j exactly once. Thus, the expression remains equal if we replace π(i) with just i:

pθ(RXt−1 |RXt,QY,RPY→XQ⊤) (32)

=
∏
i

∑
k

(Xt−1)
N
i,kFθ(Xt,Y,PY→X)i,k

∏
i,j

∑
k

(Xt−1)
E
i,j,kFθ(Xt,Y,PY→X)Ei,j,k (33)

= pθ(Xt−1 |Xt,Y,PY→X), (34)

which concludes the proof.

Theorem 4. Aligned denoisers induce aligned permutation invariant distributions If the denoiser function Dθ has the aligned
equivariance property and the prior p(XT ) is permutation invariant, then the generative distribution pθ(X0 |Y,PY→X)
has the corresponding property for any permutation matrices R and Q:

pθ(RX0 |QY,RPY→XQ⊤) = pθ(X0 |Y,PY→X) (35)

Proof. Let us assume that the result holds for some noisy data level t: pθ(RXt |QY,RPY→XQ⊤) = pθ(Xt |Y,PY→X).
We will then show that the same will hold for Xt−1, which we can use to inductively show that the property holds for X0.
We begin as follows:

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(RXt−1 |Xt,QY,RPY→XQ⊤)pθ(Xt |QY,RPY→XQ⊤) (36)

=
∑
Xt

pθ(Xt−1 |R−1Xt,Y,PY→X)pθ(R
−1Xt |Y,PY→X). (37)

where on the second line we used Lem. 1 and the assumption that the result holds for noise level t. The sum over Xt contains
all possible graphs and all of their permutations. Thus, the exact value of R−1 does not affect the value of the final sum, as
we simply go through the same permutations in a different order, and aggregate the permutations with the sum. Thus,

pθ(RXt−1 |QY,RPY→XQ⊤) =
∑
Xt

pθ(Xt−1 |Xt,Y,PY→X)pθ(Xt |Y,PY→X) (38)

= pθ(Xt−1 |Y,PY→X) (39)

showing that if the result holds for level t, then it also holds for level t− 1. We only need to show that it holds for level
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XT−1 to start the inductive chain:

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(RXT−1 |XT ,QY,RPY→XQ⊤)p(XT ) (40)

=
∑
XT

pθ(XT−1 |R−1XT ,Y,PY→X)p(R−1XT ), (41)

where on the second line we again used Lem. 1 and the permutation invariance of p(XT ). Again, the exact value of R−1

does not matter for the sum, since the sum goes through all possible permutations in any case. Thus we have

pθ(RXT−1 |QY,RPY→XQ⊤) =
∑
XT

pθ(XT−1 |XT ,Y,PY→X)p(XT ) (42)

= pθ(XT−1 |Y,PY→X). (43)

Thus, since the property holds for XT−1, it also holds for XT−2, . . . , until X0. This concludes the proof.

B.3. Proofs that Our Denoisers Are Aligned Permutation Equivariant

In this section, we show for each of the three alignment methods that the corresponding denoisers do indeed fall within the
aligned permutation equivariance function class. Fig. A5 summarizes the different alignment methods.

Atom-mapped positional encodings We start by writing out one side of the aligned permutation equivariance condition,
Dθ(RXt,QY,RPY→XQ⊤) for this particular function class, and directly show that it equals PDθ(Xt,Y,PY→X).

Dθ(RXt,QY,RPY→XQ⊤) = fX
θ (

[
RXN

t RPY→XQ⊤Qφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤) (44)

= fX
θ (

[
RXN

t RPY→Xφ
]
,RXER⊤,

[
QYN Qφ

]
,QYEQ⊤), (45)

where fθ itself is a function that is permutation equivariant for the combined X and Y graph as input. This means that
the neural net itself gives an output for the entire combined graph, but we only consider the X subgraph as the denoiser
output, denoted here as fX

θ . For clarity, we can combine the reactant and product node features and adjacency matrices in
the notation, and use the permutation equivariance property of our GNN:

fθ(

[
RXN

t RPY→Xφ
QYN Qφ

]
,

[
RXE

t R
⊤ 0

0 QYEQ⊤

]
) (46)

=

[
R 0
0 Q

]
fθ(

[
XN

t PY→Xφ
YN φ

]
,

[
XE

t 0
0 YE

]
) (permutation equivariance of base NN) (47)

Taking only the X part of the output and reverting to Dθ notation, we directly arrive at the result that
Dθ(RXt,QY,RPY→XQ⊤) = RDθ(Xt,Y,PY→X).

