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Abstract

This paper studies zero-shot cross-lingual
transfer of vision-language models. Specif-
ically, we focus on multilingual text-to-
video search and propose a Transformer-
based model that learns contextualized mul-
tilingual multimodal embeddings. Under a
zero-shot setting, we empirically demonstrate
that performance degrades significantly when
we query the multilingual text-video model
with non-English sentences. To address this
problem, we introduce a multilingual multi-
modal pre-training strategy, and collect a new
multilingual instructional video dataset (Multi-
HowTo100M) for pre-training. Experiments
on VTT show that our method significantly im-
proves video search in non-English languages
without additional annotations. Furthermore,
when multilingual annotations are available,
our method outperforms recent baselines by
a large margin in multilingual text-to-video
search on VTT and VATEX; as well as in mul-
tilingual text-to-image search on Multi30K.
Our model and Multi-HowTo100M will be
made available.1

1 Introduction

One of the key challenges at the intersection of
computer vision (CV) and natural language pro-
cessing (NLP) is building versatile vision-language
models that not only work in English, but in all of
the world’s approximately 7,000 languages. Since
collecting and annotating task-specific parallel mul-
timodal data in all languages is impractical, a
framework that makes vision-language models gen-
eralize across languages is highly desirable.

One technique that has shown promise to greatly
improve the applicability of NLP models to new
languages is zero-shot cross-lingual transfer, where
models trained on a source language are applied

1http://github.com/anonymity/xxxxxx

as-is to a different language without any additional
annotated training data (Täckström et al., 2012;
Klementiev et al., 2012; Cotterell and Heigold,
2017; Chen et al., 2018; Neubig and Hu, 2018). In
particular, recent techniques for cross-lingual trans-
fer have demonstrated that by performing unsuper-
vised learning of language or translation models
on many languages, followed by downstream task
fine-tuning using only English annotation, models
can nonetheless generalize to a non-English lan-
guage (Wu and Dredze, 2019a; Lample and Con-
neau, 2019; Huang et al., 2019a; Artetxe et al.,
2020; Hu et al., 2020). This success is attributed to
the fact that many languages share a considerable
amount of underlying vocabulary or structure. At
the vocabulary level, languages often have words
that stem from the same origin, for instance, “desk”
in English and “Tisch” in German both come from
the Latin “discus”. At the structural level, all lan-
guages have a recursive structure, and many share
traits of morphology or word order.

For cross-lingual transfer of vision-language
models, the visual information is clearly an es-
sential element. To this end, we make an impor-
tant yet under-explored step to incorporate visual-
textual relationships for improving multilingual
models (Delvin et al., 2018; Artetxe et al., 2020).
While spoken languages could be different, all hu-
mans share similar vision systems, and many visual
concepts can be understood universally (Sigurds-
son et al., 2020; Zhang et al., 2020). For example,
while is termed “cat” for an English speaker
and “chat” for a French speaker; they understand

similarly. We leverage this observation to learn
to associate sentences in different languages with
visual concepts for promoting cross-lingual transfer
of vision-language models.

In this work, we focus on multilingual text-
to-video search tasks and propose a Transformer-
based video-text model to learn contextualized mul-
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tilingual multimodal representations. Our vanilla
model yields state-of-the-art performance in multi-
lingual text→video search when train with multi-
lingual annotations. However, under the zero-shot
setting, rather surprisingly, there is a significant
performance gap between English and non-English
queries (see §5.5 for details). To resolve this prob-
lem, motivated by recent advances in large-scale
language model (Artetxe et al., 2020) and multi-
modal pre-training (Lu et al., 2019; Miech et al.,
2019; Patrick et al., 2020), we propose a multi-
lingual multimodal pre-training (MMP) strategy
to exploit the weak supervision from large-scale
multilingual text-video data. We construct the
Multilingual-HowTo100M dataset, that extends the
English HowTo100M (Miech et al., 2019) dataset
to contain subtitles in 9 languages for 1.2 million
instructional videos.

Our method has two important benefits. First,
compared to pre-training on English-video data
only, pre-training on multilingual text-video data
exploits the additional supervision from a variety
of languages, and therefore, enhances the search
performance on an individual language. Second,
by exploiting the visual data as an implicit “pivot”
at scale, our methods learns better alignments in
the multilingual multimodal embedding space (e.g.,
“cat”- -“chat”), which leads to improvement in
zero-shot cross-lingual transfer (e.g., from “cat”-

to “chat”- ) of vision-language models.

In our experiments on VTT (Xu et al., 2016)
and VATEX (Wang et al., 2019), our method
yields state-of-the-art English→video search per-
formance. For zero-shot cross-lingual transfer, the
proposed multilingual multimodal pre-training im-
proves English-video pre-training by 2 ∼ 2.5 in av-
erage R@1 across 9 languages. Additionally, when
training with in-domain multilingual annotations as
other baselines, our method outperforms them by a
large margin in multilingual text→video search on
VATEX and text→image search on Multi30K (El-
liott et al., 2016).

To summarize, we make the following contribu-
tions: (1) We propose a transformer-based video-
text model that learns contextualized multilingual
multimodal representations (§3.1). (2) We em-
pirically demonstrate that vision-language mod-
els, unlike NLP models, have limited zero-shot
cross-lingual transferrability. (§5.5). (3) We in-
troduce the multilingual multimodal pre-training
strategy and construct a new Multi-HowTo100M

dataset (§4) for pre-training to improve zero-shot
cross-lingual capability of vision-language mod-
els. (4) We demonstrate the effectiveness of our
approach, by achieving state-of-the-art multilin-
gual text→video search performance in both the
zero-shot (§5.5) and fully supervised setup (§5.6).

