
ResearchCodeAgent: An LLM Multi-Agent
System for Automated Codification of Research

Methodologies

Shubham Gandhi1[0000−0002−8842−6895], Dhruv Shah1[0009−0002−5330−2865],
Manasi Patwardhan1[0000−0002−2775−3497], Lovekesh Vig1[0000−0001−9834−3308],

and Gautam Shroff1[0000−0002−0340−0283]

1TCS Research
{gandhi.shubham, dhruv.bshah2, manasi.patwardhan, lovekesh.vig,

gautam.shroff}@tcs.com

Abstract. In this paper we introduce ResearchCodeAgent, a novel multi-
agent system leveraging Large Language Model (LLM) agents to automate
the codification of research methodologies described in machine learning
literature. The system tries to bridge the gap between high-level re-
search concepts and their practical implementation, allowing researchers
auto-generating code of existing research papers for benchmarking or
building on top-of existing methods specified in the literature with avail-
ability of partial or complete starter code. ResearchCodeAgent employs
a flexible agent architecture with a comprehensive action suite, enabling
context-aware interactions with the research environment. The system
incorporates a dynamic planning mechanism, utilizing both short and
long-term memory to adapt its approach iteratively. We evaluate Research-
CodeAgent on three distinct machine learning tasks with distinct task
complexity and representing different parts of the ML pipeline: data aug-
mentation, optimization, and data batching. Our results demonstrate the
system’s effectiveness and generalizability, with 46.9% of generated code
being high-quality and error-free, and 25% showing performance improve-
ments over baseline implementations. Empirical analysis shows an average
reduction of 57.9% in coding time compared to manual implementation.
We observe higher gains for more complex tasks. ResearchCodeAgent rep-
resents a significant step towards automating the research implementation
process, potentially accelerating the pace of machine learning research.

Keywords: LLMs · Multi-Agent Systems · Research Automation.

1 Introduction

Research is fundamental to scientific and technological advancement. However,
researchers often spend significant time on implementing and codifying method-
ologies and experiments, reducing the time available for ideation, exploration
and designing experiments. This issue is particularly pronounced in the field of
Machine Learning (ML), which is characterized by its rapid pace of development

2 S. Gandhi et al.

and innovation. Given the dynamic nature of ML, it is of prime importance for
researchers to receive as much assistance as possible to stay abreast of the latest
advancements and maintain a competitive edge. Effective support systems can
free researchers from repetitive and time-consuming coding tasks, allowing them
to focus on conceptual aspects of their work.

Our work bridges the gap between how a research is conceptualized and how
the actual code is implemented. Typically, a researcher outlines the methodology,
algorithms, and experimental designs at a high-level, abstract manner. Translat-
ing these abstractions into working code involves several intricate steps, often
requiring deep technical knowledge and significant time investment. While sub-
stantial work has been conducted on automation of research problem formulation,
(2) ideation and planning (16; 21; 20), there has been relatively little focus on
auto-codifications of these high-level ideas and experiments. The responsibility
of implementing ideas suggested by research assistants still largely falls on the
researchers themselves. Addressing this gap, an advanced support system such as
ResearchCodeAgent tailored to the coding phase can significantly streamline the
research process.

Large Language Models (LLMs) have shown significant improvements in code-
related domains, evolving from handling function-level tasks (5; 1) to managing
repository-level codebases (3; 11). Some of the works relies on appropriately
defined machine learning (ML) engineering tasks with the availability of code
templates (4; 11). Another parallel works (14) attempts idea, experiment and
code generation as sequential tasks. They start with pre-defined machine learning
tasks and uses available datasets for these tasks to generate hypothesis followed by
generation of experimental design and code. Existing benchmarks such as Scicode
(19) or BLADE (7) deal with function level codes for well curated scientific or
data-driven problems. SciAgentBench (6) deal with repository level code but with
well-curated task descriptions for the researchers. Implementing research ideas
directly from methodological descriptions in research papers is a fundamental yet
time-intensive task for researchers. Despite the availability of partial or complete
starter code repositories, every researcher must bridge the gap between high-
level descriptions and executable implementations to benchmark approaches or
build upon existing methods. To the best of our knowledge, no prior work has
explicitly addressed the challenge of converting research methodology descriptions
into executable code, particularly leveraging repository-level starter code. Every
researcher or scientist has to address this kind of settings for benchmarking her
approach on existing approaches or building on top-of existing methods specified
in the literature with availability of partial or complete starter code.

Addressing this realistic scenario, this work aims to facilitate the automated
codification of research methodologies and algorithms described in papers. Our
goal is to refine the repository level code given inputs such as high-level methodol-
ogy descriptions, dataset details, and starter code. The importance of starter code
cannot be understated, as developing research ideas often involves building on
top of previous work. Focusing on the deep learning domain, we target tasks like

ResearchCodeAgent 3

data augmentation, optimization, and data batching, restricting our generated
code to Python, the predominant language for AI research.

As opposed to well-curated task descriptions, research papers often present
methodologies at an abstract level, particularly for complex tasks, which compli-
cates direct codification. To address this, a researcher has to follow a multi-step
process including (i) Methodology Decomposition: Break down abstract high-level
descriptions into fine-grained sub-tasks, (ii) Starter Code Integration: Identify
and refine relevant segments of the provided starter code to implement the sub-
tasks and (iii) Iterative Refinement: Execute and validate each sub-task and the
overarching methodology, refining the plan as necessary. Unlike rigid, predefined
workflows, this iterative approach mirrors the planning and experimentation
process employed by researchers, allowing for adaptive problem-solving based on
complexity.

Large Language Model (LLM) code agents are uniquely positioned for such
tasks, as they combine environmental understanding with flexible code generation
capabilities. Our LLM-based agentic architecture operates in two main phases (i)
Context Understanding: Analyzing the environment, including the methodology
description, input data, and starter code and (ii) Code Generation and Execution:
Planning and generating adaptive, context-aware code to address specific sub-
tasks iteratively. This architecture contrasts with single-call LLM baselines by
enabling dynamic planning and execution, leading to more accurate and efficient
implementations.

We evaluate our architecture on three distinct deep learning tasks described
in research papers. Our approach outperforms single-call baselines, producing
error-free code more efficiently and saving researchers significant time in editing
starter code. Notably, our architecture demonstrates superior performance for
complex tasks, highlighting its potential for broader application in automating
research implementation workflows. Through empirical and qualitative analysis,
we validate the following claims:

– ResearchCodeAgent architecture generalizes effectively across three distinct
ML research tasks, each representing different parts of the traditional machine
learning pipeline: data augmentation, optimization, and data batching.

– The system demonstrates a high success rate in code generation, with 46.88%
of the generated code being near-perfect and directly usable, 18.75% requiring
minor modifications, and 34.38% needing substantial revisions.

– Empirical analysis shows that the ResearchCodeAgent yeilds an average
reduction of 57.86% in coding efforts as compared to manual implementation.
The efficiency gains are observed more for more complex tasks.

– Our error analysis indicates that the majority of issues encountered by
ResearchCodeAgent are related to context understanding and complex logical
implementations. However, these errors decrease as the system is iteratively
refined, showing an improvement rate of 46.15% over successive trials.

4 S. Gandhi et al.

Fig. 1: (a) The ResearchCodeAgent system system - Planning, Research Logs,
Workers and Environment (b) Planning mechanism with LLM Cascade and
planner profiles; valid response follows programmatic constraints (c) Planning
Expert calls, LLM-powered and programmatic workers.

2 ResearchCodeAgent

In this section we describe our proposed ResearchCodeAgent system, shown in
Figure 1. which interacts with an environment using a suite of actions. Moreover,
we also describe its planning mechanism along with programmatic constructs
added to aid the system.

ResearchCodeAgent 5

2.1 Environment and inputs

The input files form the environment that the agent iteratively interacts with.
Files here include methodology description, data description, pseudocode, starter
code and starter code performance. In addition to these mandatory inputs, there
might be other files that could be a part of the environment. The starter code
script could require other supplementary scripts such as model.py to work as
intended. For complex methodologies that reference and build upon previous
work, we include the original code scripts from the cited papers that correspond
to specific methodology sub-parts, similar to how researchers access referenced
codebases when implementing methodologies. The agent is guided by a set of
instructions in the form of a problem statement. As shown in appendix listing
25, this problem statement contains both task-specific and generic instructions.

2.2 Action Space

As illustrated in Table 1, our proposed ResearchCodeAgent system has access to
a variety of actions to enable interaction with the environment. This includes
programmatic actions viz. ‘List Files’, Copy File’, ‘Undo Edit Script’, ‘Execute
Script’, ‘Inspect Script Lines’, ‘Get Code Diff’ and ‘Final Answer’. Additionally, it
also has access to actions that involve underlying LLM calls viz. ‘Understand File’,
‘Understand File with code context’, ‘Edit Script’, ‘Edit Script with context’,
‘Reflection’, ‘Request Planning Expert Help’ and ‘Check Implementation’. Each
of these actions is executed by a worker having a distinct profile or persona that
makes the internal LLM calls.