Directly adding Y to the output We again start by writing out an aligned equivariant input to the denoiser, with fθ again
denoting a network that is permutation equivariant with respect to the combined X and Y graph:

Dθ(RX,QY,RPX→YQ⊤) = softmax(fX
θ (RX,QY) +RPY→XQ⊤QY) (48)

= softmax(RfX
θ (X,Y) +RPY→XY) (permutation equivariance of base denoiser) (49)

= R softmax(fX
θ (X,Y) +PY→XY) (50)

= RDθ(X,Y,PX→Y) (51)

where we were able to move the permutation outside the softmax since the softmax is applied on each node and edge
separately.

Aligning Y and X at the input to the model Let’s denote by [X PY→XY] concatenation along the feature di-
mension for both the nodes and edges of the graphs. Recall then that the definition of aligning the graphs in the input
is Dθ(X,Y,PY→X) = fθ([X PY→XY]), where fθ is a permutation equivariant denoiser. Writing out the aligned
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Figure A5. Different ways to align the graphs in the architecture. All of them can be combined. The ⊕ sign means concatenation along
the feature dimension, and + is the standard addition. All of the methods can be combined together.
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equivariance condition

Dθ(RX,QY,RPY→XQ⊤) = fθ([RX RPY→XQ⊤QY]) = fθ([RX RPY→XY]) (52)

= fθ(R[X PY→XY]) = Rfθ([X PY→XY]) (53)

= Dθ(X,Y,PY→X) (54)

which shows that this method results in aligned equivariance as well.

B.4. A Single-layer Graph Transformer with Orthogonal Atom-mapped Positional Encodings is Able to Implement
the Identity Reaction Solution for Nodes

Here, we show that a single-layer Graph Transformer neural net can model the identity reaction for the nodes given
orthogonal atom-mapped positional encodings (e.g., the graph Laplacian eigenvector-based ones). In particular it is possible
to find a θ such that Dθ(Xt,Y,PY→X)N = YN . We hope that this section can serve as an intuitive motivation for why
matched positional encodings help in copying over the structure from the product to the reactant side.

Recall that we have N atoms on both sides of the reaction. Let us map the atom mapping indices to basis vectors in
an orthogonal basis φ = [φ1, φ2, . . . , φN ]⊤. In practice, the node input to the neural net on the reactant side is now
X∗

t = [XN
t , φ], and the node input on the product side is Y∗ = [YN , φ].

Now, a single-layer Graph Transformer looks as follows (as defined in the Vignac et al. (2023) codebase):

N = [(X∗N
t )⊤, (Y∗N )⊤]⊤ (Concatenate rows) (55)

E =

[
XE

t 0
0 YE

]
(Create joined graph) (56)

N1 = MLPN (N) (Applied with respect to last dimension) (57)

E1 =
1

2
(MLPE(E) +MLPE(E)⊤) (Symmetrize the input) (58)

t1 = MLPt(t) (59)
Q,K,V = WQN1,WKN1,WV N1 (One attention head for simplicity) (60)

A1 = QK⊤ (61)
A2 = A1 ∗ (WE2

E1 + 1) +WE3
E1 (62)

A3 = softmax(A3) (63)

N2 = AV/
√
df (df is the embedding dim of V) (64)

N3 = N2 ∗ (Wt2t1 + 1) +Wt3t1 (65)
E2 = W(A2 ∗ (Wt4t1 + 1) +Wt5t1) (66)
t4 = MLPt4(Wt2 +W[min(N3),max(N3),mean(N3), std(N3)]

