

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BEST-OF-THREE-WORLDS ANALYSIS FOR DUELING BANDITS WITH BORDA WINNER

Anonymous authors

Paper under double-blind review

ABSTRACT

The dueling bandits (DB) problem addresses online learning from relative preferences, where the learner queries pairs of arms and receives binary win-loss feedback. Most existing work focuses on designing algorithms for specific stochastic or adversarial environments. Recently, a unified algorithm has been proposed that achieves convergence across all settings. However, this approach relies on the existence of a Condorcet winner, which is often not achievable, particularly when the preference matrix changes in the adversarial setting. Aiming for a more general Borda winner objective, there currently exists no unified framework that simultaneously achieves optimal regret across these environments. In this paper, we explore how the follow-the-regularized-leader (FTRL) algorithm can be employed to achieve this objective. We investigate a hybrid negative entropy regularizer and demonstrate that it enables us to achieve $\tilde{O}(K^{1/3}T^{2/3})$ regret in the adversarial setting, $O(K \log^2 T / \Delta_{\min}^2)$ regret in the stochastic setting, and $O(K \log^2 T / \Delta_{\min}^2 + (C^2 K \log^2 T / \Delta_{\min}^2)^{1/3})$ regret in the corrupted setting, where K is the arm set size, T is the horizon, Δ_{\min} is the minimum gap between the optimal and sub-optimal arms, and C is the corruption level. These results align with the state-of-the-art in individual settings, while eliminating the need to assume a specific environment type. We also present experimental results demonstrating the advantages of our algorithm over baseline methods across different environments.

1 INTRODUCTION

In online sequential decision making, the multi-armed bandit framework (MAB) has played a crucial role in optimizing decisions under uncertainty (Lattimore & Szepesvári, 2020). Traditional MAB relies on absolute numerical rewards, which can often be noisy or challenging to obtain from users. To overcome this limitation, the dueling bandits (DB) problem provides a robust alternative using relative comparisons, where the learner queries pairs of actions (arms) and receives binary feedback on the preferred option (Bengs et al., 2021). This approach closely mirrors real-world scenarios where comparative judgments are more natural and reliable and has broad applications in areas such as search optimization, tournament ranking, retail management, and reinforcement learning from human feedback (RLHF) (Yue & Joachims, 2009; Dudik et al., 2011; Christiano et al., 2017).

DB algorithms aim to minimize regret over a given horizon, defined as the cumulative gap between the rewards of designated winners and the rewards obtained. The Condorcet and Borda winners are among the most widely studied winner objectives (Yue et al., 2012; Bengs et al., 2021). Existing research has explored various preference settings, including the stochastic case where relative preferences are fixed (Yue & Joachims, 2009), the adversarial case with arbitrarily changing preferences (Saha et al., 2021), and the corrupted case, which lies between them (Agarwal et al., 2021).

Despite the importance of these contributions, they provide convergence guarantees only under specific environments. Once the environment shifts—for instance, when an algorithm tailored for the stochastic setting is applied to an adversarial one—the performance can degrade to linear regret. Designing algorithms that achieve optimal performance across environments without relying on prior knowledge has therefore become a problem of broad interest in the field (Bubeck & Slivkins, 2012; Zimmert & Seldin, 2021; Kong et al., 2023; Tsuchiya et al., 2023; Ito & Takemura, 2023b;a; Ito et al., 2022).

054
 055 Table 1: Regret bounds comparison under different environments and winners, where K is the num-
 056 ber of arms, T is the time horizon, C is the corruption level, Δ_{\min} is the minimum sub-optimality
 057 gap (to the optimal arm). \tilde{O} hides polylogarithmic factors.