The List Files, Copy File and Inspect Script Lines actions allow the agent
system some basic file-level interaction with the environment. The Understand
File action allows the system to understand a file given a particular set of things
to look for. The Understand File with code context action does this with an
additional snippet of relevant code in context. The Edit Script action is used
to edit a script given a set of edit instructions whereas the Undo Edit Script
action is used to undo a previous edit. The Edit Script with Context action
allows the planner to pass an excerpt of text from another file as additional
context. These understand and edit instructions together make up an ’incremental
implementation’ mechanism which is similar to the way research methodologies are
codified in the real world, i.e. in a subpart-by-subpart fashion. The Execute Script
action allows the system to execute a given script. The displayed outputs after
execution along with errors, if any, are relayed back as observations. Additionally,
it also gives the execution trace as feedback, which contains information about
the number of times each line of the given script was executed. The Get Code
Diff action allows the system to compare an edited code with either the starter
code or a previous edited version of the code.

The Reflection action allows the agent system to take a step to gather thoughts
and reflect on past actions and observations to make changes to the running plan
if required. If the planner identifies that it is stuck at a particular step and is
unable to proceed, it can make use of the Request Planning Expert Help action

6 S. Gandhi et al.

Action Name Action Inputs Profile

List Files directory path -
Copy File source, destination -
Inspect Script Lines script name, start line number, end

line number
-

Execute Script script name, arguments -
Undo Edit Script script name -
Get Code Diff script 1 name, script 2 name -
Final Answer description -
Request Planning
Expert Help request description -
Understand File file name, things to look for You are an expert in understanding files containing

both code and natural language.
Understand File
with Code Context file name, file start line number, file

end line number, script name, script
start line number, script end line
number, things to look for

You are an expert in understanding files contain-
ing both code and natural language given some
context.

Edit Script script name, edit instructions, save
script name

You are an expert in editing code files.

Edit Script with Context script name, edit instructions, con-
text file name, file start line num-
ber, file end line number, save script
name

You are an expert in editing code files given some
code or text context.

Reflection things to reflect on You are an expert in reflecting on previous ac-
tions when implementing code for a given research
methodology.

Check Implementation script name You are an expert in checking the implementation
of a methodology in a piece of edited code given
the starter code that was edited to arrive at the
edited code.

Table 1: Programmatic and LLM-driven actions available to ResearchCodeAgent

which would invoke a much more powerful LLM to plan for that step. The Check
Implementation action allows the system to check the implementation of the
methodology in an edited script in a subpart-by-subpart fashion. If a particular
subpart is implemented, the worker identifies the snippet of code corresponding
to it. If it is not implemented, the worker identifies the snippet of code that needs
to be modified to account for subpart implementation and also proposes edits.
Lastly, the Final Answer action can be used by the planner to end the run once
it is convinced that it is appropriate to do so.

2.3 Planning mechanism

At each step, the planner is given the entire responses for the past few steps in
context which makes up the short-term memory of the planner. Additionally, it is
also given a summarized version of the entire history of the research log up until
that step, which makes up the long-term memory. Similar to the workers, the
planner also has a distinct persona. At each step, the planner needs to adhere
to a particular response format - Reflection, Research Plan and Status, Fact
Check, Thought, Action and Action Input. This structured response makes the
plan implicitly ’running’ by nature, i.e., the agent does not start off with a fixed
plan given its limited context in the beginning, but instead adapts at each step

ResearchCodeAgent 7

based on observations. At each step, a summarized version of the reasoning,
action and observation is appended to the research log to serve as part of the
long-term memory. Moreover, if the observation at a particular step is too long
for short-term memory, it is further summarized using LLM calls. The planner is
given a fixed number of retries at each step for generating a valid response. In
case the response by the base planner is not valid even after exhausting the max
retries for that level, the system invokes a more powerful, but more costly, LLM
for planning for that step. We refer to this mechanism as an LLM cascade.

2.4 Programmatic Constructs

Preliminary runs revealed a few mistakes that the system made repeatedly, in
both the planner and worker-related phases. To aid the system in overcoming
these shortcomings, we introduce some programmatic constructs. LLM Agents, in
general, tend to loop over actions (add references here) and select similar actions
repeatedly until they terminate. To avoid such looping in ResearchCodeAgent,
we introduce a pooling mechanism wherein we divide the action space into three
pools. Pool A contains understanding and planning-related actions such as ’List
Files’, ’Understand File’, ’Understand File with code context’, ’Inspect Script
Lines’, ’Get Code Diff’. Pool B contains code-related actions such as ’Copy
File’, ’Undo Edit Script’, ’Execute Script’, ’Edit Script (AI)’, ’Edit Script (AI)
with context’. The rest of the actions make up Pool C, a more general set of
actions. We prevent the planner from selecting an action from the same pool
A or B consecutively for k number of steps. Since there might be a need for
more consecutive similar actions towards the beginning, this maximum limit k
exponentially decays over steps. Since the actions in Pool C are more general in
nature, we do not impose such constraints on the planner calling them. Additional
programmatic constructs include the following - avoiding consecutive duplicate
actions, avoiding recursive non-terminating responses and avoiding zero-diff when
edit script action is called.

3 Experimentation

In this section, we describe the experimental setup for applying Research-
CodeAgent to diverse research tasks with varying complexities in methodology
and code.

3.1 Case studies

We demonstrate the generalizability of the ResearchCodeAgent system by apply-
ing it to a diverse set of research tasks spanning different stages of a traditional
machine learning pipeline. These tasks vary significantly in complexity, both in
terms of methodology and codebase. The works mentioned in following subsec-
tions arein increasing order of complexity of code and methodology, viz. OGSCL
(17) deals with data batching, YONA (10) deals with data augmentation and

8 S. Gandhi et al.

FLAG (13) deals with optimization. We measure the difficulty of the code in
terms of the number of edits that ideally need to be made on the starter code
to implement the methodology described in the research paper. Following is a
description of each of the data points we consider.

OGSCL OGSCL is a methodology designed for fine-tuning the CLIP (18) model
on the DeepFashion dataset. The key idea behind OGSCL is to ensure that
each batch during training consists of samples with only one attribute type.
The DeepFashion dataset, which is used in this methodology, contains images of
fashion apparel products along with their labels. Each product image is annotated
with a product category (PC) and attribute values (AV) for up to five different
attribute types (AT): fabric, style, shape, texture, and part. A typical label for
a product is formatted as [PC, (‘fabric’, AV1), (‘style’, AV2), (‘shape’, AV3),
(‘texture’, AV4), (‘part’, AV5)]. Not every image is labeled with all five attribute
types, but the dataset encompasses a total of 983 attribute values. For the
purposes of OGSCL, the DeepFashion dataset (15) is transformed into an image
captioning dataset. This transformation involves creating a text caption for each
(AT, AV) pair using the format: "The <AT> of this <PC> is <AV>." As a
result, each image in the dataset is repeated as many times as the number of
(AT, AV) pairs it contains. In the transformed dataset, each data point consists
of an image and a corresponding caption that describes a specific attribute value
for one attribute type of the product. The modified DeepFashion dataset used in
our experiments contains 500 samples, with 100 samples for each attribute type.
The CLIP-Base model was used for fine-tuning, with training limited to a single
epoch due to computational constraints. The starter code for implementing this
methodology was developed entirely from scratch.

YONA (10) proposed You Only Need hAlf (YONA), an algorithm for data
augmentation on images aimed at improving model robustness by removing
redundant information. The technique involves slicing an image randomly into
halves, converting one side to noise, applying augmentations (e.g., flips) to the
other side, and combining the halves for training. To evaluate the capability
of our ResearchCodeAgent system in replicating the methodology described in
the YONA paper, we utilized their publicly available implementation1. This
repository provides code for training various ResNet models (9) on the CIFAR-
10 and CIFAR-100 datasets. For our baseline, we selected ResNet-18 and the
CIFAR-10 dataset, modifying the original code to remove all references to the
YONA methodology. To accommodate computational constraints and focus on
implementing the augmentation method, we reduced the number of training
epochs to one. The performance of this starter code was included as part of the
input files in the environment. The YONA methodology was directly incorporated
from the paper in verbatim, while the dataset description was refined based on
information from the CIFAR dataset website 2. Since the paper did not provide
1 https://github.com/yuncheng97/YONA
2 https://www.cs.toronto.edu/~kriz/cifar.html

ResearchCodeAgent 9

explicit pseudocode, we constructed a pseudocode representation for the YONA
algorithm to aid in its implementation.

FLAG (13) introduce the Free Large-scale Adversarial Augmentation on Graphs
(FLAG) algorithm, a sophisticated technique designed to enhance the performance
of Graph Neural Networks (GNNs). FLAG leverages adversarial perturbation,
projected gradient descent, multi-scale augmentation, and free training to it-
eratively augment node features with gradient-based adversarial perturbations
during the training process. This iterative augmentation helps the model achieve
invariance to small input data fluctuations, thereby improving generalization to
out-of-distribution samples and boosting performance during testing.