2 Related Work

Cross-lingual representations. Early work on
learning non-contextualized cross-lingual represen-
tations used either parallel corpora (Gouws and
Søgaard, 2015; Luong et al., 2015) or a bilin-
gual dictionary to learn a transformation (Faruqui
and Dyer, 2014; Mikolov et al., 2013). Later ap-
proaches reduced the amount of supervision using
self-training (Artetxe et al., 2017). With the ad-
vances in monolingual transfer learning (McCann
et al., 2017; Howard and Ruder, 2018; Peters et al.,
2018; Devlin et al., 2019), multilingual extensions
of pre-trained encoders have been proven effec-
tive in learning deep contextualized cross-lingual
representations (Eriguchi et al., 2017; Lample and
Conneau, 2019; Wu and Dredze, 2019b; Siddhant
et al., 2020; Pires et al., 2019; Pfeiffer et al., 2020).
We extend prior work to incorporate visual context.
Video-text representations. The HowTo100M
dataset (Miech et al., 2019) has spurred significant
interest in leveraging pre-training for text→video
search (Korbar et al., 2020), captioning (Iashin and
Rahtu, 2020), and unsupervised translation (Sig-
urdsson et al., 2020). This work studies a challeng-
ing and unexplored task: Zero-shot cross-lingual
transfer of vision-language models. Moreover, un-
like prior image/video-text work that utilizes RNN
with word embeddings (Dong et al., 2019; Chen
et al., 2020a; Burns et al., 2020; Kim et al., 2020)
and/or a inter-modal contrastive objective (Sigurds-
son et al., 2020; Liu et al., 2019; Huang et al.,
2019b), our work employs Transformers to learn
contextualized multilingual multimodal representa-
tions and uniquely models cross-lingual instances.
Cross-lingual Transfer. Cross-lingual transfer has
proven effective in many NLP tasks including de-
pendency parsing (Schuster et al., 2019), named
entity recognition (Rahimi et al., 2019), sentiment
analysis (Barnes et al., 2019), document classifi-
cation (Schwenk and Li, 2018), and question an-
swering (Lewis et al., 2020; Artetxe et al., 2020).
Recently, XTREME (Hu et al., 2020) was proposed
to evaluate the cross-lingual transfer capabilities of
multilingual representations across a diverse set of
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Figure 1: An overview of our video-text model for learning contextualize multilingual multimodal representations.
We utilize intra-modal, inter-modal, and conditional cross-lingual contrastive objectives to align (x, v, y) where
x and y are the captions or transcriptions in different languages of a video v. TP: Transformer pooling head.

NLP tasks and languages. However, a comprehen-
sive evaluation of multilingual multimodal models
on zero-shot cross-lingual transfer capabilities is
still missing. To our best knowledge, we are the
first work that investigates and improves zero-shot
cross-lingual transfer of vision-language models.

3 Method

We consider the problem of learning multilingual
multimodal representations from a corpus C of
video-text pairs {(xi, vi)}Ci=1, where vi is a video
clip and xi is its corresponding text (caption or
transcription) that is written in one of K languages.
Our goal is to learn a shared multilingual text en-
coder cx = Φ(x) and a video encoder cv = Ψ(v),
both of which project the input to a shared D-
dimensional embedding space cv, ct ∈ RD, where
semantically similar instances (i.e., paired (xi, vi))
are closer to each other than the dissimilar ones
(i.e., (xi, vj), i 6= j). In the following, we de-
note a batch of multilingual text-video samples
as B = {(xi, vi)}Bi=1} where B ⊂ C.

3.1 Multilingual Multimodal Transformers
Figure 1 gives an overview of the proposed method.
Our text encoder consists of a multilingual Trans-
former (e.g. multilingual BERT (Delvin et al.,
2018)) and a text Transformer pooling head (ex-
plained below). Similarly, our video encoder con-
sists of a 3D-CNN (e.g. R(2+1)D network (Tran
et al., 2018)) and a video Transformer pooling head.
We use these multilingual multimodal Transform-
ers to encode text and video for alignment.

Unlike prior multilingual text-image mod-
els (Gella et al., 2017; Kim et al., 2020; Huang
et al., 2019b) that utilize word embeddings and
RNNs, our multilingual text encoder is built on a
multilingual Transformer that generates contextu-
alized multilingual representations ex ∈ RN×D to

encode a sentence x containing N words. We em-
ploy an additional 2-layer Transformer which we
will call a “Transformer pooling head (TP)” as it
serves as a pooling function to selectively encode
variable-length sentences and aligns them with the
corresponding visual content. We use the first out-
put token of the second Transformer layer as the fi-
nal sentence representation. Precisely, we set cx =

Trans(2)x (query=key=value=ex)[0] where Trans(2)x
is a 2-layer stack of Transformers (Vaswani et al.,
2017) with ex as the (query,key,value) in the multi-
head attention. Note that we use the same text
encoder to encode sentences in all languages.

For encoding videos, our model uses pre-trained
3D-CNNs that encode spatial-temporal context
in a video. For a M -second video v, we apply
R(2+1)D (Tran et al., 2018) and S3D (Miech et al.,
2020) networks to its frames, concatenate network
outputs, and apply a linear layer to encode the vi-
sual input, ev ∈ RM×D, to our model. Similarly to
the text part, we employ a two-layer Transformer
as the pooling head to encode videos with different
lengths into fixed-length representations. Formally,
we set cv = Trans(2)v (query=key=value=ev)[0].
Since videos are typically long and have a high
frame rate (e.g., 30 fps), it is infeasible to update
3D-CNNs simultaneously and therefore, we use
pre-extracted video features. Our model is parame-
terized by θ = θmBERT ∪ θTransx ∪ θTransv .

3.2 Multilingual Text-Video Alignment

For learning multimodal representations, the com-
mon practice is to minimize a contrastive objective
to map the associated (video, text) embeddings
to be near to each other in a shared embedding
space. The inter-modal max-margin triplet loss
has been widely studied in video-text (Yu et al.,
2018; Liu et al., 2019) and image-text (Kim et al.,
2020; Burns et al., 2020; Huang et al., 2019b) re-
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search. In this work, we generalize and model
all inter-modal, intra-modal, and cross-lingual in-
stances with a noise contrastive estimation objec-
tive (NCE) (Gutmann and Hyvärinen, 2010; Oord
et al., 2018; Chen et al., 2020b).
Inter-modal NCE. LetX and V denote the subsets
of the sampled sentences in multiple languages and
videos in B, respectively. And let s(a, b) = aT b

‖a‖‖b‖
be the similarity measure. We use an (inter-modal)
NCE objective defined as:

L(X ,V) = − 1

B

B∑
i=1

log`NCE(Φ(xi),Ψ(vi)), (1)

where

`NCE(cx, cv) =
es(cx,cv)

es(cx,cv) +
∑

(x′,v′)∼N e
s(cx′ ,cv′ )

.

(2)
In inter-modal NCE, the noise N is a set of “nega-
tive” video-text pairs sampled to enforce the simi-
larity of paired ones are high and and those do not
are low. Following Miech et al. (2020), we set the
negatives of (xi, vi) as other xj and vj , j 6= i in B.