+W[min(N3),max(N3),mean(N3), std(N3)] (67)
E3 = MLPE2

(E2) +E (68)

Eout =
1

2
(E3 +E⊤

3 ) (Symmetrize the output) (69)

Nout = MLPN3(N3) +N (70)
tout = t4 + t (71)

Now, for purposes of illustration, we can define most linear layers to be zero layers:
MLPE ,MLPt,WE2 ,WE3 ,Wt2 ,Wt3 ,Wt4 ,Wt5 = 0. In addition to this, we define MLPN to be an identity
transform. WQ and WK are both chosen as picking out the U columns of N1, with additional overall scaling by some

constant α. WV is chosen to pick out the product node labels: WV N1 =

[
0

YN

]
. Now, we can easily see how the Graph

Transformer can obtain the optimal denoising solution for the nodes. Consider an input N = [(PX∗
t )

⊤, (Y)⊤]⊤, where the
reactant side is permuted. The output of the network should be PY. Focusing on the parts of the network that compute the
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node features:

A1 = α2

[
Pφφ⊤P⊤ Pφφ⊤

φφ⊤P⊤ φφ⊤

]
= α2

[
I P

P⊤ I

]
, (72)

A2 = A1, (73)

A3 ≈ softmax(A2) =
1

2

[
I P

P⊤ I

]
(If α≫ 1), (74)

N2 =
A3V√
dF

=

[
I P

P⊤ I

] [
0
YN

]
/(2

√
df ) =

[
PYN

YN

]
/(2

√
df ). (75)

Here, we used the fact that we chose the positional embeddings to be an orthogonal basis, and φφ⊤ = I, as well as the
fact that PP⊤ = I for any permutation matrices. The term 1

2 in the third equation came from the fact that each row of A1

contains two non-zero values that are also equal. The probability gets divided between the two of them in the softmax if the
logits are scaled large enough, and the approximation becomes arbitrarily accurate.

From now on, since we are interested in the denoising output only for the reactant side, we drop out the reactant side YN

and only focus on the PYN part. We choose the final MLPN2 to scale the output by some factor β ≫ 1:

Nout = βN2 +N (76)

nθ(PX∗
t ,Y

∗)N = softmax(βPYN +N) ≈ PYN . (77)

Here, the approximation can be made arbitrarily accurate by scaling β to a higher value, since the logits will become more
and more peaked towards the values where PYN equals one instead of zero. This showcases how the attention mechanism
in the Graph Transformer pairs with atom mapping-based orthogonal positional encodings to achieve the identity function
from products to reactants.

C. Experimental Setup
C.1. Data: USPTO Data Sets

All open-source data sets available for reaction modelling are derived in some form from the patent mining work of Lowe
(2012). We distinguish 5 subsets used in previous work: 15k, 50k, MIT, Stereo, and full (original data set). Table A2
provides key information about the subsets.

Table A2. UPSTO-50K subsets used in retrosynthesis

Subset Introduced by # of reactions Preprocessiong & Data split (script)

Full Lowe (2012) 1 808 938 Dai et al. (2019)
Stereo Schwaller et al. (2018) 1 002 970 Schwaller et al. (2019)
MIT Jin et al. (2017) 479 035 -
50k Schneider et al. (2016) 50 016 Dai et al. (2019)

15k is proposed by Coley et al. (2017a). The subset includes reactions covered by the 1.7k most common templates. All
molecules appearing in the reaction are included to model the involvement of reagents and solvents despite not contributing
with atoms to the product.

50k is preprocessed by Schneider et al. (2016). The goal of the analysis is to assign roles (reactant, reagent, solvent) to
different participants in a reaction through atom mapping. This effort led to the creation of an atom-mapped and classified
subset of around 50k reactions, which is used nowadays as a benchmark for retrosynthesis tasks. It is not clear how said
subset was selected.

MIT is used by Jin et al. (2017). The preprocessing is described as ‘removing duplicate and erroneous reactions’ with no
further explanation of what qualifies as an erroneous reaction. The output of this filtering is a data set of 49k reactions (from
an original set of 1.8M reactions).

