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Abstract001

Despite the remarkable success of Transformer-002
based self-attention in many domains, its ef-003
fectiveness often diminishes in highly com-004
plex multimodal scenarios, where varying to-005
ken granularities and long, noisy inputs can006
overwhelm the model. In this paper, we intro-007
duce Soft Token Attention Masking Process008
(STAMP), a novel soft-masking mechanism009
designed to prioritize the most relevant tokens010
across visual, audio, and textual streams. By re-011
fining attention maps globally, STAMP adapts012
each token’s contribution based on its contex-013
tual importance, preserving critical temporal014
and intermodal cues without discarding valu-015
able information. We integrate STAMP into016
a multi-layer Transformer pipeline and thor-017
oughly evaluate it on challenging video under-018
standing datasets such as MADv2 and QVHigh-019
lights. Experimental results show that STAMP020
not only delivers significant performance gains021
but also offers a robust solution for complex022
multimodal tasks.023

1 Introduction024

In recent years, there has been a surge of interest025

in multimodal tasks that combine language with026

other data sources, such as Audio Descriptions027

in text (Soldan et al., 2022; Han et al., 2023c,b)028

and video grounding (Moon et al., 2023; Lei029

et al., 2021; Barrios et al., 2023). Each modality—030

ranging from visual frames, audio signals, and031

textual transcripts—provides complementary cues032

about the same event or scene. However, this rich-033

ness also introduces complexity, as models must034

identify and prioritize the most relevant portions035

of each modality to effectively carry out tasks like036

retrieval or description.037

Consider a movie scene composed of hundreds038

of video frames, aligned audio segments, and par-039

tial textual annotations (e.g., dialogue). Although040

these tokens align in time, each token may also041

align conceptually with multiple tokens across dif- 042

ferent modalities, as depicted in Figure 1(a). For 043

example, “Joanna’s shouts” might not map to a 044

single frame or audio clip but rather a sub-sequence 045

of frames and sound segments. While self-attention 046

mechanisms in Transformers provide a powerful 047

way to learn pairwise relationships among tokens, 048

they can become overwhelmed by redundant data. 049

This is especially apparent in highly dynamic or 050

lengthy inputs, where attention maps risk overem- 051

phasizing repeated content. 052

On the one hand, using long token sequences can 053

capture detailed temporal and contextual cues. Con- 054

versely, such sequences often introduce excessive 055

redundancy. For instance, consecutive frames may 056

not yield additional insights for an audio descrip- 057

tion task, yet their mere presence forces the model 058

to allocate attention to irrelevant tokens. Con- 059

versely, overly sparse representations (Lin et al., 060

2022) may jeopardize essential temporal context, 061

making it difficult to grasp the nuances of dynamic 062

content such as movies, vlogs, or news broadcasts. 063

This effect is illustrated in Figure 1(c), which shows 064

that increasing sparsity in the multimodal encod- 065

ing stage leads to a decline in performance for the 066

Audio Description Task. 067

While research in NLP has demonstrated dy- 068

namic masking and other adaptive approaches (Fan 069

et al., 2021; Tang et al., 2021; Lin and Joe, 2023; 070

Rende et al., 2024), these methods remain under- 071

explored in multimodal encoding stages. This 072

motivates a mechanism that can selectively filter 073

tokens from multiple modalities without losing cru- 074

cial information. 075

In this work, we propose a novel Soft Token 076

Attention Masking Process (STAMP) , which dy- 077

namically computes a weight matrix to refine atten- 078

tion maps. STAMP acts as a soft filtering operation: 079

rather than entirely discarding tokens, it adjusts 080

their relative contribution based on contextual rele- 081

vance. Here, ‘context’ spans temporal coherence, 082
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Figure 1: (a) While video and audio tokens naturally
align in time, their associations can extend beyond
temporal boundaries. For example, “Joanna’s shouts”
may correspond to multiple video tokens (i.e. not just
v8-11, but also v13-16). (b) The Self-Attention mod-
ule (Vaswani et al., 2017) can capture these attention
scores locally, token-versus-token. We introduce the
Soft Token Attention Masking Process (STAMP), a
novel concept that enables a holistic overview of the
entire sequence of input tokens, generating a mask that
captures attention structures globally. (c) When increas-
ing the sparsity in the multimodal encoding stage, the
performance for Audio Description Task decreases.

intermodal links, and evolving scene dynamics. By083

inspecting the entire multimodal sequence, STAMP084

zeroes in on the tokens that matter most for tasks085

like multimodal retrieval or audio-visual caption-086

ing. Moreover, STAMP seamlessly integrates with087

standard Transformer Encoders, offering a flexible088

and generalizable approach for multimodal learn-089

ing. Moreover, STAMP seamlessly integrates with090

standard Transformer Encoders, offering a flexible,091

plug-and-play solution that can be easily assem-092

bled into any state-of-the-art Transformer architec-093

ture for multimodal learning.094

In summary, our key contributions are three-095

fold:096

1. We propose a novel soft-token masking mech-097

anism, STAMP, that adaptively emphasizes098

important tokens within multimodal inputs.099

2. We demonstrate how STAMP enhances fea-100

ture representations for tasks such as audio101

description and video grounding, leading to102

improved downstream performance. 103

3. We provide comprehensive experiments and 104

analyses demonstrating that STAMP inte- 105

grates smoothly into various Transformer 106

architectures, supporting different attention 107

mechanisms such as self-attention, cross- 108

attention, and FlashAttention v2 (Dao, 2023). 109

Its adaptability ensures efficient handling of 110

large-scale multimodal data across diverse 111

Transformer models. 112

2 Related Work 113

2.1 Multimodal Transformers 114

A predominant area of prior exploration in 115

aligning multiple modalities centers around con- 116

trastive learning, a method extensively utilized in 117

both image-text and video-audio alignment con- 118

texts (Chen et al., 2020; Khosla et al., 2020; Rad- 119

ford et al., 2021; He et al., 2019; Han et al., 2023a; 120

Zhang et al., 2023a). Recent investigations have 121

also delved into merging diverse modalities within 122

a unified feature space through the incorporation 123

of cross-attention layers (Chen et al., 2021; Lee 124

et al., 2021; Wei et al., 2020; Moon et al., 2023). 125

Furthermore, there is a growing trend of leverag- 126

ing Transformer capabilities for multimodal fusion 127

tasks (Luo et al., 2021; Kamath et al., 2021; Han 128

et al., 2023a; Barrios et al., 2023; Lei et al., 2021). 129

Our decision to employ a multimodal transformer 130

in our design is rooted in its unparalleled capabil- 131

ity to integrate information across diverse modal- 132

ities, thus fostering a more comprehensive under- 133

standing of the input data. Through the utilization 134

of this unified architecture, we are enabled to ef- 135

fectively capture intricate interactions within the 136

sequence, strategically prioritizing relevant cues 137

based on their significance. In contrast to con- 138

ventional methodologies that treat modalities in 139

isolation, the multimodal transformer facilitates 140

the seamless integration of contextual information, 141

thereby yielding more coherent and nuanced repre- 142

sentations. 143

2.2 Language Models for Video Description 144

To adapt a Large Language Model (LLM) for AD 145

generation, we incorporate an adapter module. This 146

module processes audiovisual features and trans- 147

forms them into the feature space of our LLM. The 148

concept of training an adapter module rather than 149

finetuning the entire LLM to account for a new 150

modality has been widely explored (Yi-Lin Sung, 151
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2022; Hu et al., 2023), but the method most similar152