Intuitively, inter-modal NCE draws paired (se-
mantically similar) instances closer and pushes
apart non-paired (dissimilar) instances. Note that
we do not distinguish language types in X and the
sentences in all possible languages will be drawn
towards their corresponding videos in the shared
multilingual text-video embedding space.
Intra-modal NCE. Beyond cross-modality match-
ing, we leverage the intra-modal contrastive ob-
jective to learn and preserve the underlying struc-
ture within the video and text modality. For exam-
ple, Corgi should be closer to Husky than Balinese.
Prior image-text work (Gella et al., 2017; Huang
et al., 2019b) utilizes a triplet loss to maintain such
neighborhood relationships. Inspired by recent suc-
cess in self-supervised image and video represen-
tation learning (Yalniz et al., 2019; Ghadiyaram
et al., 2019), our model leverages intra-modal NCE
that constrains the learned representations to be
invariant against noise and to maintain the within-
modality structure simultaneously. We minimize
the following intra-modal NCE loss:

Lintra = L(X ,Xm) + L(V,Vm), (3)

where Xm and Vm are the noised version of the
original sentences and videos. For noising, we
randomly mask 5% of the multilingual text to-
kens and video clips. We optimize our model by
minθ Linter + Lintra.

3.3 When Visually-Pivoted Multilingual
Annotations Are Available

In many multilingual multimodal datasets, there
are sentences in different languages that describe a
shared visual context. For example, 10 English and
10 Chinese descriptions are available for each video
in VATEX. With these visually-pivoted (weakly
paralleled) sentences (x, y), we further revise the
contrastive objectives to leverage this additional
supervisory signal. Given a visually-pivoted cor-
pus Cp that contains all possible combination of
visually-pivoted pairs {(xi, vi, yi)}

Cp

i=0, we sample
batches Bp = {(xi, vi, yi)}B

p

i=1,Bp ⊂ Cp and re-
vise the contrastive objective as:

Linter = L(X ,V) + L(Y,V) (4)

Lintra = L(X ,Xm) + L(Y,Ym) + L(V,Vm)
(5)

Visual-pivoted Cross-lingual NCE. Inspired
by Translation Language Modeling (TLM) in
XLM (Lample and Conneau, 2019), we propose a
multimodal TLM-like contrastive objective which
promotes alignments of descriptions in different
languages that describe the same video. We use the
intuition that conditioned on a video, the descrip-
tions (need not to be translation pairs) in different
languages would likely be semantically similar. To
this end, we set the cross-lingual NCE as:

Lcross = L(X|V,Y|V) (6)

For visually-pivoted sentences, as shown in
Fig. 1, we generate their representations condi-
tioned on the video they describe. We extend the
key and value of multihead attention with the addi-
tional visual content ev and generate new cx|v and
cy|v for matching. Specifically, our model employs

cx|v = Trans(2)x (query=ex, key=value=ex||ev)[0].
With the access to (visually-pivoted) multilin-
gual annotations, we optimize our model by
minθ Linter + Lintra + Lcross.

For inference, we use cx = Φ(x) and cv = Ψ(v)
to encode multilingual text and video for search.

4 The Multilingual HowTo100M Dataset

As large-scale pre-training has been shown im-
portant in recent NLP and vision-language mod-
els, we construct the Multilingual HowTo100M
dataset (Multi-HowTo100M) to facilitate research
in multilingual multimodal learning. The origi-
nal HowTo100M (Miech et al., 2019) dataset is a



5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

Anonymous Submission

large-scale video collection of 1.2 million instruc-
tional videos (138 million clips) on YouTube, along
with their automatic speech recognition (ASR)
transcriptions as the subtitles. For each video in
HowTo100M, we collect the multilingual subtitles
provided by YouTube, which either consist of user-
generated subtitles or those generated by Google
ASR and Translate in the absence of user-generated
ones. Essentially, we collect video subtitles in 9
languages: English (en), German (de), French (fr),
Russian (ru), Spanish (es), Czech (cz), Swahili
(sw), Chinese (zh), Vietnamese (vi).

At the time of dataset collection, there are 1.1
million videos available, each with subtitles in 7-
9 languages. We utilize Multi-HowTo100M for
multilingual multimodal pre-training to exploit the
weak supervision from large-scale multilingual
text-video data. Please refer to the supplementary
material for more details.

5 Experiment

In this section, we first describe our experimental
setup (§5.1-5.3). In §5.4, we conduct ablation stud-
ies to validate the effectiveness of proposed multi-
lingual text-video model . With the best models at
hand, we investigate their zero-shot cross-lingual
transferability in §5.5, where we showcase that
the proposed multilingual multimodal pre-training
serves as the key facilitator. We then verify the
superior text→video search performance of our
method under the monolingual, multilingual, and
cross-modality settings in §5.6.

5.1 Evaluation Datasets

MSR-VTT (VTT) (Xu et al., 2016) contains
10K videos, where each video is annotated with
20 captions. Additionally, we created pseudo-
multilingual data by translating the English cap-
tions into 8 languages with off-the-shelf machine
translation models.2 We use the official training set
(6.5K videos) and validation set (497 videos). We
follow the protocol in Miech et al. (2019); Liu et al.
(2019) which evaluates on text→video search with
the 1K testing set defined by Yu et al. (2018).
VATEX (Wang et al., 2019) is a multilingual (Chi-
nese and English) video-text dataset with 35K
videos. Five (en,zh) translation pairs and five non-
paired en and zh descriptions are available for
each video. We use the official training split (26K
videos) and follow the testing protocol in Chen

2https://marian-nmt.github.io/

et al. (2020a) to split the validation set equally into
1.5K validation and 1.5K testing videos.
Multi30K (Elliott et al., 2016) is a multilingual ex-
tension of Flickr30K (Young et al., 2014). For each
image, there are two types of annotations available:
(1) One parallel (English,German,French,Czech)
translation pair and (2) five English and five Ger-
man descriptions collected independently. The
training, validation, and testing splits contain 29K,
1K, and 1K images respectively.

5.2 Implementation Details
For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTo100M. We pre-extract video features and
concatenate the two 3D-CNN outputs to form
ex ∈ RM×1024 as a video input.

