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ABSTRACT

Modeling time series is important in a variety of domains, yet it is challenged
by the presence of missing values in real-world time-series datasets. Traditional
frameworks for modeling time-series with missing values typically involve a two-
step process, where the missing values are first filled-in using some imputation
technique, followed by a time-series modeling approach on the imputed time-
series. However, existing two-stage approaches suffer from two major drawbacks:
first, the propagation of imputation errors into subsequent time-series modeling
performance, and second, the inherent trade-offs between imputation efficacy and
imputation complexity. To this end, we propose a novel imputation-free approach
for handling missing values in time series termed Missing Feature-aware Time
Series Modeling (MissTSM) with two main innovations. First, we develop a
novel embedding scheme that treats every combination of time-step and feature (or
channel) as a distinct token, encoding them into a high-dimensional space. Second,
we introduce a novel Missing Feature-Aware Attention (MFAA) Layer to learn
latent representations at every time-step based on partially observed features. We
evaluate the effectiveness of MissTSM in handling missing values over multiple
benchmark datasets using two synthetic masking techniques: missing completely
at random (MCAR) and periodic masking, and a real-world missing-value dataset.

1 INTRODUCTION

Multivariate time-series modeling for tasks such as forecasting (Lim & Zohren, 2021} |Torres et al.|
2021)) and classification (Ismail Fawaz et al.,|2019) are important in a number of applications including
electric load forecasting (Din & Marnerides| |2017; L’ Heureux et al.,|2022)), traffic flow prediction (Xu
et al.| 2020; Jiang et al.| 2023)), weather forecasting (Bojesomo et al.|[2021]), healthcare monitoring
(Tonekaboni et al.,[2021), and financial analysis (Henrique et al., 2019)). There is a growing body
of literature on time-series modeling using deep learning approaches, including early adoption of
recurrent architectures such as Recurrent Neural Networks (RNNs) (Hewamalage et al., 2021)) and
Long Short-Term Memory networks (LSTMs) (Hochreiter & Schmidhuber, |1997; Siami-Namini
et al.,|2019). With the success of transformer-based models (Vaswani et al.,[2017)) in the domain of
natural language modeling, there is a growing trend to use transformers in the domain of time-series
(Wen et al., [2022). This includes recent frameworks such as SimMTM (Dong et al., [2024), PatchTST
(Nie et al.| 2022a), and iTransformers (Liu et al., 2023), which already show superior performance
compared to non-transformer baselines on various time-series modeling benchmarks by leveraging
self-attention mechanisms for capturing temporal dependencies. However, existing deep learning
based methods for time-series modeling typically assume the availability of complete time-series
data with no missing values. While such datasets are available for benchmarking experiments, in real-
world applications, it is common to observe missing values in the time-series due to several reasons
such as sensor malfunctions, communication disruptions, or the prohibitive costs of high-frequency
data acquisition across all features. The presence of missing values on arbitrary sets of features at
varying time-steps introduces “gaps” in the data that can impair the application of state-of-the-art
models unless specific adaptations are made.

A common approach for handling missing values in time-series data is to use imputation methodolo-
gies (Ahn et al., 2022} Batista et al.,2002), which are aimed at reconstructing (or filling) the missing
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values based on observed data. This includes two broad classes of imputation techniques: those
that leverage cross-channel correlations (Batista et al., 20025 |Acuna & Rodriguez, 2004) and those
that exploit temporal dynamics (Box et al.| [2015)). Despite their promise, these methods are prone
to producing inferior imputations in applications involving complex, nonlinear temporal dynamics
and/or intricate inter-dependencies across channels. Recently, deep learning-based approaches for
imputation have been developed (Tashiro et al.l 2021} Cini et al., 20215 Liu et al., [2019), which can
jointly learn the temporal dynamics with cross-channel correlations. These methods rely on a single
entangled representation (or hidden state) to model nonlinear dynamics (Woo et al., [2022) which
can be a limitation in capturing the multifaceted nature of time-series. Matrix factorization based
techniques (Liu et al.}[2022)) have also been proposed that offer disentangled temporal representations,
enhancing the ability to differentiate and model distinct temporal features such as trends, seasonality,
and local bias. However, all existing frameworks for time-series modeling with missing values are
inherently two stage approaches, where the missing values of the time-series are first filled-in using an
imputation technique, followed by feeding the imputed time-series to a time-series modeling approach
(see Figure[T). This two-stage approach introduces two critical challenges: first, the propagation
of imputation errors into subsequent time-series modeling performance, and second, the inherent
trade-offs between imputation efficacy and imputation complexity.

To overcome the inherent limitations of
imputation-based techniques, we ask the
question: “can we circumvent the need for
imputation by designing a deep learning
framework that can directly model time-
series with missing values?” To answer
this question, we draw inspiration from
the recent success of masked modeling ap-
proaches in domains including vision (He
et al.; |2022) and language (Devlin et al.
2018) where “masked-attention” opera-
tions embedded in Transformer blocks are
effectively utilized to reconstruct data from
partial observations. Based on this insight,
we propose a novel Missing Feature-aware
Time Series Modeling (MissTSM) Frame-
work, which capitalizes on the information
contained in partially observed features to
perform downstream time-series modeling
tasks without explicitly imputing the missing values (see Figure[I)). MissTSM performs end-to-end
modeling of time-series with missing values using two main innovations. First, we develop a novel
embedding scheme, termed Time-Feature Independent (TFI) Embedding, which treats every combina-
tion of time-step and feature (or channel) as a distinct token, encoding them into a high-dimensional
space. Second, we introduce a novel Missing Feature-Aware Attention (MFAA) Layer to learn latent
representations at every time-step based on partially observed features. Additionally, we use the
framework of Masked Auto-encoder (MAE) (He et al.,|2022) to perform self-supervised learning of
latent representations for time-series reconstruction, which can be re-used for downstream tasks such
as forecasting and classification. To evaluate the ability of MissTSM to model time-series with miss-
ing values, we consider two synthetic masking techniques: missing completely at random (MCAR),
and periodic masking, to simulate varying scenarios of missing values. We show that MissTSM
achieves comparable performance as state-of-the-art models on multiple benchmark datasets and on a
real-world dataset with a high degree of missing values without using any imputation techniques.
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Figure 1: Comparing the traditional two-stage approach
of time-series modeling with missing values with our
single-stage MissTSM framework that does not require
imputations.

2 RELATED WORKS

Imputation Methods: Time-series modeling, be it for classification or forecasting, has several
applications in a number of domains. Traditionally, most imputation techniques for handling missing
values in time-series are based on statistical approaches involving either single-value imputation,
such as mean or median filling (Fung, [2006)), proximity-based imputation (Batista et al., | 2002), or
multiple-value imputation, such as Maximum Likelihood Imputation (Dempster et al., |{1977) and
Matrix completion methods (Mnih & Salakhutdinov, 2007). In recent years, there is a growing trend
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to use machine learning techniques for time-series imputations, e.g., Bayesian Networks (Sardinha
et al., 2018)), Random Forest (Stekhoven & Biihlmann, 2012), and deep learning methods such as
SAITS (Du et al.}2023), GAIN(Yoon et al.,|2018a), and BRITS(Cao et al.,[2018). While these deep
learning-based models are highly efficient during inference, they require additional training time,
which add to the already large time complexity of time-series models.

