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Abstract

The feature transfer technique centered on mean and variance statistics, widely known as AdaIN, lies
at the core of current style transfer research. This technique relies on the assumption that latent fea-
tures for style transfer follow Gaussian distributions. In practice, however, this assumption is often
hard to meet, as the features typically exhibit sparse distributions due to the significant spatial corre-
lation inherent in natural images. To tackle this issue, we propose first performing a random projec-
tion for the sparse features, and then conducting style transfer on these projections. Statistically, the
projections will satisfy or approximate Gaussian distributions, thereby better aligning with AdaIN’s
requirements and enhancing transfer performance. With the stylized projections, we can further re-
construct them back to the original feature space by leveraging compressed sensing theory, thereby
obtaining the stylized features. The entire process constitutes a projection-stylization-reconstruction
module, which can be seamlessly integrated into AdaIN without necessitating network retraining.
Additionally, our proposed module can also be incorporated into another promising style transfer
technique based on cumulative distribution functions, known as EFDM. This technique faces limita-
tions when there are substantial differences in sparsity levels between content and style features. By
projecting both types of features into dense Gaussian distributions, random projection can reduce
their sparsity disparity, thereby improving performance. Experiments demonstrate that the perfor-
mance improvements mentioned can be achieved on existing state-of-the-art approaches.

1 Introduction

Style transfer aims to transfer the style of one image to another while preserving the semantic content information
of the latter. Recent research has shown that this objective can be efficiently realized within a deep encoder-decoder
framework, by statistically extracting and integrating style and content information from deep convolutional features
(Gatys et al., 2016). In this approach, the statistical modeling of style features plays a pivotal role, yet it remains a
challenging issue due to the inherent subjectivity and diversity in defining style features.

There are two fundamental statistical approach to model style features: One approach is grounded in the utilization of
mean and variance, famously known as AdaIN (Huang & Belongie, 2017), while the other leverages the cumulative
distribution function, termed EFDM (Zhang et al., 2022). Despite their impressive performance, both approaches
have inherent limitations. This is because deep convolutional features often exhibit sparse distributions (Mahendran
& Vedaldi, 2015; Qin et al., 2020), as exemplified in the appendix, and such distributions are unfavorable for effective
style transfer. The underlying reasons are as follows. Let us first analyze the AdaIN approach, which operates on
the assumption that deep features have Gaussian distributions, rather than sparse distributions. For a style feature
map that exhibits a sparse distribution, its style information is typically concentrated within a few large-magnitude
feature elements. However, as the number of small-magnitude feature elements increases, the influence of these large
elements on both the mean and variance (essential for AdaIN) tends to decrease. This property suggests that the effect
of style transfer with AdaIN may deteriorate, when the style feature map becomes sparser, as demonstrated by the
example in Figure 1. In the EFDM method, the cumulative distribution function is adopted to represent style features.
The function is transferred by substituting the sorted-feature-elements of the content feature map with corresponding
elements from the style feature map. Nevertheless, this method tends to perform worse when the sparsity of the feature
distributions is inconsistent between the content feature map and the image feature map. This problem is exemplified
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Content & Style                 AdaIN EFDM               Ours (AdaIN+RP)

Figure 1: Style transfer using a style image composed of few color points. The methods of AdaIN (Huang & Belongie,
2017) and EFDM (Zhang et al., 2022) lose substantial content details in contrast to our random projection-based style
transfer (implemented on AdaIN).

in Figure 1, where the style feature map is much sparser than the content feature map. It can be seen that the stylized
image experiences noticeable content loss, since the content feature map has to lose a few large-magnitude feature
elements, after adopting the elements from the sparser style feature map. Overall, the aforementioned two problems
indicate that the sparse distributions of deep features limit the application effects of AdaIN and EFDM.

To address the challenge, in the paper we propose applying random projection to deep features, before performing
style transfer on them. Random projection is a technique that projects high dimensional data to low dimensional
subspaces by multiplying the data with a random matrix. Statistically, when the entries of random matrices are drawn
from Gaussian distributions, the projections will adhere to Gaussian distributions. Similarly, when the matrix entries
are sampled from other sparse distributions, such as {0, 1} and {0,±1} distributions, the projections will approximate
Gaussian distributions by the central limit theorem. The projection to lower dimensions can also yield distributions
closer to Gaussian. (Meckes, 2012). These properties suggest that random projection enables features to better meet
the requirements of AdaIN. Moreover, the dense, Gaussian distribution is favorable to reducing the disparity in sparsity
levels between the style image map and the content image map. This, in turn, mitigates the aforementioned sparsity-
imbalance issue that can arise in the context of EFDM. By conducting style transfer on the projections of content and
style feature maps, we will obtain the stylized projection. To feed the stylized projection into the decoder without
network retraining, we further propose to reconstruct the stylized projection back to the original feature map space.
This reconstruction relies on compressed sensing theory (Foucart & Rauhut, 2013), which states that a sparse signal
can be approximately reconstructed from its random projections, even in the presence of noise. In the context of our
research, the stylized projection can be viewed as the projection of content features, perturbed by the projection of
style features via style transfer. Then, reconstruction from the stylized projection should yield the desired stylized
feature map, which is primarily characterized with content features while being complemented by style features.