to ours is LLaMA-Adapter (Zhang et al., 2023b;153

Gao et al., 2023). LLaMA adapter, however, does154

not account for audio data. Our method follows that155

of LLaMA-Adapter closely, but changes the input156

feature space to include both audio and video fea-157

tures. The previous State-of-the-Art in our specific158

task (generating audio descriptions of movie clips)159

on the MAD dataset are the AutoAD models (Han160

et al., 2023c,b). We are able to generate compara-161

ble results with significantly less fine tuning and162

contextual information. Recent models have also163

achieved significant results in finding important164

moments in longer videos, but these contributions165

are not particularly relevant to ours because we166

focus on describing shorter video segments (Lei167

et al., 2021; Barrios et al., 2023). Another re-168

cent result similar to ours is the Video-LLaMA169

model, which focuses on general purpose visual170

question answering but uses a Q-Former instead of171

an adapter module to fuse the visual, audio, and172

text modalities (Zhang et al., 2023a).173

2.3 Masking Attention174

In the field of Natural Language Processing, re-175

searchers have explored various methods of con-176

structing attention masks, while also investigating177

their impact on transformer architectures (Fan et al.,178

2021; Tang et al., 2021; Lin and Joe, 2023; Rende179

et al., 2024). Conversely, this exploration has re-180

ceived limited attention in Computer Vision (Li181

et al., 2021; Lin et al., 2022). Motivated by this182

disparity, our objective is to investigate this phe-183

nomenon, particularly in the context of multimodal184

data, and its implications for task performance. Un-185

like the approach proposed by SwinBert (Lin et al.,186

2022), which advocates for a sparse and learnable187

mask, our focus aligns more closely with the princi-188

ples of Mask Attention Networks (Fan et al., 2021).189

Instead of relying on a static mask matrix, which190

may restrict the model’s ability to capture local rela-191

tionships effectively, we propose employing a Soft192

Token Attention Masking Process (STAMP). This193

adaptive mechanism aims to prioritize and regulate194

attention tokens within long sequences based on195

their contextual significance in a dynamic manner.196

3 Soft Token Attention Masking Process197

(STAMP)198

Our goal is to train a soft token masking mech-199

anism with context awareness, enabling it to dy-200

namically prioritize and adjust token importance 201

based on their relevance within a complex sequence. 202

The term “context" here encompasses multiple di- 203

mensions: temporal relationships, intermodal as- 204

sociations and dynamic changes throughout the 205

input sequence. This adaptable mechanism can 206

also be seamlessly incorporated into any of the ex- 207

isting Transformer Encoders. Figure 2 shows the 208

overview of the STAMP architecture. 209
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Figure 2: Overview of the Soft Token Attention Mask-
ing Process (STAMP). The STAMP module processes
the entire input sequence to generate a mask. This mask
is applied element-wise (e.g., via addition or multiplica-
tion, as detailed in Section 3.3) to modify the attention
scores produced by the Transformer Encoders.

3.1 Definition 210

We aim to generate an attention mask that adeptly 211

prioritizes and regulates tokens according to their 212

importance within a sequence. For this purpose, 213

we develop a learnable module (denoted as F), 214

which receives a sequence of tokens X as input 215

and returns a mask M, as shown in Equation 1. 216

The shape of the mask M depends on the sequence 217

length and the purpose of the multi-head attention, 218

whether it is self-attention or cross-attention. 219

F (X) → M (1) 220

Attention. In the context of self-attention, the 221

resulting mask output can be represented as 222

(B,N,N), where B is the batch size and N is 223

the number of tokens. For instance, consider a 224

multimodal sequence with 128 tokens and a batch 225

size of 1. In this case, the output of our STAMP 226

would have the dimensions (1, 128, 128). In the 227

cross-attention setup, the mask shape is given by 228

(B,Nq, Nk), where Nq represents the length of 229

the Query tensor and Nk represents the length of 230

the Key tensor. For example, if we perform cross- 231

attention with 75 visual features as the query, 32 232

text features as the key, and a batch size of 1, the 233

output of STAMP will be (1, 75, 32). To ensure 234
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clarity for the reader, all content in the Section 3235

refers to the self-attention scenario unless other-236

wise specified.237

Scalability. The mask can be applied either glob-238

ally across all transformer layers in the stack (Sec-239

tion 3.2) or individually for each layer (Section 3.4).240

This flexibility allows for different masks to be241

used at various depths, meaning that each layer can242

have its own set of learnable parameters, capturing243

hierarchical information at different levels.244

3.2 Soft Token Attention Masking Process245

(STAMP) Module246

The Soft Token Attention Masking Process247

(STAMP) module processes an input sequence248

through a stack of linear layers with ReLU acti-249

vations. Let X ∈ RB×N×D denote the input to250

the STAMP module, where B is the batch size,251

N is the number of tokens, and D is the embed-252

ding dimension. The module consists of L layers,253

where each layer i ∈ 1, 2, . . . , L is defined by a254

weight matrix Wi ∈ RDini×Douti and a bias vec-255

tor bi ∈ RDouti . The forward pass of the STAMP256

module can be described as follows:257

H1 = ReLU(XW1 + b1) (2)258

Hi = ReLU(Hi−1Wi + bi),

∀i ∈ {2, 3, . . . , L− 1}
(3)259

260
M = HL−1WL + bL (4)261

Where ReLU(·) represents the rectified linear262

unit activation function, Hi ∈ RB×N×Douti is the263

output of the i-th layer, and M ∈ RB×N×N is264

the generated mask. Note that the input X and265

all intermediate outputs Hi maintain the batch and266

number of tokens (B,N). For optimal implemen-267

tation, STAMP’s dimensionality should align with268

the Transformer Layer. In this single setup, the269

soft masking is computed once at the initial stage270

and subsequently propagated across all transformer271

layers.272

3.3 Integration with Transformer Layers273

We implement a soft token masking mechanism274

with context awareness for any type of Transformer275

Layer (Vaswani et al., 2017). For each Transformer276

Layer, with input X, and learnable mask Mi, the277

attention mechanism is expressed as:278

Attention = softmax
(
QK⊤
√
dk

⋄M
)

(5)279

Here, Q and K are query and key projections 280

of X , dk is the key dimension, and ⋄ represents 281

the fusion operation. This fusion can be imple- 282

mented in two ways: addition (A ⋄ B = A + B) 283

or element-wise multiplication (A ⋄B = A⊙B). 284

The element-wise multiplication, denoted by ⊙, ap- 285

plies the operation to corresponding elements of 286

the matrices. We tested both methods in our Ab- 287

lation Studies (Section A.4.1). By default, we use 288

element-wise multiplication in Section 4. When 289

a different operation is employed, we specify it 290

explicitly. 291

3.4 Multi-Layer Soft Token Attention 292

Masking Fusion (Multi-Layer STAMP) 293

We extend STAMP approach to a stack of L Trans- 294

former layers, with each layer l having its own 295

unique learnable mask, denoted as Ml. The atten- 296

tion mechanism at each layer is computed accord- 297

ing to Equation 5. The masks Ml are learned in- 298

dependently for each layer, allowing each STAMP 299

to adapt its masking operation based on the layer’s 300

representation. As the output of one layer serves 301

as the input to the next, this allows for hierarchical 302

representation learning across the stack. 303

4 Experiments 304

4.1 Datasets 305

Generating AD. MADv2 (Soldan et al., 2022; Han 306

et al., 2023c) is a vast dataset for video-language 307

grounding, with over 264K queries in 488 movies 308

totaling 892 hours. It includes MADv2-eval, with 309

10 movies for evaluation. 310

Moment Retrieval and Highlights Detection. 311

QVHighlights (Lei et al., 2021) is the latest dataset 312

for moment retrieval and highlight detection, fea- 313

turing annotations for both tasks in over 10,000 314

YouTube videos. 315

4.2 Metrics 316

Generating AD. Conventional metrics like Rouge- 317

L (R-L)(Lin, 2004), CIDEr (C)(Vedantam et al., 318

2014), and Retrieval-based metric (R@k/N) (Han 319

et al., 2023b) are employed to compare generated 320

Audio Descriptions (AD) with ground-truth AD. 321

These metrics are robust to low-level variations in 322

testing data, with higher values indicating superior 323

text generation. 324

Moment Retrieval and Highlights Detection. 325

For video grounding tasks, evaluation metrics in- 326

clude Recall@K and mAP@K for IoU=θ (R@K- 327

4



Model R-L C R@5/16

LlaMA Adapter
(Gao et al., 2023)

10.0(±0.65) 9.0(±0.35) 42.86(±0.55)

