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Abstract
Accurate prediction of stress in everyday life is
essential to prevent chronic stress and maintain
health and well-being through early and person-
alized intervention. With the goal of enabling
reliable prediction suitable for everyday life, we
present MUSTP, a two-stage machine learning
pipeline designed to predict stress from low-
resolution heart rate (HR) and high-resolution
electrocardiography (ECG) measurements from
commercial smartwatches. Our model is pre-
trained with labeled data collected in a controlled
laboratory stress study. Subsequently, we transfer
the model for everyday use, enabling it to operate
with everyday smartwatch data in various envi-
ronments. The model transfer strategy effectively
addresses the domain shift from laboratory data
to highly imbalanced smartwatch data and allows
personalization. The empirical results on smart-
watch data show that MUSTP can predict stress
everyday with an F1 score of 52%, despite the
measurements having sparse labels for stress.

1. Introduction & Related Work
Stress phenomena can be defined as the psychological re-
sponses of an individual to stressors, which can have signifi-
cant implications for health and wellness when in a chronic
state. Some established detrimental health outcomes associ-
ated with chronic stress include cardiovascular conditions,
obesity, and mental health disorders such as depression and
anxiety (Khan & Khan, 2017; McEwen, 2017; Ippoliti et al.,
2013). These outcomes emphasize that there is an increas-
ing necessity for reliable methods of stress prediction and
monitoring in daily life (Al-Atawi et al., 2023; Can et al.,
2019).
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Physical signals including electrocardiography (ECG), heart
rate (HR), and heart rate variability (HRV) provide valuable
information about how someone’s body responds in the
stress states compared to relaxed states (Kinnunen et al.,
2020). Recent advances in machine learning and deep learn-
ing have been applied to stress prediction using ECG, HR,
and HRV (Haque et al., 2023; Ramı́rez et al., 2023). Utiliz-
ing ECG presents a promising strategy for stress prediction,
as it captures the heart’s electrical signals and the activity of
the autonomic nervous system (Castaldo et al., 2016; Cinaz
et al., 2013; Acharya et al., 2006; Healey & Picard, 2005).
Moreover, ECG-based stress prediction offers several ad-
vantages in terms of applicability in different environments.
Due to its non-invasive nature, ease of use, and low cost,
ECG signals can be collected in real-time in the laboratory
via sensors or in everyday life via commercial smartwatches
(Velmovitsky et al., 2022; Siirtola, 2019).

Despite the possibility of collecting high-quality ECG data
in both laboratory and daily life settings, individuals may
exhibit varying responses to stressors across different en-
vironments and circumstances (Can et al., 2020). In the
laboratory, the Trier Social Stress Test (TSST) (Kirschbaum
et al., 1993) is a widely used experimental procedure to
induce acute psychological stress in individuals. This con-
trolled procedure provides well-defined stress labels and
accompanying physiological signals, making it invaluable
for training machine learning models. However, the ne-
cessity for personalizing these models becomes evident, as
individuals frequently have physiological signals with dif-
ferent characteristics in relaxed and stress states (Islam &
Washington, 2023; Tazarv et al., 2021).

On the other hand, in everyday life, people encounter stress
in different circumstances such as work deadlines, relation-
ship conflicts, and unexpected life events. The intensity,
duration, and labeling of these real-life stress responses can
significantly vary, unlike the controlled environment in the
laboratory. This variation contributes to what is known as
domain shift in machine learning (Zhou et al., 2021), where
the statistical distribution of data differs between domains,
posing challenges for model generalization and performance
across varied contexts. Therefore, it is crucial to recognize
and minimize the domain shift problem to enhance the ap-
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Figure 1: Sketch of the MUSTP framework.

plicability and accuracy of stress prediction models trained
with laboratory data. This can be accomplished by fine-
tuning the deep learning model for individual adaptation
(Behinaein et al., 2021) or using transfer learning to deal
with scarce data (Maxhuni et al., 2016).

