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Figure 1: 4K4DGen takes a static panoramic image with a resolution of 4096×2048 and allows
animation through user interaction or an input mask, transforming the static panorama into dynamic
Gaussian Splatting. 4K4DGen supports the rendering of novel views at various timestamps, enriching
immersive virtual exploration.

ABSTRACT

The blooming of virtual reality and augmented reality (VR/AR) technologies has
driven an increasing demand for the creation of high-quality, immersive, and
dynamic environments. However, existing generative techniques either focus solely
on dynamic objects or perform outpainting from a single perspective image, failing
to meet the requirements of VR/AR applications that need free-viewpoint, 360◦

virtual views where users can move in all directions. In this work, we tackle the
challenging task of elevating a single panorama to an immersive 4D experience. For
the first time, we demonstrate the capability to generate omnidirectional dynamic
scenes with 360◦ views at 4K (4096 × 2048) resolution, thereby providing an
immersive user experience. Our method introduces a pipeline that facilitates
natural scene animations and optimizes a set of dynamic Gaussians using efficient
splatting techniques for real-time exploration. To overcome the lack of scene-scale
annotated 4D data and models, especially in panoramic formats, we propose a novel
Panoramic Denoiser that adapts generic 2D diffusion priors to animate consistently
in 360◦ images, transforming them into panoramic videos with dynamic scenes
at targeted regions. Subsequently, we propose Dynamic Panoramic Lifting to
elevate the panoramic video into a 4D immersive environment while preserving
spatial and temporal consistency. By transferring prior knowledge from 2D models
in the perspective domain to the panoramic domain and the 4D lifting with spatial
appearance and geometry regularization, we achieve high-quality Panorama-to-4D
generation at a resolution of 4K for the first time.
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1 INTRODUCTION

With the increasing growth of generative techniques (Rombach et al., 2022; Blattmann et al., 2023a),
the capability to create high-quality assets has the potential to revolutionize content creation across
VR/AR and other spatial computing platforms. Unlike 2D displays such as smartphones or tablets,
ideal VR/AR content must deliver an immersive and seamless experience, enabling 6-DoF virtual
tours and supporting high-resolution 4D environments with omnidirectional viewing capabilities. De-
spite significant advancements in the generation of images, videos, and 3D models, the development
of panoramic 4D content has lagged, primarily due to the scarcity of well-annotated, high-quality
4D training data. Even in the most relevant field of 4D generation, existing works mainly focus on
generating or compositing object-level contents (Bahmani et al., 2024; Lin et al., 2024), which are
often in low-resolution (e.g., below 1080p) and cannot fulfill the demand of qualified immersive
experiences. Based on these observations, we propose that an ideal generative tool for creating
immersive environments should possess the following properties: (i) the generated content should
exhibit high perceptual quality, reaching high-resolution (4K) output with dynamic elements (4D);
(ii) the 4D representation must be capable of rendering coherent, continuous, and seamless 360◦

panoramic views in real time, supporting efficient 6-DoF virtual tours. However, creating diverse,
high-quality 4D panoramic assets presents two significant challenges: (i) the scarcity of large-scale,
annotated 4D data, particularly in panoramic formats, limits the training of specialized models. (ii)
achieving both fine-grained local details and global coherence in 4D and 4K panoramic views is
difficult for existing 2D diffusion models. These models, typically trained on perspective images with
narrow fields of view (FoV), cannot be easily adapted to the expansive scopes of large panoramic
images (see Exp. 4.3). On another front, video diffusion models (An et al., 2023) trained with
web-scale multi-modal data have demonstrated versatile utility as region-based dynamic priors, and
Gaussian Splatting (Kerbl et al., 2023) has shown efficient capabilities in modeling 4D environment.
Thus, we address the large-scale, omnidirectional dynamic scene generation (4D panoramic gener-
ation) problem by utilizing the generative power of diffusion models to animate static panoramic
images, transforming them into realistic, dynamic scenes that can support immersive, 360◦ viewing
experiences. To achieve this, we propose to elevate the dynamic panoramic video to 4D environment
assets using a set of dynamic Gaussians, which can be seamlessly integrated into VR/AR platforms
for real-time rendering and interaction.

In this paper, we introduce 4K4DGen, a novel framework designed to enable the creation of panoramic
4D environments at resolutions up to 4K. 4K4DGen addresses the key challenges of maintaining
consistent object dynamics across the entire 360◦ field-of-view (FoV) in panoramic videos, while
preserving both spatial and temporal coherence as the video transitions into a fully interactive 4D en-
vironment. Specifically, we propose the Panoramic Denoiser, which animates 360◦ FoV panoramic
images by denoising spherical latent codes corresponding to user-interacted regions. The Panoramic
Denoiser leverages a well-trained diffusion model originally designed for narrow-FoV perspective
images, enabling the generation of 360◦ dynamic panoramas while ensuring global coherence and
continuity throughout the entire panorama. To transform the omnidirectional panoramic video into
a 4D environment, we introduce Dynamic Panoramic Lifting, which corrects scale discrepancies
using a depth estimator enriched with perspective prior knowledge to generate panoramic depth maps.
Additionally, it employs time-dependent 3D Gaussians optimized with spatial-temporal geometry
alignment to ensure cross-frame consistency in dynamic scene representation and rendering. By
adapting generic 2D statistical patterns from the perspective domain to the panoramic format and
effectively regularizing Gaussian optimization with geometric principles, we achieve high-quality
4K panorama-to-4D content generation with photorealistic novel-view synthesis capabilities. Our
contributions can be summarized as follows.

• We introduce 4K4DGen, the first framework capable of generating high-resolution (up to
4096×2048) 4D omnidirectional assets without the need for annotated 4D data.

• We propose the Panoramic Denoiser, which transfers generative priors from pre-trained
2D perspective diffusion models to the panoramic space, enabling consistent animation of
panoramas with dynamic scene elements.