Algorithm	Environment		
	Adversarial	Stochastic	Corrupted Stochastic
Condorcet			
Saha & Gaillard (2022)	$O(\sqrt{KT})$	$O\left(\frac{K \log T}{\Delta_{\min}}\right)$	$O\left(\frac{K \log T}{\Delta_{\min}} + \sqrt{K} + C\right)$
Borda			
Saha et al. (2021)	$\tilde{O}(K^{1/3}T^{2/3})$	—	—
<i>Dueling-EXP3</i>			
Saha et al. (2021)	—	$O\left(\frac{K \log(KT)}{\Delta_{\min}^2}\right)$	—
<i>BCB</i>			
Ours	$\tilde{O}(K^{1/3}T^{2/3})$	$O\left(\frac{K \log T \log(KT)}{\Delta_{\min}^2}\right)$	$O\left(\frac{K \log T \log(KT)}{\Delta_{\min}^2} + \left(\frac{C^2 K \log T \log(KT)}{\Delta_{\min}^2}\right)^{1/3}\right)$

074
 075 Saha & Gaillard (2022) study the best-of-three-world problem for dueling bandits under the Con-
 076 dorcet winner. They propose a DB-MAB reduction framework and demonstrate that existing analy-
 077 ses for MAB can be adapted to yield best-of-three-world guarantees for the DB setting. However, the
 078 Condorcet winner—defined as the arm that is preferred over every other arm with probability greater
 079 than 0.5 may not always exist, particularly in adversarial environments where the preference matrix
 080 evolves over time. By contrast, the Borda winner, defined as the arm that maximizes the average
 081 preference probability over all other arms, always exists regardless of the environment. Neverthe-
 082 less, extending Saha & Gaillard (2022)’s DB-MAB reduction to the Borda winner is challenging
 083 because the regret definitions fundamentally differ: Condorcet regret decomposes into dominance
 084 gaps that enable a clean MAB mapping, whereas Borda regret aggregates average scores, render-
 085 ing the Theorem 2 in Saha & Gaillard (2022)—which assumes pairwise independence for regret
 086 bounds—inapplicable from the outset. Therefore, establishing a best-of-three-world analysis for
 087 dueling bandits under the Borda winner remains an open problem.

088 In this paper, we address these gaps by developing an FTRL-based framework that directly opti-
 089 mizes the Borda score of the selected arms, rather than reducing the problem to a standard MAB
 090 formulation. Our approach leverages a hybrid negative entropy regularizer and demonstrates that
 091 the proposed algorithm simultaneously achieves performance guarantees across different environ-
 092 ments. Specifically, we establish regret upper bounds of $\tilde{O}(K^{1/3}T^{2/3})$ in the adversarial setting,
 093 $O(K \log^2 T / \Delta_{\min}^2)$ in the stochastic setting, and $O(K \log^2 T / \Delta_{\min}^2 + (C^2 K \log^2 T / \Delta_{\min}^2)^{1/3})$ in
 094 the corrupted setting, where K is the arm set size, T is the horizon, Δ_{\min} is the minimum gap
 095 between the optimal and sub-optimal arms, and C is the corruption level. Table 1 summarizes
 096 these results and compares our guarantees with those of existing works. To the best of our knowl-
 097 edge, this is the first algorithm to achieve a best-of-three-worlds guarantee for the dueling bandit
 098 problem under the general Borda winner objective. Moreover, our algorithm achieves the optimal
 099 $\tilde{O}(K^{1/3}T^{2/3})$ adversarial regret of Saha et al. (2021) and retains the key $\tilde{O}(K / \Delta_{\min}^2)$ scaling for
 100 stochastic environments. We also provide empirical validation on different environments where our
 101 algorithm demonstrates consistent advantages over baselines for a fixed environment type.

2 RELATED WORK

104 Research has mostly targeted specific settings—stochastic, adversarial, and corrupted stochastic—
 105 along with key winner types, such as the Condorcet winner (an arm that beats all others more than
 106 half the time) and the Borda winner (an arm with the highest average preference score). In stochastic
 107 settings with Condorcet winners, where preferences stay constant, algorithms like RUCB perform
 108 well under Condorcet winners by balancing exploration and exploitation (Zoghi et al., 2014); fur-