In this paper, we propose a Multi-level Stress Predictor
(MUSTP), a two-level ML pipeline that can operate with
low-resolution HR and high-resolution ECG measurements
for stress prediction. MUSTP minimizes user effort as it
operates on low-resolution HR as the first level and only
requires ECG measurements when needed. The proposed
model leverages laboratory data collected with the TSST
procedure for training. Afterward, the model is transferred
to everyday life to operate with data collected from a com-
mercial smartwatch (WITHINGS SCANWATCH) and subjec-
tive Ecological Momentary Assessment (EMA). We apply
post-hoc optimization and finetuning to account for domain
shifts and have personalized stress prediction. In the ab-
lation study, we demonstrate the effects of model transfer
on the model performance. Our empirical results on smart-
watch data show that MUSTP achieves F1 score of 52%
with a considerable improvement compared to the baseline
model, even though only 31% of the measurements are la-
beled as stress.

2. Methodology
2.1. LABDATA- Dataset Description

The LABDATA dataset contains psychological data from
108 participants who underwent stress exposure via the
TSST procedure. Due to recording issues, we eliminated 9
users; therefore, our dataset has effectively 99 users. The
dataset includes ECG signals, salivary cortisol levels, and
self-report measures of stress. ECG measurements are col-
lected during the baseline and stress (TSST) conditions will
be used as hard labels of stress for training our model. More
details about the dataset can be found in Table 1, the source
of HR modality described in Subsection 2.5. Each record of
participants in the LABDATAis appropriately anonymized.
The dataset is planned to be released in the future.

2.2. EVERYDAYDATA- Dataset Description
The EVERYDAYDATA dataset consists of 131 users whose
data is collected for approximately two months via WITH-
INGS SCANWATCH. Users were advised to wear their smart-
watches throughout the day and record an ECG along with
completing an EMA three times per day during the desig-
nated windows of 7-10 AM, 12-3 PM, and 7-10 PM. Users
are supposed to rest their arms on a table and hold the
top electrode with their thumb and index finger for 30 sec-
onds during ECG measurement. The measurements that are
logged shortly after a workout or activity are discarded. For
(soft) stress labels, we are using subjective stress from Af-
fect Grid metrics from collected EMAs (see Appendix A.2
for more details), which are 19,289 in total. More details
about the dataset can be found in Table 1. Similarly, each
record of participants in EVERYDAYDATA is appropriately
anonymized. The dataset is planned to be released in the
future.

2.3. Preprocessing

In the following analysis, HR measurements are taken over
30-minute windows at a frequency of 1/600 Hz, resulting
in four measurements per window. ECG measurements,
on the other hand, are taken in non-overlapping 30-second
intervals, with the frequency specific to each dataset.

We preprocess the LABDATA dataset by applying a 0.5 Hz
high-pass Butterworth filter on collected ECG signals. Then,
we perform R-peak detection to get the users’ heart rates us-
ing the default algorithm in NEUROKIT2 (Makowski et al.,
2021). For the EVERYDAYDATA dataset, we downsample
ECG signals from 300 Hz to 250 Hz. After that, we apply a
0.5 Hz high-pass Butterworth filter.

2.4. Proposed Model

We propose a two-level model, MUSTP as shown in Fig-
ure 1. In the following sections, we describe the model.

Level 1 is an isolation forest-based model with the task of
anomaly detection from HR measurements over 30 min-
utes with 1/600 Hz. The baseline model (BASELINE-1)
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Dataset Name #Users Device Name Stress Labels Modality #Baseline Measurements #Stress Measurements

LABDATA 99 ZEPHYR BIOHARNESS 3.0 TSST
ECG (250 Hz) 3021 1980

HR (1/600 Hz) 3960 3960

EVERYDAYDATA 131 WITHINGS SCANWATCH EMA
ECG (300 Hz) 7257 3396

HR (1/600 Hz) 6996 3263

Table 1: Overview of the datasets. We report the number of measurements for baseline and stress states.

is trained with synthetic HR measurements from baseline
states in LABDATA. To transfer BASELINE-1 to the every-
day environment, we create a pool of user-specific anomaly
detectors using LABDATA. Then, when we apply Level 1
for a user’s everyday settings, we select the model in the
pool with baseline HRs that are statistically most similar
to those of the current user from EVERYDAYDATA. We
call this approach similarity matching (SM) (see Subsection
2.6).