Stereo is proposed by Schwaller et al. (2018). The authors apply a more flexible filtering strategy compared to USPTO-MIT.
Their data set only discards 800k reactions from the original data set because they are duplicates or they could not
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be canonicalized by RDKit. In addition, the data set only considers single-product reactions (92% of the full data set),
as opposed to splitting multi-product reactions. The preprocessing steps include removing reagents (molecules with no
atoms appearing in the product), removing hydrogen atoms from molecules, discarding atom-mapping information and
canonicalizing molecules. In addition, since the original method applied to this subset is a language model, tokenization is
performed on the atoms.

Full is preprocessed by Dai et al. (2019). The processing includes removing duplicate reactions, splitting reactions with
multiple products into multiple reactions with one product, removing reactant molecules appearing unchanged on the product
side, removing all reactions with bad atom-mapping (i.e., when the sorted mapping between products and reactants is not
one-to-one), and removing bad products (missing mapping, or not parsed by Rdkit).

Our choice Similar to many other works on retrosynthesis, we use 50k as the main data set to evaluate our method.

C.2. Notes on Our Sampling and Ranking Procedures

Duplicate removal Removing duplicates from the set of generated precursors is a common methodology in retrosynthesis,
albeit often not discussed explicitly in papers. The benefit of duplicate removal is to ensure that an incorrect molecule that is
nevertheless judged as the best one according to the ranking scheme does not fill up all of the top-k positions after ranking.
While this does not affect top-1 scores, not removing the duplicates would degrade the other top-k scores significantly.

Choice of scoring function Specifically, we use the following formula for approximating the likelihood of the sample
under the model.

s(X) = (1− λ)
count(X)∑
X′ count(X′)

+ λ · eelbo(X)∑
X′ eelbo(X

′)
, (78)

where count(.) returns the number of occurrences of sample X in the set of generated samples (by default, 100), elbo(.)
computes the variational lower bound of the specific sample under the model, and λ is a weighting hyperparameter. The
sums are taken over the set of generated samples. Intuitively, the idea is to provide an estimate of the likelihood from two
routes. The ELBO is an estimate (a lower bound) of log pθ(X), and exponentiating and normalizing gives an estimate of the
probability distribution. Since the same reactants are often repeated in a set of 100 samples, the counts can be used as a more
direct proxy, although they inherently require a relatively large amount of samples to limit the variance of this estimate.

We set the value of λ to be 0.9, although we find that the top-k scores are not at all sensitive to variation in the exact value, as
long as it is below 1, and the count information is used. Thus, the counts seem more important than the ELBO, which may
be due to the lower bound nature of the ELBO or stochasticity in estimating its value. More accurate likelihood estimation
schemes for diffusion models, such as exact likelihood values using the probability flow ODE (Song et al., 2021), could be a
valuable direction for future research in the context of retrosynthetic diffusion models.

C.3. Details on stereochemistry

Our model does not explicitly consider changes in stereochemistry in the reaction, but instead, we use the atom mappings
implicitly assigned to the samples by the model to transfer the chiral tags from the products to the reactants. The initial
choice of PY→X at the start of sampling can be considered to be the atom mapping of the generated reactants, given that
the model has been trained on correct atom mappings.

For the chiral tags, we take the ground-truth SMILES for the product molecules from the dataset and assign the corre-
sponding chiral tag to the corresponding atom mapping on the generated reactants. For cis/trans isomerism, we use the
Chem.rdchem.BondDir bond field in rdkit molecules and transfer them to the reactant side based on the atom mapping
of the pair of atoms at the start and end of the bond.

Note that when using rdkit, transferring chirality requires some special care: The chiral tags
Chem.ChiralType.CHI_TETRAHEDRAL_CCW and Chem.ChiralType.CHI_TETRAHEDRAL_CW are de-
fined in the context of the order in which the bonds are attached to the chiral atom in the molecule data structure. Thus, the
chiral tag sometimes has to be flipped to retain the correct stereochemistry, based on whether the order of the bonds is
different on the reactant molecule data structure and the product molecule data structure.
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C.4. Details of the Evaluation Procedure

Top-k scores We evaluate the top-k scores by ranking the list of generated and deduplicated samples and calculating the
percentage of products for which the ground-truth reactants are in the first k elements in the list.