To evaluate the capability of our ResearchCodeAgent system in replicating
the methodology described in the FLAG paper, we utilized the publicly available
implementation of FLAG3. Our experiments focus on the ogbn-arxiv dataset,
employing Graph Convolutional Network (GCN) (12) and GraphSAGE (8) models.
The FLAG repository provides baseline code for these models using vanilla
training, which we adopted as starter code, after reducing the number of epochs
to 50, owing to computational constraints. We also include the performance of
this starter code as part of the input files in the environment. We incorporated the
verbatim methodology description from the FLAG paper, the data description
from the ogbn-arxiv webpage4, and a refined version of the pseudocode presented
in the paper. Additionally, the original FLAG paper includes citations for various
methodological subparts; we included the complete scripts from these citations
as part of our environment to provide supplementary information to the system.

3.2 Baselines

We evaluate our proposed ResearchCodeAgent system by comparing it with two
baseline approaches:

Prescribed path In this baseline, we try to constrain the system to follow
a predetermined sequence of actions. This approach involves adding specific
instructions to the problem statement that outline a step-by-step process for
implementing the methodology. The prescribed plan includes steps such as listing
and understanding input files, creating a skeleton with function definitions for
methodology subparts, implementing each function sequentially, checking the
implementation of each subpart, and using specific actions in a prescribed order.
This baseline allows us to assess the value of the adaptive planning mechanism
in ResearchCodeAgent by comparing it to a more rigid, predefined approach. By
comparing ResearchCodeAgent against this baseline, we aim to demonstrate the
benefits of flexible, adaptive planning over a fixed action sequence, the importance
of context-aware decision-making in complex coding tasks, and the impact of
3 https://github.com/devnkong/FLAG
4 https://ogb.stanford.edu/docs/nodeprop/\#ogbn-arxiv

10 S. Gandhi et al.

allowing the agent to dynamically adjust its approach based on intermediate
results and observations.

Single LLM Call For this baseline, we utilize a single LLM call to generate the
entire implementation in one pass. Given the same inputs as ResearchCodeAgent
(methodology description, data description, pseudocode, starter code and other
files), the model is prompted to produce a complete implementation of the research
methodology. This approach tests whether the iterative, multi-agent system of
ResearchCodeAgent offers advantages over a simpler, one-shot generation method.

3.3 Metrics

To evaluate the effectiveness of ResearchCodeAgent, we employ several metrics
that assess both the quality of the generated code and the efficiency of the system.

Code Quality Metrics

1. Category-wise Distribution: We divide the generated code into four
categories based on its functionality and performance:
– A. Error-free with performance improvement: Code that runs without

errors and demonstrates improved performance compared to the baseline
starter code.

– B. Error-free without performance improvement: Code that runs without
errors but does not show significant performance gains.

– C. Erroneous code: Code that contains errors and fails to execute properly.
– D. Terminated without generating code: Cases where the system fails to

produce any code.
Analyzing category proportions helps evaluate the approach’s effectiveness in
generating functional, performance-enhancing research implementations.

2. Code quality: We further classify the code quality into three bins based on
manual scores assigned by two expert reviewers:
– S1 (8-10): High-quality code requiring minor or no repairs.
– S2 (4-7): Code requiring major repairs but demonstrating a partial

understanding of the methodology.
– S3 (1-3): Low-quality code with serious flaws or misinterpretations of the

methodology.
This score-wise distribution provides a more nuanced view of the code quality,
allowing us to assess not just the success rate but also the degree of correctness
and usability of the generated code.

Efficiency Metrics

1. Average Lines Edited: This metric measures the average number of lines
modified by ResearchCodeAgent during the implementation process.

ResearchCodeAgent 11

2. Average Lines Repaired: This metric indicates the average number of lines
that required manual correction after the system’s implementation.

3. Average Time Saving: To quantify the reduction in coding effort, we
calculate the percentage of time saved compared to manual implementation
using the formula:

Time Saving (%) = (1− Lines Repaired
Lines Edited

)× 100

3.4 Models and hyperparameters

ResearchCodeAgent employs a cascade of Large Language Models (LLMs) for
its planning and execution mechanisms. The base planner utilizes Gemini 1.5
Flash5, with Gemini 1.5 Pro6 as the intermediate planner in the cascade. For
challenging planning steps, the system escalates to GPT-47 as the planning expert.
All intelligent workers that require LLM capabilities are powered by Gemini
1.5 Flash. To balance exploration and consistency, we use different temperature
settings for various components of the system. Planning-related calls employ a
higher temperature of 0.8 to encourage creative problem-solving, while worker
calls use a lower temperature of 0.2 for more deterministic outputs. The planning
mechanism integrates short- and long-term memory. Short-term memory uses a
context window containing responses from the last three steps to maintain recent
context. The planner permits up to three planning expert calls per run, reserving
the strongest model for critical decisions. For LLM calls, retries are limited to 8
for Gemini 1.5 Flash, 4 for Gemini 1.5 Pro, and 1 for GPT-4.. To prevent action
looping, we employ a dynamic pooling mechanism. Initially, the system allows a
maximum of 15 consecutive actions from the same pool, with this limit decaying
exponentially at a rate of 0.01 as the implementation progresses. This approach
ensures a diverse action selection while allowing for necessary repetition in the
early stages of code generation. These hyperparameters and constraints can be
fine-tuned on a case-by-case basis to optimize performance for different research
tasks and methodologies, demonstrating the flexibility of the ResearchCodeAgent
architecture. The Appendix shows the problem statements, dataset descriptions,
methodology descriptions and pseudocodes for the cases we consider.

4 Results and Discussion

Our evaluation of ResearchCodeAgent aims to answer several key research ques-
tions about its effectiveness, efficiency, and generalizability across machine learn-
ing tasks varying in terms of methodology and complexity. We analyze the results
for three distinct ML tasks: data batching (OGSCL), data augmentation (YONA)
and optimization (FLAG). We perform 8 runs for each task, and also consider
two variations for FLAG with GCN and GraphSAGE.
5 https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-flash
6 https://ai.google.dev/gemini-api/docs/models/gemini#gemini-1.5-pro
7 gpt-4-0125-preview - https://platform.openai.com/docs/models

12 S. Gandhi et al.

Experiment Datapoint A (%) B (%) C (%) D (%)

Single LLM
Call

FLAG - GCN 0 0 100 0
FLAG - GraphSAGE 0 0 100 0
YONA 0 25 75 0
OGSCL 50 0 50 0

Average 12.5 6.25 81.25 0

Prescribed Plan

FLAG - GCN 0 50 50 0
FLAG - GraphSAGE 0 25 75 0
YONA 0 0 100 0
OGSCL 0 50 25 25

Average 0 31.25 62.5 6.25

ResearchCodeAgent

FLAG - GCN 12.5 37.5 50 0
FLAG - GraphSAGE 37.5 12.5 37.5 12.5
YONA 12.5 37.5 37.5 12.5
OGSCL 37.5 0 50 12.5

Average 25 21.88 43.75 9.38
Table 2: Error Categories Analysis. A: Error-free with performance improvement,
B: Error-free w/o performance improvement, C: Erroneous code, D: Terminated
without generating code

4.1 RQ1: How is the correctness and quality of the code generated
by ResearchCodeAgent?

Table 2 and Table 3 illustrate ResearchCodeAgent’s significant advantages over
Single LLM Call and Prescribed Plan methods in both error minimization
and code quality respectively. When examining the error categories, Research-
CodeAgent consistently reduces the rate of errors. On average, it produces fewer
erroneous outputs (C) at 43.75%, compared to 62.5% for the Prescribed Plan and
81.25% for the Single LLM Call. Moreover, ResearchCodeAgent also consistently
produces error-free code with improvement in performance as compared to other
approaches. From a code quality perspective, ResearchCodeAgent achieves the
highest proportion of S1 outputs, at 46.88%, outperforming Prescribed Plan
(0%) and Single LLM Call (37.5%). It also generates less low-quality S3 code, at
34.38%, significantly better than Prescribed Plan (75%) and Single LLM Call
(43.75%). These findings suggest that ResearchCodeAgent produces outputs that
are not only less erroneous but also closer to implementation-ready code in terms
of quality.