Our model uses multilingual BERT
(mBERT) (Devlin et al., 2018) or XLM-
Roberta-large (XLM-R) (Artetxe et al., 2020),
where the latter achieves near SoTA cross-lingual
transfer performance for NLP tasks. Following Hu
et al. (2020), instead of using the top layer, we
output the 12-th layer in XLM-R and mBERT. For
vision-language tasks, we freeze layers below 9 as
this setup empirically performs the best.

We use a 2-layer Transformer with 4-head atten-
tion for each TP module. The embedding dimen-
sion D is set to 1024. We use the Adam (Kingma
and Ba, 2015) optimizer and a 0.0002 learning rate
to train our model for 16 (pre-training) and 10 (fine-
tuning) epochs.

5.3 Experimental Setup
We use Multi-HowTo100M for multilingual mul-
timodal pre-training (MMP). For each video, we
randomly sample the start and end time to construct
a clip. For a clip, we sample one language type
each time from 9 languages and use the consecutive
ASR transcriptions that are closest in time to com-
pose (video, text) pairs for training. For simplicity
and speed purposes, we follow the training proto-
col of XLM-R to pretrain on a multilingual corpus
wihtout using translation pairs i.e., we use multilin-
gual text-video pairs but no translation pairs from
Multi-HowTo100M dataset and utilize only inter-
and intra-modal NCE (Eq. 1-3) for MMP.

We fine-tune our model on VTT, VATEX, and
Multi30K to evaluate on text→video search tasks.
In the zero-shot cross-lingual transfer experiments,
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Text-B Video-B R@1↑ R@5↑ R@10↑
XLM-R S3D 19.5 49.0 62.8
XLM-R R(2+1)D 19.0 49.5 63.2
XLM-R R+S 21.0 50.6 63.6
mBERT R+S 19.9 49.8 62.5

Table 1: Text and Video (B)ackbone comparison.

T layers V layers R@1↑ R@5↑ R@10↑
1 1 20.0 50.3 63.2
2 1 20.1 50.5 63.8
2 2 21.0 50.6 63.6
2∗ 2∗ 20.7 50.5 63.3
4 4 20.8 50.4 63.8

Table 2: Architecture comparison. Number of mul-
tilingual multimodal transformer layers. *Weight shar-
ing between video and text transformers.

Objective Inter Intra Cross R@1↑ R@5↑ R@10↑
Triplet X 13.3 36.0 55.2
Triplet X X 20.9 49.3 63.0
NCE X 21.4 49.3 61.1
NCE X X 21.0 50.6 63.6
NCE* X X 21.3 50.7 63.5
NCE* X X X 21.5 51.0 63.8

Table 3: Objective comparison. *Training with addi-
tional machine translated de-video and fr-video pairs.

we use only English-video data and fine-tune with
Eq. 1-3. We then test the model with non-English
queries. When annotations in additional languages
are available (by humans in VATEX and Multi30K;
by MT models (i.e. translate-train) in VTT), we
train our model with all available multilingual an-
notations (i.e. fully supervised) with Eq. 4-6 to
demonstrate the upper bound of the zero-shot setup
and to compare fairly with other baselines in multi-
lingual text→video search. We report the standard
recall at k (R@k) metrics (higher is better).

5.4 Comparison Experiments and Ablations
In this section, we ablate and compare different
text/video backbones, model architectures, and
learning objectives on VTT English→video search.
Additional discussion can be found in the supple-
mentary material.
Text and Video encoders. Table 1 compares dif-
ferent text and video encoders. While R(2+1)D out-
performs S3D, the simple concatenation (i.e. early-
fusion) of their output features provides a 1.5 ∼ 2.0
improvement in R@1. For the text encoder, XLM-
R significantly outperforms mBERT.
Transformer Pooling. Table 2 compares various
configurations of the proposed pooling module. We
observe that a simple 2-layer Transformer achieves

19
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23

24

None en en+de en+de+fr All Langs.

XLM-R mBERT

(a) English→Video

10

12

14

16

18

20

None en en+de en+de+fr All Langs.

XLM-R mBERT

(b) Zero-shot German→Video

Figure 2: R@1 trends in languages used for multilin-
gual multimodal pre-training. Left: English→video
search. Right: Zero-shot German→video search.

the best performance. Weight sharing of the video
and text Transformer slightly degrades the perfor-
mance. Therefore, we choose to separate them.
Learning Objective. From Table 3, the intra-
modal contrastive objective is important for both
NCE and Triplet loss. In general, the NCE loss
outperforms the Triplet loss. The proposed inter-
modal and intra-modal NCE objective achieves the
best performance. When captions in different lan-
guages are available, cross-lingual NCE addition-
ally provides a consistent improvement.

5.5 VTT Zero-Shot Cross-Lingual Transfer
Table 4 shows the multilingual text→video search
results on VTT. With the best English-video mod-
els at hand (with mBERT or XLM-R as the text
backbone), we first investigate how well these mod-
els transfer to other non-English languages under
the zero-shot setting. We then demonstrate the
benefit of the proposed multilingual multimodal
pre-training.

The upper section shows the zero-shot results.
Unlike cross-lingual transfer in NLP tasks, employ-
ing multilingual Transformers in vision-language
tasks apparently does not generalize well across
languages. For example, there is a significant
drop in R@1 (19.9→11.1 (-44%) with mBERT,
21.0→16.3 (-24%) with XLM-R) when directly ap-
plying English-finetuned model to German→video
search. For comparison, there is only a -10% degra-
dation for XLM-R on en→ de cross-lingual trans-
fer in XNLI (Conneau et al., 2018). Multimodal
(English-video) pre-training (MP) on HowTo100M
only improves average R@1 (+0.1 or mBERT and
+1.1 for XLM-R) compared to model-from-scratch.
In contrast, our proposed multilingual multimodal
pre-training (MMP) is shown to be the key facilita-
tor for zero-shot cross-lingual transfer. MMP im-
proves German→Video search (11.1→15.0, +35%
for mBERT, and 16.3→19.4, +20% for XLM-R)
and achieves 2.6 ∼ 2.8 improvement in average
R@1. We attribute the effectiveness of MMP to
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Model en de fr cs zh ru vi sw es Avg↑
mBERT 19.9 11.1 11.6 8.2 6.9 7.9 2.7 1.4 12.0 9.1
mBERT-MP 20.6 11.3 11.9 8.0 7.1 7.7 2.5 1.1 12.5 9.2
mBERT-MMP 21.8 15.0 15.8 11.2 8.4 11.0 3.7 3.4 15.1 11.7
XLM-R 21.0 16.3 17.4 16.0 14.9 15.4 7.7 5.7 17.3 14.7
XLM-R-MP 23.3 17.4 18.5 17.1 16.3 17.0 8.1 6.2 18.5 15.8
XLM-R-MMP 23.8 19.4 20.7 19.3 18.2 19.1 8.2 8.4 20.4 17.5
mBERT + translated VTT 19.6 18.2 18.0 16.9 16.2 16.5 8.4 13.0 18.5 16.1
mBERT-MMP + translated VTT 21.5 19.1 19.8 18.3 17.3 18.3 8.9 14.1 20.0 17.4
XLM-R + translated VTT 21.5 19.6 20.1 19.3 18.9 19.1 10.3 12.5 18.9 17.8
XLM-R-MMP + translated VTT 23.1 21.1 21.8 20.7 20.0 20.5 10.9 14.4 21.9 19.4