Ours 13.54(±0.5) 18.56(±0.2) 56.15(±0.30)

Gain(∆) 3.54 9.56 13.29

(a) AD Task on MADv2-named (Soldan et al., 2022; Han et al., 2023c)

Model R1@IoU0.7 mAP

QD-DETR (Moon
et al., 2023)

44.98(±0.8) 39.86(±0.6)

Ours 46.94(±0.6) 42.32(±0.7)

Gain(∆) 1.96 2.46

(b) Moment Retrieval Task in QVHighlights (Lei et al., 2021)

Model mAP HIT@1

QD-DETR (Moon
et al., 2023)

38.94(±0.4) 62.40(±1.4)

Ours 39.70(±1.0) 63.33(±0.8)

Gain(∆) 0.76 0.93

(c) Highlights Detection at VeryGood confidence in QVHigh-
lights (Lei et al., 2021)

Table 1: Comprehensive Performance Comparison across Tasks and Datasets. This table reports the evaluation
of our Multi-Layer STAMP-enhanced approach against established baselines across three tasks. On the AD task
(MADv2-named dataset), our method significantly outperforms the LlaMA Adapter, achieving gains of 3.54 in R-L,
9.56 in C, and 13.29 in R@5/16. In the Moment Retrieval task on QVHighlights, our model surpasses QD-DETR
with improvements of 1.96 in R1@IoU0.7 and 2.46 in mAP, while for Highlights Detection, it shows gains of 0.76
in mAP and 0.93 in HIT@1. These results underscore the robustness and effectiveness of our approach across
diverse evaluation metrics and scenarios.

IoU=θ), assessing both ranking and temporal over-328

lap. Models are evaluated at K = 1 with IoU329

thresholds of 0.5 and 0.7. Average mAP across330

IoU thresholds from 0.5 to 0.95 with 0.05 incre-331

ments is calculated. Highlight detection primarily332

employs mAP, while HIT@1 measures the hit ratio333

for the highest scored clip.334

4.3 Baselines335

The proposed STAMP module can be incorpo-336

rated into any of the existing Transformer Encoders.337

We integrated our contribution into two baseline338

models: LlaMA AdapterV2 (Gao et al., 2023)339

with a transformer-based audiovisual encoder, QD-340

DETR (Moon et al., 2023).341

4.4 Results342

Table 1 highlights that integrating Multi-Layer343

STAMP into existing models consistently improves344

performance across various tasks. In the AD345

Task on the MADv2-named dataset, our method346

achieves substantial gains over the LlaMA Adapter347

in Table 1a, with improvements of 3.54 in R-L,348

9.56 in C, and 13.29 in R@5/16, indicating a ro-349

bust enhancement in anomaly detection capabili-350

ties. Similarly, on the Moment Retrieval Task in351

QVHighlights (Table 1b), our model outperforms352

QD-DETR by 1.96 and 2.46 points in R1@IoU0.7353

and mAP, respectively, and in the Highlights Detec-354

tion task (Table 1c), it shows modest yet consistent 355

gains of 0.76 in mAP and 0.93 in HIT@1. 356

Takeaway: Our method effectively harnesses mul- 357

timodal sequences, showing significant gains in 358

multimodal settings and highlighting its potential 359

to advance multimodal learning. These findings in- 360

dicate promising directions for further optimization 361

and research across a range of task domains. 362

4.5 Ablation Studies 363

This section presents ablation studies evaluating the 364

effectiveness of our STAMP module across mul- 365

tiple dimensions, including its impact on model 366

performance, computational efficiency, and scal- 367

ability. We explore the influence of the attention 368

mask, compare STAMP with parameter scaling, 369

and assess computational trade-offs. Additionally, 370

we examine its applicability to unimodal sequences, 371

investigate the role of Flash Attention (Dao, 2023) 372

and dataset scaling, and identify potential limita- 373

tions. Our analysis highlights that STAMP pro- 374

vides performance gains with minimal computa- 375

tional overhead. 376

Impact of Attention Mask Architectures. We 377

conducted a comprehensive analysis of the per- 378

formance impact of various attention mask archi- 379

tectures, focusing on our novel STAMP module. 380

Evaluations were conducted on a specific subset 381
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Mask R-L C

Full Attention 12.92 15.46
Sparse Learnable Mask* 10.02 9.72

STAMP 13.10 16.58
Multi-Layer STAMP 14.28 17.11

Table 2: Attention Mask Influence. We evaluate the perfor-
mance of the Audio Description generation task using a subset
of 1,010 instances from the MADv2 dataset (see Appendix A).
Our results demonstrate that integrating the STAMP module
enhances performance. Notably, the improvement is more
pronounced in a multi-layer setup, where each transformer
attention layer employs its own STAMP rather than relying
on a global one, as seen in row 3. The ‘*’ denotes the use of a
learnable sparse mask design, following Lin et al. (2022). All
experiments were conducted with identical hyperparameters
and trained for 10 epochs.

of the MADv2 dataset1, with performance quan-382

tified using the Rouge-L and CIDEr metrics. As383

in Table 2, our investigation encompassed four dis-384

tinct configurations: (i) full attention as a base-385

line, (ii) the learnable sparse mask from SwinBert,386

(iii) our proposed STAMP, and (iv) an extended387

Multi-Layer STAMP. Results demonstrate that the388

introduction of STAMP yields a substantial perfor-389

mance improvement over the full attention base-390

line, with CIDEr scores increasing from 15.46 to391

16.58. Notably, the Multi-Layer STAMP archi-392

tecture achieved superior performance, reaching a393

CIDEr score of 17.11. In contrast, SwinBERT’s394

sparse learnable mask exhibited a marked decrease395

in performance, with CIDEr dropping from 15.46396

to 9.72. We attribute this decline to the mask’s397

inability to effectively capture the dynamic nature398

of MAD-v2 sequences, which are characterized399

by frequent shot changes, transitions, and complex400

audio-visual interactions. Our STAMP architecture401

shows improved performance in handling these402

multimodal sequences, indicating its effectiveness403

for the MAD-v2 video captioning task.404

Parameters vs. STAMP Influence. To determine405

whether the performance gains of our STAMP mod-406

ule come from its unique design rather than sim-407

ply having more parameters, we compared various408

baseline models by matching STAMP’s parame-409

ter count. As shown in Table 3 (Row 2), simply410

increasing the number of parameters by adding ad-411

ditional linear layers at the end of each transformer412

stage unexpectedly led to a performance drop, re-413

ducing the CIDEr score from 15.46 to 12.87. This414

suggests that the additional parameters led to over-415

fitting rather than improved learning. Next, we416

1See Appendix A.3.3

Experiment R-L C Param.

Baseline 12.92 15.46 6.93 B
Base. + Linear Layers 11.23 12.87 7.07 B
Base. + Transf. Layers 13.80 16.22 7.20 B
Multi-Layer STAMP 14.28 17.11 7.07 B

Table 3: Parameter Count vs. STAMP Module Influence.
This table examines the impact of various architectural modifi-
cations on performance on the AD generation task, emphasiz-
ing models with comparable parameter counts. Our findings
reveal that merely increasing the number of parameters by
stacking linear layers (Row 2) does not necessarily enhance
performance. A similar trend is observed when adding trans-
former layers (Row 3), indicating that parameter growth alone
is not a sufficient factor for improvement. Notably, the Multi-
Layer STAMP achieves the highest scores despite having
fewer parameters than some configurations, underscoring its
efficiency and effectiveness.