Level 2 is a Convolutional Long Short-Term Memory
(LSTM) network-based binary classifier that classifies 30-
second ECG signals into stress and non-stress. The base-
line model (BASELINE-2) is trained with LABDATAfor the
whole population. We transfer BASELINE-2 to everyday
life setting by finetuning (FT) (see Subsection 2.7) it for
each user in EVERYDAYDATA.

MUSTP Our model runs on Level 1 as a default mode.
The hierarchical structure requires the first Level 1 Model
to have a positive anomaly prediction to activate the second
level. The combined hierarchical model has the following
advantages:

• Operating with low-resolution HR signals in default
mode, e.g. suitable to run with incoming data from
commercial smartwatches.

• Higher reliability in the final prediction as input signal
becomes high-resolution ECG measurement.

• Requiring minimum active participation of user as it is
only for 30-second intervals in Level 2.

Hence, our model can be easily used in everyday life with
commercial smartwatches following training in a laboratory
setting. See Appendix A.3 for more details of the model.

2.5. Synthetic Data Generation
Originally, there was a lack of TSST-labeled HR data that
is 30 minutes long with a frequency of 1/600 Hz. To train
the BASELINE-1 model, we synthesize a dataset comprising
30-minute-long heart rate signals. As a first step, the mean
and standard deviation of HR measurements for each user
were computed in both baseline and stress states. Using
these statistics, we employ the NEUROKIT2 ECG simula-
tion tool to generate 30-second-long synthetic ECG signals.

Subsequently, we calculate HR from the generated ECG
signals. Through independent iterations of ECG generation
and HR extraction, our objective is to produce realistic data
with lower resolution. For each user in the legacy dataset,
we have created 40 HR measurements for both baseline and
stress states to model anomalies.

2.6. Similarity Matching
We use similarity matching (SM) for choosing the most
suitable anomaly detector for a test user in the inference,
rather than relying on a single anomaly detector trained on
the entire LABDATAdataset.

To utilize SM, we first train an anomaly detector for each
user training user j ∈ {1, . . . , J}. The SM algorithm com-
putes a distance between the test user (i) and each user in
the training pool using statistics of heart rate measurements
from baseline states. For simplicity, we assume baseline
heart rate measurements of a user follow a univariate normal
distribution with parameters µ and σ; therefore, we compute
the similarity by using Bhattacharyya distance

dij =
1

4

(µi − µj)
2

σ2
i + σ2

j

+
1

2
ln

(
σ2
i + σ2

j

2σiσj

)
, (1)

where i and j denote indices of test and training users, re-
spectively. After we compute distances di = [di1, . . . , diJ ],
we find the index j∗ that minimizes dij as j∗ =
argminj∈{1,...,J} dij . We then select the anomaly detec-
tor of the user j∗, with a corresponding threshold value of
TH∗

j for a target recall value.

2.7. Personalization of the Model

Finetuning (FT) a model can significantly enhance its perfor-
mance for a specific domain or user. We follow a common
approach to achieve this by fine-tuning only the last lin-
ear layer of the BASELINE-2 model. We rely on our deep
model to extract informative features from the input sig-
nal. Therefore, instead of aligning the distribution of the
input signal, we focus on tuning the model’s final classifi-
cation layer (Behinaein et al., 2021; Islam & Washington,
2023). This step updates the parameters of the linear layer
considering the individual characteristics of input data. Fur-
thermore, fine-tuning helps mitigate domain shift, as the
baseline model is trained with LABDATA to extract robust,
generalizable features, while the last layer can be finetuned
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with EVERYDAYDATA for adjusting model outputs to the
specific distribution of the everyday life domain. Further
details on FT can be found in Appendix A.4.

2.8. Post-hoc Optimization of Thresholds

In order to use MUSTP as a full pipeline, it is important to
select the best decision thresholds to increase model perfor-
mance. To do so, we perform post-hoc optimization (PO)
of user thresholds by maximizing the expected F1 score on
a held-out dataset. This step is applied for Level 1 and 2
models separately. Thresholds after the optimization step
are denoted as TH†

i and TH‡
i for the first and second level of

the model for user i.