Table 4: Recall@1 of multilingual text→video search on VTT. Upper: Zero-shot cross-lingual transfer. Lower:
Performance with synthesized pseudo-multilingual annotations for training. MMP: multilingual multimodal pre-
training on Multi-HowTo100M. MP: Multimodal (English-Video) pre-training on HowTo100M.

Model R@1↑ R@5↑ R@10↑
JSFusion (Yu et al., 2018) 10.2 31.2 43.2
JPoSE (Wray et al., 2019) 14.3 38.1 53.0
VidTrans (Korbar et al., 2020) 14.7 − 52.8
HT100M (Miech et al., 2019) 14.9 40.2 52.8
Noise (Amrani et al., 2020) 17.4 41.6 53.6
CE* 3 (Liu et al., 2019) 20.9 48.8 62.4
Ours(VTT:en-only) 21.0 50.6 63.6
Ours-MMP (VTT:en-only) 23.8 52.6 65.0

Table 5: English→video search performance on VTT.
CE* uses 9K videos for training, while other baselines
and our model use 6.5K videos for training.

a soccer team walking out 
on the field

1

2

3

1

2

3

(0.69)

(0.58)

(0.53)

(0.71)

(0.47)

(0.54)

✅ ✅

человек жонглирует палками на 
вершине заснеженной горыRank

Figure 3: English→video and Russian→video on VTT

learning improved alignments between multilin-
gual textual and visual context in the shared embed-
ding space, as relatively balanced improvements
between English→video and non-English→video
is observed with fine-tuning.

Fig 2 shows the trend of incrementally incor-
porating more languages in MMP. For XLM-R,
improvement in R@1 asymptotically converges
when pre-training with more multilingual text-
video pairs. On the other hand, for zero-shot
German→video search, pre-training with more lan-
guages keeps improving the search performance,
even though the additional language (e.g. French)
is different from the target language (i.e. German).

The lower section of Table 4 shows the results
of models fine-tuned with (synthesized) pseudo-
multilingual annotations. It can be regarded as

English to Video Chinese to Video
Model R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑
VSE (Kiros et al., 2014) 28.0 64.3 76.9 - - -
VSE++ (Faghri et al., 2018) 33.7 70.1 81.0 - - -
Dual (Dong et al., 2019) 31.1 67.4 78.9 - - -
HGR (Chen et al., 2020a) 35.1 73.5 83.5 - - -
Ours (VATEX:en-only) 43.5 79.8 88.1 23.9 55.1 67.8
Ours-MMP (VATEX:en-only) 44.4 80.5 88.7 29.7 63.2 75.5
Ours-MMP (VATEX:en, zh) 44.3 80.7 88.9 40.5 76.4 85.9

Table 6: Multilingual text→video search on VATEX.

the translate-train scenario, which serves as a
strong performance target for evaluating zero-shot
cross-lingual transfer, as discussed in (Lample and
Conneau, 2019; Hu et al., 2020). Both mBERT
and XLM-R yield better performance across non-
English languages with the in-domain translated
pseudo-multilingual annotations. However, for
English→video search, a 0.7 degradation is ob-
served compared to the zero-shot setting. It is likely
due to the noise in translated captions. Notably,
there is still a performance gap between zero-shot
and translate-train settings for models with mBERT.
In contrast, the gap is much smaller for models with
XLM-R. In the following sections, unless otherwise
specified, we use our best model with XLM-R as
the text backbone to compare with other baselines.

5.6 Comparison to Supervised State of the
Art

English→Video Search on VTT. Table 5 shows
the comparison of English→video models on VTT,
where our model outperforms other baselines by a
large margin. Essentially, our model achieves 8.9
R@1 improvement over the original HowTo100M
model. Using a smaller set of visual features and
training on a smaller (6,513 vs 9,000) training
set, our model also outperforms CE (Liu et al.,
2019) with or without pre-training. Fig. 3 shows
an English→video and a zero-shot Russian→video
search results with Ours-MMP. Our model retrieves
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M30K English to Image German to Image Czech to Image
Model # lang. R@1↑ R@5↑ R10↑ R@1↑ R@5↑ R@10↑ R@1↑ R@5↑ R@10↑
OE†* (Vendrov et al., 2015) 2 21.0 48.5 60.4 25.8 56.5 67.8 - - -
VSE++* (Faghri et al., 2018) 2 31.3 62.2 70.9 39.6 69.1 79.8 - - -
Pivot† (Gella et al., 2017) 2 22.5 49.3 61.7 26.2 56.4 68.4 - - -
MULE (Kim et al., 2020) 4 42.2 72.2 81.8 35.1 64.6 75.3 37.5 64.6 74.8
SMALR (Burns et al., 2020) 10 41.8 72.4 82.1 36.9 65.4 75.4 36.7 68.0 78.2
MHA-D (Huang et al., 2019b) 2 50.1 78.1 85.7 40.3 70.1 79.0 - - -
Ours (M30K:en-only) 1 48.4 78.3 85.9 31.4 61.1 72.6 33.2 65.2 76.1
Ours-MMP (M30K:en-only) 1 50.0 79.2 86.8 33.8 63.3 74.7 37.9 68.8 78.2
Ours-MMP (M30K:en, de, cs, fr) 4 51.6 80.1 87.3 45.1 75.6 85.0 46.6 75.9 83.4

Table 7: Multilingual text→image search on Multi30K. MMP: Multilingual multimodal pre-training.

the correct videos and the other top-ranked videos
share similar appearance to the correct one.