• We introduce Dynamic Panoramic Lifting, a method that transforms dynamic panoramic
videos into dynamic Gaussians, incorporating spatial-temporal regularization to ensure
cross-frame consistency and coherence.
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Figure 2: Panoramic Denoiser adapts diffusion priors from the perspective domain to the panoramic
domain by simultaneously denoising perspective views and integrating them into spherical latents at
each denoising step. This approach ensures consistent animation across multiple views.

2 RELATED WORK

Diffusion-based Image and Video Generation. Recent advancements have significantly expanded
the capabilities of generating 2D images using diffusion models, as evidenced in several studies (Dhari-
wal & Nichol, 2021; Nichol et al., 2021; Podell et al., 2024; Ramesh et al., 2022; Saharia et al.,
2022). Notably, Stable Diffusion (Rombach et al., 2022) optimizes diffusion models (DMs) within
the latent spaces of autoencoders, striking an effective balance between computational efficiency and
high image quality. Beyond text conditioning, there is increasing emphasis on integrating additional
control signals for more precise image generation (Mou et al., 2024; Zhang et al., 2023). For example,
ControlNet (Zhang et al., 2023) enhances the Stable Diffusion encoder to seamlessly incorporate
these signals. Furthermore, the generation of images with consistent perspective views is gaining
attention, such as the training-based techniques like (Tang et al., 2023; Höllein et al., 2024), or the
sampling-based techniques like (Song et al., 2023; Bar-Tal et al., 2023; Lee et al., 2023; Quattrini
et al., 2025). Diffusion models are also extensively applied in video generation, as demonstrated by
various recent works (Ge et al., 2023; Ho et al., 2022; Wang et al., 2023a; Wu et al., 2023b; 2024b;
Zhou et al., 2022). For instance, Imagen Video (Ho et al., 2022) utilizes a series of video diffusion
models to generate videos from textual descriptions. Similarly, Make-A-Video (Singer et al., 2023)
advances a diffusion-based text-to-image model to create videos without requiring paired text-video
data. MagicVideo (Zhou et al., 2022) employs frame-wise adaptors and a causal temporal attention
module for text-to-video synthesis. Video Latent Diffusion Model (VLDM) (Blattmann et al., 2023b)
incorporates temporal layers into a 2D diffusion model to generate temporally coherent videos.

3D/4D Large-scale Generation. In recent 3D computer vision, a large-scale scene is usually
represented as implicit or explicit fields for its appearance (Mildenhall et al., 2020; Kerbl et al.,
2023), geometry (Peng et al., 2020; Wang et al., 2023b; Huang et al., 2023), and semantics (Kerr
et al., 2023; Zhou et al., 2024a; Qin et al., 2024). We mainly discuss the 3D Gaussian Splatting
(3DGS) (Kerbl et al., 2023) based generation here. Several works including DreamGaussian (Tang
et al., 2024), GaussianDreamer (Yi et al., 2024), GSGEN (Chen et al., 2023), and CG3D (Vilesov
et al., 2023) employ 3DGS to generate diverse 3D objects and lay the foundations for compositionality,
while LucidDreamer (Chung et al., 2023), Text2Immersion (Ouyang et al., 2023), GALA3D (Zhou
et al., 2024c), RealmDreamer (Shriram et al., 2024), and DreamScene360 (Zhou et al., 2024b) aim
to generate static large-scale 3D scenes from text. Considering the current advancements in 3D
generation, investigations into 4D generation using 3DGS representation have also been conducted.
DreamGaussian4D (Ren et al., 2024) accomplishes 4D generation based on a reference image.
AYG (Ling et al., 2023) equips 3DGS with dynamic capabilities through a deformation network for
text-to-4D generation. Besides, Efficient4D (Pan et al., 2024) and 4DGen (Yin et al., 2023) explore
video-to-4D generation, and utilize SyncDreamer (Liu et al., 2023) to produce multi-view images
from input frames as pseudo ground truth for training a dynamic 3DGS. 4K4D (Xu et al., 2024) is a
high-resolution reconstruction technique that extends 3DGS to model complex human motion with
detailed backgrounds while achieving real-time rendering speed.
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Panoramic Representation. A panorama is an image that captures a wide, unbroken view of
an area, typically encompassing a field of vision much wider than what a standard photo would
cover, providing a more immersive representation of the subject. Recently, novel view synthesis
using panoramic representation has been widely explored. For instance, PERF (Wang et al., 2024a)
trains a panoramic neural radiance field from a single panorama to synthesize 360◦ novel views.
360Roam (Huang et al., 2022) proposed learning an omnidirectional neural radiance field and progres-
sively estimating a 3D probabilistic occupancy map to speed up volume rendering. OmniNeRF (Gu
et al., 2022) introduced an end-to-end framework for training NeRF using only 360◦ RGB images
and their approximate poses. PanoHDR-NeRF (Gera et al., 2022) learns the full HDR radiance field
from a low dynamic range (LDR) omnidirectional video by freely moving a standard camera around.
In the realm of 3DGS, 360-GS (Bai et al., 2024) takes 4 panorama images and 2D room layouts
as scene priors to reconstruct the panoramic Gaussian radiance field. DreamScene360 (Zhou et al.,
2024b) achieves text-to-3D Panoramic Gaussian Splatting by utilizing monocular depth priors to
regularize the Gaussian optimization.

3 METHODOLOGY

Taking a single panoramic image as input, the goal of 4K4DGen is to generate a panoramic 4D
environment capable of rendering novel views from arbitrary angles and at various timestamps. Our
approach initially constructs a panoramic video and then elevates it into a series of 3D Gaussians,
enabling efficient splatting for flexible rendering. Naïvely animating projected perspective images,
however, often results in unnatural motion and inconsistent animations. To overcome this, our method
propose the denoising of projected spherical latents, ensuring consistent animation of the panoramic
video from the original image, as detailed in Sec. 3.3.