The proposed random projection-based style transfer functions as a flexible plug-and-play module, which can be seam-
lessly integrated into encoder-decoder frameworks for style transfer, without the need for network retraining. Without
loss of generality, our research will focus on incorporating this module into two fundamental models: AdaIN (Huang
& Belongie, 2017), and EFDM (Zhang et al., 2022). The two models serve as the basis for style transfer and have been
employed in most existing style transfer approaches, including attention mechanism-based models like AdaAttN (Liu
et al., 2021) and diffusion model-based approaches such as StyleID (Chung et al., 2024). If performance improve-
ments can be realized with these two basic models, it is reasonable to anticipate similar improvements in other more
advanced models that incorporate them. This is validated in our experiments, where our random projection module
indeed empowers existing approaches to overcome the limitations in handling sparse features, thereby achieving no-
table improvements in preserving content details, enriching and diversifying style elements, and elevating the overall
perceptual quality.

2 Related Work

Statistical modeling of style features. In the early research of style transfer, Gram matrices are utilized to represent
the distribution of style features, achieving impressive results but incurring a relatively high computational burden.
To alleviate this issue, AdaIN (Huang & Belongie, 2017) introduces a style modeling approach based on mean and
variance, which offers comparable performance but significantly reduces complexity. Consequently, this approach has
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found wide application in encoder-decoder-based models (Jing et al., 2020; Chandran et al., 2021; An et al., 2020; Lin
et al., 2021; An et al., 2021; Liu et al., 2021), as well as in generative adversarial models (Karras et al., 2019; 2020).
To further address the limitation of AdaIN in dealing with sparse features, EFDM (Zhang et al., 2022) has recently
proposed modeling style features using cumulative distribution functions. This approach reports more pronounced
results than AdaIN, attracting increasing attention in recent research (Kwon et al., 2024; Ge et al., 2024; Zhang et al.,
2024b). However, as previously noted, EFDM encounters challenges when content and style feature distributions
differ in sparsity levels. In the paper, we will demonstrate that our random projection-based feature sampling module
can efficiently tackle the two problems present in AdaIN and EFDM.

Style transfer with global and local features. The primary goal of style transfer is to achieve a desired balance be-
tween content and style information. Achieving this goal necessitates a delicate manipulation of both global and local
feature transfers. Global features are crucial in maintaining content quality and ensuring style consistency, whereas
local features are instrumental for refining local details. Initially, research primarily centers on global, channel-wise
deep features, as evidenced in works such as (Gatys et al., 2015a;b; 2016; Dumoulin et al., 2016; Johnson et al., 2016;
Ulyanov et al., 2016; Gatys et al., 2017; Risser et al., 2017; Huang & Belongie, 2017; Li et al., 2017; 2019; 2020;
Huang & Gupta, 2020; Zhang et al., 2022). Subsequently, the focus shifts towards the modeling and transferring on
local patches or patterns, as demonstrated in (Chen & Schmidt, 2016; Gu et al., 2018; Zhang et al., 2019; Wang et al.,
2021; Hong et al., 2023; Park & Lee, 2019). The transition has driven the emergence of attention-based approaches
(Chen et al., 2021; Liu et al., 2021; Wu et al., 2021; Deng et al., 2022; Huang et al., 2023; Xu et al., 2023; Zhu et al.,
2023; Ma et al., 2023; Zhang et al., 2024a). Recently, diffusion model-based approaches have significantly boosted
style manipulation capabilities. Specifically, methods such as Prompt-to-Prompt (Hertz et al., 2022) and Plug-and-Play
(Tumanyan et al., 2023) utilize cross-attention and self-attention maps to guide spatial arrangements during text-driven
image editing. More recently, StyleID (Chung et al., 2024) has pushed this paradigm further by integrating key and
value features from style images into self-attention layers, facilitating training-free artistic style transfer with precise
spatial and statistical alignment. Despite these advancements, efficiently modeling and balancing between global and
local features remain challenging, due to the elusive nature of style definition and perception, as well as the complexity
of style transfer. In the paper, we achieve a flexible balance between global and local feature transfers, by leveraging
the local patch sampling with random projection and the feature grouping on projections.