Multilingual Text→Video Search on VA-
TEX. Table 6 summarizes English→video and
Chinese→Video search performance on VATEX.
Under the zero-shot setting where we train with
only English-video pairs, our model already
outperforms other baselines. However, a clear gap
between English→video and Chinese→video is
observed, indicating that cross-lingual transfer
remains challenging even with XLM-R. With the
proposed MMP, the gap is significantly closed
by 5.8/8.1/7.7 in R@1/5/10. With the access to
Chinese annotations, the performance of our model
is further improved for both languages and our
model achieves new state of the art performance.

Cross-Modality Transfer: From Video-Text to
Image-Text on Multi30K. To extend our study
on zero-shot cross-lingual transfer for image-text
tasks, we investigate the feasibility of transferring
our video-text model across modalities. We replace
the 3D-CNN in the original video-text model with
a 2D-CNN to encode the image. In practice, fol-
lowing MHA-D (Huang et al., 2019b), we utilize
the Faster-RCNN (Ren et al., 2015) pre-trained in
Visual Genome (Krishna et al., 2016) to extract
regional visual features. Essentially, an image is
encoded as ev = RM×H where M = 36 is the
maximum number of visual objects in an image.
For models with MMP, we initialize their weights
with the model pre-trained on Multi-HowTo100M.
To tackle the feature mismatch between 2D-CNN
and 3D-CNN, we leverage a linear layer with a
doubled learning rate to map 2D-CNN features to
the same dimension as 3D-CNN features.

Table 7 shows the results on Multi30K. For
zero-shot cross-lingual transfer, when training
from scratch (M30K:en-only), our model achieves
comparable performance to MHA-D but lags in
German→image search since it only uses En-

glish annotations. In Ours-MMP, pre-training
improves all recall metrics even with modality
gap. The average R@1 improvement is 3.2.
A larger gain for (relatively) low-resource lan-
guage such as Czech is observed. Without us-
ing any Czech annotations, our zero-shot model
with MMP achieves comparable Czech→image
search performance to SMALR (Burns et al.,
2020), which uses 10 languages including Czech.
However, when transferring across modalities
and using only English annotations, there are
performance gaps between English→Image and
German/Czech→Image search, implying that trans-
ferring models across modalities is feasible but
remains challenging. We consider zero-shot cross-
modal cross-lingual transfer as our future work.

For a fair comparison with other baselines, when
training with annotations in all 4 languages pro-
vided by Multi30K, our model greatly outper-
forms all baselines by large margins in multilingual
text→image search.

6 Conclusion

We have presented a multilingual multimodal pre-
training (MMP) strategy, the Multi-HowTo100M
dataset, and a Transformer-based text-video model
for learning contextualized multilingual multi-
modal representations. The results in this paper
have convincingly demonstrated that MMP is an es-
sential ingredient for zero-shot cross-lingual trans-
fer of vision-language models. Meanwhile, there
are many remaining challenges, such as resolving
the performance gap between zero-shot and train-
ing with in-domain non-English annotations; as
well as techniques to transfer varieties of vision-
language models (e.g., VQA (Goyal et al., 2017) or
TVQA (Lei et al., 2020)). We believe the proposed
methodology, and the corresponding resources we
will release, will be an important first step towards
spurring more research in this direction.
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ya fries ya Kifaransa unaweza pia kuandamana nayo

también la voy a acompañar con un poco de papas fritas
und dann ziehen Sie es so fest wie möglich是什么，它是热风枪，我花了十美元买了

It will also be accompanied with a little of french fries
а затем потяните его как можно плотнееWhat it is, is a heat gun and I got this for ten bucks

00:00:37.160 --> 00:00:48.860

we just made our six-sided coaster so

and then pull it as tight as possible

nous venons de faire notre caboteur à six côtés donc ce que 

00:11:36.380 --> 00:11:44.390

00:08:35.289 --> 00:08:39.300

von Pommes Frites können Sie es auch mit begleiten

khoai tây chiên bạn cũng có thể đi kèm với nó

00:01:16.290 --> 00:01:21.210

Figure 4: Video clips and the corresponding multilingual subtitles Multi-HowTo100M.

A Appendix Overview

This supplementary material is organized as the
following: First we introduce the Multilingual
HowTo100M dataset for multilingual multimodal
pre-training in §B. Then we provide additional im-
plementation details and experiment setup in §C.
Additional ablation studies regarding choices of
hyper parameters in our model architecture is dis-
cussed in §D. Then we provide and discuss addi-
tional experimental results in §E. Additional quali-
tative results on VTT can be found in §F.

B The Multilingual HowTo100M Dataset

In this section we provide the detailed statis-
tics of the Multilingual HowTo100M (Multi-
HowTo100M) dataset. We also provide a com-
parison to Sigurdsson et al. (2020) that also uses
HowTo100M for unsupervised word translation.

The Multi-HowTo100M dataset is built upon the
original English HowTo100M dataset (Miech et al.,
2019) that contains 1.2 million instructional videos
(138 million clips) on YouTube. We reuse the raw
English subtitles in HowTo100M, where the subti-
tles in HowTo100M are either the automatic speech
recognition (ASR) transcriptions or the user gener-
ated transcription. In most cases they are generated
by Google ASR.

For Multi-HowTo100M, we use the same video
collection as English HowTo100M. At the time
of data collection, there were 1.09 million videos
accessible. We collect the subtitles provided by
YouTube, which either consist of user-generated
subtitles or those generated by Google ASR and
Translate in the absence of user-generated ones. Es-
sentially, we collect video subtitles in 9 languages:
English (en), German (de), French (fr), Russian
(ru), Spanish (es), Czech (cz), Swahili (sw), Chi-
nese (zh), Vietnamese (vi). Table 8 summarizes the

dataset statistics for each language. In most cases
there are more than 1 billion tokens a language.

Fig. 5 further shows the number of tokens per
video. There are typically lengthy narrations that
contains several hundreds of tokens available in
each instructional video. Fig. 6 shows the distri-
bution of number of tokens in a subtitle. For each
subtitle segment, which ranges from 0 20 seconds,
there are typically 15-25 words. The most of the
cases, subtitles are well aligned in time for non-
English languages. Fig. 4 visualizes a few exam-
ples in Multi-HowTo100M.