Moreover, directly converting multiple perspective images from different timestamps into 4D fre-
quently leads to degraded geometry and visible artifacts (see Sec. 4.3). We address this by applying
spatial-temporal geometry fusion to lift the panoramic video, as described in Sec. 3.4. The complete
pipeline of 4K4DGen is illustrated in Fig. 3.

Figure 3: Overall Pipeline. Beginning with a static panorama as input, the Animating Phase
generates a panoramic video by first mapping the panorama into a spherical latent space, followed
by denoising within the perspective space, fusing back to the spherical latent space at each step,
and finally transforming it into the panoramic space. In the 4D Lifting Phase, a series of dynamic
Gaussians is employed to lift the panoramic video into a 4D representation, ensuring both spatial and
temporal consistency.
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3.1 PRELIMINARIES

Latent Diffusion Models (LDMs). LDMs (Rombach et al., 2022) consist of a forward procedure
q and a backward procedure p. The forward procedure gradually introduces noise into the initial
latent code x0 ∈ Rh×w×c, where x0 = E(I) is the latent code of image I within the latent space of a
VAE, denoted by E . Given the latent code at step t− 1, the q procedure is described as q(xt|xt−1) =
N (xt;

√
1− βtxt−1, βtI). Conversely, the backward procedure p, aimed at progressively removing

noise, is defined as pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)). In practical applications, images are
generated under the condition y, by progressively sampling from xT down to x0. Recently, image-to-
video (I2V) generation has been realized (Guo et al., 2024; Dai et al., 2023) by extending the latent
code with an additional frame dimension and performing decoding at each frame. The denoising
procedure is succinctly represented as xt−1 = Φ(xt, I), where xt, xt−1 ∈ Rl×h×w×c represent the
sampled latent codes and I the conditioning image. Recently, image-to-video (I2V) generation has
been achieved (Guo et al., 2024; Dai et al., 2023) by extending the latent code with an additional
frame dimension and performing decoding at each frame. The denoising procedure is succinctly
expressed as xt−1 = Φ(xt, I), where xt, xt−1 ∈ Rl×h×w×c represent the sampled latent codes, and
I represents the conditioning image.

Omnidirectional Panoramic Representation. Panoramic images or videos, denoted as I , are
typically represented using equirectangular projections, forming an H×W ×C matrix, where H and
W denote the image resolution and C represents the number of channels. While this format preserves
the matrix structure, making it consistent with planar images captured by conventional cameras, it
introduces distortions, especially noticeable near the polar regions of the projection. To mitigate these
distortions, we adopt a spherical representation for panoramas, where pixel values are defined on a
sphere S2 = {d = (x, y, z)|x, y, z ∈ R ∧ |d| = 1}. For a more precise definition of the projection,
we represent matrix-like images using a mapping EI : [−1, 1]2 → RC , which normalizes the image
coordinates into the range [0, 1]. Thus, for any given pixel (x, y) ∈ [−1, 1]2, the corresponding
pixel value is determined by EI (x, y). We define the spherical representation of panoramas using
the field SI : S2 → RC , where SI (d) gives the pixel value at a given direction d = (x, y, z). The
relationship between the spherical and equirectangular representations is established through the
following projection formula:

SI (x, y, z) = EI
(
1

π
arccos

y√
1− z2

,
2

π
arcsin z

)
. (1)

For perspective images, we define a virtual camera centered at the origin. The rays for each pixel
are determined through ray casting, as described in (Mildenhall et al., 2020), where each ray d is
represented by r(x, y, f,u, s, R). This representation takes into account the focal length f , the z-axis
direction u, the image plane size s, and the camera’s rotation along the z-axis R. Consequently,
for a given panorama I , the perspective image P can be projected using these camera parameters
(f,u, s, R) as:

EP (x, y) = SI ◦ r (x, y, f,u, s, R) . (2)

In this paper, we fix the focal length f , the image plane size s, and the rotation R. We denote
the process of projecting the panorama I into a perspective image i, based on the camera’s z-axis
direction u, as i = γ(I,u).

3.2 INCONSISTENT PERSPECTIVE ANIMATION

Large-scale pre-trained 2D models have shown remarkable generative capabilities in creating images
and videos, benefiting from vast multi-modal training data gathered from the Internet. However,
acquiring high-quality 4D training data is considerably more challenging, and no current 4D dataset
reaches the scale of those available for images and videos. Therefore, our approach aims to utilize
the capabilities of video generative models to produce consistent panoramic 360◦ videos, which
are then elevated to 4D. Nonetheless, the availability of panoramic videos is significantly more
limited compared to planar perspective videos. Consequently, mainstream image-to-video (I2V)
animation techniques may not perform optimally for panoramic formats, and the resolution of the
videos remains constrained, as illustrated in Fig. 5 (b) and Tab. 2. Alternatively, the animator can be
applied to perspective images. but this introduces inconsistencies across different projected views, as
depicted in Fig. 5 (c)
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3.3 CONSISTENT PANORAMIC ANIMATION

Limited by the scarcity of 4D training data in panoramic format, and given that large diffusion models
are primarily trained on planar perspective videos, directly applying 2D perspective denoisers presents
challenges in generating seamless panoramic videos with proper equirectangular projection, due to
inconsistent motion across different views and the domain gap between spherical and perspective
spaces. This constraint has driven us to develop a panoramic video generator in spherical space
that leverages priors from general image-to-video (I2V) animation techniques, as shown in Fig. 2.
Consequently, starting from a static input panorama, we animate it into a panoramic video, as
demonstrated in the “Animating Phase” section of Fig. 3.