Mean reciprocal rank We formally define the MRR as MRR = Ep(r)[r
−1]. Verbally, it is the expected value of the inverse

of the amount of reactant suggestions that the model makes before encountering the ground truth, and as such measures
how early on is the correct reactant encountered in the ranked samples. It also incorporates the intuition that the difference
between obtaining the correct reactants in, say, the 9th or the 10th position, is not as significant as the difference between the
1st and 2nd positions.

While we do not have direct access to the entire p(r) just based on the top-k scores, we can estimate it with a uni-
form distribution assumption on r within the different top-k ranges. Formally, we define four sets S1, S2, S3, S4 =
{1}, {2, 3}, {4, 5}, {6, 7, 8, 9, 10} in which p(r) is assumed to be uniform, and s(r) ∈ {1, 2, 3, 4} denotes the group that
rank r belongs to. Top-k is denoted as topk, where k ∈ {1, 3, 5, 10} in our case. Note that they are also equal to the

cumulative distribution of p(r) until k. We thus define p̂(r) =
topmax(Gs(r))

−topmax(Gs(r)−1)

|Gs(r)|
and p̂(1) = top1. For the case

where the ground truth was not in the top-10, we assume it is not recovered and place the rest of the probability mass on
p(∞). Our MRR estimate is then defined as

M̂RR =

10∑
r=1

p̂(r)
1

r
. (79)

In cases where we do not have top-k values for all {1,3,5,10} (such as the Augmented Transformer in Table 1 for top-3), we
assume that p̂(r) is constant in the wider interval between the preceding and following top-ks (2–5 in the case of the top-3
missing).

C.5. Neural Network Architecture, Hyperparameters, and Compute Resources

We discuss here the neural network architecture and hyper-parameters we choose. Our denoiser is implemented as a Graph
Transformer (Dwivedi and Bresson, 2021), based on the implementation of Vignac et al. (2023) with additional graph-level
level features added to the input of the model. See Vignac et al. (2023) for an in-depth discussion of the neural network.

In all of our models, we use 9 Graph Transformer layers. When using Laplacian positional encodings, we get the 20
eigenvectors of the Graph Laplacian matrix with the largest eigenvalues and assign to each node a 20-dimensional feature
vector.

We use a maximum of 15 ’blank’ nodes, in practice meaning that the models have the capacity to add 15 additional atoms
on the reactant side. In another detail, following Vignac et al. (2023), we weigh the edge components in the cross-entropy
loss by a factor of 5 compared to the node components.

We used a batch size of 16 for the models where the expanded graph containing X and Y as subgraphs is given as input.
These models were trained for approximately 600 epochs with a single A100/V100/AMD MI250x GPU. For the model
where alignment is done by concatenating Y along the feature dimension in the input, the attention map sizes were smaller
and we could fit a larger batch of 32 with a single V100 GPU. This model was trained for 600 epochs. The training time for
all of our models was approximately three days. In early experiments and developing the model, we trained or partially
trained multiple models that did not make it to the main paper. Sampling 100 samples for one product with T = 100 from
the model takes roughly 60 seconds with the current version of our code with an AMD MI250x GPU, and 100 samples with
T = 10 takes correspondingly about 6 seconds. It is likely that the inference could be optimized, increasing the sample
throughput.

The reported models were chosen based on evaluating different checkpoints with 10 diffusion steps on the validation set for
different checkpoints and chose the best checkpoint based on the MRR score.

C.6. Comparison to Other Baselines

We present other results in the literature not directly comparable to our model.

Methods with a different evaluation procedure

Despite Igashov et al. (2024)’s RetroBridge being closely related to a diffusion model, we cannot include it in a straightfor-
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Table A3. Top-k accuracy and MRR on the USPTO-50k test data set—extended comparison, including models with pretraining on larger
data sets, and Retrobridge (Igashov et al., 2024), where the evaluation is done with a relaxed metric that does not consider charges or
stereochemistry.