A similar HowTo100M variant has been recently
reported (but not yet released) in MUVE (Sigurds-
son et al., 2020) that is created for unsupervised
word translation. Our Multil-HowTo100M dif-
fers from MUVE in the following perspectives:
First, we collects 9 language for all videos in
HowTo100M. MUVE only has 4 languages avail-
able (English, French, Japanese, and Korean) on
HowTo100M. Also, MUVE divided HowTo100M
into 4 non-overlapped sections for each language
while there are parallel language pairs in Multi-
HowTo100M. Essentially, there are more lan-
guages in Multi-HowTo100M (9 vs. 4) There are
more than 1 billion tokens in most languages.
To our best knowledge, our Multi-HowTo100M
dataset is currently the largest multilingual text-
video collection.

Beyond scale, instructional videos in Multi-
HowTo100M are feasible resources for learning
language-video models. Demonstrators in instruc-
tional videos typically perform intentionally and ex-
plain the visual object or action explicitly. Accord-
ing to the inspection by (Miech et al., 2019), for
around 51% of clips, at least one object or action
mention in the caption can be visually seen. Prior
work has shown that instructional videos are useful
for event recognition (Yu et al., 2014), action local-
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Language videos #subtitle #tokens
English 1238911 138429877 1.18B
German 1092947 69317890 1.26B
French 1093070 69399097 1.33B
Czech 1092717 68911940 1.22B
Russian 1092802 69117193 1.25B
Chinese 1092915 68939488 0.94B
Swahili 1092302 68898800 1.22B
Vietnamese 1092603 68887868 1.13B
Spanish 1092649 70143503 1.16B

Table 8: Multi-HowTo100M statistics
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Figure 5: Distribution of #tokens/video in Multi-
HowTo100M
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Figure 6: Distribution of #tokens/subtitle in Multi-
HowTo100M

ization model (Alayrac et al., 2016), cross-modal
alignments (Malmaud et al., 2015). We expect the
previous success in the intersection of NLP and CV
could be further translated into more languages to
have a broaden impact to the world.

The are great potentials of using our Multi-
HowTo100M dataset in related research field such
as multilingual multimodal representation learn-
ing, multilingual multimodal translation, multilin-
gual image/video captioning ... etc. We expect the
release of Multi-HowTo100M will be a first step
towards spurring more research in these directions.

C Implementation and Experiment
Details

Pre-Processing For pre-possessing, we truncate
the maximum length N of text to 192 for pre-
training on Multi-HowTo100M or HowTo100M.
The maximum length is set to 96 for fine-tuning
VTT (Xu et al., 2016), VATEX (Wang et al., 2019)
and Multi30K (Elliott et al., 2016). The maximum

video length is set to 128 for pre-training on Multi-
HowTo100M or HowTo100M and 36 for all fine-
tuning tasks.

Model Architecture For the multilingual Trans-
formers, either multilingual BERT (Delvin et al.,
2018) or XLM-R-large (Artetxe et al., 2020), we
use the pre-trained version provided by Hugging-
Face. 4 and use their corresponding tokenizers for
tokenization. Detailed design choices regarding
output layer and frozen layer is discussed in §D.

For the video backbone, we use a 34-layer,
R(2+1)-D (Tran et al., 2018) network pre-trained
on IG65M (Ghadiyaram et al., 2019) and a
S3D (Miech et al., 2020) network pre-trained on
HowTo100M (Miech et al., 2019). We apply a
spatial-temporal average pooling over the last con-
volutional layer, resulting in a 512-dimensional
vector for each 3D CNN network. We extract vi-
sual features at a rate of 1 feature per second. Since
the 3D CNNs employs different size of input win-
dows (e.g., 8 frames for R(2+1)D and 16 for S3D),
we re-sample videos to 30 fps and employs a win-
dow of size 8 or 30 that takes consecutive frames
starting from the beginning of every second for en-
coding. We simply concatenate the two 3D-CNN
outputs and use the 1024-dimension vector as the
visual input stream to our model. Notably, instead
of using 9 different types of visual features as in CE
(Liu et al., 2019), we use only the above 2 features
and achieve superior performance.

For the Transformer pooling head (TP), we use
a 2-layer Transformer with 4-head attention for
each TP module. The embedding dimension D
is set to 1024. We do not use the positional em-
bedding in both text and video TP as we do not
find it beneficial. The softmax temperature in all
NCE contrastive objectives is set to 0.1 as used in
SimCLR (Chen et al., 2020b).

Training and Inference Details and Profiling.
For the softmax temperature in NCE, we set to
0.1 as used in SimCLR (Chen et al., 2020b). We
use the Adam (Kingma and Ba, 2015) optimizer
with a initial learning rate 2 · 10−4 and clip gra-
dients greater than 0.2 during the training phase.
Dropout rate is 0.3. Since the video length and
token length is longer in the pre-training phase, we
use a 64 batch size for pre-training. For fine-tuning,
we use a batch size of 128.

Pre-training on 1.2 million HowTo100M videos
takes around 10 GPU hours (NVIDA V100) for 16

4https://github.com/huggingface/transformers



15

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

Anonymous Submission

epochs. We speed up the pre-training process by
distributing the workload over 8 GPUs on a single
server. We use 1 GPU for the fine-tuning or train-
ing from scratch experiments. For the MSR-VTT
split, it takes 12 GPU hours to train our model on
180K video-text pairs for 20 epochs. For VATEX,
it takes 32 GPU hours to train on 260K video-text
pairs for 30 epochs. For inference, the encoding
speed is around 250-300 videos/sec and 200-250
text queries/sec. The overall text→video search
speed on 1,000 video-text pairs (1,000 text queries
over 1,000 videos) is around 6 seconds including
video/text encoding and ranking their similarity
scores.

Experiment Details Our experiment consider
three types of pre-training: (1) Multilingual multi-
modal pre-training (MMP), (2) Multimodal pre-
training (MP), and (3) no pre-training (from
scratch). For (1) and (2), we pre-train 16 epochs
and use the model weight at 16-th epoch for fine-
tuning experiments.

For multimodal pre-training, we pre-train on the
original English HowTo100M dataset. We iterate
over all videos in HowTo100M. For each video, we
randomly sample the start and end time to construct
a video clip. For each clip, we locate the nearest
consecutive ASR transcriptions in time and use it
as to construct the (video, text) pair for training.

