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Abstract
Simulations of chemical systems rely on calcula-
tion of their potential energy surfaces (PES), i.e., a
function which returns the energy of a system un-
der study. The electronic structure of a molecule
may be closed-shell or open-shell, where either
all electron spins are paired, or one or more elec-
trons are unpaired in spin, respectively. While the
cost of quantum-chemistry calculations can be re-
duced by assuming a closed-shell electronic struc-
ture and removing the necessity of the spin degree
of freedom, it is often important to consider sys-
tems with unpaired spins, i.e. open-shell, such
as in radical chemistry or description of chemi-
cal reactions. Here, we propose an extension for
OrbNet-Equi, an equivariant deep-learning quan-
tum mechanical approach to representing chem-
ical systems at the electronic structure level. By
utilizing a spin-polarized treatment of the under-
lying semi-empirical quantum mechanics featur-
ization, OrbNet-Equi can describe both closed
and open-shell electronic structures. We test the
efficacy of this new representation with represen-
tative datasets.

1. Introduction
Predicting molecular properties is a highly important task in
various areas such as drug discovery and material science.
The space of possible molecular structures is huge, and high-
throughput methods for exploring these spaces is critical.
(Leelananda & Lindert, 2016).

*Equal contribution 1Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena, USA
2Department of Computing and Mathematical Sciences, California
Institute of Technology, Pasadena, USA. Correspondence to: Beom
Seok Kang <bkang@caltech.edu>, Vignesh C Bhethanabotla
<vbhethan@caltech.edu>.

Accepted as an extended abstract for the Geometry-grounded Rep-
resentation Learning and Generative Modeling Workshop at the
41 st International Conference on Machine Learning, ICML 2024,
Vienna, Austria. Copyright 2024 by the author(s).

Density functional theory (DFT) is a standard method to ap-
proach the many-electron system. Though fairly accurate for
many systems of interest, the relatively high cost and cubic
scaling with respect to the number of basis functions, which
scales with the system size, limit its applicability. Hence,
predicting the properties of a large number of molecules
using DFT can often be limited due to the severe computa-
tional cost. Semi-empirical methods circumvent some of the
cost by approximating some of the physical interactions to
parameterized functions, but suffer from a reduced accuracy.

In the Born-Oppenheimer approximation, a chemical sys-
tem is separated into its nuclear degrees of freedom and
its electronic degrees of freedom, the former of which is
treated classically and the latter of which is treated quan-
tum mechanically. Solving the Schödinger equation for the
electrons yields the energy and orbitals of the system as a
function of the coordinates of its nuclei. Electrons have both
spatial degrees of freedom and a spin degree of freedom,
the latter of which is binary up or down. Being fermions,
they obey the Pauli exclusion principle, which prevents any
two electrons from occupying the same state. Practically,
this means that two electrons can occupy the same spatial
orbital only if they have opposite spins. In this approximate
description, the electronic structure can be closed-shell or
open-shell. The closed-shell system assumes that all elec-
tron spins are paired, which allows for a more efficient
treatment where only spatial degrees of freedom need to
be considered in the solution of the Schrödinger equation.
The open-shell system is the opposite of this, where there
exist unpaired electrons, and necessitates a treatment of both
the spatial and spin degrees of freedom in the calcualted
orbitals.(Szabo & Ostlund, 1989).

Open-shell systems are especially important in many areas
of chemistry, such as describing radicals, reactive inter-
mediates, transition metal complexes, and other important
applications which all encounter unpaired electrons. Impor-
tantly, from the perspective of a representation for machine-
learning on molecular systems, calculating the energy of the
open or closed-shell state of a system is not dependent on
its atomic geometry, and so a description of the spin state
must be incorporated to properly account for this structure.
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Figure 1. Illustration of energy levels of orbitals and electrons oc-
cupying the orbitals. Closed-shell assumes all electrons to be
paired, restricted open-shell constrains spatial orbitals to be iden-
tical for different spins, and unrestricted open-shell considers the
spin polarization, leading different spin orbitals at the same spatial
orbital to have different energies.