ther progress includes approaches that test for winners to identify them more efficiently in low-noise cases (Haddenhorst et al., 2021) and versatile methods that work across stochastic and adversarial worlds while keeping strong stochastic guarantees (Saha & Gaillard, 2022). For Borda winners in stochastic DB, techniques based on generalized linear models help estimate the full preference matrix to reduce regret (Wu et al., 2024), and adaptations for non-stationary environments use weighted Borda scores to handle slight changes over time (Suk & Agarwal, 2024b). Moving to adversarial settings, where preferences can shift unpredictably, MAB-style reductions allow algorithms to handle Condorcet winners robustly (Saha & Gaillard, 2022). For Borda winners here, the Dueling-Exp3 algorithm delivers strong results even without a Condorcet winner existing (Saha et al., 2021), and multi-dueling versions manage interactions between dependent arms (Gajane, 2024). In corrupted environments, which mix stable stochastic preferences with bounded adversarial noise, robust methods like Winner Isolation with Recourse protect against disruptions for Condorcet winners (Agarwal et al., 2021), and studies of attacks show how stochastic setups can be vulnerable (Jun et al., 2018); however, no tailored approaches yet exist for Borda winners in this mixed setting. Other winner concepts, like Copeland winners (which maximize direct wins against others) for handling cycles in preferences (Zoghi et al., 2015) and Von Neumann winners (mixed strategies that tie or beat all pure arms) for contextual scenarios (Di et al., 2025), broaden the framework further. Overall, while these works advance DB in isolated cases, a unified best-of-three-worlds solution for Borda winners—delivering top performance without knowing the environment in advance—is still missing, which inspires our FTRL-based method.

Best-of-both-worlds (BoBW) and best-of-three-worlds (BoTW) algorithms deliver near-optimal regret without prior environment knowledge, adapting across stochastic, adversarial, and corrupted settings. In multi-armed bandits, foundational BoBW methods introduce algorithms that perform well in both stochastic and adversarial regimes by integrating exploration mechanisms (Bubeck & Slivkins, 2012), while subsequent work achieves nearly optimal pseudo-regret bounds for these settings (Auer & Chiang, 2016; Zimmert & Seldin, 2021). Notably, (Zimmert & Seldin, 2021) introduces an optimal FTRL-based algorithm using Tsallis entropy regularization, providing tight pseudo-regret bounds in both stochastic and adversarial regimes. For linear bandits, BoBW designs attain near instance-optimality in stochastic cases and minimax-optimality in adversarial ones using optimistic online mirror descent with loss estimators (Lee et al., 2021), or exploration-by-optimization to balance exploration and optimization (Ito & Takemura, 2023a). In BoTW for linear bandits, which incorporates corrupted environments, follow-the-regularized-leader (FTRL) with negative entropy regularization and self-bounding analysis yields adaptive regret across all three worlds (Kong et al., 2023), and variance-adaptive algorithms tune bounds hierarchically to noise levels in stochastic, corrupted, and adversarial regimes (Ito & Takemura, 2023b). For linear contextual bandits, BoBW methods provide near-optimal regret in stochastic and adversarial settings via debiased estimators and FTRL with tailored perturbations (Kuroki et al., 2024). In dueling bandits, BoBW analyses via multi-armed bandit reductions offer guarantees under Condorcet winners for stochastic and adversarial preferences (Saha & Gaillard, 2022); yet, no BoTW frameworks exist, especially for Borda winners, creating a gap in unified adaptation that our FTRL approach fills.

3 PROBLEM SETTING

We study the problem *dueling bandits*, an online decision-making framework that involves a set of K items, denoted by $[K] = \{1, 2, \dots, K\}$, over a time horizon of T rounds. At the beginning of the process, the environment determines a sequence of preference matrices M_1, M_2, \dots, M_T in advance, where each $M_t \in [0, 1]^{K \times K}$ encodes the pairwise preference probabilities in round $t \in [T] := \{1, 2, \dots, T\}$. Each matrix M_t satisfies the following structural properties: $M_t(i, j) = 1 - M_t(j, i)$ for all $i, j \in [K]$, and $M_t(i, i) = \frac{1}{2}$ for all $i \in [K]$. Here, $M_t(i, j)$ represents the probability that item i beats item j in a pairwise comparison in round t . At each round $t \in [T]$, the learner selects two distinct items $x_t, y_t \in [K]$, and observes stochastic feedback $f_t \sim \text{Bernoulli}(M_t(x_t, y_t))$, where $f_t = 1$ indicates that item x_t wins, and $f_t = 0$ indicates that item y_t wins. To evaluate item quality, we introduce the *Borda score* of item $i \in [K]$ at round t , defined as $\sigma_t(i) = \frac{1}{K-1} \sum_{j=1, j \neq i}^K M_t(i, j)$, which measures the average probability that item i wins against a randomly chosen distinct item. And the Borda winner $i^* \in [K]$ is the item with the highest cumulative Borda score over all rounds: $i^* = \arg \max_{i \in [K]} \sum_{t=1}^T \sigma_t(i)$.