3. Experiments
3.1. Data and Training
We split our LABDATA data into [70, 10, 19] users for train-
ing, validation, and testing. For Level 1, the amount of
windows for HR measurements is [2800, 400, 760] and
[2800, 400, 760], for baseline and stress states respectively,
with each window has four HR measurements 10 minutes
apart. For Level 2, there are [2140, 308, 573] baseline ECG
measurements and [1400, 200, 300] stress ECG measure-
ments, with each measurement being 30-second long. The
windows are not overlapping in either modality.

Similarly, for EVERYDAYDATA, we have 131 users with
the total of [6996, 3263] windows of HR measurements for
Level 1, and [7257, 3396] ECG measurements for Level 2
in baseline and stress states respectively. All of the users in
EVERYDAYDATA can be thought as test users.

BASELINE-1 and BASELINE-2 denote baseline models
trained and validated with corresponding users of LABDATA.
In order to check effect of the finetuning and post-hoc opti-
mization of the thresholds, we use 40% of the data collected
from the test user over time in the respective dataset. For a
comparable performance comparison, we report the metrics
on the remaining 60% of the data.

3.2. Results
In this section, we report the performance of BASELINE-1,
BASELINE-2 models for the test users of LABDATA and
EVERYDAYDATA to investigate effects of model transfer
steps. We present receiver operating characteristic (ROC)
and precision-recall (PR) curves. For comparison purposes,
the area under the curve (AUC) and average precision (AP)
are reported with the corresponding curves. The perfor-
mance metrics are computed after aggregating the individ-
ual results of binary classification, i.e. summing TP, FP, TN,
FN values from each user. Lastly, we provide an ablation
study, in which we test the full pipeline of MUSTP with
different combinations of transfer steps.

Results with Level 1 in Laboratory Environment For
our BASELINE-1 model, we present ROC and PR curves
in Figure 2 as baseline. For evaluating model transfer, we
apply SM for BASELINE-1 and report the same metrics for
the transferred model. Our approach of SM increases AUC
for both ROC and PR curves.

Figure 2: LABDATA, ROC and PR curves for Level 1

Results with Level 2 in Laboratory Environment For
our BASELINE-2 we present ROC and PR curves in Fig-
ure 3. For evaluation of model transfer, we apply FT for
BASELINE-2. Our model for Level 2 has 77% accuracy for
the test users with a threshold of 0.3, which is decided on
the validation set. After FT , the accuracy increases to 82%.

Figure 3: LABDATA, ROC and PR curves for Level 2
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Results with Level 1 in Everyday Environment We
present our results of BASELINE-1 model with EVERYDAY-
DATA. For model transfer, we apply SM for BASELINE-1
without any further training. Our results are shown in Figure
4 with minimum improvement observed in ROC and PR.

Figure 4: EVERYDAYDATA, ROC and PR curves for Level 1

Results with Level 2 in Everyday Environment In this
part, we present our results of BASELINE-2 model with
EVERYDAYDATA. For model transfer, we apply FT on
BASELINE-2 by using 40% percent of user data. Our evalu-
ation on 60% test data shows that model transfer increases
AUC of PR and ROC curves as shown in Figure 5.

Figure 5: EVERYDAYDATA, ROC and PR curves for Level 2

Results for MUSTP in Everday Environment In this part,
we present our results of MUSTP model with EVERYDAY-
DATA. To evaluate the full model pipeline’s performance,
we need to use both HR and ECG measurements along with
an EMA answer. When we consider the evaluation set corre-
sponding to 60% of EVERYDAYDATA dataset, it is observed
that 31% of data is labeled as stress. For further improve-
ment, we perform PO for selecting user-specific thresholds
that maximize F1 score after FTstep, using initial 40% of
user data in EVERYDAYDATA dataset for both steps. Thresh-
olds after PO are denoted as TH†

i and TH‡
i for the Level 1

and 2 models for user i. We report a summary of models in
Table 2.