Time-series Modeling: While there are several time-series modeling approaches for short-term
forecasting (Challu et al.| [2023)) (Oreshkin et al.|[2019), there is a growing focus to explore long-term
forecasting problems. With the introduction of attention mechanisms via transformer models (Vaswani
et al.[ 2017), a number of transformer-based time-series models have been introduced in the last few
years (Wu et al.| [2021)), (Nie et al.|[2022b)), (Dong et al.,[2024), (Liu et al.| |2023) for longer-horizon
forecasting. The current state-of-the-art methods can be divided into three primary categories—
Representation Learning methods, Transformer-based methods, and LLM-based methods, with the
latter being the newest addition to the group. Representation Learning methods, especially MAE-style
time-series models (Li et al., 2023)), are receiving a lot of recent interest owing to their ability of
learning both low-level and high-level representations useful for varied downstream tasks such as
forecasting and classification. However, a major limitation restricting their applicability to real-world
problems is the presence of missing values common to many time-series datasets. While state-of-the
art time-series models provide strong prediction accuracy, they are not designed to handle missing
values. Transformer-based models, including the ones that use self-supervised style training, can
deal with missing values in the temporal domain, but not in the feature-space. There have also
been models like (Liu et al.,[2023) that efficiently captures the feature-space correlations and show
superior forecasting results. However, they do not account for the presence of missing values along
the temporal dimension of the time-series variates. In contrast to all existing approaches, our work
accounts for missing values in both the feature and temporal space through the proposed Time-Feature
Independent Embedding and Missing Feature-Aware Attention Mechanisms.
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Figure 2: Schematic of the Time-Feature Independent (TFI) Embedding of MissTSM that learns
a different embedding for every combination of time-step and variate, in contrast to the time-only
embeddings of Transformer (Vaswani et al.l 2017) and the variate-only embeddings of iTransformers
(Liu et al.| 2023)).

3 MISSING FEATURE TIME-SERIES MODELING (MISSTSM)

3.1 NOTATIONS AND PROBLEM FORMULATIONS

Let us represent a multivariate time-series as X € RT*N where T is the number of time-steps, and
N is the dimensionality (number of variates) of the time-series. We assume a subset of variates (or
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features) to be missing at some time-steps of X, represented in the form of a missing-value mask
M € [0,1]7*N, where M 4,q) represents the value of the mask at ¢-th time-step and d-th dimension.
M¢,q) = 1 denotes that the corresponding value in X, 4) is missing, while M, 4y = 0 denotes that
X (t,q) is observed. Furthermore, let us denote X4 ) € RY as the multiple variates of the time-series
at a particular time-step ¢, and X . 4) € RT as the uni-variate time-series for the variate d. In this
paper, we consider two downstream tasks for time-series modeling: forecasting and classification.
For forecasting, the goal is to predict the future S time-steps of X represented as Y € R5*N,
Alternatively, for time-series classification, the goal is to predict output labels Y € {1,2,....C}
given X, where C' is the number of classes.

3.2 LEARNING EMBEDDINGS FOR TIME-SERIES WITH MISSING FEATURES

Limitations of Existing Methods: The first step in time-series modeling using transformer-based
architectures is to learn an embedding of the time-series X that can be sent to the transformer
encoder. Traditionally, this is done using an Embedding-layer (typically implemented using a
multi-layered perceptron) as Embedding : RY + R that maps X € RT*¥ to the embedding
H c RT*P where D is the embedding dimension. The Embedding layer operates on every time-step
independently such that the set of variates observed at time-step ¢, X(3,.), is considered as a single
token and mapped to the embedding vector h; € R” ash, = Embedding (X)) (see Figure a)).
An alternate embedding scheme was recently introduced in the framework of inverted Transformer
(iTransformer) (Liu et al., 2023), where the uni-variate time-series for the d-th variate, X . 4), is
considered as a single token and mapped to the embedding vector: hy = Embedding(X. 4)) (see
Figure[2[b)). While both these embedding schemes have their unique advantages, they are unfit to
handle time-series with arbitrary sets of missing values at every time-step. In particular, the input
tokens to the Embedding layer of Transformer or iTransformer requires all components of X ; .y or
X (:,4) to be observed, respectively. If any of the components in these tokens are missing, we will not
be able to compute their embeddings and thus will have to discard either the time-step or the variate,
leading to loss of information.

Time-Feature Independent (TFI) Embedding: To address this challenge, we propose a novel
Time-Feature Independent (TFI) Embedding scheme for time-series with missing features, where the
value at each combination of time-step ¢ and variate d is considered as a single token X; gy, and is

independently mapped to an embedding using TFTEmbedding : R +— R as follows:
h(t,d) = TFIEmbedding(X(t’d)) D

In other words, the TEIEmbedding Layer maps X € RT*¥ into the TFI embedding H**! ¢
RT*NxD (see Figure2|c)). We should emphasize that we apply the TF TEmbedding Layer only
on tokens X ; 4y that are observed or not missing (i.e., M(; 4) = 0). The advantage of such an
approach is that even if a particular value in the time-series is missing, other observed values in the
time-series can be embedded “independently” without being affected by the missing values. Later,
we demonstrate how our proposed Missing Feature-Aware Attention (MFAA) Layer takes advantage
of the TFI embedding scheme to compute masked cross-attention among the observed features at a
time-step to account for the missing features.

2D Positional Encodings: We add Positional Encoding vectors PE to the TFI embedding HTF!
to obtain positionally-encoded embeddings, Z = PE + HTF!. Since TFI embeddings treat every
time-feature combination as a token, we use a 2D-positional encoding scheme defined as follows:

t .
1000075 )’

. 3 d
PE(t,d,2j + D/2) = sin (W)5

where ¢ is the time-step, d is the feature, and 4, j € [0, D/4) are integers.

t
10000(4#/ D) )’

PE(t,d,2j + 14 D/2) = cos (

PE(t,d, 2i) = sin ( PE(t,d, 2i + 1) = cos ( )

d
roo00@mr) @
3.3 MISSING FEATURE-AWARE ATTENTION (MFAA) LAYER

We propose a novel Missing Feature-Aware Attention (MFAA) Layer illustrated in Figure[3]to leverage
the power of “masked-attention” for learning latent representations at every time-step using partially
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Figure 3: A schematic illustration of the overall MissTSM Framework with a zoomed-in view of the
Missing Feature-Aware Attention (MFAA) Layer on the left.

observed features. MFAA works by computing attention scores based on the partially observed
features at a time-step ¢, which are then used to perform a weighted sum observed features to obtain
the latent representation L. As shown in Figure 3] these latent representations are later fed into
a encoder-decoder based self-supervised learning framework to reconstruct time-series. This is
analogous to traditional imputation techniques that utilize cross-channel correlations for imputations.
However, the difference in our framework is that once we have learned latent representations L, using
the paradigm of self-supervised learning, we can directly use them for downstream tasks without
explicitly imputing the missing values.