3 Methodology

As discussed before, the proposed random projection-based style transfer can be incorporated into arbitrary encoder-
decoder framework, without the need for network retraining. In this section, we elaborate this incorporation process
with the basic approach AdaIN, as illustrated in Figure 2, and the incorporation into other approaches, like EFDM,
StyleID and AdaAttN, can be realized in the similar way, as outlined in the appendix.

In Figure 2, we provide the overview of incorporating the random projection module into AdaIN, which mainly
consists of three steps. First, the feature maps of the content and style images are projected to low-dimensional spaces
by random projection. Then style transfer is conducted over the projections of the two kinds of features. To achieve a
balance between local details and global consistency, we here divide each projection into a number of subgroups and
conduct style transfer on each subgroup. Finally, with the stylized projection, the target image feature map is derived
by sparse reconstruction. Overall, the above three steps constitute a projection-stylization-reconstruction module,
which is detailed as follows.

3.1 Random projection

Prior to introducing random projection, let us first review the feature feed-forward process involved in the encoder-
decoder model, as illustrated in Figure 2. The model takes as inputs a content image Ic and an arbitrary style image
Is, and outputs a target image It that combines the semantic content of Ic and the style of Is. This combination is
performed in a single or a few layers of the encoder. In each layer, we can derive two feature maps respectively for Ic
and Is. Usually, each feature map will consist of multiple channels. For Ic, we denote the feature map in each channel
with a vector fc ∈ R(Hc×Wc)×1, where Hc and Wc indicate the height and width of the content feature map. In the
similar way, we can define fs ∈ R(Hs×Ws)×1 for Is. Note that we here describe the feature of each channel, rather
than the features of all channels, since the random projection-based style transfer is conducted on channel-wise basis.
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Figure 2: Overview of the random projection-based style transfer implemented on AdaIN. By feeding the content
image Ic and the style image Is into the encoder, we derive the content feature map fc and the style feature map
fs, which are further projected to low dimensional spaces fcp and fsp by random projection. The projections are
divided into a number ng of subgroups: fcp = [f (1)

cp , · · · , f (ng)
cp ] and fsp = [f (1)

sp , · · · , f (ng)
sp ]; and style transfer is

conducted on each pair of subgroups f (i)
cp and f (i)

sp , resulting in the stylized projection ftp = [f (1)
tp , · · · , f

(ng)
tp ]. With

the projection ftp, by sparse reconstruction we derive its counterpart in the original feature space, namely the target
feature map ft . Feeding ft into the decoder, the desired target (stylized) image It is finally obtained.

Given the content feature map fc and the style feature map fs, we then can derive their random projections

fcp = Acfc and fsp = Asfs (1)

where Ac ∈ RMc×(Hc×Wc) and As ∈ RMs×(Hs×Ws) are the random projection matrices.

For random projection, the choice of random matrices is crucial. In this paper, we investigate four commonly-used
random matrices in compressed sensing: the {0,1}-matrix with

√
Mc nonzero elements per column (Lu et al., 2018),

the {1,-1}- and {0,1,-1}-matrices with elements taken with equal probabilities (Achlioptas, 2003; Amini & Marvasti,
2011), and the Gaussian matrix (Candes & Tao, 2005). It can be seen that the {0,1}-matrix exhibits very sparse
structures compared to other three kinds of matrices. Empirically, the three relatively dense matrices perform well
when the style feature map exhibits very sparse distributions. This is because the random projection based on dense
matrices is more likely to approximate Gaussian distributions. In contrast, when the style feature is not very sparse, the
sparse {0,1}-matrix tends to perform better. The advantage may be explained with the following fact. Essentially, the
{0,1}-matrix based random projection performs a random, sparse sampling over the features fc and fs. The resulting
projections fcp ∈ RMc and fsp ∈ RMs have their each element related to a few elements of the original features fc
and fs, reflecting the local correlation of original features. This allows the stylization on feature projections to better
capture the local details compared to stylization on original features.

In addition to the distribution of random matrices, style transfer is also related to the compression rate of random
matrices, which can be written as r = Mc/(Hc × Wc). With the decreasing of compression rate r, the following
sparse reconstruction will become hard and then introduce noise. Empirically, the increased noise tends to degrade
the quality of content, but enrich the diversity of style. In addition, the random variation of the random matrices
themselves can also result in diverse styles.

3.2 Grouping-based style transfer

With the feature projections fcp ∈ RMc and fsp ∈ RMs derived in the previous random projection, we are ready to
perform style transfer on them. To control the impact of style transfer on local details, we propose to first divide the fea-
ture projections into a number ng of subgroups, namely having fcp = [f (1)

cp , · · · , f (ng)
cp ] and fsp = [f (1)

sp , · · · , f (ng)
sp ],
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and then perform style transfer on each pair of subgroups f (i)
cp ∈ R

Mc
ng and f (i)

sp ∈ R
Ms
ng . It is evident that the greater

the number ng of subgroups, the fewer local elements are involved in style transfer. By adjusting the value pf ng , we
can strike a balance between local details and global consistency.