ResearchCodeAgent 13

Experiment Datapoint S1 (%) S2 (%) S3 (%)

Single LLM
Call

FLAG - GCN 0 0 100
FLAG - GraphSAGE 0 25 75
YONA 50 50 0
OGSCL 100 0 0

Average 37.5 18.75 43.75

Prescribed Plan

FLAG - GCN 0 0 100
FLAG - GraphSAGE 0 25 75
YONA 0 25 75
OGSCL 0 50 50

Average 0 25 75

ResearchCodeAgent

FLAG - GCN 37.5 25 37.5
FLAG - GraphSAGE 37.5 12.5 50
YONA 37.5 25 37.5
OGSCL 75 12.5 12.5

Average 46.88 18.75 34.38
Table 3: Code Quality Analysis. S1 (8-10): Good code requiring minor repairs,
S2 (4-7): Code requiring major repairs, S3 (1-3): Bad code with serious flaws

4.2 RQ2: How does ResearchCodeAgent compare to the Prescribed
Plan approach?

The results in Tables 2, 3 and 4 demonstrate ResearchCodeAgent’s consistent
superiority over the Prescribed Plan across all metrics: error categories, code
quality scores, and time savings. ResearchCodeAgent generates significantly more
error-free outputs (A + B categories) at 46.88%, compared to 31.25% for the
Prescribed Plan, and reduces erroneous outputs (C category) to 43.75%, markedly
better than the Prescribed Plan (62.5%). It also minimizes bad-quality outputs
requiring significant repairs (S3 bin) to 34.38%, a notable improvement over the
Prescribed Plan (75%), while maximizing S1 quality code from 0% to 46.88%.
In terms of time saving, ResearchCodeAgent achieves an average time saving
of 57.86%, significantly higher than the Prescribed Plan (31.93%). All of these
trends are consistent across tasks of all difficulty levels. These results emphasize
ResearchCodeAgent’s adaptability and efficiency, showcasing its ability to handle
diverse tasks better than the restrictive and less flexible Prescribed Plan.

14 S. Gandhi et al.

Experiment Datapoint Avg. #Lines
Edited

Avg. #Lines
Repaired

Avg. Time
Saving (%)

Single LLM
Call

FLAG - GCN 47.25 25.00 46.11
FLAG - GraphSAGE 53.00 25.75 51.82
YONA 67.75 45.00 57.39
OGSCL 17.50 0.75 95.48

Average 46.38 24.63 62.20

Prescribed Plan

FLAG - GCN 48.25 26.50 44.75
FLAG - GraphSAGE 77.25 33.50 44.38
YONA 40.00 35.75 10.52
OGSCL 28.25 17.00 28.06

Average 48.94 28.69 31.93

ResearchCodeAgent

FLAG - GCN 45.63 9.38 77.82
FLAG - GraphSAGE 55.00 11.75 63.02
YONA 31.00 23.88 31.93
OGSCL 25.50 13.25 58.66

Average 39.78 14.57 57.86

Table 4: Performance Metrics Analysis

4.3 RQ3: How does task complexity affect time saved in code
implementation?

ResearchCodeAgent demonstrates distinct time saving across tasks of varying
complexity. Table 4 shows that the system achieves an average time saving of
57.86%, slightly below the Single LLM Call (62.20%) but significantly higher than
the Prescribed Plan (51.93%). Its advantages are most evident in high-complexity
tasks, such as FLAG, where dynamic planning results in substantial time savings:
77.82% for FLAG-GCN and 63.02% for FLAG-GraphSAGE. This highlights the
strength of ResearchCodeAgent in dynamically adapting to challenging scenarios,
enabling more efficient and effective problem-solving than the Prescribed Plan
or Single LLM Call approaches. In contrast, for simpler tasks like YONA and
OGSCL, the Single LLM Call approach consistently outperforms, achieving better
time savings. This suggests that the overhead introduced by ResearchCodeAgent’s
dynamic planning may not be justified for straightforward problems, where static
solutions are already optimized for efficiency. For instance, YONA shows 31.93%
time saving with ResearchCodeAgent compared to a higher efficiency by Single
LLM Call (57.39%). This divergence points to the trade-offs inherent in using
adaptive systems for tasks where simplicity outweighs adaptability.

These findings emphasize that task complexity is a critical determinant
of ResearchCodeAgent’s relative effectiveness. The system’s design excels in
scenarios demanding iterative refinement and dynamic adjustments but introduces
unnecessary complexity for simpler tasks. Thus, deploying ResearchCodeAgent

ResearchCodeAgent 15

optimally involves aligning its capabilities with the complexity of the tasks at
hand.

5 Conclusion

ResearchCodeAgent represents a significant advancement in automating the
codification of research methodologies in machine learning. By employing a
multi-agent LLM system with dynamic planning, it consistently demonstrates
superiority over static approaches like the Prescribed Plan and simpler Single LLM
Call strategies, particularly for complex tasks. Our evaluation highlights several
key strengths of ResearchCodeAgent. The system produces high-quality, research-
grade code with a substantial proportion (46.9%) of outputs being directly
usable or requiring only minor modifications, outperforming other approaches
in terms of error minimization and quality improvement. ResearchCodeAgent’s
dynamic planning mechanism enables it to handle tasks of varying complexity
with notable efficiency. It achieves an average time saving of 57.86%, surpassing
the Prescribed Plan’s 31.93% and approaching the efficiency of Single LLM
Call for straightforward tasks. This adaptability is especially advantageous for
high-complexity tasks, where the system excels in delivering efficient, high-quality
solutions. However, for simpler tasks, the overhead introduced by dynamic
planning can result in suboptimal performance compared to static solutions.
Overall, ResearchCodeAgent demonstrates considerable potential to accelerate
the research process by bridging the gap between conceptual descriptions and
practical code implementations.

Bibliography

[1] Athiwaratkun, B., Gouda, S.K., Wang, Z., Li, X., Tian, Y., Tan, M., Ahmad,
W.U., Wang, S., Sun, Q., Shang, M., Gonugondla, S.K., Ding, H., Kumar,
V., Fulton, N., Farahani, A., Jain, S., Giaquinto, R., Qian, H., Ramanathan,
M.K., Nallapati, R., Ray, B., Bhatia, P., Sengupta, S., Roth, D., Xiang, B.:
Multi-lingual evaluation of code generation models (2023)

[2] Baek, J., Jauhar, S.K., Cucerzan, S., Hwang, S.J.: Researchagent: Iterative
research idea generation over scientific literature with large language models
(2024), https://arxiv.org/abs/2404.07738

[3] Bairi, R., Sonwane, A., Kanade, A., C, V.D., Iyer, A., Parthasarathy, S.,
Rajamani, S., Ashok, B., Shet, S.: Codeplan: Repository-level coding using
llms and planning (2023), https://arxiv.org/abs/2309.12499

[4] Chan, J.S., Chowdhury, N., Jaffe, O., Aung, J., Sherburn, D., Mays, E.,
Starace, G., Liu, K., Maksin, L., Patwardhan, T.A., Weng, L., Mkadry,
A.: Mle-bench: Evaluating machine learning agents on machine learning
engineering (2024), https://api.semanticscholar.org/CorpusID:273233550

[5] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H.P., Kaplan,
J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R.,
Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C.,
Tillet, P., Such, F.P., Cummings, D., Plappert, M., Chantzis, F., Barnes,
E., Herbert-Voss, A., Guss, W.H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A.N.,
Leike, J., Achiam, J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei,
D., McCandlish, S., Sutskever, I., Zaremba, W.: Evaluating large language
models trained on code (2021)

[6] Chen, Z., Chen, S., Ning, Y., Zhang, Q., Wang, B., Yu, B., Li, Y., Liao, Z.,
Wei, C., Lu, Z., Dey, V., Xue, M., Baker, F.N., Burns, B., Adu-Ampratwum,
D., Huang, X., Ning, X., Gao, S., Su, Y., Sun, H.: Scienceagentbench: Toward
rigorous assessment of language agents for data-driven scientific discovery.
ArXiv abs/2410.05080 (2024), https://api.semanticscholar.org/CorpusID:
273186311

[7] Gu, K., Shang, R., Jiang, R., Kuang, K., Lin, R.J., Lyu, D., Mao, Y., Pan,
Y., Wu, T., Yu, J., Zhang, Y., Zhang, T.M., Zhu, L., Merrill, M.A., Heer,
J., Althoff, T.: Blade: Benchmarking language model agents for data-driven
science. ArXiv abs/2408.09667 (2024), https://api.semanticscholar.org/
CorpusID:271903486

[8] Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning
on large graphs (2018), https://arxiv.org/abs/1706.02216

[9] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recog-
nition (2015), https://arxiv.org/abs/1512.03385

ResearchCodeAgent 17

[10] Hu, J., Wu, Y.: You only need half: Boosting data augmentation by using
partial content (2024), https://arxiv.org/abs/2405.02830

[11] Huang, Q., Vora, J., Liang, P., Leskovec, J.: Mlagentbench: Evaluating
language agents on machine learning experimentation. In: International
Conference on Machine Learning (2023), https://api.semanticscholar.org/
CorpusID:263671541

[12] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolu-
tional networks (2017), https://arxiv.org/abs/1609.02907

[13] Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem, B., Taylor, G.,
Goldstein, T.: Robust optimization as data augmentation for large-scale
graphs (2022), https://arxiv.org/abs/2010.09891

[14] Li, R., Patel, T., Wang, Q., Wang, Q., Du, X.: Mlr-copilot: Au-
tonomous machine learning research based on large language models agents.
ArXiv abs/2408.14033 (2024), https://api.semanticscholar.org/CorpusID:
271957477

[15] Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust
clothes recognition and retrieval with rich annotations. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp.
1096–1104 (2016). https://doi.org/10.1109/CVPR.2016.124

[16] Nigam, H., Patwardhan, M., Vig, L., Shroff, G.: Acceleron: A tool to accel-
erate research ideation (2024), https://arxiv.org/abs/2403.04382