Mathematical Formulation: To obtain attention scores from partially-observed features at a time-
step, we apply a masked scaled-dot product operation followed by a softmax operation described as
follows. We first define a learnable query vector Q € R which is independent of the variates and
time-steps. The positionally-encoded embeddings at time-step ¢, Z; .y, are used as key and value
inputs in the MFAA Layer. Specifically, The query, key, and value vectors are defined using linear
projections as follows:

Q=QW®, K,=Z; WX, V,=Z,,WYV, 4

Here, Q € R¥4 and K;,V, € RV*ds where dj, is the dimension of the vectors after lin-
ear projection. The linear projection matrices for the query, key, and values are defined as:
WQ WK WV e RP*dr respectively. Note that the key K, and value V vectors depend on
the time-step ¢, while the query vector doesn’t change with time. We then define the Missing Feature-
Aware Attention (MFAA) Score at a given time-step ¢ as a masked scalar dot-product of the query
and key vector followed by normalization of the scores using a Softmax operation, formally defined
as follows:

oA KT
A; = MFAAScore(Q, Ky, My.,)) = Softmax(\th + nM(t,:))’ 5)
k

where A; € RY is the MFAA Score vector of size N corresponding to the N variates, and 7 — —oc0
is a large negative bias. The negative bias term 7 forces the masked-elements that correspond to the
missing variates in the time-series to have an attention score of zero. Thus, by definition, the i-th
element of the MFAA Score A, ;) #0 = M, .) # 0. We compute the latent representation L;
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as a weighted sum of the MFAA score A, and the Value vector Vt as follows:
Lt = MFAA(At7 Vt) = Atvt S de (6)

Similar to multi-head attention used in traditional transformers, we extend MFAA to multiple heads
as follows:

MultiHeadMFAA(Q,Z(,), M) = Concat(Ly,L;, ..., L)) W© (7

where b is the number of heads, W9 € R"d»* Do Li is the latent representation obtained from the
i-th MHAA Layer, and D, is the output-dimension of the Mult i HeadMFAA Layer.

3.4 PUTTING EVERYTHING TOGETHER: OVERALL FRAMEWORK OF MISSTSM

Figure |3| shows the overall framework of MissTSM. For an input time-series X, we apply the TFI
embedding layer followed by the MFAA layer to learn a latent representation for every time-step.
We then integrate the latent representations into a Masked Auto-Encoder (MAE) (He et al., [2022))
framework adapted for time-series (similar to Ti-MAE (L1 et al., 2023)). Although the design of the
proposed TFI-Embedding and MFAA Layers are flexible enough that they can be integrated with any
transformer-based time-series modeling framework (e.g., AutoFormer (Wu et al., 2021))), we opted for
a masked time-series modeling approach (such as Ti-MAE (L1 et al.,[2023) and SimMTM (Dong et al.|
2024)) due to their recent success in time-series modeling. Further, out of the several state-of-the-art
masked time-series modelling techniques, we intentionally chose the simplest variation of MAE,
namely Ti-MAE (Li et al., 2023), to highlight the power of TFI and MFAA layers in handling missing
values. To the best of our knowledge, MissTSM is the first end-to-end framework for modeling
time-series with missing values without explicitly imputing the time-series. Like a typical masked
time-series modeling approach, MissTSM has two main stages: (1) Self-Supervised Learning Stage:
where the multivariate time-series (with missing values) is reconstructed using an encoder-decoder
architecture, with the goal of learning meaningful representations using just the encoder, and (2)
Fine-tuning Stage: where the latent representations learned by the encoder are fed into a multi-layer
perceptron to perform downstream tasks of forecasting and classification.

4 EXPERIMENTS

Datasets: We consider three popular time-series forecasting datasets: ETTh2, ETTm2 (Zhou et al.,
2021) and Weather (wea). We follow a train/val/test split ratio of 6:2:2 for ETT datasets and 7:1:2
for Weather dataset following prior work on Autoformer (Wu et al., [2021)). For classification, we
use three real-world datasets, namely, Epilepsy (Andrzejak et al.l |2001), EMG (Goldberger et al.,
2000), and Gesture (Liu et al.| 2009), and follow the same evaluation setups as proposed in TF-C
(Zhang et al.| [2022)). We also evaluate on a real-world dataset-PhysioNet-2012 (Silva et al.| [2012)
that contains 12k multivariate clinical time-series samples with 37 variables. See Appendix [A.1|for
additional details about dataset and evaluation setup description.

Baselines: For all of our experiments, we consider five state-of-the-art time-series modeling baselines,
SimMTM (Dong et al.,2024), PatchTST (Nie et al.| 2022b), AutoFormer (Wu et al., 2021}, DLinear
(Zeng et al.l [2023)), and iTransformer (Liu et al.,[2023). In order to apply these methods on data
with missing values, we also consider four imputation techniques—a 2"-order spline imputation
(McKinley & Levinel [1998)), a simple k-Nearest Neighbor approach (Tan et al.| [2019), and two
state-of-the-art deep learning-based imputation techniques, SAITS (Du et al.,|2023)) and BRITS (Cao
et al.,|2018). For forecasting, we used a default lookback window of L = 336, while we varied the
horizon windows as T' € {96, 192, 336, 720}.

4.1 SYNTHETIC MASKING SCHEMES

To simulate varying scenarios of missing values appearing in real-world time-series datasets, we adopt
two synthetic masking schemes that we apply on benchmark datasets, namely missing completely at
random (MCAR) masking (Little & Rubin, |1987) and periodic masking, described in the following.