While extensive research has been done on learning molec-
ular representations and predicting properties for closed-
shell molecules, there has been comparatively little focus on
open-shell molecules despite their significance. Most ma-
chine learning models that predict molecular properties rely
on molecular coordinates and element numbers as inputs.
This approach limits the generalizability of the models to
open-shell molecules, as they cannot distinguish between
closed-shell and open-shell states. Incorporating additional
embeddings could address this issue, but an effective method
for representing molecules with different spin states remains
unclear.

OrbNet-Equi is a deep learning model that learns the map-
ping between molecular electronic structure and physical
quantities (Qiao et al., 2022). The previous work from
Qiao et al. (2022) generates inputs using the semi-empirical
GFN1-xTB (Grimme et al., 2017) method. The model has
shown great potential in increasing accuracy to the level that
is on par with DFT/B3LYP level of theory. Moreover, its
equivariantly constructed neural network allows the accurate
prediction of some equivariant properties, such as forces
and dipole moments. However, the current featurization
of OrbNet-Equi learns on top of is strictly a closed-shell
representation of the molecular system.

Here, we present our plans for generalizing the OrbNet-
Equi structure to integrate the training for closed-shell and
open-shell molecules. We discuss our method to expand
this to training open-shell molecules along with closed-shell
molecules and how they can be distinguished by the model.
We expect that such an attempt can provide a good insight
in exploring the chemical space with different compositions
and conformations, and expand the capability of this model
to exploring more diverse chemical systems.

2. Related Works
2.1. Open-shell System Learning

In this section, we discuss some previous work that ad-
dressed the prediction of open-shell systems (some together
with closed-shell systems) using machine learning.

Lemm et al. (2021) implemented a machine learning model
Graph-To-Structure (G2S) to reconstruct atomic coordinates
by predicting the interatomic distances, from bond network
and stoichiometry, which allows to bypass of the costly en-
ergy minimization task of force-fields or ab initio methods.
However, this work mainly focuses on structure optimiza-
tion, and therefore has a different goal to ours and cannot
be compared directly.

Cheng et al. (2022a) successfully implemented a machine
learning method called molecular-orbital-based machine
learning (MOB-ML). This work uses Fock (F), exchange
(K), and Coulomb (J) matrices but uses the localized molec-
ular orbitals instead of the atomic orbital basis. The method
additionaly uses Gaussian Process Regression (GPR) in con-
trast to a deep-learning approach. Further, the MOB-ML
approach utilizes the Hartree-Fock (HF) method for gen-
erating its MO features, which are higher cost than DFT
calulations, and usually targets higher level theory labels,
such as coupled-cluster or multi-reference methods. Such an
approach shows accurate predictions with several different
datasets, for both closed-shell and open-shell.

In addition, Unke et al. (2021) introduced SpookyNet, which
is a neural network model that constructs force fields via
self-attention. SpookyNet requires four inputs: atomic num-
bers, Cartesian coordinates, total charge, and total angular
momentum, i.e. the number of unpaired electrons. The
inputs are processed into different representations, and then
they are passed through the neural network to predict energy.
This approach applies empirical augmentations to extrapo-
late beyond the training data, showing good performance
on different datasets with both closed-shell molecules and
open-shell molecules. However, SpookyNet has weaknesses
in predicting the properties of unknown molecules and con-
formations.

2.2. OrbNet

OrbNet is a deep learning framework that was introduced
to predict the molecular energy from atomic orbital (AO)
features (Qiao et al., 2020). The model employs AO fea-
tures, represented by quantum chemical matrices produced
while self-consistent field (SCF) convergence, as inputs to it.
OrbNet uses AO features which are evaluated in a symmetry-
adapted atomic-orbital (SAAO) basis. The AO features are
then encoded into graph-structured data which then are ap-
plied to a model of which the graph neural network (GNN)
architecture is adopted. The data represented on the graph
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are passed through a neural network, and the output tensor
is decoded and summed to yield the final output, which is
the molecular energy. More detailed explanations of the
theory and structure of the model can be found in (Qiao
et al., 2020).

3. Method
3.1. OrbNet-Equi

OrbNet-Equi utilizes AO features and allows prediction
of the translation-rotation (E(3)) equivariant properties of
molecules such as atomic forces and invariant properties
such as molecular energy (Qiao et al., 2022).