162 The learner’s performance is quantified by the *total regret*: $R_T = \sum_{t=1}^T \rho_t$, where $\rho_t = \sigma_t(i^*) -$
 163 $\frac{1}{2}(\sigma_t(x_t) + \sigma_t(y_t))$, which compares the Borda score of the Borda winner with the average score of
 164 the items chosen by the learner at each round.

165 For convenience, we also define the *shifted Borda score* for item $i \in [K]$ at round t as $w_t(i) =$
 166 $\frac{1}{K} \sum_{j=1}^K M_t(i, j)$, which includes the self-comparison term $M_t(i, i) = \frac{1}{2}$. The corresponding
 167 *shifted regret* is $R_T^b = \sum_{t=1}^T [w_t(i^*) - \frac{1}{2}(w_t(x_t) + w_t(y_t))]$, where i^* is the same Borda winner
 168 as defined above.

169 This is a shifted version of the original Borda score $\sigma_t(i) = \frac{1}{K-1} \sum_{j \neq i} M_t(i, j)$, where the summa-
 170 tion now includes the term $M_t(i, i) = \frac{1}{2}$. The relationship between them is $w_t(i) = \frac{K-1}{K} \sigma_t(i) + \frac{1}{2K}$,
 171 which does not change the identity of the optimal item or the proportionality of the regret (with
 172 $R_T = \frac{K}{K-1} R_T^b$).

173 The shifted Borda score is defined and used primarily to simplify the construction of unbiased esti-
 174 mates for item scores in adversarial dueling bandits problem with Borda winner (Saha et al., 2021).
 175 In our algorithm, estimates are derived from binary preference feedback on pairs sampled i.i.d. with
 176 replacement from a distribution d_t . Including self-comparisons in $w_t(i)$ allows for symmetric and
 177 straightforward expectation calculations, avoiding the need to exclude self-pairs (which would com-
 178 plicate sampling without replacement and increase variance).

179 3.1 PREFERENCE REGIMES

180 We define the stochastic, adversarially corrupted stochastic, and adversarial environments for du-
 181 eling bandits using the self-bounding constraint framework from Zimmert & Seldin (2021). These
 182 adapt standard multi-armed bandit models to pairwise comparisons, fitting dueling bandits. They
 183 unify regret analysis across adversarial levels, as in Zimmert & Seldin (2021). An environment
 184 follows a self-bounding constraint with (Δ, C, T) if, for any algorithm,

$$185 R_T^b \geq \mathbf{E} \left[\sum_{t=1}^T \Delta(I_t) - C \right], \quad (1)$$

186 where $\Delta : [K] \rightarrow [0, 1]$. Here, I_t is a representative arm sampled from the algorithm’s distribution
 187 π_t , and since x_t and y_t are independently and identically distributed from π_t , the average score over
 188 the pair is equivalent to the performance of a single arm I_t .

189 **Stochastic Environments:** This is a special case with a $(\Delta, 0, T)$ self-bounding constraint (Zimmert
 190 & Seldin, 2021), where $\Delta(i) = w(i^*) - w(i)$ for a fixed distribution \mathcal{D} over scores w_t . (In the
 191 stochastic dueling bandits setting, the Borda score of any arm/item is a fixed deterministic constant
 192 that remains identical across all rounds) Scores w_t are drawn independently from \mathcal{D} for each t , and
 193 the (pseudo-)regret satisfies the inequality with $C = 0$.