[17] Paliwal, S., Gaikwad, B., Patidar, M., Patwardhan, M.S., Vig, L., Mahajan,
M., BagyaLakshmi, V., Karande, S.S.: Ontology guided supervised con-
trastive learning for fine-grained attribute extraction from fashion images. In:
eCom@SIGIR (2023), https://api.semanticscholar.org/CorpusID:266598601

[18] Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.:
Learning transferable visual models from natural language supervision. In:
Meila, M., Zhang, T. (eds.) Proceedings of the 38th International Conference
on Machine Learning. Proceedings of Machine Learning Research, vol. 139,
pp. 8748–8763. PMLR (18–24 Jul 2021), https://proceedings.mlr.press/v139/
radford21a.html

[19] Tian, M., Gao, L., Zhang, S.D., Chen, X., Fan, C., Guo, X., Haas, R., Ji, P.,
Krongchon, K., Li, Y., Liu, S., Luo, D., Ma, Y., Tong, H., Trinh, K., Tian,
C., Wang, Z., Wu, B., Xiong, Y., Yin, S., Zhu, M., Lieret, K., Lu, Y., Liu,
G., Du, Y., Tao, T., Press, O., Callan, J., Huerta, E.A., Peng, H.: Scicode:
A research coding benchmark curated by scientists. ArXiv abs/2407.13168
(2024), https://api.semanticscholar.org/CorpusID:271270048

[20] Wang, Q., Downey, D., Ji, H., Hope, T.: Scimon: Scientific inspiration
machines optimized for novelty (2024), https://arxiv.org/abs/2305.14259

[21] Yang, Z., Du, X., Li, J., Zheng, J., Poria, S., Cambria, E.: Large lan-
guage models for automated open-domain scientific hypotheses discovery. In:
Annual Meeting of the Association for Computational Linguistics (2023),
https://api.semanticscholar.org/CorpusID:261557055

18 S. Gandhi et al.

A Appendix

Listing 1: FLAG - Prompt for Single LLM Call
1 METHODOLOGY DESCRIPTION:
2
3 {methodology}
4
5 STARTER CODE:
6
7 {starter_code}
8
9 DATASET DESCRIPTION:

10
11 {data}
12
13 PSEUDOCODE:
14
15 {pseudocode}
16
17 STARTER CODE PERFORMANCE:
18
19 {starter_code_performance}
20
21 SUBPART_1_a CODE:
22
23 {subpart_1_a}
24
25 SUBPART_2_a CODE:
26
27 {subpart_2_a}
28
29 Edit the starter code for implementing the methodology

using the information given above.

ResearchCodeAgent 19

Listing 2: FLAG - Problem statement for Prescribed Path approach (Part 1)
1 List the files in the working directory to check which of

the above listed files are actually given. This will
also help you identify additional files.

2 Go through these files and understand their contents.
3 The file methodology_description.txt contains a detailed

description of the methodology.
4 The file pseudocode.txt contains a pseudocode

representing the methodology.
5 The file dataset_description.txt contains a detailed

description of the dataset. Go through the
dataset_description.txt file to understand the data
and all the features.

6 The file starter_code.py contains a starter code. You
will need to first understand what this code does and
also identify where you need to make changes to
implement the methodology.

7 The file starter_code_performance.txt contains the
performance of the starter code.

8 The working directory may also contain additional files
named subpart_[i]_[j].py , which represents the j’th
code script related to the i’th subpart of the
methodology. Do not try to execute these subpart
scripts. Ignore if such files are not present.

9 You can summarize the methodology_description.txt ,
dataset_description.txt , pseudocode.txt , starter_code.
py , starter_code_performance.txt and any other
additional files in your research logs to keep track
of what all you have to do.

10 Your task is to edit the code in starter_code.py to
implement the methodology described in
methodology_description.txt and pseudocode.txt for the
dataset described in dataset_description.txt.

11 Do not forget to execute the changes you made to check
for performance. The edited code should have
performance greater than what is mentioned in
starter_code_performance.txt. Save the edited script
in a new file named methodology_implementation.py.

12 Do not make any changes to the methodology. Do not change
any arguments or hyperparameters from the starter

code.
13 After listing and understanding files , when you start

editing the code , first add a skeleton containing
function definitions for methodology subparts. Then
implement each of these functions and check the
implementation. Use the Understand File with code
context and Edit Script with context actions to
implement the subparts by giving appropriate context.

20 S. Gandhi et al.

Listing 3: FLAG - Problem statement for Prescribed Path approach (Part 2)
14 Make sure that you make appropriate edits to the code and

execute the edited code and not just execute unedited
code to submit final answer.

15 Repair any errors that the code might have. Do not submit
code with errors. Execute the code to verify that it

does not have errors.
16 Use the Check Implementation action to check if the

python script contains implementation of the
methodology before submitting final answer and that
the performance of the final code is greater than the
performance of starter_code.py mentioned in
starter_code_performance.txt.

17 Verify that the part of the code related to the
methodology implementation is actually being called
during execution using the execution trace files
obtained in <script_name >_execution_trace.covers which
contain the number of times each line is executed and
>>>>>> denotes that the line is not executed even

once.

ResearchCodeAgent 21

Listing 4: FLAG - Problem statement for ResearchCodeAgent (Part 1)
1 You have been given files with the names

methodology_description.txt , dataset_description.txt ,
pseudocode.txt ,starter_code.py and
starter_code_performance.txt.

2 List the files in the working directory to check which of
the above listed files are actually given. This will

also help you identify additional files.
3 Go through these files and understand their contents.
4 The file methodology_description.txt contains a detailed

description of the methodology.
5 The file pseudocode.txt contains a pseudocode

representing the methodology.
6 The file dataset_description.txt contains a detailed

description of the dataset. Go through the
dataset_description.txt file to understand the data
and all the features.

7 The file starter_code.py contains a starter code. You
will need to first understand what this code does and
also identify where you need to make changes to
implement the methodology.

8 The file starter_code_performance.txt contains the
performance of the starter code.

9 The working directory may also contain additional files
named subpart_[i]_[j].py , which represents the j’th
code script related to the i’th subpart of the
methodology. Do not try to execute these subpart
scripts. Ignore if such files are not present.

10 You can summarize the methodology_description.txt ,
dataset_description.txt , pseudocode.txt , starter_code.
py , starter_code_performance.txt and any other
additional files in your research logs to keep track
of what all you have to do.

11 Your task is to edit the code in starter_code.py to
implement the methodology described in
methodology_description.txt and pseudocode.txt for the
dataset described in dataset_description.txt.

12 Do not forget to execute the changes you made to check
for performance. The edited code should have
performance greater than what is mentioned in
starter_code_performance.txt. Save the edited script
in a new file named methodology_implementation.py.

13 Do not make any changes to the methodology. Do not change
any arguments or hyperparameters from the starter

code.

22 S. Gandhi et al.

Listing 5: FLAG - Problem statement for ResearchCodeAgent (Part 2)
14 Make sure that you make appropriate edits to the code and

execute the edited code and not just execute unedited
code to submit final answer.

15 Repair any errors that the code might have. Do not submit
code with errors. Execute the code to verify that it

does not have errors.
16 Use the Check Implementation action to check if the

python script contains implementation of the
methodology before submitting final answer and that
the performance of the final code is greater than the
performance of starter_code.py mentioned in
starter_code_performance.txt.

17 Verify that the part of the code related to the
methodology implementation is actually being called
during execution using the execution trace files
obtained in <script_name >_execution_trace.cover which
contain the number of times each line is executed and
>>>>>> denotes that the line is not executed even once
.

ResearchCodeAgent 23

Listing 6: FLAG - Dataset Description
1 Graph: The ogbn -arxiv dataset is a directed graph ,

representing the citation network between all Computer
Science (CS) arXiv papers indexed by MAG. Each node

is an arXiv paper and each directed edge indicates
that one paper cites another one. Each paper comes
with a 128- dimensional feature vector obtained by
averaging the embeddings of words in its title and
abstract. The embeddings of individual words are
computed by running the skip -gram model over the MAG
corpus. We also provide the mapping from MAG paper IDs
into the raw texts of titles and abstracts here. In

addition , all papers are also associated with the year
that the corresponding paper was published.

2
3 Prediction task: The task is to predict the 40 subject

areas of arXiv CS papers , e.g., cs.AI , cs.LG, and cs.
OS , which are manually determined (i.e., labeled) by
the p a p e r s authors and arXiv moderators. With the
volume of scientific publications doubling every 12
years over the past century , it is practically
important to automatically classify each
p u b l i c a t i o n s areas and topics. Formally , the task
is to predict the primary categories of the arXiv
papers , which is formulated as a 40-class
classification problem.

4
5 Dataset splitting: We consider a realistic data split

based on the publication dates of the papers. The
general setting is that the ML models are trained on
existing papers and then used to predict the subject
areas of newly -published papers , which supports the
direct application of them into real -world scenarios ,
such as helping the arXiv moderators. Specifically , we
propose to train on papers published until 2017,

validate on those published in 2018, and test on those
published since 2019.