By conducting AdaIN on each pair of subgroups f (i)
cp and f (i)

sp , the stylized feature is derived as

f
(i)
tp = σ(f (i)

sp )f
(i)
cp − µ(f (i)

cp )
σ(f (i)

cp )
+ µ(f (i)

sp ). (2)

Combining the results f (i)
tp ∈ R

Mc
ng of all subgroups, we can obtain the stylized feature on the entire projection

ftp = [f (1)
tp , · · · , f

(ng)
tp ] ∈ RMc .

Similarly as the content projection fcp and the style projection fsp as derived in (1), we here hypothesize that the
stylized projection ftp is a random projection of an underlying target (stylized) feature map ft, namely

ftp = Acft. (3)

Here, we exploit the same projection matrix Ac with the content projection fcp. This choice is based on the fact
that the stylized projection ftp is predominantly characterized with the content projection fcp, and is slightly altered
by the style projection fsp via style transfer. According to compressed sensing theory (Foucart & Rauhut, 2013), a
target feature map ft similar to the content feature map fc can be reconstructed through sparse reconstruction, if the
noise introduced to the content projection fcp, namely the variation induced by style transfer, is limited. In general,
the variation in fcp during style transfer is more significant when using EFDM compared to AdaIN. The difference
arises because AdaIN changes only the mean and variance of fcp, whereas EFDM modifies the cumulative distribution
function by replacing all elements of fcp with those of ftp.

3.3 Sparse Reconstruction

With the projection hypothesis (3), we now need to reconstruct the target image feature map ft from its projection ftp.
By compressed sensing, ft can be approximately derived by

f̂t = arg min
ft

‖Acft − ftp‖2
2 + λ ‖ft‖1 , (4)

if the feature ft has adequately sparse distributions, and the projection matrix Ac has sufficiently low correlations
between columns. The two conditions should be approximately met, as the deep convolutional feature ft is usually
sparse, and the random matrices employed here are commonly utilized in compressed sensing. After obtaining the
target feature map ft, we can further feed it into the encoder-decoder model to generate the desired target image It.

As a convex problem, (4) can be tackled with standard optimization algorithms. Considering deep convolution fea-
tures usually have high dimensions, it is necessary to select an efficient algorithm. In our experiments, we adopt the
Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck & Teboulle, 2009), which exhibits a complexity of
O(MN) per iteration, given a projection matrix of size M × N . This algorithm supports GPU-accelerated parallel
computation (Feinman, 2021), achieving rapid performance. For instance, it takes about 0.1 seconds to reconstruct a
512×4096-sized feature from its 512×2048-sized projection when running on a GeForce RTX 3080 GPU.

4 Experiments

Based on the analysis presented in the previous section, our random projection-based style transfer method is subject
to the influence of several parameters tied to random projection. These include the distribution and compression rate
r of random matrices, as well as the number ng of subgroups into which the feature projections fcp and fsp are
divided. In this section, we will first examine how these parameters impact stylized results, enabling us to achieve
a desired balance between style and content by reasonably adjusting the parameters. Then, we will showcase the
performance improvements achieved by integrating our approach into two fundamental style transfer models: AdaIN
(Huang & Belongie, 2017) and EFDM (Zhang et al., 2022), as well as into their advanced variants and other state-of-
the-art approaches, such as the diffusion model-based StyleID (Chung et al., 2024) and the attention mechanism-based
AdaAttN (Liu et al., 2021). Prior to these studies, we will first outline the implementation details.
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Figure 3: Stylized results derived with four different random matrices: {0, 1}, {-1, 0, 1}, {-1, 1} and Gaussian
matrices.
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Figure 4: Stylized results derived by varying the compression rate r of random matrices from 1 to 0.2, and the number
of subgroups ng within feature projections from 1 to 256. Random projection is implemented with {0, 1} matrices.

4.1 Implementation Details

Given the models AdaIN, AdaAttN, EFDM and StyleID, as illustrated in Figure 2, our random projection-based style
transfer module is incorporated into each layer of these models that involve style transfer, without the need for network
retraining. The computation cost introduced by our module primarily stems from the sparse reconstruction outlined in
(4), which is implemented using the FISTA algorithm (Beck & Teboulle, 2009; Feinman, 2021). For the algorithm, we
assign the regularization parameter of λ = 0.5 and limit the maximum number of iterations to 10. Regarding random
projection, we set the compression rate to M/N = 0.8. For style transfer, we set the number of subgroups within
feature projections to ng = 1. Empirically, our performance is insensitive to minor variations in these parameters, and
no particularly meticulous parameter tuning is required. The selection of key parameters is detailed in Appendix A.8.
The code will be made publicly available.