Missing Completely At Random (MCAR) Masking: In this scheme, we randomly mask out data
from a dataset based on a uniform probability p of observing missing values at any time-feature
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Table 1: Comparing forecasting performance of baseline methods using mean squared error (MSE)
as the evaluation metric under no masking, MCAR masking, and periodic masking. For every dataset,
we consider multiple forecasting horizons, T € {96,192, 336, 720}. Results are color-coded as

Best , Second best . We report the mean and standard deviations (in brackets) across 5 random
sampling of the masking schemes. Subscript sp refer to Spline and g 4 refer to SAITS

ETTh2 ETTm2 Weather Avg

96 192 336 720 96 192 336 720 96 192 336 720 Rank

7MiSSTSM 0.255 0.234 0.316 0.305 0.183 0.209 0.261 0.311 0.164 0.210 0.254 0.324 1.9
g SimMTM 0.295 0.356 0.375 0.404 0.172 0.223 0.282 0.374 0.163 0.203 0.255 0.326 2.9
‘E PatchTST 0.274 0.338 0.330 0.378 0.164 0.220 0.277 0.367 0.151 0.196 0.249 0.319 1.7
= | AutoFormer 0.501 0.516 0.565 0.462 0.352 0.337 0.494 0.474 0.306 0.434 0.437 0.414 5.9
2 DLinear 0.288 0.383 0.447 0.605 0.168 0.224 0.299 0.414 0.175 0.219 0.265 0.323 4.1
iTransformer 0.304 0.392 0.425 0.415 0.176 0.246 0.289 0.379 0.163 0.203 0.256 0.326 4.5
MissTSM 0.2430.006 0-2590.002 0-2830.009 03299011 0-2240.005 0.2530.000 0.2930.019 0.3160.014]0.1919.003 0.2340.006 0.281¢.004 0.3220.008| 2.7
SimMTMgp 0.3090.001 0-3720.005 0.3960.01 0.4180,008]0.1850.001 0.2430.002 0.2980.001 0.3880.005|0.2030.009 0.2429 010 0.284¢.00s 0.3860.008| 5.0
SImMTMsy 0457005 0.5100061 0-5030.055 0-4720 066 |0-2870.037 0.3200.03 0.3420.017 0.4130.014|0.1870002 0-2400.001 0.2800.001 0-3850.004| 6.2

2| PatchTSTsp 0.2900.003 0-3550.003 0.3450.003 0.3900.0030.1690.001 0-228p.001 0-2860.001 0-3780.001|0.183p.000 0.2260.009 0.2770.000 0-339%.008| 2.1
'f; PatchTSTsy  0.4400.050 0.4840057 0.4340.050 0.4360.075|0.3240.05 0.3620015 0.4100019 0.4620:7 [0-1750002 02110000 0-2640.009 0.3350.001| 4.6
E AutoFormersp  0.559.05 0.6280.101 0.5250.037 0.5500.143|0.2800.006 0-3900.155 0.3600.018 0.4750.033 |0.3210.008 0-4130.013 0.5080.036 0.4670.032| 8.9
s AutoFormersy 0.767.126 0.5260.05 0.5500.019 0.4490.010|0.6100.312 0.8500.365 0.6150.151 1.0450.262|0.3530.013 0.413p.006 0-4740.028 0.5040.049| 10.2
= |DLinearsp 0.2960.003 0.401¢.018 0.4450.006 0.6070.013]0.4580.169 0.228p.001  0.3020.000 0.5310.144|0.2050,007 0.2419007 0.282¢.008 0.3730.000| 6.5
DLinears, 04540053 0.5140.053 0.5420 064 06800084 |0-3300.065 0-3650062 0-4270.055 0-5380.063|0.1900.001 0-2330.000 0-2760.000 0-3330.001| 6.8
iTransformersp 0.3130.001 0.3940.011 0.4360.005 0.429.003|0-178.001 0-2430.0004 02930001 03840008 [0.1970.005 02600007 0.3150.008 0.3490.005| 4.9
iTransformersa 0.4920.055 0.5450.045 0.579.049 0.5400.094|0.3690.080 0.4320.083 0.4820.0s3 0.5410.075|0.1910.0902 0.2280.002 0.2739002 0.3480.003| 7.7
MissTSM 0.2460,018 0-2630.017 0-3010,042 0-3530.015 | 0.2270.006 0.2490.006 [0-2820.011 0-3370.036|0-2120.007 0.2560.008 0.3130.009 0.379.019| 4.1
SImMTMgp 03720120 0.469.195 0.4960.195 0.5100.200{0.1920,010 0.2479.000 0.3010.008 03910005 0.1820.001 0.2480.003 0.2910.009 0.3440.005| 4.7
SimMTMg, 0.591¢.132 0.666¢ 152 0.681.182 0.6670.222]0.3890.071 0.4090.0514 0.4360.076 0.5050.055|0.1780.002 0.214¢ 001 0.2610.001 0.3540.003| 6.0
Eﬁ PatchTSTsp 0.3280.047 0.3899.040 0.3810.050 0.426¢,0580.1740.004 0.2310.003 0.2890.004 0.3810.004|0.1810004 0.2279005 0.2670.005 0.3460.003| 2.4
% | PatchTSTsy  0.5815120 0.6200.13 0.5920.170 0.6440.930|0.4230 051 0.4570012 0.493.037 0.5270.027 |0- 1710000 02120001 0.2630.005 0.3340001| 5.2
2| Autoformersp  0.482011 0.6850.165 0.62L0.166 0.5460,035| 0.3200 100 0.3150010 0.3080.090 0.4560.021 033300175 03870 035 04060025 0.4530015| 7.5
E Autoformersy  1.4150.507 0.810p.269 1.3649.760 0.8200.467|1.3031.278 0.9330.421 1.7880.535 0.8090.431|0.3350.009 0-3870.017 0.4350035 0.4670.017| 10.8
d"-i DLinearsp 0.3460.069 0-4750.108 0-4770.0414 0.649.06s |0.3270.188 0.2300,002 | 0.3050.003 0.4730.035|0.2150.018  0.244¢.013 0.284¢.008 0.339.007| 5.0
DLinearsy 0.6050.109 0.6749.11  0.7280.138 0.911¢.158]0.4470.019 0.4750.043 0.5230.042 0.6260.032|0.1900.001 0.2330.000 0.276¢.001 0-3330.001| 7-4
iTransformersp 0.3580.070 04350067 0.4880.00 0-4970 110 |0.1800.005 0-2450.006 0-2960.007 0-3840.007|0.1970000  0-2330.006 0.288001 0.3510.010| 4.2
iTransformersy 0.691¢ 143 0.7150.140 0.7630.153 0.7730.201|0.5120.055 0.578p.052 0.662005 0.6800.029]0.1940.001 0.2299.004 0.2740.002 0.3500.003| 8.2

combination. We vary the probability value to generate synthetically masked datasets with different
fractions of missing values.