24 S. Gandhi et al.

Listing 7: FLAG - Methodology Description (Part 1)
1 Following is the description of the FLAG (Free Large -

scale Adversarial Augmentation on Graphs) algorithm.
2 In this work , we investigate how to effectively improve

the generalization of GNNs through a feature based
augmentation. Graph node features are usually
constructed as discrete embeddings , such as binary bag
-of -words vectors or categorical variables. As a
result , standard hand -crafted augmentations , like
flipping and cropping transforms used in computer
vision , are not applicable to graphs node features.

3 By hunting for and stamping out small perturbations that
cause the classifier to fail , one may hope that
adversarial training could benefit standard accuracy (
Goodfellow et al., 2014; Tsipras et al., 2018; Miyato
et al., 2018). It is widely observed that when the
data distribution is sparse and discrete , the
beneficial effect of adversarial perturbations on
generalization takes over (Tsipras et al., 2018; Gan
et al., 2020). Volpi et al. (2018) viewed adversarial
perturbation as a data -dependent regularization , which
could intuitively generalize to out -of -distribution

samples. Highlighted by Hu et al. (2020) , the out -of-
distribution phenomenon of data is salient in the
graph domain , and also considering the sparsity of
labeled node samples in the semi -supervised node
classi cation task , we view adversarial perturbation
as a strong candidate method for input feature
augmentation.

4 Min -Max Optimization. Adversarial training is the process
of crafting adversarial data points , and then

injecting them intro training data. This process is
often formulated as the following min -max problem:

5 Eq (3) - The equation represents the minimization over
theta of the expected value , where the expectation is
taken over pairs of x and y drawn from the
distribution D. The quantity being minimized is the
maximum value of the loss function L, evaluated at
points f sub theta of x plus delta , and y, where the
maximum is taken over all delta such that the p-norm
of delta is less than or equal to epsilon.

6 where D is the data distribution , y is the label , || . ||
p is some p-norm distance metric , epsilon is the

perturbation budget , and L is the objective function.
Madry et al. (2017) showed that this saddle point
optimization problem could be reliably tackled by
Stochastic Gradient Descent (SGD) for the outer
minimization and Projected Gradient Descent (PGD) for
the inner maximization. In practice , the typical
approximation of the inner maximization under an l-
norm constraint is as follows ,

7 Eq (4) - Delta at time t plus 1 is equal to the
projection onto the set of delta for which the
infinity norm of delta is less than or equal to
epsilon of the quantity delta sub t plus alpha times
the sign of the gradient of the loss function L
evaluated at f sub theta of x plus delta sub t, y.

ResearchCodeAgent 25

Listing 8: FLAG - Methodology Description (Part 2)
8 where the perturbation delta is updated iteratively , and

performs projection onto the -ball in the l-norm. For
maximum robustness , this iterative updating procedure
usually loops M times to craft the worst -case noise ,
which requires M forward and backward passes end -to -
end. Afterwards the most vicious noise is applied to
the input feature , on which the model weight is
optimized. The algorithm above is called PGD.

9 Multi -scale Augmentation. On visual tasks , Chen et al.
(2020) highlighted the importance of using diverse
types of data augmentations such as random cropping ,
color distortion , and Gaussian blur. The authors
showed that a single transformation is not su cient to
learn good representations. To fully exploit the

generalizing ability and enhance the diversity and
quality of adversarial perturbations , we propose to
craft multi -scale augmentations. To realize this goal ,
we leverage the techniques below.

10 Free training. We leverage free adversarial training (
Shafahi et al., 2019) to craft adversarial data
augmentations. PGD is a powerful yet ine cient way of
solving the min -max optimization. It runs M full
forward and backward passes to craft a refined
perturbation delta 1:M, but the model weights theta
only get updated once using the final delta M. This
process makes model training M times slower. In
contrast , while computing the gradient for the
perturbation , free training simultaneously produces
the model parameter on the same backward pass. This
enables a parameter update to be computed in parallel
with a perturbation update at virtually no additional
cost. The authors proposed to train on the same
minibatch M times in a row to simulate the inner
maximization in Eq. (3), while compensating by
performing M times fewer epochs of training. The
resulting algorithm yields accuracy and robustness
competitive with standard adversarial training , but
with the same runtime as clean training.

11

26 S. Gandhi et al.

Listing 9: FLAG - Pseudocode (Part 1)
1 FLAG Algorithm in Pseudocode/Natural Language with Symbol

Explanations:
2 Input:
3 Graph G = (V, E) with labeled node set Vl and unlabeled

node set Vu.
4 V represents the set of all nodes in the graph.
5 E represents the set of edges connecting nodes.
6 Vl is the subset of nodes with known labels.
7 Vu is the subset of nodes without known labels.
8 Learning rate (tau).
9 Ascent steps M: the number of iterations for updating

parameters.
10 Ascent step size (alpha_l) for labeled nodes and (alpha_u

) for unlabeled nodes.
11 Objective function L: a function to measure the model ’s

performance.
12 Aggregation function A: a function to combine information

from neighbor nodes.
13 Combination function C: a function to combine aggregated

information with the previous node representation.
14 Output: Updated model parameters theta (theta).
15 Steps:
16 Initialization:
17 Initialize model weights theta (theta) and noises.
18 For each labeled node v in Vl:
19 Set initial hidden representation h_v^theta (h_v

superscript theta) to -alpha_l * theta(v).
20 This means the initial representation is the negative of

alpha_l times the output of theta for node v.
21 For each unlabeled node u in Vu:
22 Set initial hidden representation h_u^theta (h_u

superscript theta) to -alpha_u * theta(u).
23 This means the initial representation is the negative of

alpha_u times the output of theta for node u.
24 Ascent Loop (M steps):
25 For t = 1 to M:
26 Update hidden representations for unlabeled nodes (

aggregation and combination):
27 For each unlabeled node u in Vu:
28 Aggregate messages from neighbors:
29 msg_u^k (msg_u superscript k) is assigned A({(h_v^(k-1),

h_u^(k-1), e_uv) | v belongs to N(u)})
30 This means message for node u at step k is the result of

applying the aggregation function A to the set of
tuples containing:

31 hidden representation of neighbor v at step k-1
32 hidden representation of node u at step k-1
33 the edge connecting node v and u
34 N(u) represents the set of neighbors of node u.

ResearchCodeAgent 27

Listing 10: FLAG - Pseudocode (Part 2)
35 Combine aggregated message with previous hidden state:
36 h_u^k (h_u superscript k) is assigned C(h_u^(k-1), msg_u^

k)
37 This updates the hidden representation of node u at step

k by combining the previous representation at k-1 with
the aggregated message using the combination function
C.

38 Calculate loss and gradients:
39 L(h_v^k, y) (using backpropagation)
40 This computes the loss based on the hidden representation

of labeled node v at step k and the true label y.
Backpropagation is used to calculate gradients.

41 g_theta^t (g_theta superscript t) is assigned g_theta ^(t
-1) + grad_theta(L)

42 This updates the gradient of theta at step t by adding
the gradient of the loss with respect to theta.

43 g_u^t (g_u superscript t) is assigned g_u^(t-1) + grad_u(
L)

44 This updates the gradient of the hidden representation of
unlabeled node u at step t by adding the gradient of

the loss with respect to that representation.
45 Update parameters and noises:
46 theta is assigned theta + tau/M * g_theta^t
47 This updates the model parameters theta by adding the

scaled gradient of theta at step t.
48 For each labeled node v in Vl:
49 delta_v^t (delta_v superscript t) is assigned delta_v ^(t

-1) + alpha_l * sign(grad_delta(L))
50 This updates the noise for labeled node v by adding

alpha_l times the sign of the gradient of the loss
with respect to the noise.

51

28 S. Gandhi et al.

Listing 11: YONA - Prompt for SIngle LLM Call
1 METHODOLOGY DESCRIPTION:
2
3 {methodology}
4
5 STARTER CODE:
6
7 {starter_code}
8
9 RESNET CODE:

10
11 {resnet_code}
12
13 DATASET DESCRIPTION:
14
15 {data}
16
17 PSEUDOCODE:
18
19 {pseudocode}
20
21 STARTER CODE PERFORMANCE:
22
23 {starter_code_performance}
24
25
26 Edit the starter code for implementing the methodology

using the information given above.

ResearchCodeAgent 29

Listing 12: YONA - Problem statement for ResearchCodeAgent (Part 1)
1 You have been given files with the names

methodology_description.txt , pseudocode.txt , model/
resnet.py,dataset_description.txt , starter_code.py ,
starter_code_performance.txt.

2 Go through these files and understand their contents.
3 The file methodology_description.txt contains a detailed

description of the YONA algorithm , which augments an
image by splitting it into two equal pieces , applying
data augmentation to one piece and replacing the other
with noise , and then concatenating the pieces back

together. This process leverages randomness to
introduce diversity at both the patch and image levels
.