enhanced the audiovisual encoder in the baseline 417

by adding more Transformer encoder layers (Row 418

3), increasing the total parameter count to about 419

7.2 billion—comparable to Multi-STAMP’s 7.07 420

billion and slightly above the baseline’s 6.93 bil- 421

lion. Although this upgraded baseline achieved 422

higher scores than the original (Rouge-L: 13.80, 423

CIDEr: 16.22), it still fell short of the Multi-Layer 424

STAMP model’s performance. These findings con- 425

firm that STAMP’s advantage lies in its targeted 426

token attention refinements, not just in having more 427

parameters. 428

Computational Overhead. To address concerns 429

about the additional computational complexity in- 430

troduced by our module, we performed a detailed 431

analysis of model efficiency. Building on our pre- 432

vious experiments (Table 3), we evaluated each 433

model’s computational overhead by measuring 434

floating-point operations (FLOPs) and multiply- 435

accumulate operations (MACs). Table 4 summa- 436

rizes these metrics along with parameter counts and 437

latency measurements for the baseline, baseline + 438

linear layers, baseline + Transformer layers, and 439

our proposed Multi-Layer STAMP models. Our 440

analysis shows that the Multi-Layer STAMP archi- 441

tecture achieves a strong balance between perfor- 442

mance and computational cost. Although it incurs a 443

modest increase in FLOPs, MACs, and parameters 444

compared to the baseline, it outperforms the base- 445

line + liner layers experiment by achieving lower 446

FLOPs and MACs, which translates to an interme- 447

diate latency profile. This result demonstrates that 448

STAMP optimizes resource utilization efficiently 449

while maintaining a balanced trade-off with speed. 450

In contrast, incorporating additional Transformer 451
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Model Flops(↓) MACs(↓) Latency(↓)

Baseline 3.39T 1.69T 87.57
Base. + Linear Layers 3.45T 1.80T 89.12
Base. + Transf. Layers 3.58T 1.95T 94.33
Multi-Layer STAMP 3.43T 1.71T 88.60

Table 4: Computational metrics for AD Generation
in MADv2 (Soldan et al., 2022; Han et al., 2023c) The
table presents a comparison of models based on com-
putational cost (FLOPs and MACs) and latency (mil-
liseconds). The baseline model demonstrates moderate
performance, whereas the Baseline + Linear Layers and
Baseline + Transformer Layers experiment faces chal-
lenges due to increased resource consumption.

layers inherently increases computational complex-452

ity, primarily due to the attention mechanisms. This453

is evident in the rise in MACs from 1.69T to 1.95T,454

accompanied by a similar increase in latency and455

FLOPs.456

Model Acc-Top1(↑) Acc-Top5(↑)

*ViT Base (He et al., 2021) 82.71 96.32
Ours 83.45 96.59

Gain(∆) 0.74 0.27

Table 5: Image Classification on ImageNet 1K (Deng
et al., 2009). Performance comparison between ViT
Base and our model, where higher values (↑) indicate
better performance. “Ours” refers to ViT Base enhanced
with the Multi-Layer STAMP module. The asterisk
(*) denotes that we retrained using the codebase and
observed a slight decrease in performance compared to
the numbers reported in (He et al., 2021).

Single Modality. Although not the primary fo-457

cus of this study, we conducted a supplementary458

exploration to assess the applicability of STAMP459

to unimodal sequences or a single modality, aim-460

ing to better understand its limitations. To this461

end, we evaluated two large datasets: ImageNet462

1K (Deng et al., 2009) and MSRVTT (Xu et al.,463

2016). For ImageNet, we measured performance464

using top-1 accuracy, while for MSRVTT, we em-465

ployed BLEU4 (B4) (Papineni et al., 2002), CIDEr466

(C), SPICE (S) (Anderson et al., 2016), METEOR467

(M) (Lavie and Agarwal, 2007), and Rouge-L (R-468

L) (Lin, 2004). The results, presented in Tables 5469

and 6, show only marginal improvements. Specif-470

ically, the C and S metrics increased by 0.28 and471

0.39, respectively, while Table 5 reports a modest472

gain of 0.74 in Acc-Top1. These findings indi-473

cate that STAMP is not particularly effective for474

single-modality encoders. The complexity inherent475

in multimodal data provides a richer context for476

STAMP to learn which tokens to prioritize. The 477

increased diversity and variability across modali- 478

ties (See Table 8) allow STAMP to refine its mask- 479

ing more effectively than in unimodal sequences, 480

where such diversity is limited and the standard 481

self-attention mechanism may already suffice. 482

Smooth Integration. To demonstate that our pro- 483

posed module can be seamlessly integrated into 484

various Transformer architectures, we conducted 485

an experiment. In Table 7, we show the compari- 486

son between Multi-layer STAMP with and without 487

Flash Attention V2 (Dao, 2023). The compari- 488

son reveals that while the RL (Rouge-L) and C 489

(CIDEr) scores remain largely consistent, indicat- 490

ing minimal impact on output quality, substantial 491

improvements are observed in computational effi- 492

ciency. Specifically, FLOPs and MACs are sig- 493

nificantly reduced from 3.43 TFLOPs to 2.272 494

TFLOPs and from 1.71 TMACs to 1.13 TMACs, 495

respectively. Furthermore, latency is notably de- 496

creased from 88.60 ms to 64.30 ms, underscor- 497

ing the enhanced processing speed. These results 498

demonstrate that integrating Flash Attention V2 499

effectively optimizes computational performance 500

while maintaining overall model effectiveness. 501

Dataset Scaling. Increasing the number of pa- 502

rameters significantly affects data scaling across 503

modalities. Table 8 (extending Table 1) details per- 504

formance gains on visual, text, and audio datasets 505

of various sizes. We report each metric’s maxi- 506

mum gain to emphasize major improvements and 507

avoid averaging distortions. The results reveal 508

a strong correlation between dataset complexity 509

and STAMP’s effectiveness. Notably, the large- 510

scale multimodal MADv2 dataset (2.44 TB approx. 511

from 488 films at 5GB approx. each) achieves the 512

highest gains (13.29), especially with a multi-layer 513

STAMP configuration. In contrast, smaller datasets 514

like MSRVTT (6.3 GB) show modest gains (0.39), 515

while medium-sized unimodal datasets such as 516

ImageNet-1k (164 GB) see intermediate improve- 517

ments (0.74). These findings underscore STAMP’s 518

capacity for handling complex, high-dimensional 519

data and adapting to intricate cross-modal rela- 520

tionships, ultimately justifying its computational 521

cost where traditional fine-tuning methods may fall 522

short. 523

More Ablation Studies. Appendix A.4 examines 524

the impact of depth on STAMP’s performance, Ap- 525

pendix A.4.1 compares two element-wise opera- 526

tions for masking fusion, and Appendix A.4.2 an- 527

alyzes how STAMP alters attention weight distri- 528
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Model B4(↑) R-L(↑) M(↑) C(↑) S(↑)

SwinBERT (Lin et al., 2022) 42.82 62.06 30.39 51.96 7.64
Ours 42.03 62.05 30.60 52.24 8.03

Gain(∆) −0.79 −0.01 0.21 0.28 0.39

Table 6: Video Captioning Task on MSRVTT (Xu et al., 2016). Evaluation of different models on the MSRVTT
dataset. Higher values (↑) indicate better performance. “Ours” denotes the SwinBERT model with the Multi-Layer
STAMP.

Attn R-L(↑) C(↑) F(↓) M(↓) P(↓) L(↓)

w/o FlashV2 14.28 17.11 3.43T 1.71T 7.07B 88.6
with FlashV2 14.19 17.23 2.27T 1.13T 7.07B 64.3

Table 7: Computational and Performance Metrics for Multi-layer STAMP with and without Flash Attention
V2. This table compares standard Multi-layer STAMP to its Flash Attention V2 variant (Dao, 2023). While Rouge-L
(R-L) and CIDEr (C) scores remain stable, computational efficiency improves significantly, reducing FLOPs, MACs,
and latency from 88.60 ms to 64.30 ms. Lower values (↓) indicate better efficiency, while higher values (↑) reflect
improved performance. (L) = Latency (ms), (C) = CIDEr, (R-L) = Rouge-L, (F) = FLOPs, (M) = MACs.