Periodic Masking: Since missing values in time-series follow periodic patterns in many real-world
applications (e.g., the seasonal cycles in weather and environmental datasets), we introduce a periodic
masking scheme described as follows. We use a sine curve to generate the masking periodicity with
given phase and frequency values for different features. Specifically, the time-dependent periodic
probability of seeing missing values is defined as p(t) = p + a(1 — p)sin(27vt + ¢, where, ¢ and
v are randomly chosen across the feature space, « is a scale factor, and p is an offset term. We vary p
from low to high values to get different fractions of periodic missing values in the data.
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Figure 4: Multiple Time-series Baselines. Performance comparison between MCAR and Periodic
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et al.| (2021), PatchTST |Nie et al.| (2022b)), iTransformer Liu et al.|(2023), DLinear Zeng et al.| (2023)),
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Figure 5: Forecasting performance with the horizon length T' € 96, 192, 336, 720 and fixed lookback
length S = 336. Baseline models are imputed with SAITS

4.2 RESULTS ON FORECASTING DATASETS

Table [1| compares the forecasting performance of MissTSM with five SOTA baseline methods in
terms of the Mean Squared Error (MSE) metric on three datasets (ETTh2, ETTm?2 and Weather) with
varying forecasting horizons, imputation techniques (Spline and SAITS), and masking schemes. We
provide the mean and standard deviations over 5 different samples of the masking schemes. We choose
a missing value probability of 60% for MCAR masking and 70% for periodic masking to simulate
scenarios with varying (and often extreme) amounts of missing information. We can see that in the no
masking experiment, the performance of all methods (with the exception of AutoFormer) are mostly
comparable to each other across all three datasets, with MissTSM and PatchTST having a slight edge
on the ETTh2/ETTm?2 and Weather datasets, respectively. For the MCAR masking experiments, we
observe a trend across all the datasets that the MissTSM framework performs slightly better than
the baselines for longer-term forecasting (such as forecasting horizon of 720), and comparable to
the best-performing baselines on other forecasting horizons. For the Periodic masking experiment,
we can see that MissTSM is consistently better than the baselines for ETTh2 dataset, while for the
ETTm2 and Weather datasets, the forecasting performance is comparable to the other baselines.
These results demonstrate the effectiveness of our proposed MissTSM framework to circumvent the
need for explicit imputation of missing values while achieving comparable performance as SOTA.

By being imputation-free, MissTSM does not suffer from the propagation of imputation errors (from
the imputation scheme) to forecasting errors (from the time-series models). In Appendix Figure
we provide empirical evidence of this error propagation, where we see a positive correlation between
imputation errors and forecasting errors of baseline methods, indicating that reducing imputation
errors is crucial for improving forecasting accuracy. This finding underscores the limitations of
traditional two-stage approaches and suggests that using more sophisticated imputation models is
necessary to achieve lower forecasting errors. We also report the computation time of SImMTM
(with Spline and SAITS) and MissTSM in Appendix Table[5] where we demonstrate that MissTSM
is significantly faster as it does not involve any expensive interpolations as an additional advantage.

4.3 ANALYZING THE IMPACT OF MISSING VALUE FRACTIONS ON FORECASTING

To understand the effect of varying masking fractions on the forecasting performance of MissTSM
and baseline methods, Figure 4| shows variations in the MSE of five SOTA baseline methods as
we increase the missing value fraction in MCAR and periodic masking scheme from 0.6 to 0.9
for forecasting horizons 7" = 720 on two ETT datasets. All of the baselines were trained with
imputed time-series using SAITS. We can see that MissTSM mostly performs at par or better than
the best-performing time-series baselines (SimMTM), across the two datasets and masking schemes.
It is interesting to see that, MissTSM achieves similar MSE as the stronger baseline methods (with
more complex architectures both for imputation and time-series modeling) even with extreme 90%
missing values.

4.4 ANALYZING THE IMPACT OF FORECAST HORIZON

We further analyze the forecasting performance of MissTSM and five SOTA baselines by vary-
ing the forecasting horizon T' = {96,192, 336, 720} under a 60% MCAR masking scheme, as
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shown in Figure [5] As expected, a common trend across all three datasets is that the forecast-
ing MSE increases with the forecasting horizon for all methods. On the ETTh2 dataset, Mis-
sTSM consistently achieves slightly better performance than all other baselines at each forecasting
horizon. For the ETTm2 and Weather datasets, MissTSM performs on par with the baselines
(except for AutoFormer), further demonstrating that MissTSM can achieve comparable perfor-
mance to SOTA methods without the need for costly imputation techniques such as SAITS.
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niques such as SAITS. In Figure [6| we compare four imputation ‘N@%@*‘* Q,é‘%@@i%»""’z 9§\6_b’\‘9“\
techniques—Spline, kNN, BRITS, and SAITS—paired with two &5 ®
time-series forecasting models (iTransformer and PatchTST) at a Method

forecasting horizon of 7' = 720. Notably, MissTSM achieves perfor-
mance comparable to all imputation methods across various masking
probabilities on both datasets.

Figure 8: Classification Perfor-
mance of MissTSM and other
imputation baselines on Phys-

ioNet (Silva etal}, 2012).

4.6 RESULTS ON TIME-SERIES CLASSIFICATION

Synthetic Benchmarks: For fine-tuning on the classification tasks,

we add a 2-layer multi-layer perceptron to the encoder as the classifi-

cation layer for our model as well as the SimMTM baseline. As seen

from Figure[7] MissTSM achieves roughly similar performance as SimMTM on EMG and Epilepsy
datasets, and outperforms SImMTM on the Gesture Dataset.

Real-world results on Physio-Net: We compare the performance of the MissTSM framework with

six imputation baselines— M-RNN (Yoon et all, 2018b), GP-VAE (Fortuin et al.,[2020), BRITS
(Cao et al.l 2018), Transformer (Vaswani et al., |2017), and SAITS (Du et al., 2023)—on the real-
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Figure 10: Ablations of MissTSM with and without the TFI+MFAA layer on the classification tasks.

world PhysioNet classification dataset that is highly sparse with 80% missing
values (see Appendix for additional details), as shown in Figure[8] We follow the same evaluation
setup as proposed in 2023). MissTSM achieves an F1-score of 57.84%, representing an
approximately 15% improvement over SAITS, the best-performing imputation model, which scored
42.6%. This substantial performance gain on a real-world dataset with missing values highlights the
advantages of MissTSM’s single-stage approach compared to traditional two-stage methods, beyond
synthetic masking schemes used to simulate missing values in other datasets.

4.7 ABLATIONS ON FORECASTING & CLASSIFICATION TASKS

In the ablation experiments, our goal is to quantify the effectiveness of the TFI-Embedding scheme
and the MFAA Layer on MissTSM. To achieve this, we compare MissTSM with Ti-MAE, which
can be viewed as an ablation of MissTSM without the TFI-Embedding and MFAA Layers. We
refer to this ablation of MissTSM as MAE. For both the forecasting (see Fig. [0) and classification
(see Fig. [10) tasks, we compare the MissTSM framework with MAE trained on spline and SAITS
imputation techniques. For forecasting on ETTh2, we observe that our proposed MissTSM framework
consistently outperforms the MAE ablations without the MFAA Layer. On the other hand for
classification, we show that for all the three datasets, we are either comparable or better than the MAE
ablations. This demonstrates the efficacy of the TFI-Embedding and MFAA Layer for time-series
modeling with missing values.

5 CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, our proposed MissTSM framework is the first end-to-end framework
for time-series modeling with missing values that does not require any explicit imputations. We
empirically demonstrate the effectiveness of the MissTSM framework across multiple benchmark
datasets and synthetic masking strategies, and a real-world dataset with a high degree of missing
values. Our proposed framework also has limitations. For example, a limitation of the MFAA layer
is that it does not learn the non-linear temporal dynamics and relies on the subsequent transformer
encoder blocks to learn the dynamics. Future work can explore modifications of the MFAA layer
such that it can jointly learn the cross-channel correlations with the non-linear temporal dynamics.