For multilingual multimodal pre-training
(MMP), we use Multi-HowTo100M for pre-
trianing. For each video, we follow the same
strategy as MP. For a clip, we sample one language
type each time from 9 languages and use the
consecutive ASR transcriptions that are closest in
time to compose (video, text) pairs for training.

After the pre-training phase, we fine-tune
our model on VTT or VATEX to evaluate on
text→video search tasks. In the zero-shot cross-
lingual transfer experiments, we use only English-
video data. We then directly test the model with
non-English queries to report the zero-shot perfor-
mance. When annotations in additional languages
are available (by humans in VATEX and Multi30K;
by MT models (i.e. translate-train) in VTT), we
train our model with all available multilingual an-
notations (i.e. fully supervised) to compare fairly
with other baselines in multilingual text→video
search.

Since pre-trained model has a faster convergence
rate, we fine-tune for 10 epochs and use the model
with best validation performance (summation of

R@1, R@5, R@10) for testing. For models with-
out pre-training (i.e., from-scratch), we train for 20
epochs under the same training protocol.

D Additional Ablation Studies

As has been investigated in XTREME (Hu et al.,
2020), choosing different output layers will affect
the zero-shot transferability of multilingual Trans-
formers in NLP tasks. For text→video search tasks,
we conduct a series of experiments to identify the
desirable hyper-parameter choices in the proposed
multilingual multimodal Transformer that lead to
best performance in English-to-video and (zero-
shot) non-English-to-video search performance.
Beyond our ablation studies in Sec.5, in this sec-
tion we highlight our trials in the choice of the
output layer and the layers to be frozen in our mul-
tilingual Transformer backbone (i.e. mBERT and
XLM-R). There are 24 layers in XLM-R (large)
and 12 layers in mBERT. We perform grid-search
on VTT to identify the best choice of these two
hyper-parameters.

D.1 Choosing the output layer and the layers
to freeze in Multilingual Transformers

Table 9 and Table 10 compare different choice
of hyper-parameters. The best output layer for
mBERT and XLM-R is the 12-th layer. While out-
put layer does not affect English→video search
significantly, it greatly affects the zero-shot cross-
lingual transfer performance. For both XLM-R and
mBERT, the performance degrade significantly if
fine-tuning all layers.

Meanwhile, we also observe that when freezing
all layers (i.e. using the pre-extracted contextual-
ized multilingual embeddings) does not lead to
satisfactory results. For mBERT, R@1 drops from
19.9 to 18.9 in English→video search and 11.1 to
9.8 in German→video search. For XLM-R, R@1
drops from 21.0 to 18.9 in English→video search
and 16.3 to 14.1 in German→video search. These
results imply that text-only contextualized multilin-
gual embeddings along are likely to be infeasible to
be applied to vision-language tasks without proper
fine-tuning.

An important tendency is that the best
English→video search performance corresponds
to the best German→video performance. This
trend implies that for model selection, the config-
uration for the best English→video model usually
translates to the best configuration for (zero-shot)
cross-lingual model. This shared trend justifies the
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Model R@1 R@5 R@10
VSE (Kiros et al., 2014) 10.1 29.4 41.5
VSE++ (Faghri et al., 2018) 14.4 35.7 46.9
Dual (Dong et al., 2019) 13.7 36.1 48.2
HGR (Chen et al., 2020a) 16.4 38.3 49.8
Ours-Full 24.0 50.5 62.1

Table 12: Zero-shot generalization on YouTube2Text
with VTT-finetuned model.

Output layer Freeze lower en de
3 0 20.9 3.2
6 0 20.5 3.1
9 0 21.0 4.8

12 0 21.0 13.3
15 0 20.5 12.3
18 0 20.8 12.6
12 6 21.0 15.5
12 9 21.0 16.3
12 12 18.9 14.1

Table 9: Text→video R@1 of XLM-R output layers
and layers to freeze on VTT

Output layer Freeze lower en de
3 0 19.2 2.5
6 0 19.5 2.0
9 0 19.3 5.8

12 0 19.6 8.8
12 6 19.3 10.5
12 9 19.9 11.1
12 12 18.9 9.8

Table 10: Text→video R@1 of mBERT output layers
and layers to freeze on VTT

text→video English Non-English
In-domain X X

Out-of-domain X

Table 11: Coverage of our experiments

English→video ablation studies in the original pa-
per. Note that we utilize the best English→video
for all (zero-shot) cross-lingual experiment in our
experiment section.

For multilingual text→video search, the best
configuration we found in our experiments is to
output the 12-th layer and freeze the layers below
9 for both mBERT and XLM-R.

E Additional Experimental Results

The coverage of our text→video search experi-
ments is summarized in Table 11. Due to length

constraint, we provide the additional experimental
result in this supplementary material. Essentially,
our experiments cover the following scenarios:

1. In-domain, English: Table 5 (VTT) and Ta-
ble 6 (VATEX) in the original paper.

2. In-domain, non-English: Table 4 (VTT, 9
languages) and Table 6 (VATEX, Chinese).

3. Out-of-domain, English: We provide addi-
tional (zero-shot) generalization results across
datasets in §E.1.

4. Out-of-domain, non-English: We consider
as our future work.

E.1 Generalizability across English-Video
Datasets

In this section. we provide additional experiment
results regarding zero-shot generalization of the
VTT-finetuned model on out-of-domain dataset.
Specifically, we test on YouTube2Text (Chen and
Dolan, 2011). The aim of this experiment is to
test the cross-dataset generalizabilty of our model
without using domain-specific training data.

Table 12 shows the comparison of
English→video search results on the
YouTube2Text testing set. Models in this ta-
ble are only fine-tuned on VTT and use no
YouTube2Text training data. As can be observed,
our model with MMP generalizes well on
YouTube2Text, outperforming HGR (Chen et al.,
2020a) by 7.6 and DualEncoder (Dong et al., 2019)
by 10.3 in R@1.

F Additional Qualitative Results

We provide addition qualitative multilingual
text→video search results on VTT in Fig. 7. With a
query in 9 possible languages, there is one and only
one correct video to be retried out of the 1000 test-
ing videos in VTT testing set. As can be observed,
given a multilingual text query on top, in most
cases, our model successfully retrieves the cor-
rect videos marked in green. Also, the top-ranked
videos look semantically similar to the correct one.
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Figure 7: Qualitative examples of the top-3 multilingual text→video search results and cosine similarity scores on
VTT. Only one correct video (colored in green) for each multilingual text query on the top.