194 **Adversarially Corrupted Stochastic Environments with Corruption Level C :** This is a case with
 195 a $(\Delta, 2C, T)$ self-bounding constraint (Zimmert & Seldin, 2021), where $C \geq 0$ is the total corrup-
 196 tion budget (adjusted for the factor of 2 from bounded regret differences). Δ is as in the stochastic
 197 case for some \mathcal{D} . Scores w_t satisfy $\sum_{t=1}^T \max_i |w_t(i) - w'_t(i)| \leq C$ for $w'_t \sim \mathcal{D}$ independently per
 198 t . When $C = 0$, it reduces to stochastic.

199 **Adversarial Environments:** This covers all adversarial settings as a regime with a $(\Delta, 2T, T)$ self-
 200 bounding constraint (Zimmert & Seldin, 2021) for any $\Delta : [K] \rightarrow [0, 1]$. Scores w_t are chosen
 201 arbitrarily by an adversary without assumptions. The constraint is vacuous with $C = 2T$ (from
 202 bounded losses in $[0, 1]$ and max deviation), including all adversarial cases.

203 These regimes span settings for regret analysis, from adversarial to stochastic.

212 4 ALGORITHM

213 In this section, we introduce the proposed follow-the-regularized-leader algorithm for dueling ban-
 214 dits in adversarial, stochastic, and corrupted environments, and present its pseudocode in 1.

216 In this approach, we define a probability distribution π_t over $\Delta[K]$ (the K -simplex), as follows:
 217

$$218 \quad d_t \in \arg \max_{p \in \Delta[K]} \left\{ \sum_{s=1}^{t-1} \langle \hat{u}_s, p \rangle - \phi_t(p) \right\}, \pi_t = (1 - \delta_t)d_t + \delta_t U_K, \quad (2)$$

$$219$$

$$220$$

221 Where U_K is an uniform distribution which satisfies $U_K(i) = 1/K$. And for initialization, set d_1 as
 222 the uniform distribution with each component equal to $\frac{1}{K}$.
 223

224 **Algorithm 1** FTRL for Dueling Bandits

225 **Require:** Regularizers $\{\phi_t\}_t$, parameters $\{\delta_t\}_t$, arm count K

226 1: **for** each round $t = 1, 2, \dots, T$ **do**
 227 2: Draw $x_t, y_t \stackrel{\text{i.i.d.}}{\sim} \pi_t$
 228 3: Observe $f_t(x_t, y_t) \sim \text{Ber}(M_t(x_t, y_t))$
 229 4: Set $\hat{u}_t(i) \leftarrow \frac{1\{x_t=i\}}{K\pi_t(i)} \sum_{j \in [K]} \frac{1\{y_t=j\}f_t(x_t, y_t)}{\pi_t(j)}$ for all $i \in [K]$
 230 5: $d_t \leftarrow \arg \max_{p \in \Delta(K)} \left\{ \sum_{s=1}^{t-1} \langle \hat{u}_s, p \rangle - \phi_t(p) \right\}$
 231 6: $\pi_t \leftarrow (1 - \delta_t)d_t + \delta_t u_K$
 232 7: **end for**

233
 234
 235 The algorithm computes a distribution π_t over the K -simplex $\Delta(K) = \{p : [K] \rightarrow [0, 1] \mid \sum_{i \in [K]} p(i) = 1\}$ in each round t , as defined in 2 from the original formulation. Firstly, it proceeds to independently sample x_t and y_t from π_t 2. The preference feedback $f_t(x_t, y_t)$ follows a Bernoulli distribution with parameter $M_t(x_t, y_t)$ 3. Based on observations, the unbiased estimator $\hat{u}_t : [K] \rightarrow \mathbb{R}$ updates as shown in 4. Then it solves for d_t by maximizing the sum of inner products with prior unbiased estimators minus a regularizer 5, where $\langle a, b \rangle = \sum_{i \in [K]} a(i)b(i)$, and $\phi_t : \Delta(K) \rightarrow \mathbb{R}$ is a convex Legendre function. Next, π_t mixes d_t , using $\delta_t \in [0, 0.5]$ (6).
 236
 237