10
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REPRODUCIBILITY

We have ensured the reproducibility of our work by providing a detailed set of resources. The source
code used for training and evaluation, along with instructions for reproducing the experiments, is
available via an anonymous GitHub link (https://anonymous.4open.science/r/MissTSM-2-ICLR-
64CE/). Comprehensive implementation details, including hyperparameters and compute resources,
are described in Appendix. Additionally, we have cited all dataset sources and outlined the data
processing steps also in Appendix to facilitate accurate replication of our experiments.

REFERENCES

https://www.bgc-jena.mpg.de/wetter/.

Edgar Acuna and Caroline Rodriguez. The treatment of missing values and its effect on classifier
accuracy. In Classification, Clustering, and Data Mining Applications: Proceedings of the Meeting
of the International Federation of Classification Societies (IFCS), Illinois Institute of Technology,
Chicago, 15-18 July 2004, pp. 639-647. Springer, 2004.

Hyun Ahn, Kyunghee Sun, and Kwanghoon Pio Kim. Comparison of missing data imputation
methods in time series forecasting. Computers, Materials & Continua, 70(1):767-779, 2022.

Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Christian E
Elger. Indications of nonlinear deterministic and finite-dimensional structures in time series of
brain electrical activity: Dependence on recording region and brain state. Physical Review E, 64
(6):061907, 2001.

Gustavo EAPA Batista, Maria Carolina Monard, et al. A study of k-nearest neighbour as an imputation
method. His, 87(251-260):48, 2002.

Alabi Bojesomo, Hasan Al-Marzouqi, Panos Liatsis, Gao Cong, and Maya Ramanath. Spatiotemporal
swin-transformer network for short time weather forecasting. In CIKM Workshops, 2021.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. Advances in neural information processing systems, 31, 2018.

Cristian Challu, Kin G Olivares, Boris N Oreshkin, Federico Garza Ramirez, Max Mergenthaler
Canseco, and Artur Dubrawski. Nhits: Neural hierarchical interpolation for time series forecasting.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 6989-6997, 2023.

Andrea Cini, Ivan Marisca, and Cesare Alippi. Multivariate time series imputation by graph neural
networks. corr abs/2108.00298 (2021). arXiv preprint arXiv:2108.00298, 2021.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1-22, 1977.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Ghulam Mohi Ud Din and Angelos K Marnerides. Short term power load forecasting using deep
neural networks. In 2017 International conference on computing, networking and communications

(ICNC), pp. 594-598. IEEE, 2017.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. Simmtm:
A simple pre-training framework for masked time-series modeling. Advances in Neural Information
Processing Systems, 36, 2024.

Wenjie Du, David C6té, and Yan Liu. Saits: Self-attention-based imputation for time series. Expert
Systems with Applications, 219:119619, 2023.

11


https://anonymous.4open.science/r/MissTSM-2-ICLR-64CE/
https://anonymous.4open.science/r/MissTSM-2-ICLR-64CE/

Under review as a conference paper at ICLR 2025

Vincent Fortuin, Dmitry Baranchuk, Gunnar Rétsch, and Stephan Mandt. Gp-vae: Deep probabilistic
time series imputation. In International conference on artificial intelligence and statistics, pp.
1651-1661. PMLR, 2020.

David S Fung. Methods for the estimation of missing values in time series. 2006.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov, Roger G
Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex physiologic
signals. circulation, 101(23):e215-e220, 2000.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dolldr, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Bruno Miranda Henrique, Vinicius Amorim Sobreiro, and Herbert Kimura. Literature review: Ma-
chine learning techniques applied to financial market prediction. Expert Systems with Applications,
124:226-251, 2019.

Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. Recurrent neural networks for time
series forecasting: Current status and future directions. International Journal of Forecasting, 37
(1):388-427, 2021.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917-963, 2019.

Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
aware dynamic long-range transformer for traffic flow prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pp. 43654373, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Zhe Li, Zhongwen Rao, Lujia Pan, Pengyun Wang, and Zenglin Xu. Ti-mae: Self-supervised masked
time series autoencoders. arXiv preprint arXiv:2301.08871, 2023.

Bryan Lim and Stefan Zohren. Time-series forecasting with deep learning: a survey. Philosophical
Transactions of the Royal Society A, 379(2194):20200209, 2021.

R.J.A. Little and D.B. Rubin. Statistical Analysis With Missing Data. Wiley Series in Probability
and Statistics. Wiley, 1987. ISBN 9780471802549. URL https://books.google.com/
books?id=w40QAQAAIAAJ.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6):
657-675, 2009.

Shuai Liu, Xiucheng Li, Gao Cong, Yile Chen, and Yue Jiang. Multivariate time-series imputation
with disentangled temporal representations. In The Eleventh International Conference on Learning
Representations, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. arXiv preprint
arXiv:2310.06625, 2023.

Yukai Liu, Rose Yu, Stephan Zheng, Eric Zhan, and Yisong Yue. Naomi: Non-autoregressive

multiresolution sequence imputation. Advances in neural information processing systems, 32,
2019.

12


https://books.google.com/books?id=w40QAQAAIAAJ
https://books.google.com/books?id=w40QAQAAIAAJ

Under review as a conference paper at ICLR 2025

Alexandra L’Heureux, Katarina Grolinger, and Miriam AM Capretz. Transformer-based model for
electrical load forecasting. Energies, 15(14):4993, 2022.

Sky McKinley and Megan Levine. Cubic spline interpolation. College of the Redwoods, 45(1):
1049-1060, 1998.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. Advances in neural
information processing systems, 20, 2007.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2022a.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2022b.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437,
2019.

Roosevelt Sardinha, Aline Paes, and Gerson Zaverucha. Revising the structure of bayesian network
classifiers in the presence of missing data. Information Sciences, 439:108-124, 2018.

Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. The performance of Istm and bilstm
in forecasting time series. In 2019 IEEE International conference on big data (Big Data), pp.
3285-3292. IEEE, 2019.

Ikaro Silva, George Moody, Daniel J Scott, Leo A Celi, and Roger G Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. In 2012
computing in cardiology, pp. 245-248. IEEE, 2012.

Daniel J Stekhoven and Peter Biihlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112-118, 2012.

PN. Tan, M. Steinbach, A. Karpatne, and V. Kumar. Introduction to Data Mining. What’s New
in Computer Science Series. Pearson, 2019. ISBN 9780133128901. URL https://books.
google.com/books?id=_ZQ4MQOEACAAJ.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804-24816, 2021.

Sana Tonekaboni, Danny Eytan, and Anna Goldenberg. Unsupervised representation learning for
time series with temporal neighborhood coding. arXiv preprint arXiv:2106.00750, 2021.