4 The file pseudocode.txt contains pseudocode for the YONA
method , which augments an image by randomly splitting
it , applying data augmentation to one half , adding
noise to the other half , and then concatenating them
back together.

5 The file dataset_description.txt contains a description
of the CIFAR -10 dataset , which consists of 60,000
color images in 10 classes , divided into training and
test sets with 50 ,000 and 10,000 images respectively ,
and further split into batches for easier handling.

6 The file starter_code.py contains a starter code for the
YONA algorithm which implements a PyTorch CIFAR
training script with various options for dataset ,
optimizer , training epochs , and distributed training.
You will need to first understand what this code does
and also identify where you need to make changes to
include the implementation of the FLAG algorithm.

7 The file starter_code_performance.txt contains the
performance of the starter code.

8 The working directory will contain an additional
directory named models which contains code for Resnet.
It contains code for implementing ResNet architectures
, including ResNet18 , ResNet34 , ResNet50 , ResNet101 ,
and ResNet152 , in PyTorch , based on the "Deep Residual
Learning for Image Recognition" paper. Do not try to

execute this file.
9 You can summarise the methodology_description.txt ,

dataset_description.txt , starter_code.py ,
starter_code_performance.txt and resnet.py in your
research logs to keep track of what all you have to do
.

10 Your task is to edit the code in starter_code.py to
implement the methodology described in
methodology_description.txt and pseudocode.txt for
the dataset described in dataset_description.txt.

30 S. Gandhi et al.

Listing 13: YONA - Problem statement for ResearchCodeAgent (Part 2)
11 Do not forget to execute the changes you made to check

for performance and errors. Save the edited script in
a new file named methodology_implementation.py.

12 Do not make any changes to the methodology. Do not change
any arguments or hyperparameters from the starter

code.
13 Make sure that you make appropriate edits to the code and

execute the edited code and not just execute unedited
code to submit the final answer.

14 Repair any errors that the code might have. Do not submit
code with errors. Execute the code to verify that it

does not have errors.
15 Use the Check Implementation action to check if the

python script contains implementation of the
methodology before submitting the final answer. If the
implementation is incorrect then edit the code ,

execute the changes and verify that the implementation
is correct before submitting the final answer.umber

of times each line is executed and >>>>>> denotes that
the line is not executed even once.

Listing 14: YONA - CIFAR10 Dataset Description
1 The CIFAR -10 dataset consists of 60000 32x32 colour

images in 10 classes , with 6000 images per class.
There are 50000 training images and 10000 test images
. Pixels store color information in red , green , and
blue channels , with values from 0 (black) to 255 (
bright).

2 The dataset is divided into five training batches and one
test batch , each with 10000 images. The test batch

contains exactly 1000 randomly -selected images from
each class. The training batches contain the remaining
images in random order , but some training batches may
contain more images from one class than another.

Between them , the training batches contain exactly
5000 images from each class.

ResearchCodeAgent 31

Listing 15: YONA - Pseudocode (Part 1)
1 Pseudocode for YONA Method
2
3 Define the image ’x’ with dimensions (Channels , Height ,

Width)
4 Define a set of data augmentation functions ’A’
5
6 Procedure YONA_Augmentation(image , augmentation_functions

):
7
8 Step 1: Split the image ’x’ into two equal segments

either vertically or horizontally
9 Get the dimensions of the image (Height , Width)

10 Randomly choose to split the image vertically or
horizontally

11 Choose ’split_direction ’ randomly from [’vertical ’, ’
horizontal ’]

12
13 If split_direction is ’vertical ’:
14 Split the image into two equal vertical segments
15 Define ’mid_point ’ as Width divided by 2
16 Segment1 = left half of the image up to ’

mid_point ’
17 Segment2 = right half of the image from ’

mid_point ’
18 Else:
19 Split the image into two equal horizontal

segments
20 Define ’mid_point ’ as Height divided by 2
21 Segment1 = top half of the image up to ’mid_point

’
22 Segment2 = bottom half of the image from ’

mid_point ’
23
24 Step 2: Randomly select one segment to apply

augmentation and add noise to the other
25 If random value between 0 and 1 is less than or equal

to 0.5:
26 Augmented_Segment = Apply_Random_Augmentation(

Segment1 , augmentation_functions)
27 Noised_Segment = Apply_Noise(Segment2)
28 Combined_Image = Concatenate_Segments(

Augmented_Segment , Noised_Segment ,
split_direction)

29 Else:
30 Augmented_Segment = Apply_Random_Augmentation(

Segment2 , augmentation_functions)
31 Noised_Segment = Apply_Noise(Segment1)
32 Combined_Image = Concatenate_Segments(

Noised_Segment , Augmented_Segment ,
split_direction)

33
34 Return Combined_Image

32 S. Gandhi et al.

Listing 16: YONA - Pseudocode (Part 2)
35 Procedure Apply_Random_Augmentation(segment ,

augmentation_functions):
36 Step 3: Apply a randomly selected augmentation

function to the segment
37 Choose a random augmentation function from ’

augmentation_functions ’
38 Apply the chosen augmentation function to ’segment ’
39 Return the augmented segment
40
41 Procedure Apply_Noise(segment):
42 Step 4: Convert segment to Noise
43 Generate random integer noise with the same range as

the pixels of the image with the same dimensions
as ’segment ’

44 Return the noised segment
45
46 Procedure Concatenate_Segments(segment1 , segment2 ,

split_direction):
47 Step 5: Concatenate the two segments based on the

split direction
48 If split_direction is ’vertical ’:
49 Concatenate segments along the width
50 Return Concatenate ’segment1 ’ and ’segment2 ’ side

by side
51 Else:
52 Concatenate segments along the height
53 Return Concatenate ’segment1 ’ and ’segment2 ’ top

to bottom
54
55 Example usage:
56 Define a list of augmentation functions as ’

augmentation_functions ’
57 Call YONA_Augmentation with the image and augmentation

functions list

ResearchCodeAgent 33

Listing 17: YONA - Methodology Description (Part 1)
1 YONA cuts one image into two equal pieces , either in the

height or the width dimension. A specific data
augmentation method is performed on one piece , and the
pixels within the other piece are replaced with noise

. Transformed pieces are then concatenated together to
form one single augmented image.

2
3 Consider an image x of dimensions C*H*W and we let a()

represent various data augmentation functions defined
as a() : x’ = a(x) and dimension of x’ and x are
exactly same. Here , x = a(x) denotes the augmented
image. Unlike conventional image -level data
augmentation methods that directly apply augmentations
to the entire image as x = a(x), YONA initially

bifurcates the image into two equal segments along
either the height or width dimension , each selection
occurring with equal probability.

4 possible examples for a() are Horizontal Flip (HFlip),
Vertical Flip (VFlip), Color Jitter (Jitter), Random
Erasing (Erasing).

5
6 [x1 x2] = cutH(x) if 0 <= p <= 0.5,
7 such that dimension of x1 and x2 = dim(x1) = dim(x2) = C

*(H/2)*W
8 or
9 [x1 x2] = cutW(x) if 0.5 <= p <= 1,

10 such that dimension of x1 and x2 = dim(x1) = dim(x2) = C*
H*(W/2)

11
12 where p is sampled from (0, 1) uniformly (i.e., p blongs

to U(0, 1)), x1 and x2 are cut pieces , cutH() and cutW
() represent the cut operation in the height

dimension and the width dimension , respectively.Then a
() is applied to one randomly selected piece , and the
pixels within the other piece are replaced with noise
as:

13
14 xM1 = mask(x1) and
15 xA2 = a(x2), if 0 <= q <= 0.5
16 or
17 xA1 = a(x1) and
18 xM2 = mask(x2), if 0.5 < q <= 1,

34 S. Gandhi et al.

Listing 18: YONA - Methodology Description (Part 2)
19 where q is sampled from from (0, 1) uniformly (i.e., q

belongs to U(0, 1)), x1 and x2 are cut pieces , xM1 and
XM2 are masked pieces , xA1 and xA2 are augmented

pieces , mask() represents the masking with noise
operation. Finally , we concatenate the transformed
pieces back together as:

20
21 x’ = concat[xM1 , xA2],
22 or
23 x’ = concat[xA1 , xM2],
24
25 where concat(,) represents the concatenation operation.

Augmentation and masking operations are governed by
randomness , encompassing random probabilities of being
applied , random operations , and random magnitudes.

These operations exhibit distinct behaviors , thereby
instilling substantial diversity at both the patch and
image levels.

Listing 19: OGSCL - Prompt for SIngle LLM Call
1 METHODOLOGY DESCRIPTION:
2
3 {methodology}
4
5 SUPPLEMENTARY METHODOLOGY:
6
7 {supplementary_methodology}
8
9 STARTER CODE:

10
11 {starter_code}
12
13 DATASET DESCRIPTION:
14
15 {data}
16
17 PSEUDOCODE:
18
19 {pseudocode}
20
21 STARTER CODE PERFORMANCE:
22
23 {starter_code_performance}
24
25 Edit the starter code for implementing the methodology

using the information given above.