Dataset Size Modality Max. Gain

MSRVTT 6.3 GB V + T 0.39
Imagenet 1k 164 GB V 0.74
QVHighlights ∼ 180 GB V + T 2.46
MADv2 ∼ 2.4 TB V + A + T 13.29

Table 8: Maximum Performance Gain by Dataset Size
and Modality. This table, adapted from Table 1, presents the
maximum performance gains for each dataset, organized by
size and modality (V: Vision, T: Text, A: Audio). The results
show that larger datasets with multiple modalities, such as
MADv2, typically achieve higher performance gains. Con-
versely, the smaller MSRVTT dataset demonstrates the lowest
performance gain. The goal is to highlight the largest perfor-
mance gaps, as averaging metrics can be misleading due to
scale differences that may distort true disparities.

bution. We encourage the reader to explore these529

experiments for deeper insights.530

Qualitative Analysis. We performed two qualita-531

tive analyses on the challenging Audio Description532

Task. The first two analyses focused on scenarios in533

which the video and audio streams are temporally534

aligned, examining how STAMP prioritizes spe-535

cific tokens. A third analysis investigated instances536

where the streams are temporally misaligned. For537

further details, please refer to Appendix A.4.3.538

5 Limitations539

While STAMP excels in multimodal tasks, its effec-540

tiveness in unimodal settings is limited due to the541

lack of diverse cross-modal interactions that drive542

its adaptive token prioritization. In single-modality543

scenarios, self-attention already captures essential544

relationships, leaving less room for improvement545

through STAMP’s masking mechanism. Addition-546

ally, the method introduces computational over- 547

head, which, although optimized, may still pose 548

challenges for real-time applications and resource- 549

limited environments. Furthermore, STAMP relies 550

on large-scale pre-trained models such as LLaMA 551

7B and CLIP, potentially inheriting biases and lim- 552

iting its adaptability to smaller, task-specific mod- 553

els. Lastly, while it effectively refines attention, its 554

interpretability remains an open area of research, 555

requiring deeper analysis of how it selects and pri- 556

oritizes tokens. 557

6 Conclusions 558

In this work, we introduced STAMP, a soft- 559

masking mechanism designed to enhance multi- 560

modal learning by refining attention maps and dy- 561

namically prioritizing tokens. Our experiments 562

on MADv2 and QVHighlights demonstrate that 563

STAMP significantly improves performance in 564

tasks such as audio description, video ground- 565

ing, and highlight detection while maintaining low 566

computational overhead. Ablation studies confirm 567

that these improvements stem from adaptive token 568

weighting without an increase in model parame- 569

ters. Looking forward, future research should fo- 570

cus on further refining token weighting strategies 571

and integrating STAMP with complementary at- 572

tention methods to boost efficiency in real-time 573

and resource-constrained settings. Additionally, 574

advancing the interpretability of STAMP through 575

visualization and explainability techniques could 576

broaden its applicability across diverse, domain- 577

specific models. 578
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A Appendix798

A.1 Multimodal Encoder Tasks799

We evaluated the effectiveness of the Soft Token800

Attention Masking Process(STAMP) across three801

significant multimodal tasks: Audio Description802

(AD) Generation, Moment Retrieval, and High-803

lights Detection. In this section, we first outline the804

definitions of these tasks (Sections A.1.1 and A.1.2)805

and show the implementation details of our pro-806

posed STAMP module to each task (Sections A.1.3807

and A.1.4).808

A.1.1 Audio Description Generation809

Our task involves adapting a Large Language810

Model (LLM) to generate Audio Descriptions (AD)811

in text for a long-form movie L segmented into812

short clips {c1, c2, . . . , cN}. Each clip encom-813

passes S samples in the visual stream (represented814

as V ) and S samples in the audio stream (denoted815

as A)2. Specifically, our goal is to create a text ti816

that describes the audiovisual content presented in817

each clip ci, aiming to assist individuals who are818

blind in following the movie’s narrative.819

Audiovisual Model AV . We aim to train an audio-820

visual model that comprehends the relationships821

between sequential video and audio streams. Con-822

sequently, AV processes video (V ) and audio (A)823

observations sampled at ci clip and produces an824

audiovisual feature representations Eva.825

AV (V,A) → Eva (6)826

827

Large Language Model H. Given an input se-828

quence X = {x1, x2, . . . , xn}, the model H esti-829

mates the probability distribution of the next word830

xn+1 based on the context using the chain rule of831

probability:832

P (xn+1|X) = P (xn+1|x1, x2, ..., xn) (7)833

The model is trained by maximizing the likelihood834

of generating the correct sequence according to the835

training data. During inference, it predicts the most836

likely next word given the context. The model’s837

weights θ are optimized through back-propagation838

and gradient descent to improve its language under-839

standing and generation capabilities.840

Adapter Module P . Let’s assume a pre-trained841

model with parameters represented by θ. The842

2Raw sound from movies, excluding descriptions

adapter layer introduces additional parameters for 843

audiovisual understanding task, and these parame- 844

ters can be denoted as ϕ. The output of the adapter 845

layers can be represented as P (x′, ϕ), where x′ is 846

the projected audiovisual features into the language 847

space. So, the overall output of the model with the 848

adapter layer can be written as: 849

F(H(x, θ),P(x′, ϕ)) → ti (8) 850

Where F is a function that combines the pre- 851

trained Language Model H and the adapter P to 852

produce an AD in text ti. 853

A.1.2 Moment Retrieval and Highlights 854

detection 855

The visual-language grounding model, denoted as 856

G, is tasked with processing an untrimmed video, 857

V , sampled from a temporal window W , along 858

with a natural language query Q. It then produces 859

predictions for J temporal moments, defined as: 860

G (V,Q) → (τs, τe, s, sl)
J
1 . (9) 861

In Equation 9, the grounding models yield a se- 862

ries of moments ranked by their confidence scores. 863

Here, (τs, τe) represents the duration span of the 864

moment, while s indicates its confidence score. 865

Now, let’s define the inputs for our attention mod- 866

ules. Given a video comprising L clips and a text 867

query containing N words, their representations 868

extracted by frozen video and text encoders are de- 869

noted as v1, v2, . . . , vL and t1, t2, . . . , tN , respec- 870

tively. Additionally, the grounding model provides 871

saliency scores sl for each moment for the highlight 872

detection task. 873

A.1.3 Implementation Details for AD 874

Generation 875

Feature Extraction. The extraction of visual fea- 876

tures follows the CLIP-based methodology out- 877

lined in (Soldan et al., 2022). To be more spe- 878

cific, visual features are extracted at a rate of 5 879

frames per second (FPS) with an embedding di- 880

mensionality of Dv=512. For audio feature extrac- 881

tion, we follow (Barrios et al., 2023) by utilizing 882

the OpenL3 (Cramer et al., 2019; Arandjelovic and 883

Zisserman, 2017) checkpoint pre-trained on videos 884

containing environmental audiovisual data. We use 885

a spectrogram time-frequency representation with 886

128 bands and set the audio embedding dimension- 887

ality Da to 512. Furthermore, we extract the audio 888

embeddings using a stride size of 0.2 seconds, i.e., 889
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with an extraction frame rate of 5 Hz, matching the890