Method k = 1 ↑ k = 3 ↑ k = 5 ↑ k = 10 ↑ M̂RR ↑

Pr
e-

tr
ai

ne
d RSMILES (Zhong et al., 2022) 56.3 79.2 86.2 91.0 0.680

PMSR (Jiang et al., 2023) 62.0 78.4 82.9 86.8 0.704
Te

m
p. Retrosym (Coley et al., 2017b) 37.3 54.7 63.3 74.1 0.480

GLN (Dai et al., 2019) 52.5 74.7 81.2 87.9 0.641
LocalRetro (Chen and Jung, 2021) 52.6 76.0 84.4 90.6 0.650

Sy
nt

ho
n GraphRetro (Somnath et al., 2021) 53.7 68.3 72.2 75.5 0.611

RetroDiff (Wang et al., 2023) 52.6 71.2 81.0 83.3 0.629
MEGAN (Sacha et al., 2021) 48.0 70.9 78.1 85.4 0.601
G2G (Shi et al., 2020) 48.9 67.6 72.5 75.5 0.582

Te
m

pl
at

e-
fr

ee

SCROP (Zheng et al., 2019) 43.7 60.0 65.2 68.7 0.521
Tied Transformer (Kim et al., 2021) 47.1 67.1 73.1 76.3 0.572
Aug. Transformer (Tetko et al., 2020) 48.3 - 73.4 77.4 0.569
Retrobridge (*) (Igashov et al., 2024) 50.3 74.0 80.3 85.1 0.622
GTA_aug (Seo et al., 2021) 51.1 67.6 74.8 81.6 0.605
Graph2SMILES (Tu and Coley, 2022) 52.9 66.5 70.0 72.9 0.597
Retroformer (Wan et al., 2022) 52.9 68.2 72.5 76.4 0.608
DualTF_aug (Sun et al., 2021) 53.6 70.7 74.6 77.0 0.619
Unaligned 4.1 6.5 7.8 9.8 0.056
DiffAlign-input 44.1 65.9 72.2 78.7 0.554
DiffAlign-PE 49.0 70.7 76.6 81.8 0.601

O
ur

s

DiffAlign-PE+skip 54.7 73.3 77.8 81.1 0.639

ward comparison because it discards atom charges from the ground truth smiles during evaluation. Specifically, the model
uses only atom types as node features and compares the generated samples to the smiles reconstructed from the ground truth
data through the same encoding (i.e. without charges too) 2.

Methods with pretraining Zhong et al. (2022) and Jiang et al. (2023) pre-train their models on the USPTO-Full and
Pistachio data sets, respectively, and as such the results are not directly comparable to models trained on the standard
USPTO-50k benchmark. Pretraining with diffusion models is an interesting direction for future research, but we consider it
outside the scope of our work. Furthermore, comparison between models with different pretraining datasets and pretraining
strategies has the danger of complicating comparisons, given that relative increases in performance could be explained
by the model, the pretraining strategy, or the pretraining dataset. As such, we believe that standardized benchmarks like
USPTO-50k are necessary when researching modelling strategies.

D. Adding Post-Training Conditioning to Discrete Diffusion Models
In this section, we show a method to add additional controls and conditions on the used discrete diffusion model post-training.
While the notation is from the point of view of our retrosynthesis model, the method here applies in general to any discrete
diffusion model. We start by writing the Bayes’ rule for an additional condition y (e.g., a specified level of drug-likeness or
synthesizability, or an inpainting mask)

pθ(Xt−1 |Xt,Y, y) ∝ p(y |Xt−1,Xt,Y)pθ(Xt−1 |Xt,Y) (80)
= p(y |Xt−1,Y)pθ(Xt−1 |Xt,Y) (81)

where the second equation was due to the Markovian structure of the generative process (Xt−1 d-separates y and Xt). Now,
we can take the log and interpret the probabilities as tensors Pθ(y |Xt−1,Y) and Pθ(Xt−1 |Xt,Y) defined in the same
space as the one-hot valued tensors Xt−1 and Xt. We get:

logPθ(Xt−1 |Xt,Y, y) ∝ logP(y |Xt−1,Y) + logPθ(Xt−1 |Xt,Y) (82)