Model Name Models Thresholds

MUSTP Baseline
BASELINE-1 0.472

BASELINE-2 0.3

MUSTP Transferred
BASELINE-1 + SM TH∗

j

BASELINE-2 + FT 0.3

MUSTP Transferred + Opt
BASELINE-1 + SM +PO TH†

i

BASELINE-2 + FT + PO TH‡
i

Table 2: Overview of the models and their thresholds.

Figure 6: Comparison of Models in Everyday Environment

In Figure 6, we show the aggregated performance of
MUSTP with baseline, transferred (SM+ FT), and trans-
ferred and optimized (SM+ FT+ PO) versions. Our results
show that model transfer with optimization has the great-
est F1 score among all models. The aggregation process
involves summing the binary stress prediction outputs for
each window across all users. We also show the distribution
of the performance metrics among users in Figure 7.

4. Conclusion
In this work, we proposed MUSTP, a two-level ML pipeline
for predicting stress in everyday environments using com-
mercial smartwatches. Our model minimizes user involve-
ment during inference mode in everyday life in order to
increase its applicability and ease of use in real life. Our
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Figure 7: Comparison of Models in Everyday Environment

results show that MUSTP after model transfer has 52% F1
score with a considerable improvement on the baseline.

For future work, we plan to extend our current scheme
using online reinforcement learning-based approaches to
learn user-specific adaptive decision thresholds aiming for
increased personalization without requiring further training
or offline optimization. Lastly, we want to improve the
reliability of our EMA-based soft labels using both Affect
Grid and questionnaires and decide the contribution of each
component by investigating the correlation between cortisol
levels and soft labels.
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From Laboratory to Everyday Life: Personalized Stress Prediction via Smartwatches

A. Appendices
A.1. Laboratory Experimental setup

Figure 8: TSST Time Protocol with the corresponding label
samples for each window for later classification

The TSST procedure involved an approx. 30-minute prepa-
ration period, followed by a 5-minute speech task and a
5-minute mental arithmetic task in front of a panel of judges.
After the stressor, the recovery period starts, which takes ap-
prox. 38 minutes. Upon arrival at the laboratory, subjective
stress questionnaires and cortisol samples were collected
at -25, -3, 10, 15, 320, 45, and 60 minutes of the proce-
dure. The ECG recording was conducted between -35 and
50 minutes. The experiment is illustrated in Figure 8.

A.2. Soft Labels from EMAs

Figure 9: Defined stress regions in EMA grid

The subjective stress assessment of EMA is carried out by
using Affect Grid (EMA GRID) (Russell et al., 1989). EMA
GRID has an empty 9x9 grid with dimensions of pleasant-
unpleasant and arousal-sleepiness. We soft label the left side
of the grid as stress (unpleasant feelings) as shown in Figure
9. The EMA answers are collected through the Pulsatio
Application.

A.3. Model Architectures and Training

We describe our model for Level 1 in Table 3. We fit the
isolation forest-based BASELINE-1 model using synthetic
baseline data (baseline HR measurements) from LABDATA
dataset. In order to compute the contamination parameter,
we use HR measurements from baseline and stress states.

Table 3: Description of Isolation Forest Model

Isolation Forest Description

Number of Estimators 200
Contamination 1e−5
Max Samples auto

We describe our model for Level 2 in Table 4. We train
BASELINE-2 model using LABDATA. We train BASELINE-
2 with a learning rate of 1e−3, total epoch of 250, batch
size of 32 and early stopping with 25 epochs.

Table 4: Description of Convolutional LSTM Network Ar-
chitecture

Layer Description

conv Input channel: 1, Output channel: 50, Kernel size: 150
ReLU Activation Applied after each conv layer
Pooling Max pooling, Pooling size: 200
Regularization Dropout, Dropout rate 0.5
Batch Normalization Applied after dropout
LSTM Layer 1 Input size 36, Output size 32
LSTM Layer 2 Input size 32, Output size 16
Flattening Flatten
Fully Connected Layer Input size 800, Output size 1
Output Activation Sigmoid

A.4. Details of Personalization with Model Finetuning

For the Level 2 model, we perform finetuning on the last
linear layer of BASELINE-2 model for 10 epochs with a
learning rate of 1e−4 with a batch size of 16 for each test
user using 40% percent of their data.
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