frame rate of the visual features.891

Audiovisual Model AV . We utilize a Multi-892

modal Transformer with a standard configura-893

tion (Vaswani et al., 2017). For each observation894

ci, consisting of both visual and audio information,895

we employ S = 25 visual tokens and S = 25896

audio tokens, effectively spanning a 5-second897

duration at a frame rate of 5 FPS. This Multimodal898

Transformer architecture comprises 16 layers899

and employs a Multi-Layer Soft Token Attention900

Masking ProcessModule with a dimensionality of901

768 and depth of 16.902

Large Language Model H. For Large Language903

Model, we choose to employ a frozen LLaMA 7B904

model (Touvron et al., 2023) and opt to use its905

official checkpoint.906

Adapter Module P . We build our audiovisual907

adapter following the approach done in (Gao et al.,908

2023). In this part, we select 16 tokens as audiovi-909

sual tokens. We adjust the last 31 layers of LLaMA910

7B, making sure that the audiovisual features stay911

at a size of 512, which then maps to 4096 (LLaMA912

dimensionality). We set the depth to 8, use 16913

heads, apply LoRA Rank (Hu et al., 2021) with a914

value of 16, and activate Bias layers (Zhang et al.,915

2023b).916

Training Protocol. To generate Audio Descrip-917

tions, we follow the training methodology outlined918

in (Zhang et al., 2023b; Gao et al., 2023). This919

involved utilizing 8 RTX 6000 Ada Generation920

GPUs, each equipped with 50 GB VRAM, along-921

side employing a base learning rate of 1e− 4 and922

the Adam optimizer.923

A.1.4 Implementation Details for Moment924

Retrieval and Highlighting Task925

Feature Extraction. The visual and text embed-926

dings are extracted following the methodology pre-927

sented in (Lei et al., 2021). For video, we use928

SlowFast (Feichtenhofer et al., 2018) and the vi-929

sual encoder (ViT-B/32) of CLIP (Radford et al.,930

2021) to extract features every 2 seconds. We then931

normalize the two features and concatenate them932

at hidden dimension. The resulting visual features933

is denoted as EV ∈ RLV ×DV , with DV = 2816.934

For text features , we use the CLIP text encoder to935

extract token level features, EV ∈ RLQ×DQ with936

DV = 512.937

Video Grounding Model. We adopt the methodol-938

ogy outlined in (Moon et al., 2023). The architec-939

ture consists of three distinct components: an en-940

coder comprising four layers of transformer blocks 941

(two cross-attention layers and two self-attention 942

layers), while the decoder has only two layers. We 943

configure the hidden dimension of the transformers 944

to be 256 Additionally, for the transformer encoder 945

layers and the cross-attention layers, we utilize our 946

LAACM using dimensionality of 256 and depth of 947

32 layers. 948

Training Protocol. We conducted training over 949

200 epochs, employing a batch size of 32 and a 950

learning rate set to 1e− 4. We utilized the Adam 951

optimizer with a weight decay of 1e−4, leveraging 952

a single GPU, the RTX 6000 Ada Generation. 953

A.2 Single Modality Encoder Tasks 954

A.2.1 Image Classification Task 955

In the image classification task, the goal is to assign 956

an input image I to one or more predefined classes 957

from a set of C classes. Let’s denote the image 958

classification model as M. Given an input image I , 959

the model generates a set of class predictions and 960

their corresponding confidence scores: 961

M(I) → (ŷ1, p̂1), (ŷ2, p̂2), . . . , (ŷC , p̂C) (10) 962

Here, ŷc ∈ 1, 2, . . . , C represents the predicted 963

class label for the c-th class, and p̂c ∈ [0, 1] is 964

the corresponding confidence score or probability 965

assigned by the model to that class. The model’s 966

goal is to accurately predict the true classes present 967

in the input image I . 968

A.2.2 Video Captioning Task 969

In the video captioning task, the goal is to generate 970

a textual description or caption for a given input 971

video V . Let’s denote the video captioning model 972

as M. Given an input video V , the model generates 973

a sequence of words W = w1, w2, . . . , wN that 974

forms the caption: 975

M(V ) → W = w1, w2, . . . , wN (11) 976

Here, each wi represents a word in the generated 977

caption, and N is the length of the caption se- 978

quence. The model’s objective is to produce a 979

natural language caption W that accurately and co- 980

herently describes the content and events depicted 981

in the input video V . 982

A.2.3 Implementations Details for Image 983

Classification Task 984

We follow the pre-trained model developed in (He 985

et al., 2021) and fine-tune it for the image classifica- 986

tion task. The base model is a Vision Transformer 987
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(ViT) with a 16x16 patch size, 768-dimensional988

embedding, 12 transformer layers, and 12 atten-989

tion heads. It includes an MLP ratio of 4, biases990

in the query, key, and value projections, and layer991

normalization with an epsilon of 1e− 6. To incor-992

porate our proposed Soft Token Attention Mask-993

ing Process(STAMP) module, we use the Multi-994

Layer STAMP variant, which generates the atten-995

tion mask using a single linear layer. For the pre-996

training stage, we adhere to the methodology out-997

lined in (He et al., 2021), but increase the batch998

size to 128 and use 4 gradient accumulation steps.999

For fine-tuning on the image classification task, we1000

maintain a batch size of 128 and 4 gradient accumu-1001

lation steps. Additionally, we train for 100 epochs,1002

apply a weight decay of 0.05, set the drop path rate1003

to 0.1, and use mixup and cutmix with values of1004

0.8 and 1.0, respectively.1005

A.2.4 Implementations Details for Video1006

Captioning Task1007

We adopt the methodology proposed by Swin-1008

BERT (Lin et al., 2022), with a notable modifica-1009

tion. Instead of using a fixed learnable mask imple-1010

mented via nn.Parameter, we integrate our Soft1011

Token Attention Masking Process(STAMP) mod-1012

ule, which consists of 16 layers while maintaining1013

the same dimensionality as the original SwinBERT.1014

Regarding the hyperparameters, the experiment uti-1015

lizes a batch size of 2 per GPU, running for 201016

epochs with a learning rate of 0.0003. Training is1017

conducted in half precision using DeepSpeed, with1018

gradient accumulation over 16 steps. For the entire1019

training process, we used 8 A6000 Ada generation1020

GPUs.1021

A.3 Additional Details for Audio Description1022

Generation1023

In the following sections, we examine specific de-1024

tails that have not been addressed in the main paper.1025

This comprehensive discussion includes insights1026

into the current methodology for calculating met-1027

rics, the specific prompts employed, and the intri-1028

cacies of both the training and evaluation processes1029

for our implementation.1030

A.3.1 Metrics1031

In this work, we compute the CIDEr (Vedantam1032

et al., 2014) score using the pycocoeval package1033

from the coco-caption repository, adhering to the1034

standard parameters of n = 4 and sigma = 61035

as prescribed in (Vedantam et al., 2014). For1036

Rouge-L (Lin, 2004), a commonly used metric 1037

in natural language processing, we leverage the 1038

Hugging Face evaluate library for implementa- 1039

tion (evaluate-metric/rouge). The Rouge-L con- 1040

figuration is set with use_aggregator=True and 1041

use_stemmer=True, aligning with the default set- 1042

tings to ensure consistent evaluation. Prior to met- 1043

ric computation, both predicted and reference texts 1044

are normalized by converting to lowercase and re- 1045

moving punctuation, following standard prepro- 1046

cessing protocols. 1047

For retrieval-based evaluation, we adopt 1048

the R@k/N metric, utilizing the methodology 1049

introduced in (Han et al., 2023b). This is fur- 1050

ther supplemented by the BERTScore (Zhang 1051

et al., 2020) metric, ensuring alignment with 1052

state-of-the-art retrieval practices. To maintain 1053

reproducibility and result comparability, we 1054

use the specified hash code for BERTScore: 1055

roberta-large_L17_noidf_version=0.3. 1056

12(hug_trans=4.30.2)-rescaled, which 1057

reflects the model version and Hugging Face 1058

environment at the time of evaluation. These 1059

standardized configurations and consistent pre- 1060

processing steps reinforce the robustness and 1061

reliability of our evaluation pipeline. 1062

A.3.2 Natural Language Prompting 1063

To implement Audio Description functionality in 1064

our model, we apply the prompting approach devel- 1065

oped in the LLaMA Adapter framework (Gao et al., 1066

2023). The primary prompt used for generating Au- 1067

dio Descriptions is: “Below is an instruction that 1068

describes a task. Write a response that appropri- 1069

ately completes the request.” We then include a 1070

task-specific instruction: “Generate a caption for 1071

this video.” This prompt setup, shown in Figure 1072

S3, provides the model with the necessary context 1073

to produce relevant and concise descriptions for the 1074

video content.