Spherical Latent Space. To generate panoramic video from a static panorama, we build up the
denoise-in-latent-space schema (An et al., 2023; Blattmann et al., 2023a; Dai et al., 2023) in a
spherical context. For general video generation, a noisy latent sample is progressively denoised using
DDPM (Ho et al., 2020), conditioned on a static input image, and subsequently decoded into a video
sequence by a pre-trained VAE decoder. However, in 4K4DGen, unlike the method for generating
perspective planar videos, both the latent code and the static panorama input are represented on
spheres. We start with the initial panoramic latent code ST : S2 → RL×c, where L denotes the
number of video frames and c the channels per frame. A novel Panoramic Denoiser is then applied to
generate the clean panoramic latent code S0, conditioned on the static input panorama I ∈ RH×W .
Subsequently, the equirectangular projection, as introduced in Sec. 3.1, projects the clean panoramic
latent code into the matrix-like latent code Z0 ∈ Rh×w×L×c, with h and w representing the resolution
of the latent code. Each kth video frame Ik in pixel space is decoded by the pre-trained VAE decoder
as Ik = D(Z0[:, :, k, :]).

Build the Panoramic Denoiser. We leverage a pre-trained perspective video generative model
(Dai et al., 2023) to build our Panoramic Denoiser. This video generator takes a perspective image
i ∈ RpH×pW×c and an initial latent code zT ∈ Rph×pw×(L×c) as inputs, progressively denoising the
latent code zT to a clean state z0 through a denoising function zt−1 = Φ(zt, i). Here, ph and pw
represents the resolution of the latent code, pH and pW the resolution of the conditioning image, c the
number of channels, and L the video length. Our goal is to transform the initial noisy panoramic latent
code ST into the clean state S0, ensuring that each perspective view is appropriately animated while
maintaining global consistency. The underlying intuition is that if each perspective view undergoes
its respective denoising process, the perspective video will feature meaningful animation. Moreover,
if two perspective views overlap, they will align with each other (Jiménez, 2023; Bar-Tal et al., 2023;
Lugmayr et al., 2022) to produce a seamless global animation.

Given a static input panorama I and an initial spherical latent code S0 : S2 → RL×c, we progressively
remove noise employing a project-and-fuse procedure at each denoising step. Specifically, the
spherical latent code at the tth denoising step, St : S2 → RL×c, is projected into multiple perspective
latent codes Zt = {zt1, zt2, . . . , ztn}, where each ztk = γ(St,dk) ∈ Rph×pw×(L×c) represents the kth
perspective latent code projected in the equirectangular format detailed in Sec. 3.1. Each perspective
latent code is then denoised by one step using a pre-trained perspective denoiser, denoted as zt−1

k =
Φ(ztk, ik), where ik = γ(I,dk) ∈ RpH×pW×c is the perspective conditioning image projected from
the panorama I . Subsequently, we optimize the spherical latent code St−1 : S2 → RL×c at step t− 1
by fusing all the denoised perspective latent codes zt−1

k . Formally, the denoising procedure at step t,
denoted as St−1 = Ψ(St, I), encompasses the following operations:

Ψ
(
St, I

)
= argmin

S
Ed∈S2∥γ(S,d)− Φ

(
γ(St,d), γ(I,d)

)
∥. (3)

3.4 DYNAMIC PANORAMIC LIFTING

We define the panoramic video as V = {I1, I2, . . . , IL}, consisting of L frames. The video is divided
into overlapping perspective videos {v0, v1, . . . , vn}, each captured from specific camera directions
{d1, . . . ,dn}, collectively encompassing the entire span of the panoramic video V . Subsequently, we
estimate the geometry of the 4D scene by fusing the depth maps through spatial-temporal geometry
alignment. Following this, we describe our methodology for 4D representation and the subsequent
rendering procedure.
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Supervision from Spatial-Temporal Geometry Alignment. To transition from 2D video to 3D
space, we utilize a monocular depth estimator (Ranftl et al., 2021), inspired by advancements
in (Zhou et al., 2024b), to estimate the scene’s geometric structure. Nonetheless, depth maps
generated for each frame and perspective might lack spatial and temporal consistency. To address
this, we implement Spatial-Temporal Geometry Alignment using a pre-trained depth estimator
Θ : Rh×w×3 → Rh×w, applied to perspective images. Our objective is to amalgamate n perspective
depth maps DK

i = Θ(γ(Ik,di)) into a cohesive panoramic depth map Dk for each frame Ik,
ensuring spatial and temporal continuity. We express these depth maps as a spherical representation
S1
D, . . . ,SL

D. For enhanced optimization, we assign n scale factors αk
i ∈ R and shifting parameters

βk
i ∈ Rh×w to each perspective depth map. The comprehensive depth map Dk is then optimized

jointly with these parameters α and β. The formal objective is structured as follows:

Sk
D = argmin

S
E

i∈{1,...n}
λdepthLdepth + λscaleLscale + λshiftLshift. (4)

where Ldepth = ∥ softplus(αk
i )Θ(γ(Ik, di))− γ(S) + βk

i ∥ is the depth supervision term, Lscale =

∥αk
i −αk−1

i ∥+∥ softplus(αk
i )−1∥ the regularize term for α, and Lshift = LTV(β

k
i )+∥βk

i −βK−1
i ∥

the regularize term for β where LTV is the TV regularization.