Similarly to (Vignac et al., 2023), we can now Taylor expand logPθ(y |Xt−1,Y) around Xt with

logP(y |Xt−1,Y) ≈ logP(y |Xt,Y) +∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

(Xt−1 −Xt) (83)

2This can be seen in the code shared by Igashov et al. (2024): https://github.com/igashov/RetroBridge
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Given that we are interested in the distribution w.r.t. Xt−1, the Xt terms are constant when we plug them in to Eq. (82),
resulting in

logPθ(Xt−1 |Xt,Y, y) ∝ ∇X′
t
logP(y |X′

t,Y)|X′
t=Xt

Xt−1 + logPθ(Xt−1|Xt,Y) (84)

Simplifying the notation to assume taking the gradient at Xt, we can also write

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
logPθ(y |Xt,Y)Xt−1 + logPθ(Xt−1 |Xt,Y) (85)

In practice, the equation means that given log pθ(y |Xt,Y), we get pθ(Xt−1 |Xt,Y, y) by adding the input gradient of
log pθ(y |Xt,Y) to the logits given by the regular reverse transition and re-normalizing.

It would be possible to approximate log pθ(y |Xt,Y) by training an additional classifier, leading to so-called classifier
guidance (Song et al., 2021). However, if we have direct access to p(y |X0) (e.g., a synthesizability model), there exists a
wide range of methods developed for continuous diffusion models that provide different levels of approximations of the true
conditional distribution (Chung et al., 2023; Dou and Song, 2024; Finzi et al., 2023; Boys et al., 2023; Wu et al., 2023; Peng
et al., 2024). Here, we show an approach similar to (Chung et al., 2023) for discrete diffusion models by using the gradients
with respect to the denoiser pθ(X0 |Xt,Y)

p(y |Xt,Y) =
∑
X0

q(X0 |Xt,Y)p(y |X0) (86)

≈
∑
X0

pθ(X0 |Xt,Y)p(y |X0), (87)

where q(X0 |Xt,Y) is the true denoising distribution. This results in the following update step:

logPθ(Xt−1 |Xt,Y, y) ∝ ∇Xt
log

(
Epθ(X0 |Xt,Y)p(y |X0)

)
Xt−1 + logPθ(Xt−1 |Xt,Y). (88)

Summing over all possible graphs X0 is prohibitive, however. Instead, we could sample X0 from pθ(X0 |Xt,Y) with
the Gumbel-Softmax trick (Jang et al., 2016) and evaluate log p(y |X0). As long as log p(y |X0) is differentiable, we can
then just use automatic differentiation to get our estimate of ∇Xt

logPθ(y |Xt,Y). Another, more simplified approach
that avoids sampling from pθ(X0 |Xt,Y) is to relax the definition of the likelihood function to directly condition on the
continuous-valued probability vector Pθ(X0 |Xt,Y) instead of the discrete-valued X0. For simplicity, in the next section,
we adopt this approach, but the full method with Gumbel-Softmax is not significantly more difficult to implement.

D.1. Toy Synthesisability Model: Controlling Atom Economy

One obvious use-case for posthoc conditioning in the retrosynthesis context is to increase the probability of the generated
reactants being synthesisable, using some pre-trained synthesisability model. Synthesisability of the generated reactants is
crucial in the multi-step retrosynthesis context since otherwise, the generated branch of the search path is a dead end. The
idea is that if we can improve the probability of synthesisability of the generated reactants, this should result in a much
smaller search space for the multi-step model. To showcase the idea, we use a toy synthesisability model based on total
the count of atoms in the reactants. The size of the reactants is indeed a feature used in synthesisability models (Ertl and
Schuffenhauer, 2009), with the motivation that smaller reactants are more likely to be synthesisable than large and complex
ones. The total count of atoms in a reaction is also referred to as the atom economy (Trost, 1991) of the reaction. It is the
efficiency of a chemical process in converting all involved atoms into the desired products and is a key factor in creating
synthesis routes that are efficient with respect to the raw materials. The ability to control the atom economy of a single-step
retrosynthesis model thus has the potential to improve the efficiency of synthesis routes, in contrast to simply finding correct
synthesis routes.