4.2 Impact of the parameters of random projection on style transfer

Distribution of random matrices. In Figure 3, we compare the stylized results derived with four popular random
projection matrices: {0, 1}, {-1, 0, 1}, {-1, 1}, and Gaussian matrices. It is evident that when the style feature exhibits
a sparse distribution, as illustrated in the first row, the {0, 1}-matrix notably underperforms compared to the other three
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matrices, while the latter three exhibit comparable performance. Notably, the {0, 1}-matrix comprises only a ratio of
1/
√
Mc nonzero entries, leading to much sparser distributions than the other matrices. Consequently, it struggles in

projecting the style feature towards denser, Gaussian distributions, resulting in inferior style transfer performance.
Conversely, the {0, 1}-matrix excels when the style feature displays relatively dense distributions, as depicted in
the second row of Figure 3. In such scenarios, generating projections towards Gaussian distributions becomes more
feasible. In our experiments, unless otherwise specified, we will generally use Gaussian matrices.

Compression rate of random matrices and the number of subgroups within feature projections. In Figure 4,
we compare the stylized results by varying the compression rate r of random {0, 1}-matrices from 0.2 to 1, and the
number ng of subgroups within feature projections from 1 to 256. It is apparent that as the compression rate r decreases
or the subgroup number ng increases, the style gradually becomes prominent while the content becomes less evident.
The impact of compression rates can be understood as follows. In compressed sensing, a lower compression rate r
will lead to a higher reconstruction noise in the reconstructed stylized feature ft. Then the increased noise introduces
more irregular style patterns, while degrading the content. Regarding the increase in the number of subgroups ng , as
mentioned in the previous section, it implies that the number of feature elements within each subgroup for style transfer
decreases. This element-restricted style transfer may overly focus on local details and neglect global constraints,
leading to content loss. Throughout the experiments, we generally set the compression rate r = 0.8 and the number
of subgroups ng = 1.

4.3 Improvement of our random projection module over state-of-the-art approaches

Improvement over two fundamental models: AdaIN and EFDM. In Figure 5, we stylize four different content
images using four distinct style images with relatively sparse features. Without sacrificing generality, the content im-
ages encompass four distinct attribute categories: human figures, animals, plants, and architectural structures. Mean-
while, the style images display two different types of sparse distributions: linear patterns and patchy textures. It is
clear that both AdaIN and EFDM result in a considerable loss of texture, color, and content details, leading to poor
perceptual quality. As previously discussed, this limitation arises because these two models are not well suited for
handling style features with sparse distributions. As expected, when we incorporating our random projection module
into the two models, the resulting AdaIN+RP and EFDM+RP model achieve substantial performance improvements
by transforming the features from sparse distributions toward Gaussian distributions. Our success with the two foun-
dational models not only validates the effectiveness of our method but also suggests its broad applicability, given that
the two models form the core of most existing style transfer approaches, as elaborated later.

Improvement over the state-of-the-art, diffusion model-based approach: StyleID. To validate the effectiveness
and generalizability of our method, we examine how it improves the performance of the state-of-the-art approach
StyleID by keeping either the content or the style constant while varying the other, as depicted in Figures 6 and 7. In
Figure 6, a facial image undergoes stylization with various style images. It is evident that across the various styles,
our method consistently brings about significant enhancements in texture details and contrast, color saturation, and
overall visual perception. Similar improvements are also noticeable in Figure 7, where various content images are
stylized using a black-lined portrait sketch featuring red lips. Particularly, it can be seen that our method successfully
and significantly transfers the color of the red lips, even though this color constitutes only a very small portion of the
entire style image. This validates the advantage of our random projection module in capturing minor but crucial sparse
features.

Improvement over the state-of-the-art, attention-based approach: AdaAttN. Figure 8 illustrates notable perfor-
mance improvements in texture clarity and contrast, when integrating our random projection module into the AdaAttN.
Furthermore, the resulting AdaAttN+RP also outperforms other well-recognized approaches, including AesPA(Hong
et al., 2023), RAST(Ma et al., 2023), StyTr2(Deng et al., 2022), IEST(Chen et al., 2021), Styleformer(Wu et al.,
2021), and Artflow(An et al., 2021), as demonstrated in the appendix, specifically in Figures 11 to 13. Note that our
AdaAttN+RP excels not only with visually sparse-style images, such as the ones depicted in Figures 11, but also with
those that are visually dense, as shown in Figures 13. This wider applicability arises from the fact that visually dense
images also tend to exhibit sparse feature distributions, owing to the spatial continuity and correlation among image
pixels. As a result, our random projection module can be used to further enhance the style transfer performance by
transforming these sparse feature distributions towards the desired Gaussian distributions.
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Figure 5: Stylized results derived by incorporating vs. not incorporating our random projection (RP) module into the
two basic models: AdaIN and EFDM, respectively in the upper and lower rows.
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Figure 6: Stylized results derived by incorporating vs. not incorporating our random projection (RP) module into the
state-of-the-art, diffusion model-based approach: StyleID, with a fixed content but various styles.
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Figure 7: Stylized results derived by incorporating vs. not incorporating our random projection (RP) module into the
state-of-the-art, diffusion model-based approach: StyleID, with various contents but a fixed style (a black-line portrait
with red lips).
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Figure 8: Stylized results derived by incorporating vs. not incorporating our random projection (RP) module into
AdaAttN.