4D Representation and Rendering. We represent and render the dynamic scene using T sets
of 3D Gaussians. Each set, corresponding to a specific timestamp t, is denoted as Gt =
{
(
pi
t, q

i
t, s

i
t, c

i
t, o

i
t

)
|i = 1, . . . , n}. This definition aligns with the methods described in (Bah-

mani et al., 2024), which also provides a fast rasterizer for rendering images based on these Gaussian
sets and given camera parameters. Consistent with Sec. 3.1, while the camera intrinsics remain fixed,
we parameterize the camera extrinsics through a position p ∈ R3 and an orientation d ∈ S2. The
training process is structured in two stages: initially, we directly supervise the 3D Gaussians using
the panoramic videos. Let R(G,p,d) represent the rasterized image from Gaussian set G, utilizing
camera extrinsics p = 0 and camera direction d. Let It denote the tth frame of the panoramic video.
We optimize the tth Gaussian set Gt using the following objective:

L = λrgbLrgb + λtemporalLtemporal + λsemLsem + λgeoLgeo (5)

where the RGB supervision term Lrgb = λL1 + (1− λ)LSSIM is the same as 3D-GS (Kerbl et al.,
2023), and the temporal regularize term Ltemporal written as:

Ltemporal =

n∑
i=1

∥R(Gt,0,di)−R(Gt−1,0,di))∥ (6)

Then, we adopt the distillation loss and geometric regularization used in (Zhou et al., 2024b), the
distillation loss is defined as follows: Lsem = 1− cos ⟨CLS(R(Gt,0,di)),CLS(R(Gt, δp,di))⟩,
where δp ∈ [−α, α]3 is the disturbing vector, CLS(·) the feature extractor such as DINO (Oquab
et al., 2023), and cos⟨·, ·⟩ the cos value of two vectors. The geometric regularization is defined as
follows: Lgeo = 1 − Cov(RD(Gt,0,di),Θ(γ(I,di)))√

Var(RD(Gt,0,di)) Var(Θ(γ(I,di)))
, where RD is the rendered depth, Cov(·, ·)

the covariance, and Var(·) the variance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Implementation Details. For perspective images, we uniformly select 20 directions u on the sphere
S2 as the z-axis of 20 cameras. In each experiment, the image plane size s is set at 0.6× 0.6, with a
focal length f = 0.6 and a resolution of 512× 512. Rotation along the z-axis is kept at zero for all
cameras, ensuring that the up-axis for the ith camera aligns with the (O,ui, z) plane. During the
animating phase, we utilize the perspective denoiser Φ, instantiated as the Animate-anything model
(Dai et al., 2023), which fine-tunes the SVD model (Blattmann et al., 2023a). In the Spatial-Temporal
Geometric Alignment stage of the lifting phase, the depth estimator Θ is implemented using MiDaS
(Ranftl et al., 2021; Birkl et al., 2023). All experiments are executed on a single NVIDIA A100 GPU
with 80 GB RAM.
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Figure 4: Comparison between 4K4DGen and 3D-Cinemagraphy. We present the input static
panorama (Pano RGB), the corresponding text prompts, and the rendered results from different views
and at various timestamps. 4K4DGen (Ours) effectively generates 4D scenes that are both spatially
and temporally consistent, while 3D-Cinemagraphy (3D-Cin.) suffers from ghosting artifacts in the
middle frames.

Evaluation. As there is no ground truth 4D scene data available, we render videos at specific test
camera poses from the synthesized 4D representation and employ non-reference video/image quality
assessment methods for quantitative evaluation of our approach. For the test views, we select random
cameras with p = 0 as part of our testing camera set. We then introduce disturbances as described
in Sec. 3.4, applying a disturbance factor of α = 0.05 at these selected views. Datasets. The task
of generating 4D panoramas from static panoramas is new, and thus, no pre-existing datasets are
available. In line with previous large-scale scene generation works (Zhou et al., 2024b; Yu et al.,
2024), we evaluate our methodology using a dataset of 16 panoramas generated by text-to-panorama
diffusion models. Baselines. Current SDS-based methods (Wu et al., 2024a; Zhao et al., 2023) are
limited to generating object-centered assets and do not support outward-facing scene generation. We
compare our method with the optical-flow-based 3D dynamic image technique, 3D-Cinemagraphy
(3D-Cin.) (Li et al., 2023b) (both the “circle” and “zoom-in” mode), by inputting the static panorama
and projecting the output onto perspective images. Metrics. It is challenging to evaluate the visual
quality without a ground-truth reference. We evaluate the rendered perspective videos regarding
both the frame and video visual quality. For frame quality, We employ the LLM-based visual scorer
Q-Align (Wu et al., 2023a) (IQ Scorer and IA Scorer) to evaluate the quality of individual frames. For
video quality, we use the Q-Align video model (VQ) as the quality scorer. Additionally, we conduct
user studies to further evaluate the results. In this paper, there are two types of user studies: (1) User
Choice (UC), where participants are asked to compare and select the best video from candidates
generated by different methods, and (2) User Agreement (UA), where participants assess whether
specific properties are present in the videos generated by a particular approach.

4.2 RESULTS

Quantitative Results. We show the quantitative comparison between 4K4DGen and 3D-
Cinemagraphy (Li et al., 2023a) in Tab. 1. 4K4DGen consistently achieves better performance
in the LLM-based Q-Align metric regarding the image quality (IQ), image aesthetic (IA), and the
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Table 1: Comparison with 3D-Cinemagraphy. We compare our method with 3D-Cinemagraphy
using rendered images from 4D representations. The IQ, IA, and VQ models represent the image
quality scorer, image aesthetic scorer, and video quality scorer, respectively, within the Q-Align
assessment framework. Our method, 4K4DGen, consistently achieves superior performance in both
image and video quality across these metrics. Furthermore, 4K4DGen performs better in our user
studies in terms of visual quality (Quality), motion amplitude (Amplitude), and the motion naturalness
(Naturalness). Please refer to D.2 for further details.