OrbNet-Equi uses matrices that are generated using the
GFN1-xTB method (Grimme et al., 2017). Specifically, the
matrices that are calculated using GFN1-xTB are the Fock
(F), density (P), the Hamiltonian (H), and the overlap (S)
matrices which are put into a vector (T = [F,P,H,S]) as
input. The matrices are generated from their corresponding
operators and orbitals. For example, the Hamiltonian matrix
H is formulated by

(H)n,l,m;n′,l′,m′

AB = ⟨Φn,l,m
A |Ĥ|Φn′,l′,m′

B ⟩, (1)

where A and B indicate different atoms, (n, l,m) and
(n′, l′,m′) are the basis sets for the atoms, and Ĥ is the
Hamiltonian operator.

Hole excitation and particle excitation matrices are also at-
tempted to be used in the original work, but in this work we
only use F, P, S and H matrices as a starting point. GFN1-
xTB is a semiempirical method that allows for a rapid cal-
culation but is less accurate than density functional theory
(DFT) methods. OrbNet-Equi applies the “delta-learning”
strategy (Ramakrishnan et al., 2015), which is a strategy
that learns the discrepancy between the predicted properties
calculated at a lower (i.e., more approximate) level of theory
and a higher (but more costly) level of theory. Specifically,
the original OrbNet implementation tested on the delta la-
bels between the semi-empirical GFN-xTB and a higher
level DFT treatment. Since the properties can be rapidly
calculated from the semiempirical GFN1-xTB method, the
relative inaccuracy can be obtained several orders of magni-
tude quickly compared to that done purely by DFT methods,
which often require a much greater amount of calculations.

Although the original article (Qiao et al., 2022) focuses on
the use of the closed-shell GFN1-xTB method to calculate
input matrices, the structure of OrbNet-Equi is not limited to
it. To study and learn the mapping between the open-shell
system and the molecular properties, we apply OrbNet-
Equi architecture but with different data representations and
outputs. The model we train learns the mapping F between
the open-shell system’s matrices vector T = [F,P,H,S]

and the label molecular property y that is either generated
by simulation or estimated by experiments, i.e. the goal is
to perform,

min
F

L(y, ŷ), (2)

where L is the loss function for training and ŷ = F(T) is
the prediction of the label molecular property y from the
model.

We also highlight that OrbNet-Equi is capable of learning
equivariant properties, such as forces, which are defined by

F⃗u = −∇r⃗uE, (3)

where F⃗u, r⃗u, E are the force vector for atom u, the position
vector of atom u, and the energy of the molecule, respec-
tively. Since force is equivariant to translation and rotation,
to predict it accurately and correctly, the neural network
must also be equivariant to them:

R · F(T) = F(R · T), (4)

where R is an arbitrary rototranslational operation. We note
that invariance is a special case of equivariance where the
output does not change with rotation of the input. Such
rotation on matrices results in a predictable change in their
elements. To elaborate, for each block that contains inter-
action between atom A’s orbital with angular momentum
quantum number l and atom B’s orbital with angular mo-
mentum quantum number l′, the transformation R·T results
as follows,

(R · T)l;l
′

AB = Dl(R)(T)l;l
′

ABD
l′(R)†, (5)

where Dl(R) is the Wigner-D matrix of degree l, for the
given operation R. The dagger symbol represents the Her-
mitian conjugate. The design of OrbNet-Equi satisfies the
equivariance by successfully implementing an equivariant
neural network, namely F . Detailed explanations of the
architecture of equivariant neural networks are addressed
in the article (Qiao et al., 2022). A brief illustration of the
overview is shown in figure 2.