Table 1: Quantitative results of LPIPS, ArtFID and User Study. The better results are marked with an underline.

Metric AdaIN AdaIN+RP EFDM EFDM+RP StyleID StyleID+RP

LPIPS ↓ 0.665 0.579 0.686 0.592 0.650 0.568
ArtFID ↓ 31.01 29.65 33.88 31.37 28.51 26.42

Preference ratio↑ 0.26 0.74 0.19 0.81 0.13 0.87

Quantitative results. The results shown in Figures 5-8 demonstrate that our random projection module significantly
improves the quality of content, delivering superior perceptual performance in style transfer. This property is further
supported by the quantitative results presented in Table 1, where LPIPS (Zhang et al., 2018) measures the content
fidelity of stylized results, and ArtFID (Wright & Ommer, 2022) assesses the overall style transfer performance by
considering both content and style qualities. Moreover, we conducted a user study with 50 participants who selected
their preferred stylized results from 60 trials based on overall perceptual quality. All these results validate the advan-
tage of our approach.

Potential limitation. The main advantage of our random projection module is that it can prevent the loss of critical
features in either content or style, when the latent features exhibit extremely sparse distributions. Typical examples
include the body contour (content features) of the bird in Figure 1 and the red lip (style features) of the lady in Figure
7. In practical scenarios, however, the feature loss of content or style caused by existing style transfer approaches
may be imperceptible to human vision, resulting in an unobvious performance gain of our method. Nevertheless,
even without improved perceptual quality, our module will not degrade the quality, since compressed sensing enables
reliable feature reconstruction from random projections when the compression rate is not extremely low. This indicates
that our module can be universally integrated into existing style transfer approaches without any concern about side
effects.

5 Conclusion

Existing style transfer approaches based on the encoder-decoder architecture typically employ either the mean-and-
variance strategy (proposed in AdaIN) or the cumulative distribution function (introduced in EFDM) to model the
distribution of style features. The two methods implicitly favor the scenarios where the features of both style and
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content images roughly follow Gaussian distributions. Nevertheless, this requirement is often hard to satisfy, as deep
encoder features usually exhibit sparse distributions. Consequently, when handling highly sparse features, the two
methods often result in poor perceptual quality, with a significant loss of texture details, contrast, color, and content.
In this paper, we have for the first time identified and tackled this issue by incorporating a random projection module
into the encoder-decoder architecture, in order to transform features from sparse distributions towards the desired
Gaussian distributions. This module operates as a flexible plug-and-play component, without the need for network
retraining. When integrated into the fundamental models AdaIN and EFDM, as well as other cutting-edge approaches
like the diffusion model-based StyleID and the attention mechanism-based AdaAttN, this module brings about notable
performance improvements, outperforming other well-recognized approaches.
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A Appendix

A.1 Overview of incorporating random projection into StyleID

Content image 𝑧0
𝑐Content noise 𝑧𝑇
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Style image 𝑧0
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Style noise 𝑧𝑇
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Stylized image 𝑧0
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Figure 9: Overview of the random projection-based style transfer implemented on StyleID. First, content and style
images undergo identical DDIM inversion process, with attention-based style injection module strictly following
StyleID’s original implementation. Subsequently, our random projection-based style transfer module operates within
StyleID’s Initial Latent AdaIN module, performing the operations of random projection and style transfer as illustrated
in Figure 2. Finally, the modified latent progresses through StyleID’s reverse diffusion process for image synthesis.