José F Torres, Dalil Hadjout, Abderrazak Sebaa, Francisco Martinez-Alvarez, and Alicia Troncoso.
Deep learning for time series forecasting: a survey. Big Data, 9(1):3-21, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Cost: Contrastive
learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint
arXiv:2202.01575, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers

with auto-correlation for long-term series forecasting. Advances in neural information processing
systems, 34, 2021.

13


https://books.google.com/books?id=_ZQ4MQEACAAJ
https://books.google.com/books?id=_ZQ4MQEACAAJ

Under review as a conference paper at ICLR 2025

Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai
Xiong. Spatial-temporal transformer networks for traffic flow forecasting. arXiv preprint
arXiv:2001.02908, 2020.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative
adversarial nets. In International conference on machine learning, pp. 5689-5698. PMLR, 2018a.

Jinsung Yoon, William R Zame, and Mihaela van der Schaar. Estimating missing data in temporal
data streams using multi-directional recurrent neural networks. IEEE Transactions on Biomedical
Engineering, 66(5):1477-1490, 2018b.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37, pp.
11121-11128, 2023.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised contrastive
pre-training for time series via time-frequency consistency. Advances in neural information
processing systems, 35, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106-11115, 2021.

14



Under review as a conference paper at ICLR 2025

A EXPERIMENTAL SETUP

A.1 DATASET DESCRIPTION

Forecasting Dataset Details

ETT. The ETT [Zhou et al.| (2021)) dataset captures load and oil temperature data from electricity
transformers. ETTh2 includes 17,420 hourly observations, while ETTm?2 comprises 69,680 15-minute
observations. Both datasets span two years and contain 7 variates each.

Weather. Weather wea|is a 10-minute frequency time-series dataset recorded throughout the year
2020 and consists of 21 meteorological indicators, like humidity, air temperature, etc.

Following previous works in this area, we use a train-validation-test split of 6:2:2 for the ETT datasets
and 7:1:2 for the Weather dataset. We standardized the input features by subtracting off the mean
and dividing by the standard deviation for every feature over the training set. Again, following
the approach used in previous works, we compute the MSE in the normalized space of all features
considering all features together.

Classification Dataset Details

Epilepsy. Epilepsy |/Andrzejak et al.| (2001) contains univariate brainwaves (single-channel EEG)
sampled from 500 subjects (with 11,500 samples in total), with each sample classified as having
epilepsy or not (binary classification).

Gesture. Gesture [Liu et al.| (2009) dataset consists of 560 samples, each having 3 variates (corre-
sponding to the accelerometer data) and each sample corresponding to one of the 8 hand gestures (or
classes)

EMG. EMG |Goldberger et al.| (2000) dataset contains 163 EMG (Electromyography) samples
corresponding to 3-classes of muscular diseases.

We make use of the following readily available data splits (train, validation, test) for each of
the datasets: Epilepsy = 60 (30 samples per each class)/20 (10 samples per each class)/11420
(Train/Val/Test) Gesture = 320/20/120 (Train/Val/Test) EMG = 122/41/41 (Train/Val/Test)

Physio-Net Dataset: PhysioNet-2012 Mortality Prediction Challenge (Silva et al.,|2012) contains
12k multivariate clinical time-series samples that were collected from patients in ICU. The time-series
contains 37 variables, such as temperature, heart rate, blood pressure, etc. that can vary depending on
the type of patient. Each of the samples are recorded during the first 48 hours of admission in ICU.
Because of the high variability of variables collected across patients in ICU with different patterns of
missing information across time, PhysioNet has a high degree of 80% missing values. We follow the
experimental setup in (Du et al., 2023)), and split the dataset into 80%, 10% and 10% train/val/test
split.

A.2 SYNTHETIC MASKED DATA GENERATION

Random Masking: We generated masks by randomly selecting data points across all variates and
time-steps, assigning them as missing with a likelihood determined by p (masking fraction). The
selected data points were then removed, effectively simulating missing values at random. For multiple
runs, we created multiple such versions of the synthetic datasets and compared all baseline methods
and MissTSM on the same datasets.

Periodic Masking: We use a sine curve to generate the masking periodicity with given phase and
frequency values for different features. Specifically, the time-dependent periodic probability of seeing
missing values is defined as p(t) = p + «(1 — p)sin(2nvt + ¢), where, ¢ and v are randomly
chosen across the feature space, « is a scale factor, and p is an offset term. We vary p from low
to high values to get different fractions of periodic missing values in the data. To implement this
masking strategy, each feature in the dataset was assigned a unique frequency, randomly selected
from the range [0.2, 0.8]. This was done to reduce bias and increase randomness in periodicity across
the feature space. Additionally, the phase shift was chosen randomly from the range [0, 27r]. This was
applied to each feature to offset the sinusoidal function over time. Like frequency, the phase value
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was different for different features. This generated a periodic pattern for the likelihood of missing
data.

A.3 IMPLEMENTATION DETAILS

The experiments have been implemented in PyTorch using NVIDIA TITAN 24 GB GPU. The
baselines have been implemented following their official code and configurations. We consider Mean
Squared Error (MSE) as the metric for time-series forecasting and F1-score for the classification
tasks.

Forecasting experiments. MissTSM was trained with the MSE loss, using the Adam |[Kingma) (2014)
optimizer with a learning rate of le-3 during pre-training for 50 epochs and a learning rate of 1e-4
during finetuning with an early stopping counter of 3 epochs. Batch size was set to 16. All the
reported missing data experiment results are obtained over 5 trials (5 different masked versions).
During fine-tuning for different Prediction lengths (96, 192, 336, 720), we used the same pre-trained
encoder and added a linear layer at the top of the encoder.

Classification experiments. MissTSM was trained using the Adam |[Kingma (2014} optimizer, with
MSE as the loss function during pre-training and Cross-Entropy loss during fine-tuning. During
fine-tuning, we plugged a 64-D linear layer at the top of the pre-trained encoder. We pre-trained and
fine-tuned for 100 epochs.

A.4 HYPER-PARAMETER DETAILS

For MissTSM, we start with the same set of hyper-parameters as reported in the SiImMTM paper
as initialization (see Table E]) and then search for the best learning rate in factors of 10, and
encoder/decoder layers in the range [2, 4]. Note that we only perform hyper-parameter tuning on 100%
data, and use the same hyper-parameters for all experiments involving the dataset, such as different
missing value probabilities. Our goal is to show the generic effectiveness of our MissTSM framework
even without any rigorous hyper-parameter optimization. Additionally, we would also like to note
that our model sizes are relatively very small (number of parameters for ETTh2=28,080, Weather=
149,824, and ETTm2= 28,952), compared to other baselines such as SimMTM (ETTh2=4,694,186),
iTransformer (ETTh2=254,944), and PatchTST (ETTh2=81,728).