238 **5 REGRET-BOUND ANALYSIS**

239 Using the regularizer defined in 3, we can gain the regret bound in 1. We consider the regularizer
 240 functions defined as

$$241 \quad \phi_t(p) = \alpha_t \sum_{i \in [K]} g(p(i)), \text{ where } g(x) = x \ln x + (1 - x) \ln(1 - x), \quad (3)$$

$$242$$

243 where the parameters δ_t and α_t are defined by $\alpha_1 = \max\{m_2, 8K\}$ and

$$244 \quad \delta'_t = \frac{1}{4} \frac{m_1 v_t}{m_1 + \left(\sum_{s=1}^t v_s \right)^{1/3}}, \quad \alpha_{t+1} = \alpha_t + \frac{m_2 v_t}{\delta'_t \left(m_1 + \sum_{s=1}^{t-1} \frac{v_s e_{s+1}}{\delta'_s} \right)^{1/2}}, \quad \delta_t = \delta'_t + \sqrt[3]{\frac{K}{\alpha_t}}, \quad (4)$$

$$245$$

$$246$$

247 with $m_1, m_2 > 0$ as input parameters such that $m_1 \geq 2 \log K$ (used for computing δ'_t and α_t to
 248 ensure lower bounds) and $m_2 > 0$ (used to initialize $\alpha_1 = \max\{m_2, 8K\}$ and update α_{t+1}),
 249

250 Additionally, $\{e_t\}, \{v_t\}$ are defined by

$$251 \quad e_t = - \sum_{i \in [K]} g(d_t(i)), \quad v_t = \sum_{i \in [K]} d_t(i)(1 - d_t(i)).$$

$$252$$

$$253$$

254 **Remark 1.** The step sizes are designed to enable the algorithm to adapt automatically to the under-
 255 lying environment. In the adversarial setting, to achieve the $T^{2/3}$ regret bound, we set $\delta_t \sim t^{-1/3}$,
 256 $\alpha_t \sim t^{2/3}$, and $\alpha_{t+1} - \alpha_t \sim t^{-1/3}$, as these rates ensure that the regret terms in Lemma 4 balance
 257 appropriately when v_t and e_t remain constant. In the stochastic setting, where v_t and e_t decrease
 258 from non-zero values to zero as the distribution concentrates on the optimal arm, the step sizes
 259 are chosen such that the regret can be controlled through the $\bar{S}^{2/3}$ term. By applying the inequality

$$x^{1/3}y^{2/3} \leq \frac{1}{3}x + \frac{2}{3}y$$
 in the self-bounding analysis (cf. equation equation 20), we derive the
 logarithmic regret bound of $O(\log T / \Delta_{\min}^2)$.

270 **Theorem 1.** For any T , 1 with ϕ_t , δ_t , and α_t defined by 3 and 4 enjoys a regret bound of
 271

$$272 \quad R_T \leq \bar{k} \cdot \max \left\{ \bar{S}^{2/3}, m_1^2 \right\}, \quad \text{where} \\ 273 \quad \bar{k} = O \left(m_1 + \frac{1}{\sqrt{m_1}} \left(\frac{K \log T}{m_2} + m_2 \right) \sqrt{\log(KT)} \right). \quad (5)$$

274 Consequently, if $T \geq K^3$, we have $R_T = O(\bar{k}T^{2/3})$ in the adversarial regime and
 275

$$276 \quad R_T = O \left(\frac{\bar{k}^3}{\Delta_{\min}^2} + \left(\frac{C^2 \bar{k}^3}{\Delta_{\min}^2} \right)^{1/3} \right) \quad (6)$$

277 in adversarial regimes with self-bounding constraints.
 278

279 This implies: $\tilde{O}(K^{1/3}T^{2/3})$ for adversarial environments, $O(\frac{K \log T \log(KT)}{\Delta_{\min}^2})$ for stochastic environments, and $O(\frac{K \log T \log(KT)}{\Delta_{\min}^2} + (\frac{C^2 K \log T \log(KT)}{\Delta_{\min}^2})^{1/3})$ for corrupted stochastic environments.
 280