Below i s an i n s t r u c t i o n t h a t
d e s c r i b e s a t a s k

### I n s t r u c t i o n :
G e n e r a t e c a p t i o n o f t h i s

v i d e o .
### Response :

Figure S3: Prompt for Audio Description Generation
The caption provided outlines the prompt utilized to ac-
tivate the functionality of Audio Description generation
employing the LLaMA model.
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A.3.3 Dataset Split1075

As MADv2 lacks a validation set, we curated1076

a subset of 1010 moments from two movies,1077

3034_IDES_OF_MARCH and 3074_THE_ROOMMATE1078

from the Unnamed version for our ablation studies1079

and model selection. All models and experiments1080

were assessed under consistent parameters to en-1081

sure fair comparisons. However, Table 1 in the1082

main paper was generated using the entire dataset1083

in the named version to maintain parity with other1084

baselines.1085

A.3.4 Training Protocol1086

The training procedure for our Audio Description1087

Generation model adhered closely to the methodol-1088

ogy outlined in (Gao et al., 2023). The process be-1089

gan with an initial alignment phase aimed at ensur-1090

ing robust synchronization between the audiovisual1091

features. This phase was crucial for establishing co-1092

herence between the audio and visual modalities of1093

the input data. Upon successful alignment, we re-1094

sumed training with a focus on optimizing the bias1095

and gate layers as proposed by (Gao et al., 2023),1096

leveraging the LLaMA (Touvron et al., 2023) 7B1097

architecture in combination with our audiovisual1098

encoder. In this subsequent stage, we performed1099

backpropagation exclusively on the bias, gate, and1100

audiovisual layers to enhance the model’s capac-1101

ity to generate accurate and contextually relevant1102

audio descriptions.1103

Training was conducted over a span of 20 epochs,1104

with model selection based on performance on the1105

validation subset. Hyperparameters were metic-1106

ulously tuned, including a learning rate of 1e−4,1107

weight decay of 0.05, and a batch size of 256.1108

We employed the AdamW optimizer to ensure ef-1109

ficient parameter updates. During the audiovisual1110

alignment phase, the adapter and audiovisual lay-1111

ers were trained for 2 epochs, with the rest of the1112

model parameters held constant, facilitating sta-1113

ble convergence. Importantly, the LLaMA model’s1114

core parameters remained frozen throughout the en-1115

tire training process, preserving the integrity of its1116

pre-trained features while allowing focused adap-1117

tation of the newly introduced layers. This careful1118

balance between alignment and fine-tuning was1119

critical for achieving high-quality audio descrip-1120

tion generation without disrupting the foundational1121

capabilities of the LLaMA architecture.1122

A.4 Ablation Studies 1123

Figure S4: Ablation Studies on the Number of Layers
in STAMP and Types of Mask Operation. We investigate
the impact of varying the number of layers in the Soft Token
Attention Masking Process (STAMP) module within a cross-
attention configuration, as well as different methods for fusing
the mask with attention weights. The experiments explore
layer counts ranging from 2 to 64, and compare two distinct
fusion techniques: element-wise multiplication and addition.
Evaluation on the QVHighlights (Lei et al., 2021) validation
set reveals notable improvements in the Average mAP metric
for the Moment Retrieval task, with the most significant gains
observed using 32 layers in the STAMP module.

A.4.1 Effects of Depth and Masking Fusion 1124

Techniques 1125

Our ablation study on the cross-attention mech- 1126

anism systematically investigates the impact of 1127

two critical components within the Soft Token At- 1128

tention Masking Process (STAMP) module: the 1129

depth of the STAMP architecture and the mask 1130

operations (addition and multiplication). As il- 1131

lustrated in Figure S4, we evaluate performance 1132

using the Average mAP metric for Moment Re- 1133

trieval on the QVHighlights validation set. The 1134

results demonstrate that STAMP consistently en- 1135

hances performance across various configurations, 1136

with some architectures yielding more substantial 1137

improvements than others. Notably, all STAMP 1138

variants, regardless of layer composition or opera- 1139

tion type, outperform the baseline model. The most 1140

effective configuration utilizes 32 layers with both 1141

addition and multiplication operations, achieving 1142

Average mAP scores of 42.61 and 42.32, respec- 1143

tively. These findings underscore the efficacy of 1144

our approach in bolstering Moment Retrieval per- 1145

formance on the QVHighlights dataset and suggest 1146

that the interplay between architectural depth and 1147

diverse mask operations is crucial for optimizing 1148

cross-attention mechanisms in this context. 1149

A.4.2 Attention Weights 1150

Figure S5 presents a comparative analysis of atten- 1151

tion weight distributions across three critical layers 1152

(1st, 8th, and final) of the Transformer architec- 1153

14



0.0 0.2 0.4 0.6 0.8 1.0
Value

10 3

10 2

10 1

100

D
en

si
ty

 (l
og

)

1st Layer
8th Layer
16th Layer

(a) Using Full Attention

0.0 0.2 0.4 0.6 0.8 1.0
Value

10 3

10 2

10 1

100

D
en

si
ty

 (l
og

)

1st Layer
8th Layer
16th Layer

(b) Using Multi-Layer STAMP

Figure S5: Attention Weight Distribution. This figure illus-
trates the effect of our STAMP on the distribution of attention
weights during the AD generation task. When using STAMP,
attention weights tend to decrease in magnitude as they propa-
gate through deeper layers, with many approaching zero. This
observation may facilitate future exploration of attention op-
timization by potentially reducing redundant computations.
The attention weights shown were collected from a forward
pass using 64 samples.

ture, contrasting traditional full-attention mecha-1154

nisms with our proposed Multi-Layer Soft Token1155

Attention Masking Process(STAMP). Our findings1156

reveal a striking pattern: the implementation of1157

Multi-Layer STAMP induces a substantial sparsifi-1158

cation of attention weights, with a significant pro-1159

portion reducing to zero and many others converg-1160

ing to near-zero values. This phenomenon suggests1161

that STAMP effectively prunes redundant connec-1162

tions within the attention mechanism, potentially1163

leading to more computationally efficient model1164

training without sacrificing performance. The ob-1165

served sparsity not only aligns with recent trends1166

in neural network optimization but also opens av-1167

enues for further research into the interpretability1168

and efficiency of attention-based models. While 1169

these results underscore the potential of STAMP as 1170

a promising approach for enhancing the scalability 1171

and resource utilization of Transformer-based archi- 1172

tectures, there remains considerable room for im- 1173

provement and further investigation. Future work 1174

could explore the optimal degree of sparsity, the 1175

impact on various downstream tasks, and poten- 1176

tial hybridization with other attention optimization 1177

techniques to further push the boundaries of effi- 1178

cient, high-performance Transformer models. 1179

In Table 7, we show the comparison between 1180

Multi-layer STAMP and Multi-layer STAMP with 1181

Flash Attention V2 (Dao, 2023). The compari- 1182

son reveals that while the RL (Rouge-L) and C 1183

(CIDEr) scores remain largely consistent, indicat- 1184

ing minimal impact on output quality, substantial 1185

improvements are observed in computational effi- 1186

ciency. Specifically, FLOPs and MACs are sig- 1187

nificantly reduced from 3.43 TFLOPs to 2.272 1188

TFLOPs and from 1.71 TMACs to 1.13 TMACs, 1189

respectively. Furthermore, latency is notably de- 1190

creased from 88.60 ms to 64.30 ms, underscor- 1191

ing the enhanced processing speed. These results 1192

demonstrate that integrating Flash Attention V2 1193

effectively optimizes computational performance 1194

while maintaining overall model effectiveness. 1195

A.4.3 Qualitative Analysis 1196

Figure S6 presents a qualitative analysis of our 1197

Multi Layer Soft Token Attention Masking Pro- 1198

cess(STAMP) implementation for the Audio De- 1199

scription generation task. This visualization en- 1200

compasses two key aspects: Figure S6a displays 1201

the concurrent audio and video signals, and Fig- 1202

ure S6b illustrates the mask values corresponding 1203

to each token in the initial transformer layer. In 1204

this figure, the x-axis represents the sequence of 1205

tokens, and the colored heatmap indicates the mask 1206

values for each token in relation to the other tokens 1207

in the sequence. In this example, the first 25 to- 1208

kens represent visual information, and the last 25 1209

tokens correspond to the audio data. Each token 1210

(highlighted in the title) is analyzed in terms of its 1211

interaction with the sequence. 1212

In this example, the token sequence has a shape 1213

of (1, 50, 756), where 50 denotes the total number 1214

of tokens resulting from the concatenation of vi- 1215

sual and audio tokens, each contributing 25 tokens. 1216

The visual content remains largely static across 1217

frames, depicting a residential backyard with minor 1218

visual variations. The auditory content transitions 1219

15
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(a) Scene Visualization. We highlight a specific moment from the movie Signs (2002) for qualitative analysis within the
MADv2-eval set. Here, we meticulously present the visual elements while accurately representing the accompanying audio
signals of the scene.