14



Under review as submission to TMLR

A.2 Overview of incorporating random projection into AdaAttN
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Figure 10: Overview of the random projection-based style transfer implemented on AdaAttN. By feeding the style
image Is and the content image Ic into the VGG encoder, we derive the style feature map Fs and the content feature
map Fc. Then the weighted mean M and standard variance S are obtained from Fs, and the specific method is
mentioned in AdaAttN (Liu et al., 2021). M , S and Fc are further projected to low dimensional spaces Mp, Sp and
Fcp by random projection. The projections are divided into a number ng of subgroups: Mp = [M (1)

p , · · · ,M (ng)
p ],

Sp = [S(1)
p , · · · , S(ng)

p ] and Fcp = [F (1)
cp , · · · , F (ng)

cp ], and Fcp is further mean-variance channel-wise normalized,
represented by Norm in the figure. Then style transfer is conducted on each pair of subgroups M (i)

p , S(i)
p and

F
(i)
cp , resulting in the stylized projection Ftp = [F (1)

tp , · · · , F
(ng)
tp ]. The formula for style transfer is outlined as

F
(i)
tp = F

(i)
cp ∗ S(i)

p +M
(i)
p . With the projection Ftp, by sparse reconstruction we derive its counterpart in the original

feature space, namely the target feature map Ft. Feeding Ft into the decoder, the desired target (stylized) image It is
finally obtained.
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A.3 Comparison between our AdaAttN+RP and other well-recognized approaches

Style Content

AesPA RAST StyTr2

IEContraAST

AdaAttN+RP

StyleFormer ArtFlow

Figure 11: Stylized results derived by our AdaAttN+RP and other approaches. Among the approaches, our
AdaAttN+RP stands out for its more saturated and evenly distributed red color.

Table 2: User Study Results for Figure 11

AesPA RAST StyTr2 IEContraAST StyleFormer ArtFlow AdaAttN+RP

Preference ratio ↑ 0.13 0.00 0.00 0.07 0.02 0.00 0.78
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Style Content

AesPA RAST StyTr2

IEContraAST

AdaAttN+RP

StyleFormer ArtFlow

Figure 12: Stylized results derived by our AdaAttN+RP and other approaches. When rendering the textures of
branches, leaves, and petals in a black-and-white style, our AdaAttN+RP outperforms all others.

Table 3: User Study Results for Figure 12

AesPA RAST StyTr2 IEContraAST StyleFormer ArtFlow AdaAttN+RP

Preference ratio ↑ 0.08 0.13 0.00 0.01 0.05 0.00 0.73
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Style Content

AesPA RAST StyTr2

IEContraAST

AdaAttN+RP

StyleFormer ArtFlow

Figure 13: Stylized results derived by our AdaAttN+RP and other approaches. Our AdaAttN+RP achieves a good
balance between style transfer and content preservation. In contrast, other approaches either overemphasize styles at
the expense of content, as seen with StyleFormer, or lack sufficient stylistic features, like RAST.

Table 4: User Study Results for Figure 13

AesPA RAST StyTr2 IEContraAST StyleFormer ArtFlow AdaAttN+RP

Preference ratio ↑ 0.01 0.11 0.09 0.06 0.03 0.05 0.65
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A.4 Comparison of two representative sparse reconstruction algorithms: FISTA and OMP
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Figure 14: Stylized results derived with two commonly-used sparse reconstruction algorithms: the optimization-based
FISTA (Feinman, 2021) vs. the greedy search-based OMP (Lubonja et al., 2024). It is seen that the visual effects of
the two algorithms are highly similar.
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A.5 Time consumption of our random projection module

In Tables 5, 6, and 7, we present the time consumption for feature encoding, style transfer, and decoding within the
conventional networks AdaIN (which shares the same framework as EFDM), AdaAttN, and StyleID. Additionally, we
include the time required for the random projection and sparse reconstruction processes within our random projection
(RP) module. It is evident that the time overhead introduced by our RP module is very little, particularly when
compared to the substantial time savings achieved by eliminating the need for network retraining.

Table 5: Time consumption of AdaIN/EFDM incorporating our RP module

AdaIN/EFDM Our RP module
Encoding Style transfer Decoding Random projection Sparse reconstruction

136ms 18ms 22ms 196ms 203ms

Table 6: Time consumption of AdaAttN incorporating our RP module

AdaAttN Our RP module
Encoding Style transfer Decoding Random projection Sparse reconstruction

872ms 172ms 371ms 2401ms 2303ms

Table 7: Time consumption of StyleID incorporating our RP module

StyleID Our RP module
Encoding Style transfer Decoding Random projection Sparse reconstruction
10533ms 10ms 5603ms 590ms 626ms
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A.6 Selection of key parameters

For ease of parameter tuning and practical application, the selection of key parameters is outlined as follows:

1) Random projection matrices: In most cases, Gaussian matrices with zero mean and unit variance deliver satis-
factory performance. If Gaussian matrices fail to meet requirements (e.g., for dense content features as illustrated in
Figure 3), binary {0, 1}-matrices may yield better performance.