Method Q-Align (IQ) ↑ Q-Align (IA) ↑ Q-Align (VQ) ↑ Quality (UC) ↑ Amplitude (UC) ↑ Naturalness (UC) ↑
3D-Cinemagraphy (zoom-in) 0.47 0.38 0.57 7% 29.4% 19.7%

3D-Cinemagraphy (circle) 0.48 0.40 0.58 12% 32.0% 21.1%
Ours (holistic pipeline) 0.66 0.44 0.62 81% 38.6% 59.2%

video quality (VQ). Besides, 4K4DGen is preferred by the users considering the video quality, motion
amplitude, and motion naturalness.

Qualitative Results. We present a qualitative comparison between 4K4DGen and 3D-
Cinemagraphy (3D-Cin.) on the rendered images from 4D representations. Since the performance of
3D-Cin. is similar under the “circle” and “zoom-in” settings in Tab. 1, we use the “circle” setting
to represent 3D-Cin. in Fig. 4. As shown in the figure, 4K4DGen produces high-quality perspec-
tive videos that maintain consistency across both time and views, whereas 3D-Cin. struggles with
generating ghosting artifacts in the middle frames.

4.3 ABLATION STUDIES

We conduct ablation studies for both the animating and lifting phases of our methodology. In the
animating phase, we perform evaluation on 2D animated videos with different strategies, and highlight
the importance of our spherical denoise strategy by replacing it with two basic animation techniques.
In the lifting phase, we analyze the impact of excluding the Spatial-Temporal Geometry Alignment
process and the temporal loss during the optimization of 4D representations.

Animating Phase. For analyzing the strategies in the animating phase, as shown in Tab. 2, we use
Q-Align (visual quality scorer), view-consistency (user agreement), motion amplitude (user choice),
and motion naturalness (user choice) to evaluate the 2D animated videos. For the details of the user
studies, please refer to the Appendix D.2. To animate the panorama into a panoramic video, a
straightforward approach is to apply animators directly to the entire panorama. However, we observed
that this strategy often results in minor motion, as shown in Fig. 5 (b) and Tab. 2 (Animate Pano.
with small motion amplitude and less naturalness). This issue arises due to two main reasons: (1)
animators are typically trained on perspective images with a narrow field of view (FoV), whereas
panoramas have a 360◦ FoV with specific distortions under the equirectangular projection; (2) our
panorama is high-resolution (4K), which exceeds the training distribution of most 2D animators
and can easily cause out-of-memory issues, even with an 80GB VRAM graphics card. Thus the

(a) Our Spherical Denoiser (b) Animate Panorama

t=
0

t=
1

(c) Animate Pers. Image

View2View1View2View1 View2View1

(Small Motion) (Inconsistent Motion)(Consistent & Sufficient Motion)

Figure 5: Comparison to Different Animators: Animators trained primarily on perspective images
tend to produce limited motion when applied to panoramas, and the resolution may be limited.
On the other hand, animating perspective images individually can lead to inconsistencies between
overlapping views.
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(a) Full Model (c) w/o STA(b) w/o ℒ!"#$

t=
0

t=
0.

5

Figure 6: Ablation of the Lifting Phase. Omitting temporal regularization during the optimization
of 3D Gaussians results in the appearance of artifacts. The absence of Spatial-Temporal Geometry
Alignment causes the degradation of geometric structures.

panoramas have to be down-sampled to a lower resolution (2K), causing a loss of details. To this end,
we seek to animate on perspective views. Applying the animator on perspective views offers benefits
such as reduced distortion and inputs that suit the domain of the animator, allowing for smooth
animation of high-resolution panoramas. However, animating perspective images separately can
introduce inconsistencies between overlapping perspective views, as illustrated in Fig. 5 (c) and Tab.
2 (Animate Pers.). To resolve this challenge, we propose simultaneously denoising all perspective
views and fusing them at each denoising step, in the spherical latent space, which capitalizes on
the benefits of animating perspective views while ensuring cross-view consistency. The results are
displayed in Fig. 5 (a) and Tab. 2.
Lifting Phase. We conduct ablation studies on the Spatial-Temporal Geometry Alignment (STA)
module and the temporal loss during the lifting phase. Our findings indicate that removing the STA
module leads to a degradation in geometric quality, as shown in Fig. 6 (c). Additionally, omitting the
temporal loss introduces artifacts in certain frames, potentially resulting in flickering, as demonstrated
in Fig. 6 (b). Please refer to Fig. 8 for more details.

Table 2: Different Animation Strategies in the Animating Phase. We analyze the efficacy of
animation strategies by evaluating the animated 2D videos in different ways. Animating the entire
panorama results in worse motion and reduced resolution (first row), as indicated by the Amplitude
and Naturalness metric. Conversely, animating from perspective views leads to inconsistencies
across different views (second row), as supported by the Q-Align metric and the “View-consistency
(UA)” study. 4K4DGen capitalizes the generative ability from perspective animating priors while
enabling cross-view consistent motion between different perspectives, which achieves the best motion
naturalness and amplitudes among all the settings.

Animator Max Pano. Res. Q-Align (VQ) ↑ View-consistency (UA)↑ Amplitude (UC) ↑ Naturalness (UC) ↑

Animate Pano. 2048× 1024 0.82 - 26.8% 17.8%
Animate Pers. 4096× 2048 0.64 33% 32.4% 39.3%
Ours (Animating Phase) 4096× 2048 0.85 70% 40.8% 42.9%

5 CONCLUSION
Conclusion. We have proposed a novel framework 4K4DGen, allowing users to create high-quality
4K panoramic 4D content using text prompts, which delivers immersive virtual touring experiences.
To achieve panorama-to-4D even without high-quality 4D training data, we integrate generic 2D prior
models into the panoramic domain. Our approach involves a two-stage pipeline: initially generating
panoramic videos using a Panoramic Denoiser, followed by 4D elevation through a Spatial-Temporal
Geometry Alignment mechanism to ensure spatial coherence and temporal continuity.