Table 2: Hyperparameters for Forecasting and Classification Tasks

Task Enc. Layers Dec. Layers Enc. Heads Dec. Heads  Enc. Embed Dim  Dec. Embed Dim
Forecasting

ETTh2 2 2 8 4 8 32
ETTm2 3 2 8 4 8 32
Weather 2 2 8 4 64 32
Classification

All Datasets 3 2 16 16 32 32

B ADDITIONAL RESULTS

B.1 EMBEDDING OF 1D DATA AND THE EFFECT OF VARYING EMBEDDING SIZES

To understand the usefulness of mapping 1D data to multi-dimensional data in TFI embedding,
we present (in Table [4) an ablation comparing performances on ETTh2 with and without using
high-dimensional projections in TFI Embedding under the no missing value scenario. Projecting 1D
scalars independently to higher-dimensional vectors may look wasteful at the time of initialization of
TFI Embedding, when the context of time and variates are not incorporated. However, it is during the
cross-attention stage (using MFAA layer or later using the Transformer encoder block) that we can
leverage the high-dimensional embeddings to store richer representations bringing in the context of
time and variate in which every data point resides.
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Table 3: Hyper-parameter sensitivity of MissTSM on ETTh2 with 70% Masking Fraction, MCAR.
Best results shown in bold, second best underlined. Hyper-parameter settings used in the remainder
of experiments in the paper are italicized.

Enc. Heads Enc. Layers Enc. Embed Dim

1 4 8 I 2 3 8 16 32
9% 0246 0.245 0246 0249 0243 0244 0243 0248 0.285
192 0.261 0.273 0266 0.287 0267 0271 0.267 0.266 0.340
336 0312 0279 0310 0294 0392 0307 0392 0316 0.369
720 0326 0346 0.333 0351 0.323 0355 0323 0.338 0.446

Dec. Heads Dec. Layers Dec. Embed Dim

I 4 8 I 2 3 8 16 32
96 0261 0243 0252 0276 0.242 0248 0.250 0.259 0.243
192 0276 0.267 0272 0.266 0.268 0.268 0.257 0.272 0.267
336 0.319 0.392 0301 0.262 0352 0.271 0.289 0.266 0.392
720 0.324 0.323 0330 0323 0364 0341 0.353 0.384 0.323

From Table ] we can see that TFI embedding with 8-dimensional vectors consistently outperform
the ablation with 1D representations, empirically demonstrating the importance of high-dimensional
projections in our proposed framework.

Table 4: Effect of TFI Embedding with embedding size=1 and embedding size=8 under no masking
scenario. Dataset=ETTh2

Time Horizon TFI Embedding with TFI Embedding with
embedding size = 1 embedding size = 8

96 0.283 £ 0.048 0.245 + 0.011

192 0.285 £ 0.078 0.260 + 0.023

336 0.319 +£0.023 0.300 + 0.016

720 0.378 £ 0.022 0.334 + 0.032

C COMPUTATIONAL COMPLEXITY AND ERROR PROPAGATION

We consider a case study of a classification task on the Epilepsy dataset. Dataset is 80% masked
under MCAR. Spline and SAITS are the imputation techniques and SimMTM is the time-series
model used. We report the total modeling time as the sum of imputation time and the time-series
model training time. The experiments are conducted on NVIDIA TITAN 24 GB GPUs.

In Table 5] we observe that, while SimMTM integrated with SAITS achieves a higher F1 score than
Spline, but the total imputation time for SAITS is significantly higher than that of Spline. This addi-
tional computational overhead substantially increases the overall modeling time. Moreover, SAITS
has approximately 1.3 million trainable parameters, further increasing the overall model complexity
of the time-series modeling task. This highlights the potential trade-off between imputation efficiency
and complexity (by imputation complexity we are referring to both model and time complexity).

In the case of our proposed method, we do not have the extra overhead of imputation complexity.
Simultaneously, MissTSM also achieves superior performance.

Figure|l 1| captures the propagation of imputation errors and forecasting errors for Weather dataset
at 720 forecast horizon. It demonstrates that there is an overall positive correlation between the
imputation error and forecasting errors, thereby demonstrating propagation of the imputation errors
into the downstream time-series models.
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Table 5: Comparison of total computational cost between MissTSM and SimMTM integrated with
Spline and SAITS

Time-Series Model Imp. Model Imp. Time (sec) TS Model Train Time (sec) Total Time (sec) F1 Score

SimMTM SAITS 949 +42.9 397.59 +2.64 1346.59 £45.54  61.0£9.20
Spline 8.74 +£0.38 397.59 +2.64 406.33 + 3.02 59.16 £3.67
MissTSM N/A N/A 346.8 £7.32 346.8 +7.32 64.93 +4.57
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Figure 11: Imputation error vs Forecasting error across 5 trials for 4 missing fractions, 0.6, 0.7, 0.8, 0.9

D ANALYSIS OF IMPACT OF FREQUENCY AND PHASE PARAMETERS

In the following, we provide additional details regarding an ablation we conducted to understand the
impact of frequency and phase parameters. Given the varying frequency and phase for each feature,
we modify the intervals of both to assess their impact on the results. Dataset=ETTh2, Fraction=90%

Case 1. With the phase interval held constant, we lower the frequency range and examine two
intervals: one in the high frequency region ([0.6, 0.9]) and one in the low frequency region ([0.1,
0.3]). The performance comparison between these new strategies and the original configuration is
shown in Table[6l

Table 6: Effect of sampling from different frequency intervals. The best results are in bold and
second-best are italicized

Time Horizon Original Periodic High Frequency MSE  Low Frequency MSE

Masking MSE
96 0.268 + 0.0151 0.281 £ 0.028 0.285 +0.023
192 0.295 + 0.0298 0.301 £ 0.037 0.316 £ 0.049
336 0.319 £0.0185 0.308 £ 0.014 0.307 £ 0.011
720 0.356 £0.0310 0.339 £ 0.043 0.351 £ 0.058

We observe that with a reduced frequency range, for both high and low frequency intervals, the
performance improves as the prediction window increases.

Case 2. Following a similar approach as Case 1, we keep the frequency interval constant and lower
the range of phase values. We examine the following intervals: the positive half-cycle [0, 7] and the
negative half-cycle [, 27]. Table[7]presents the results of this ablation

We observe a similar pattern here as well, with the performance improving as the prediction window
increases when we sample from either the positive or negative cycle.

As shown in the tables above, frequency and phase values clearly impact model performance. The new
strategies reduce frequency or phase-related randomness among the variates of the dataset, resulting
in more consistent values. This appears to enhance the model’s ability in long-term forecasting.
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Table 7: Effect of sampling from different phase intervals. The best results are in bold and second-best

are italicized

Time Horizon

Original Periodic

(+) Half Cycle MSE (-) Half Cycle MSE

Masking MSE
96 0.268 + 0.0151 0.287 £ 0.037 0.293 £ 0.04
192 0.295 + 0.0298 0.309 £ 0.05 0.313 £ 0.057
336 0.319+0.0185 0.316 + 0.022 0.311 + 0.013
720 0.356 +0.0310 0.343 £ 0.035 0.340 + 0.040
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