3.2. Generating atomic orbital features for integrated
closed-shell and open-shell systems

As open-shell systems take into account the unpaired elec-
trons, the different spin orbitals are also considered. Hence,
each spatial orbital can be split into two spin orbitals. Cal-
culations in the spin basis can be converged either in a
restricted or unrestricted treatment. In the former, the over-
all spin state is specified by constraining the spatial orbitals
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Figure 2. Illustration of the equivariance in OrbNet-Equi. The
geometry of the methane molecule is rotated by 90◦ in a counter-
clockwise direction about the z-axis, which is denoted here by
R. The example matrices are the Fock matrices (F) generated
by the GFN1-xTB method using each geometry. Black borders
show the grouping of the elements to their atomic centers. The
matrices are then forwarded to the equivariant neural network F to
get the predicted equivariant properties. The resulting equivariant
property may include vector quantities such as forces and dipole
moment and invariant scalar quantities such as energy.

to be either singly or doubly occupied. In the latter, all
orbitals are allowed to relax the spin degree of freedom, and
the spin state is specified by the initial guess state plugged
into the self consistent field method. In this work, we use
the implementation of the unrestricted SCF procedure for a
spin-polarized calculation in the GFN1-xTB form, referred
to as the spGFN1-xTB method (Neugebauer et al., 2023).

The current OrbNet-Equi architecture utilizes the AO fea-
tures generated directly from the closed-shell GFN1-xTB
method calulated in the restricted closed-shell configuration.
This means that all electrons are paired, which allows for the
simplification of the orbital basis to only contain the spatial
degrees of freedom, and assumes that all occupied orbitals
contain 2 electrons, one for each spin. In contrast, an open-
shell calculation will allow for unpaired spins. For different
spins, we shall formulate different Roothaan equations, i.e.,

FαCα = SCαϵα, (6)

FβCβ = SCβϵβ , (7)

where the superscripts α and β are the different spins, C is
the orbital coefficients matrix, and ϵ is the diagonal matrix
of orbital energies. Hence, for the unrestricted open-shell
system, instead of a single Fock matrix generated from
spatial orbitals interactions, we get two Fock matrices for
different spins (Szabo & Ostlund, 1989). Similarly, we get
two density matrices for different spins, which each element
is given by,

Pα
µν =

Nα∑
a

Cα
µa(C

α
νa)

∗ (8)

P β
µν =

Nβ∑
a

Cβ
µa(C

β
νa)

∗ (9)

where P and C are the individual elements of the density
matrix and the orbital coefficients matrix, respectively, the
subscripts represent the position of elements, and Nα and
Nβ are number of electrons with α spin and β spin, respec-
tively (Szabo & Ostlund, 1989).

This generally applies to closed-shell systems as well. How-
ever, for closed-shell systems, matrices are identical for
different spins. More precisely, we get Fα = Fβ = F,
and Pα = Pβ = 1

2P for closed-shell molecules. In
this way, we can create a consistent representation for
both closed-shell and open-shell systems. With this rep-
resentation, now our vector of atomic orbital features is
T = [Fα,Fβ ,Pα,Pβ ,S,H] All AO features can be gener-
ated using the spGFN1-xTB method.

Another possibility is to use open-shell extended matrices,
where then each row and column represent spin atomic
orbitals instead of spatial ortibals. Since for each spatial
orbital it can split into two spin orbitals, the extended ma-
trices will have twice larger numbers of rows and columns.
Using the larger matrices, we can continue using the same
structure of the model. However, a possible problem that
this method might entail is that this method is expected to
be more expensive than the above method for separating
matrices with different spins. Also, there will exist many
0’s in every matrices, which may cause inefficiencies.

Both ways allow closed-shell molecules and open-shell
molecules to be represented in a consistent system. More-
over, they contain the same amount of information, and are
not limited to be used for GFN1-xTB matrices. The exam-
ples of both representations are shown in figure 3. We plan
to attempt both methods. For the closed-shell system, the
AO features are generated using the xtb implementation in
the tblite package (Ehlert, 2024). For the open-shell calcula-
tions, the spGFN1-xTB method, implemented in the same
package, will be used (Neugebauer et al., 2023).

3.3. Datasets

For integration, we first plan to train the model on energy
predictions with both an open-shell system dataset, QM-
Spin (Schwilk, Max et al., 2020; Cheng et al., 2022b), and
a closed-shell system dataset, QM9 (Ramakrishnan et al.,
2014).