Limitation. First, the quality of temporal animation in the generated 4D environment mainly relies on
the ability of the pre-trained I2V model. Future improvements could include the integration of a more
advanced 2D animator. Second, since our method ensures spatial and temporal continuity during the
4D elevation phase, it is currently unable to synthesize significant changes in the environment, such
as the appearance of glowing fireflies or changing weather conditions. Third, the high-resolution
and time-dependent representation of the generated 4D environment necessitates substantial storage
capacity, which could be optimized in future work using techniques such as model distillation and
pruning.
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A APPENDIX

Due to space constraints in the main draft, we include supplementary details and experimental results
in the appendix. Specifically, in Sec. B , we provide details about the acquisition process for the static
panoramas used in our experiments. In Sec. C, we offer further explanation of the implementation
for both the animation and lifting phases. Finally, in Sec. D, we describe the experimental setup and
present additional results.

B ACQUISITION OF PANORAMAS

The static panoramas used in the dataset of the main draft are generated by a text-to-panorama
diffusion model, fine-tuned from stable diffusion (Rombach et al., 2022) on SUN360. Similar to
(Feng et al., 2023), this model follows three steps: circular blending, super-resolution, and refinement.
The panoramas are initially at a resolution of 6144× 3072 and then down-sampled to 4096× 2048
using the bi-linear interpolation.

C IMPLEMENTATION DETAILS

In this section, we introduce the implementation details of the panoramic animator and the 4D lifting
procedure.

Implementation of Spherical Representing For the spherical representation, the continuous
spherical mapping SI : S2 → RC is instantiate as discrete point set P = {pi}, which is uniformly
sampled from the sphere SI . We first initialize a icosahedron with 20 triangle faces {fi|i =
1, · · · , 20} to approximate a real sphere S2. Then we uniformly sample a point set Pi on each face
fi and union all the point sets together as P̂ = ∪20

i=1Pi. We then obtain the discrete point set P by
projecting P̂ onto the sphere S2 by P = {pi/∥pi∥ | pi ∈ P̂}.

Panoramic Animation Phase For the Panoramic Animator, we set the video length L = 14,
the channel number c = 9, the latent code size (h,w) = 1

8 (H,W ), the perspective image size
pH = pW = 1

4W . The sphere is uniformly divided into 20 perspective views, each with 80◦ FOV.
For the denoiser, the max denoising step is 25. For the continuous optimization in Eq. 3, we use a
close form, where each latent vector at each point on the sphere is the average of the latent vectors of
the corresponding pixel on the perspective views that overlap it. The perspective denoiser is initiated
as Animate-Anything (Dai et al., 2023). The masks required by the denoiser are given by bounding
boxes defined by user clicks.

Dynamic Panoramic Lifting Phase In the lifting phase, similar to the animation phase, we choose
the perspective view number n = 20, each with 80◦ FOV. Each perspective view has a square shape,
PH = PW = 1

4W , where W is the width of the original static panorama. In the Spatial-Temporal
Geometric Alignment stage, the depth estimator Θ is implemented using MiDaS (Ranftl et al., 2021;
Birkl et al., 2023). The depth map from the perspective image is scaled according to the projection of
the unit-length ray direction onto the camera orientation d. Formally, if the pre-scaled depth is d at
point p ∈ P̂ introduced above, the scaled depth should be d/∥p∥. Additionally, for scenes without
distinct boundaries, such as the sky, depth values for distant elements are assigned a finite value to
support optimization.

Optimization Details The hyper-parameters for optimization are set as follows: λdepth =
1, λscale = 0.1, λshift = 0.01. We conduct Spatial-Temporal Geometry Alignment optimization over
3000 iterations, with λscale and λshift set to zero during the first 1500 iterations. For the 4D represen-
tation training stage, Gaussian parameters are optimized over 10000 iterations for each time stamp
t. The hyper-parameters for this stage are defined as λrgb = 1, λtemporal = λsem = λgeo = 0.05,
and the disturbance vector range α is varied at 0.05, 0.1, and 0.2 during the 5400, 6600, and 9000
iterations, respectively.
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D EXPERIMENTAL DETAILS

D.1 THE PROCEEDING TIME OF PER-GENERATION

Animating Phase. We provide the time and GPU cost to animate a single video at different
resolutions in the Table 3.

Table 3: The Proceeding Time of Animating Phase.

Resolution GPU Usage (GB) ↓ Time Cost (Minutes/frame) ↓
1024× 512 (1K) 9.38 0.89
2048× 1024 (2K) 29.31 2.99
4096× 2048 (4K) 73.41 22.31

Lifting Phase. We provide the time and GPU cost to lift a single frame at 4K, 2K, and 1K resolution.
The results are shown in the Table 4.

Table 4: The Proceeding Time of Lifting Phase.

Resolution GPU Usage (GB) ↓ Time Cost (Minutes/frame) ↓
1024× 512 (1K) 7.59 19
2048× 1024 (2K) 12.07 22
4096× 2048 (4K) 31.27 33

The computational cost increases rapidly with the resolution, making 4K generation highly chal-
lenging. We will put more engineering effort to accelerate the generation pipeline in the future.

D.2 USER STUDY DETAILS

D.2.1 USER STUDY FOR VIDEO QUALITY

We conducted two user studies, gathering a total of 84 questionnaires from 42 users. For the “Quality
(UC)”column in Tab. 1, we collected 42 questionnaires, each containing eight questions. Each
question asked users to choose the bests video in term of visual quality from the perspective videos
provided by different models. The user choice (UC) score of a method is the percentage of times the
method’s video was selected as the best one, out of a total of 336 questions. Thus, the UC scores for
all methods sum to 100%. For the “View-Consistency (UA)” column in Tab. 2, we collected another
42 questionnaires, with each questionnaire containing eight questions. Each question presented two
videos from different views, both generated by the same method, and users were asked to determine
whether the two videos were view-consistent. The user agreement (UA) score is the percentage of
video pairs marked as view-consistent out of all the video pairs generated by the method. The UA
scores do not necessarily sum to 100%. In the Quality column of Tab. 1, among the 336 questions,
users selected 4K4DGen 272 times, 3D-Cin. (circle) 40 times, and 3D-Cin. (zoom-in) 24 times. In
the View-consistency column of Tab. 2, 118 out of 168 video pairs generated by “Our” were marked
as consistent, while 56 out of 168 pairs from “Animate Pers” were considered consistent.