2) Compression rate r = M/N : According to compressed sensing theory, perfect sparse recovery requires the
compression rate to satisfy M > 2k, where k denotes the feature sparsity, namely the number of nonzero entries in
the N -dimensional feature vectors. For style transfer tasks, besides recovery accuracy, we also need to consider the
perceptual quality of the stylized results. Empirically, as illustrated in Figure 4 and Figures 15-17, setting r ≥ 0.6
can usually yield satisfactory performance. A lower compression rate r tends to introduce more recovery errors (i.e.
noise), thereby degrading the content feature quality.

3) Number ng of subgroups in projected features: For simplicity, ng can be set to 1 in most cases. As observed
in Figure 4, increasing ng from 1 to 256 leads to slight variations in stylized effects, and such variations are far less
pronounced than those caused by the projection ratio r.

4) Sparse recovery algorithms: We recommend two commonly-used algorithms: FISTA and OMP. For FISTA, in
our experiments the regulation parameter is set to λ = 0.5 and the iteration number is limited to 10; and for OMP, its
sparsity parameter k can be determined based on feature sparsity.
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A.7 Impact of the varying of compression rate r and number ng of subgroups

In Figures 15-17, following the investigation in Figure 4, we further evaluate the performance gains of our random
projection module when integrated into AdaAttN, EFDM and StyleID, by decreasing the compression rate r from 1 to
0.2 and increasing the number ng of subgroups from 1 to 256. The results demonstrate that as the compression rate r
decreases, the content quality tends to degrade while the stylized effect tends to be enhanced, owing to the introduction
of more recovery errors (i.e. noise). Similarly, increasing the subgroup number ng slightly boosts stylization effects.
Regarding parameter tuning, simply setting r = 1 and ng = 1 suffices for our method to achieve notable performance
gains over the aforementioned style transfer approaches.

Figure 15: The stylized results derived by integrating our random projection module into EFDM, where the compres-
sion rate r is decreased from 1 to 0.2 and the number ng of subgroups is increased from 1 to 256. Compared to EFDM,
our method EFDM+RP exhibits better texture-detail performance, when the compression rate r is sufficiently large.
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Figure 16: The stylized results derived by integrating our random projection module into AdaAttN, where the com-
pression rate r is decreased from 1 to 0.2 and the number ng of subgroups is increased from 1 to 256. Compared
to AdaAttN, our method AdaAttN+RP achieve markedly superior performance when the compression rate r is suffi-
ciently large, as clearly manifested in the refined details of eyes and individual hair strands.
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Figure 17: The stylized results derived by integrating our random projection module into StyleID, where the com-
pression rate r is decreased from 1 to 0.2 and the number ng of subgroups is increased from 1 to 256. Compared
to StyleID, our method StyleID+RP outperforms notably in transferring weak style features (e.g., the lady’s red lip),
when the compression rate r is sufficiently large.
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A.8 Sparsity of latent features

In this part, we investigate the sparsity of latent features generated by the encoders of the studied style transfer ap-
proaches. These features indeed tend to follow sparse distributions for most images, for two main reasons. First, most
images contain relatively large smooth regions, which facilitate the generation of sparse feature distributions. Second,
notably, these encoders do not reduce the input image dimensions to a considerably lower level. Specifically, unlike
conventional encoders designed for dimensionality reduction, the encoders in AdaIN, AdaAttN and EFDM increase
the feature dimension from the channel size of [3, 512, 512] to [512, 64, 64] (>2,000,000), whereas StyleID reduces
the feature dimension from the channel size of [3, 512, 512] to [4, 64, 64] (>10,000). These feature dimensions are
substantially larger than the conventional encoder features generated in typical VAE and GAN, which usually have di-
mensions on the order of hundreds. Such high dimensionality inevitably leads to feature redundancy, thereby resulting
in sparse structures.

To quantify the sparsity of these encoder features, as illustrated in Figure 18, we further investigate their kurtosis, a
canonical statistical metric for quantifying the sparsity of random variables. Kurtosis is defined as E(xi−µ

σ )4, where
xi denotes the i-th elements of a vector x, and µ and σ are their mean and standard deviation. A larger kurtosis value
indicates a sparser distribution. If the kurtosis value of a variable is larger than that (equal to 3) of Gaussian variables,
the variable can be roughly regarded as following a sparse (or called heavy-tailed) distribution. From Figure 18, it is
seen that the kurtosis of AdaIN features is higher than that of StyleID features, which can be attributed to their higher
feature dimensions. For most images, the kurtosis values of both feature types are notably higher than the Gaussian
baseline (i.e., 3), verifying that they exhibit sparse distributions.

Figure 18: The kurtosis values of the AdaIN and StyleID features extracted from the content and style images studied
in the paper. For most images, these values are markedly higher than the Gaussian baseline (i.e., 3), verifying that they
exhibit sparse feature distributions.
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