The QM9 data set consists of 134,000 stable small organic
molecules with H, C, N, O, and F atoms (Ramakrishnan
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Closed-Shell 𝐏

Open-Shell Singlet 𝐏𝛼, 𝐏𝛽

Open-Shell Singlet 𝐏

Open-Shell Triplet 𝐏𝛼, 𝐏𝛽

Open-Shell Triplet 𝐏

Figure 3. Density matrices (P) generated using GFN1-xTB for
closed-shell methane (CH4) molecule (left), for open-shell singlet
methane molecule with separate matrices for different spins (upper
middle) and a single matrix for both spins (lower middle), and
for open-shell triplet methane molecule with separate matrices
for different spins (upper right) and a single matrix for both spins
(lower right).

et al., 2014). For each molecule, properties that are calcu-
lated using DFT with B3LYP/6-31G(2df,p) level of theory
are provided, which include: dipole moment, HOMO en-
ergy, LUMO energy, internal energies at 0 K and 298.15
K, and others. Specifically, we focus on the training model
with internal energy at 0 K.

The QMSpin dataset consists of 4,980 singlet and 7,834
triplet state carbene molecules’ data generated from the
QM9 dataset, which each data contains: atomic numbers,
molecular geometry (coordinates of each atom), singlet en-
ergy, and triplet energy (Schwilk, Max et al., 2020; Cheng
et al., 2022b). The geometries are optimized via restricted
open-shell B3LYP/def2-TZVP, and most of the energies are
obtained at MRCISD+Q-F12/cc-pVDZ-F12 (Cheng et al.,
2022a).

However, since QM9 and QMSpin use the different levels
of theories to calculate energies, they cannot be trained
together. Hence, a reasonable approach would be, to train
a model with QM9, i.e. closed-shell molecules, so that it
can learn the part of underlying physics from the abundant
closed-shell system data, and to fine-tune the model with
open-shell systems such as QMSpin to learn the remaining
part. However, after fine-tuning, the model will only be valid
to predict QMSpin molecules. This may not be universally
applicable as QMSpin consists of carbene molecules, and
hence it is probable that the trained model can optimize on
carbene structures only. Therefore, there arises the need of
general open-shell molecules dataset which is not limited
to certain structures. To our best knowledge, there does not
exist a sufficiently large dataset for such need.

We also plan to train our model for the prediction of forces,
which is also an essential task for creating a potential energy
surface with respect to the atomic coordinates. There exist
several datasets for this that provide both energies and forces,
including rMD17 (Christensen, Anders & von Lilienfeld,
O. Anatole, 2020) and SPICE (Eastman et al., 2023) which
are datasets with closed-shell molecules, and AIMNet-NSE
(Zubatyuk et al., 2021) with open-shell molecules.

3.4. Training

For training, we plan to use the same model architecture and
hyperparameters as those used for the previous OrbNet-Equi
(Qiao et al., 2022). In addition, we plan to use the Adam
optimizer (Kingma & Ba, 2014) with a linear warm-up with
100 epochs followed by cosine annealing with 200 epochs
with a maximum learning rate of 5×10−4. We plan to use a
batch size of 64 for training. Moreover, the loss function L
we plan to use for the integrated learning is smoothL1Loss,
which is a loss function with a quadratic slope below a
certain error and a linear slope above the error.

The ratio of open-shell and closed-shell molecules in the
training dataset is to be determined in such a way that the
model can capture the physics for both closed-shell and
open-shell systems well. The training can be done simul-
taneously using different datasets of those which share the
same level of theory and the basis set, or it can be done
firstly with closed-shell molecules, of which the amount of
data is greatly abundant, then the resultant model can be
fine-tuned with open-shell molecules to improve accuracy
for predicting open-shell systems, which is applicable to
currently available datasets.

4. Conclusion and Future Works
We presented our plan of generalizing the existing OrbNet-
Equi framework for integrating the training for open-shell
and closed-shell systems. We introduced the two possible
ways to represent closed-shell and open-shell systems. They
both are consistent and generalizable for both systems, and
are able to distinguish between molecules with different
total spins. With the given framework and the ways of
representations, we plan to apply several changes to OrbNet-
Equi to train on the closed-shell and open-shell systems.

We plan to train the model for predicting the energies and
forces of different molecules for different systems. We
propose two possible strategies; one is simultaneous training
and the other is closed-shell system training followed by
fine-tuning with open-shell system data. We summarize the
available datasets that can be used.
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