The model of synthesizability that we use is

X̃0 = pθ(X0 |Xt,Y), (89)

p(y = synthesizable | X̃0) = σ(

∑
i∈S X̃0,i,d − a

b
)γ , (90)

where S is the set of non-atom-mapped nodes, a, b and γ are constants that define the synthesizability model and d refers to
the dummy node index. The intuition is that the more nodes are classified as dummy nodes (non-atoms), the fewer atoms
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Algorithm 3 Sampling with atom-count guidance

Input: Product Y
Choose: PY→X ∈ RNX×NY

XT ∝ p(XT )
for t = T to 1 do

X̃0 = Dθ(Xt,Y, PY→X) ▷ Denoising output
X̃i

t−1 =
∑

k q(X
i
t−1 |Xi

t,X
i
0)X̃

i
0 ▷ Regular reverse transition probabilities

Xi
t−1 ∼ softmax(log X̃t−1 + γ∇Xt

log σ(
∑

i∈S X̃0,i,d−a

b )) ▷ Renormalize

Return X0

Product

Generated Reactants

Increasing atom economyHigh negative guidance (gamma < 0) High positive guidance (gamma > 0)

Figure A6. The effect of increasing the γ parameter. With negative γ, the model outputs large reactants, and with positive γ, the model
outputs smaller ones, allowing for fine-grained control over the atom economy of the generated step.

we have in total, leaving the atom economy higher. Note that
∑

i∈S X̃0,i,d is the expected amount of dummy nodes from
pθ(X0 |Xt,Y). We set a to half the amount of dummy nodes and b to one-quarter of the amount of dummy nodes. It turns
out that this leaves γ as a useful parameter to tune the sharpness of the conditioning. The gradient estimate is then given by

∇Xt
logPθ(y |Xt,Y) = γ∇Xt

log σ(

∑
i∈S X̃0,i,d − a

b
), (91)

which can be directly calculated with automatic differentiation. The full algorithm is detailed in Alg. 3. Figure A6 shows the
effect of increasing γ on an example product.

D.2. A Case Study on Interactive Generation With Inpainting

We replicate BHC’s green synthesis of Ibuprofen hypothetically using our model interactively with inpainting. Fig. A7
compares the output of our model to the ground truth synthesis. Below we explain the synthesis steps in detail:

1. The retrosynthesis path starts with carbonylation, a simple and well-known synthetic reaction which adds a ‘CO’
structure to a compound. The practitioner tries basic generation but then notices that the suggested reactant is not
promising. They then suggest a partial structure of the reactants which could lead to a more sensible path. Our
retrosynthetic model can complete the reactants with this information.

2. Next, our model proposes hydrogenation, which is a sensible suggestion in this case. The data does not consider
explicitly individual H2 molecules, meaning that they are inferred from the context.

3. In the third step, regular generation again seems off, but the practitioner notices that an acylation reaction (a reaction
with the C(=O)C group) might lead to reactants that are readily available. The model is able to complete the rest of the
reaction after knowing that C(=O)C is present. These steps match the synthesis plan proposed by BHC.
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Objective: synthesize

= does not correspond to ground truth

= the correct reaction (possibly up to implicit
H2 not present in the data)

= inpainted form

Real (retro)synthesis path

Basic generation

With inpainting

1. Carbonylation 2. Hydrogenation 3. Friedel-Crafts Acylation

Knowledge about the desired main reactant
and a guess about side reactants

Knowledge about the type of
reaction (acylation)

Figure A7. Replicating BHC’s green synthesis of Ibuprofen using our model interactively, and comparing to the known synthesis path.
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