ResearchCodeAgent 35

Listing 20: Problem statement for ResearchCodeAgent - OGSCL (Part 1)
1 You have been given files with the names

methodology_description.txt , pseudocode.txt ,
dataset_description.txt , starter_code.py ,
supplementary_methodology.txt ,
starter_code_performance.txt.

2 Go through these files and understand their contents.
3 The file methodology_description.txt contains a

description of OGSCL , a method for fine -tuning CLIP
for the fashion domain. OGSCL uses intelligent
batching strategies that leverage a fashion ontology
to create batches of images and captions with related
attributes , improving attribute -based image
understanding.

4 The file pseudocode.txt contains the OGSCL algorithm
which processes a dataframe containing image
attributes and captions to create a list of
DataLoaders , each dedicated to a unique attribute type
, along with the total number of batches across all
DataLoaders.

5 The file dataset_description.txt contains a description
of the DeepFashion dataset , which consists of fashion
apparel images labeled with product categories and
attributes like fabric , style , shape , texture , and
part. This dataset is transformed into an image
captioning dataset by creating captions that describe
the attribute values of each product , resulting in
multiple data points per image.

6 The file supplementary_methodology.txt contains a
description of the methodology used in the starter
code , which utilizes pre -trained CLIP on image -text
pairs for supervised contrastive learning. It also
explains how focal loss is incorporated to mitigate
class imbalance issues encountered in datasets with
rare attributes.

7 The file starter_code.py contains starter code for the
OGSCL algorithm , implementing a contrastive learning
approach for image -caption alignment using the CLIP
model and training and validation loops.You will need
to first understand what this code does and also
identify where you need to make changes to include the
implementation of the OGSCL algorithm.

8 The file starter_code_performance.txt contains the
performance of the starter code.

9 You can summarise the methodology_description.txt ,
dataset_description.txt , supplementary_methodology.txt
, starter_code.py and starter_code_performance.txt in
your research logs to keep track of what all you have
to do.

10 Your task is to edit the code in starter_code.py to
implement the methodology described in
methodology_description.txt and pseudocode.txt for
the dataset described in dataset_description.txt.

36 S. Gandhi et al.

Listing 21: Problem statement for ResearchCodeAgent - OGSCL (Part 2)
11 Do not forget to execute the changes you made to check

for performance and errors. Save the edited script in
a new file named methodology_implementation.py.

12 Do not make any changes to the methodology. Do not change
any arguments or hyperparameters from the starter

code.
13 No other files apart from the ones mentioned here are

available and are not necessary either.
14 Make sure that you make appropriate edits to the code and

execute the edited code and not just execute unedited
code to submit the final answer.

15 Repair any errors that the code might have. Do not submit
code with errors. Execute the code to verify that it

does not have errors.
16 Use the Check Implementation action to check if the

python script contains implementation of the
methodology before submitting the final answer. If the
implementation is incorrect then edit the code ,

execute the changes and verify that the implementation
is correct before submitting the final answer.

ResearchCodeAgent 37

Listing 22: OGSCL - Methodology Description
1 OGSCL proposes an enhanced approach to fine -tuning CLIP

for the fashion domain , leveraging multimodal
representations and intelligent batching strategies to
improve attribute -based image understanding. A

fashion ontology consists of product category ,
attribute type and attribute label. Each fashion image
belonging to a product category , such as shirt or

blouse , is labelled an attribute value such as
pleated for an attribute type fabric . The

captions for a fashion image are formed using the
attribute type - value pairs. For example , the caption
of an image of a blouse can be The fabric of this

Blouse is p l e a t e d . In the contrastive learning set
-up , we define an image and a caption formed using an
attribute value , the image is labelled with , as a
positive pair. Let AV11 , AV12 , AV13 are attribute
values belonging to attribute type AT1 , and thus are
siblings of each other. Let an image I1 is labelled
with an attribute value AV11 belonging to attribute
type AT1 forming a caption C11. Thus , (I1 , C11) forms
a positive sample . Similarly let image I2 be

labelled with AV13 , forming (I2, C13) as a positive
sample. For selecting in-batch negatives , we use the
fashion ontology. We explicitly make sure that in a
batch only those image caption pairs are sampled ,
where the captions belong to the attribute values of
the same attribute type. For example , as the part of
intelligent batching , (I1 , C11) is chosen as a
sample then (I2 ,C13) is also chosen as a sample ,
because AV1 and AV3 are siblings and belong to the
same attribute type AT1. Thus , in this batch (I1, C11
) and (I2,C13) are positive pairs and (I1, C13) and (
I2, C11) form negative pairs. For example pleated ,
denim and knit are attribute values belonging to
attribute type fabric and they would be considered
siblings of one another.An image (Image1) labelled
with attribute value pleated belonging to attribute
type fabric has a caption - The fabric of this Blouse
is pleated (Caption1). Thus this image and this
caption form a positive sample and similarly and
another image (Image2) with attribute value denim
belonging to attribute type fabric has a caption - The
fabric of this Cutoffs is denim (Caption2). This

image and caption would also form a positive sample.
In one of our intelligent batches we would take Image1
and Image2 as our images and Caption1 and Caption2 as
our texts.This can be done because the attribute

values of these images are siblings (siblings belong
to the same attribute type) belonging to the attribute
type fabric.The novelty of OGSCL is that it does not
change the loss function at all but only implements

intelligent batching where all the entries in the
batch have the same attribute -type.

38 S. Gandhi et al.

Listing 23: OGSCL - Dataset Description
1 DeepFashion Description for OGSCL: The DeepFashion

dataset comprises images of fashion apparel products
along with their labels.Each sample product image in
the dataset is labeled with a product category (PC)
and associated attribute values (AV) for five
different attribute types (AT): fabric , style , shape ,
texture , and part. Therefore , a typical label would be
formatted as follows: [PC , (" fabric", AV1), ("style",
AV2), ("shape", AV3), (" texture", AV4), ("part", AV5)

]. It should be noted that a product image may not
necessarily be labeled with all attribute types. The
dataset includes a total of 983 attribute values. The
dataset is then transformed into an image captioning
dataset by applying the following procedure: for each
(AT , AV) pair , a text caption is created in the format
"The <AT> of this <PC > is <AV >." Consequently , in the
new dataset , each image is repeated as many times as

the number of (AT , AV) pairs it is labeled with. Thus ,
each data point in this transformed dataset will

consist of an image and a corresponding caption that
indicates the attribute value for a specific attribute
type of the product.

2 The fashion Ontology in the dataset has the attribute
types fabric , style , shape , texture and part , each
having their own attribute values. The fashion
Ontology is not explicitly required.

3 The dataset has the titles image , caption , category ,
attribute_type and attribute_value for its data points
. They contain the path of the images , the caption of
the given image which is verbalized category ,
attribute_type and attribute_value , the type of dress ,
attribute type and attribute value respectively.

ResearchCodeAgent 39

Listing 24: OGSCL - Pseudocode
1 Algorithm: OGSCL
2
3 Input:
4 - dataframe: A data structure containing image attributes

and associated captions
5 - image_path: Path to the directory containing images
6 - batch_size: Size of batches for DataLoader
7
8 Output:
9 - length: Total number of batches across all DataLoaders

10 - train_dataloader_list: List of DataLoaders for each
unique attribute type

11
12 Procedure OGSCL(dataframe , image_path , batch_size)
13
14 1. Function process_dataframe(dataframe)
15 - Initialize dataframe_list as an empty list
16 - for each attribute_type in unique values of

dataframe [" attribute_type "] do
17 - Filter dataframe to get filtered_dataframe where

attribute_type matches
18 - Append filtered_dataframe to dataframe_list
19 - end for
20 - return dataframe_list
21
22 2. Call process_dataframe(dataframe) to obtain

train_dataframe_list
23
24 3. Initialize length to 0
25
26 4. Initialize train_dataloader_list as an empty list
27
28 5. for each train_dataframe in train_dataframe_list do
29 - Create train_dataloader using:
30 - Dataset from image_caption_dataset(train_dataframe

, image_path)
31 - batch_size set to batch_size
32 - Shuffle enabled
33 - Add the number of batches in train_dataloader to

length
34 - Append train_dataloader to train_dataloader_list
35
36 6. end for
37
38 7. return length and train_dataloader_list

40 S. Gandhi et al.

Listing 25: OGSCL - Supplementary methodology
1 This methodology is already implemented in the

starter_code.py and is only present for your context.
2 CLIP is pre -trained on (image , text) pairs by maximizing

the cosine similarity between representations of B (
image , text) pairs and minimizing the cosine
similarity for B^2 B invalid pairs in a batch of
size B.

3 We obtain the multimodal image representation by first
passing the image through CLIP ’s image encoder ,
followed by a multimodal projection layer. Similarly ,
we use the caption provided in the dataset , which
verbalizes the attribute value , obtaining the
corresponding multimodal representation via C L I P s
text encoder and a multimodal projection layer.

4 During the fine -tuning of CLIP , we maximize the cosine
similarity between the representations of positive (
image , attribute value) pairs and minimize the cosine
similarity for negative pairs.