D.2.2 USER STUDY FOR VIDEO MOTION

Since the quantitative evaluation of motion quality remains an open problem in our tasks, we hereby
conducted supplemented user studies for the “4D generation task” and “Animating Phase”, which
considers the motion’s naturalness and amplitude.

• Motion’s naturalness: the motion of the generated view should be natural to human’s under-
standing, avoiding abrupt pixel changes across frames.

• Motion’s amplitude: the motion trajectory of the scene’s subjects should have adequate and
realistic magnitude.
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The user studies of Amplitude column and the Naturalness column are all conducted in the “user
choice” (UC) way. For each Amplitude and Naturalness column in Tab. 1 and Tab. 2, we collect
320 questions from 20 participants. Each questions contains three videos from the different three
methods, users are asked to select the best one or more videos from the provided set that exhibit
noticeably greater amplitude (for the Amplitude columns) or superior naturalness (for the Naturalness
columns). Since users could select more than one video per question, the UC metric was normalized
based on the total number of selections. For example, if method A, B, C are selected na, nb, and nc

times, respectively, the UC metric for them should be na

na+nb+nc
, nb

na+nb+nc
, and nc

na+nb+nc
.

D.3 MORE QUANTITATIVE RESULTS

We present quantitative results on an additional 32 scenes randomly sampled from WEB360
dataset (Wang et al., 2024b). As shown in the Table 5, 4K4DGen consistently outperforms the
baseline methods across the quantitative metrics.

Table 5: Comparison with 3D-Cinemagraphy in WEB360 Dataset. We adopt the FVD (Unterthiner
et al., 2019) and KVD (Unterthiner et al., 2018) to evaluate the generated panoramic video, which is
the intermediate result from the animating phase. The IQ, IA, and VQ models represent the image
quality scorer, image aesthetic scorer, and video quality scorer, respectively, within the Q-Align
assessment framework.

Method FVD ↓ KVD ↓ Q-Align (IQ) ↑ Q-Align (IA) ↑ Q-Align (VQ) ↑
3D-Cinemagraphy (zoom-in) 307 5.86 0.65 0.57 0.70

3D-Cinemagraphy (circle) 309 5.72 0.65 0.57 0.70
4K4DGen 218 1.76 0.73 0.64 0.77

D.4 MORE QUALITATIVE RESULTS

We provide additional qualitative results in Fig. 7. Furthermore, we highly recommend viewing
the video renderings of 4K4DGen and comparisons to baseline models in the supplementary static
HTML page for a more comprehensive and immersive experience.

We zoom into the details of Fig. 6 to compare the w/o Ltemp and w/o STA variants with the Full
Model and provide the more-clear comparison in Fig. 8.

We adapt the 4D object generation framework 4DGen (Yin et al., 2023) to our specific settings and
present the qualitative results in Fig. 9, which indicate that the generated object varies significantly
in form from 4K4DGen’s scene outputs. We also compare OmniNeRF (Gu et al., 2022)’s optimized
geometry with 4K4DGen. The corresponding depth maps are shown in Fig 10. It can be evidently
demonstrated that 4K4DGen attains sharper geometric results.

We provide the renderings of a lifted 3D scene where a user walked along a street in Fig. 11. Notice
the roof highlighted by green bounding boxes in (a) and (b). When the user walks nearer and more
area of the roof is observed, it implies the necessity of the lifted 3D structure.

E ETHICS AND REPRODUCIBILITY STATEMENT

Ethics Statement. Our research enables the generation of 4D digital scenes from a single panoramic
image, which is advantageous for various applications such as AR/VR, movie production, and video
games. This technology distinctly excels in creating high-resolution 4D scenes up to 4K, significantly
enhancing user experiences. However, there is potential for misuse in the creation of deceptive
content or privacy violations, which contradicts our ethical intentions. These risks can be mitigated
through a combination of regulatory and technical strategies, such as watermarking.

Reproducibility. We provide sufficient implementation details to reproduce our methodology in
Sec. C, including the details of spherical denoiser, panoramic animator, dynamic panoramic lifting,
etc. We provide 16 Sec. 4’s panoramas and Sec. D.3’s 32 panoramas in the revised supplementary
material. Furthermore, we will make our panorama datasets and related code publicly available in the
future.
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Figure 7: Visualizations: We provide more visual results. For each shown case we provide the input
panorama, corresponding text prompt, and the rendering from two perspective views.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: More Detailed Figure of Ablating Lifting Phase: (Left) The w/o LTemp variant (column
d) produces renderings with flashing stripes. Zoomed-in details of the flashing stripe region are
highlighted in (e). (Right) Without spatial-temporal geometry alignment, the geometry in the smoke
area of the volcano for the w/o STA variant (column g) appears less consistent compared to the full
model (column f). A detailed video is included in the revised supplementary material.

Figure 9: Results of 4DGen: 4DGen (Yin et al., 2023) focuses on object generation and struggles to
generate scenes.
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Figure 10: Results of OmniNeRF: The optimized geometry of OmniNeRF (Gu et al., 2022) is not as
sharp as 4K4DGen.

Figure 11: Occlusion in True 3D Structure: When the user walks nearer, the more area of the roof
(highlighted by the green box) will be observed. It is hard to implement such effect without the lifted
3D structure.
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