(b) Scene Visualization We also showcase the mask values produced by the Soft Token Attention Masking Process (STAMP)
module for each visual and audio token present in the scene. These mask values exhibit positive numerical values, ranging
between 0 and 1 inclusively.

Figure S6: Qualitative Analysis. This illustration presents a qualitative analysis of a specific instance from
the MADv2-eval dataset. It depicts visual and audio signals alongside mask values corresponding to the initial
transformer layer (1st layer). Video tokens are represented on the x-axis from 0 to 24, while audio tokens range
from 25 to 49 on the same axis. The ground truth label for this moment is: “A set of swings and a climbing frame
stand in a rural backyard, along with a picnic table and a brick barbecue.”

from ambient sounds such as wind, insects, and1220

outdoor noise to the rhythmic pattern of a clock.1221

The ground truth Audio Description states: “A set1222

of swings and a climbing frame stand in a rural1223

backyard, along with a picnic table and a brick1224

barbecue."1225

In this scenario, the STAMP module activates1226

only three out of twenty-five visual tokens while1227

assigning minimal attention to audio tokens. Fig- 1228

ure S6b shows the masking values for each token, 1229

where the x-axis corresponds to the sequence of 1230

tokens resulting from the concatenation: tokens 1231

numbered from 0 to 24 are visual tokens, and to- 1232

kens from 25 to 49 are audio tokens. For instance, 1233

for visual token 1, STAMP assigns values greater 1234

than 0.35 to tokens 0 to 24 (the visual tokens), in- 1235
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STAMP

Figure S7: Analysis of Attention Weight Distribution in
the Qualitative Example. The plot illustrates the distribu-
tion of attention weights within the initial transformer layer
across two distinct configurations: employing STAMP and
full-attention mechanisms. It is evident from the depiction
that attention weights under STAMP influence tend to exhibit
a leftward bias, resulting in a significant portion approaching
0 or nearing zero. The distribution weights correspond to the
same example in Figure S6.

dicating strong correlations between these visual1236

elements, as shown by the yellow-green-colored1237

cells in the heatmap. Moreover, some correlation1238

with audio tokens (25 to 49) is also visible in the fig-1239

ure, though these values are generally lower. Con-1240

versely, for audio token 1, STAMP assigns higher1241

values to the initial visual tokens and lower values1242

to the later visual tokens, reflecting the static na-1243

ture of the visual information—a backyard scene1244

with minimal dynamic changes—while the other1245

audio tokens receive varying degrees of attention.1246

Notably, the last audio tokens (e.g Audio Token1247

15 to 25) correspond to indoor sounds, indicating1248

a scene transition from an outdoor to an indoor1249

setting. Consequently, STAMP assigns values less1250

than 0.35 in its masking for these tokens, interpret-1251

ing them as less important and less related to the1252

predominantly outdoor visual and audio tokens.1253

To compare with self attention, Figure S7 shows1254

the attention weight distributions for both STAMP1255

and full attention on the same scene. Without1256

STAMP, the distribution is more uniform, suggest-1257

ing that attention is spread across more tokens.1258

With STAMP, the distribution is skewed to the left1259

with many weights near zero, implying focused1260

attention on fewer, more relevant tokens. This anal-1261

ysis highlights STAMP’s capability to discern and1262

prioritize specific tokens, thereby enhancing multi-1263

modal scene interpretation.1264

Figure S8 illustrates a challenging scenario for 1265

our STAMP approach. This example uses the same 1266

visual content as in Figure S6 but pairs it with audio 1267

samples comprising 25 tokens from the credits sec- 1268

tion, containing only background soundtrack music. 1269

While STAMP correctly assigns minimal values 1270

to the visual tokens, recognizing the lack of rele- 1271

vance between the video and the new audio tokens, 1272

it struggles to handle the audio tokens optimally. 1273

Instead of assigning values close to zero to the 1274

audio tokens—as would be expected given the ir- 1275

relevance of the soundtrack to the scene description 1276

task—STAMP assigns intermediate values from its 1277

distribution. This outcome suggests potential areas 1278

for improvement in the model’s audio-visual inte- 1279

gration capabilities, particularly in distinguishing 1280

between relevant and irrelevant audio information. 1281

Another example, depicted in Figure S9, in- 1282

volves the ground truth labeled as “They stop when 1283

they reach a gap.” The scene opens with an im- 1284

age of a maize field, accompanied by the sudden 1285

sound of a little girl screaming. The film’s pro- 1286

tagonists immediately begin sprinting through the 1287

field, generating a distinct crunching noise along- 1288

side the sound of rapid footsteps. While the visual 1289

content is highly dynamic—both the character and 1290

the environment are in motion—the scene remains 1291

largely focused on the maize field and the actors 1292

running through it. This continues until a moment 1293

of silence marks their exit from the field. In Fig- 1294

ure S9b, the final visual tokens (24 and 25) carry 1295

the most weight in the STAMP output because they 1296

show the characters stopping, which aligns with 1297

the ground truth. Additionally, the audio of the 1298

crunching sound (audio token 1 to 14) from the 1299

maize field provides context, as it reflects the run- 1300

ning action and comes before the stopping action, 1301

which is the task’s consequence. The silence that 1302

follows signifies the stopping action and the fact 1303

that the gap has been crossed, as there is no more 1304

maize field to traverse. This is why later audio to- 1305

kens (20-25) are attended to, though less strongly, 1306

as they represent the conclusion of the scene. 1307

In summary, these findings highlight both the 1308

strengths and limitations of STAMP in multimodal 1309

Audio Description generation. While the model ef- 1310

fectively prioritizes relevant tokens in scenes with 1311

aligned audio and visual content, it struggles with 1312

irrelevant audio, assigning undue attention to non- 1313

informative tokens. This underscores the need for 1314

further refinement in its ability to discriminate be- 1315

tween pertinent and extraneous information, sug- 1316

17



Figure S8: Analysis of STAMP Failure Example in Audio Description Generation. This plot illustrates the learned mask
(STAMP’s output) from the example shown in Figure S6. In this scenario, the visual features remain unchanged, but the audio
tokens correspond to the last 25 samples from the movie’s credits, which consist solely of the soundtrack. While the mask
correctly assigns low values to the visual features, it fails to do so for the audio features, assigning mid-range values from the
distribution instead. The x-axis represents the video tokens (ranging from 0 to 24) and the audio tokens (ranging from 25 to 49)
on the same axis.

gesting avenues for future research to enhance mul-1317

timodal attention mechanisms. There is still room1318

for improvement, and we are optimistic that ad-1319

dressing these challenges will further advance the1320

effectiveness of STAMP in complex multimodal1321

tasks.1322
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Time

Video

Audio
~ Sound of Maize field Crunching  ~

~ Scream 

video tokens

audio tokens

~ Scream of a girl ~
~ Footsteps~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

~ Sound of Maize field Crunching  ~

~ Footsteps~ ~ Silence~

(a) Scene Visualization. We highlight a specific moment from the movie Signs (2002) for qualitative analysis within the
MADv2-eval set. Here, we meticulously present the visual elements while accurately representing the accompanying audio
signals of the scene.

(b) Scene Visualization We also showcase the mask values produced by the Soft Token Attention Masking Process (STAMP)
module for each visual and audio token present in the scene. These mask values exhibit positive numerical values, ranging
between 0 and 1 inclusively.

Figure S9: Additional Example for Qualitative Analysis. This illustration provides an additional example of
qualitative analysis from the MADv2-eval dataset. It displays both visual and audio signals along with corresponding
mask values from the first transformer layer (1st layer). The x-axis represents video tokens from 0 to 24 and audio
tokens from 25 to 49. The ground truth label for this moment is: “They stop when they reach a gap".
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