281 **Discussions.** The core challenge in extending best-of-both-worlds (BoBW) or best-of-three-worlds (BoTW) analyses to dueling bandits under the Borda winner benchmark lies in the fundamental mismatch between existing frameworks, such as the DB-MAB reduction in Saha & Gaillard (2022), and the inherent global nature of Borda scores. Saha & Gaillard (2022) provides a unified algorithm achieving optimal regrets across stochastic and adversarial environments under the Condorcet winner (CW) assumption, relying on a regret definition that decomposes into dominance gaps (e.g., $\mathbb{E}[R_T] = \frac{1}{2}\mathbb{E}[R_{-1,T} + R_{+1,T}]$). In their setting where $R_{-1,T}$ and $R_{+1,T}$ are the regrets achieved by the two multi-armed bandit algorithms corresponding to the two duelists, where $\Delta(i, j) = P(i, j) - 1/2$ to enable clean mapping to independent MAB instances. However, this fails for Borda winners because the regret definitions fundamentally differ: CW regret leverages pairwise independence via uniform dominance, whereas Borda regret aggregates average scores ($\sigma_t(i^*) - \frac{1}{2}(\sigma_t(x_t) + \sigma_t(y_t))$), rendering the Theorem 2 in Saha & Gaillard (2022)—which assumes such decomposition for regret bounds—inapplicable from the outset. This disparity arises from Borda’s lack of uniform dominance, necessitating global preference matrix estimation that introduces coupled dependencies across all pairs. To circumvent this, we adopt an FTRL approach, directly optimizing over the simplex to embrace Borda’s global averages.
 282

302 Our FTRL algorithm uses a hybrid negative entropy regularizer $\phi_t(p) = \alpha_t \sum_i g(p(i))$, where
 303 $g(x) = x \ln x + (1 - x) \ln(1 - x)$, to address problems when using the standard Shannon entropy
 304 ($\phi_t(p) = \alpha_t \sum_i p(i) \ln p(i)$). In the stability bound 2, Shannon entropy produces a positive
 305 quadratic term in the Taylor expansion for small s ($\sum_i p(i)s(i) + \frac{1}{2}\sum_i p(i)s(i)^2/\alpha_t + O(s^3/\alpha_t^2)$),
 306 which disrupts the recursive closure of the self-bounding inequality in 1 and fails to control the
 307 process quantity $v_t = \sum_i d_t(i)(1 - d_t(i))$. This stalls the analysis, as it cannot maintain the recursive
 308 structure needed for unified regret bounds. Our regularizer, however, yields a negative quadratic term
 309 ($\sum_i p(i)s(i) - \frac{1}{2}p(i)s(i)^2/\alpha_t + O(s^3/\alpha_t^2)$), which enables tight recursive control of v_t , ensuring
 310 the self-bounding inequality closes effectively across all regimes.
 311

312 **Proof of the main theorem.** The proof relies on a series of lemmas and a key proposition, which
 313 we present as they are used to establish the result.
 314

315 We begin by introducing the proposition that bounds a specific regret term R_T^a .
 316

317 **Proposition 1.** We begin by introducing the proposition that bounds a specific regret term R_T^a , which
 318 is an auxiliary regret term based on the shifted Borda score. Let us define parameters δ_t and α_t as
 319 in 1, then R_T^a satisfying 10 is bounded as
 320

$$321 \quad R_T^a = O \left(\mathbf{E} \left[m_1 V_T^{2/3} + \tilde{k} \sqrt{m_1^2 + (\log K + E_T) (m_1 + V_T^{1/3})} \right] \right), \quad (7)$$

322 where $E_T = \sum_{t=1}^T e_t$, $V_T = \sum_{t=1}^T v_t$, and $\tilde{k} = O \left(\frac{1}{\sqrt{m_1}} \left(\frac{K \log T}{m_2} + m_2 \right) \right)$.
 323

This proposition is supported by the following lemmas which provide the intermediate bounds.

324 **Lemma 1.** The Bregman divergence that we use is $D_{\phi_t}(p, q) = \phi_t(p) - \phi_t(q) - \langle \nabla \phi_t(q), p - q \rangle$.
325 If I_t is chosen following π_t so that $\Pr[I_t = i \mid \pi_t] = \pi_t(i)$, the regret is bounded by
326

$$327 \quad \mathbf{R}_T^b \leq \mathbf{E} \left[\sum_{t=1}^T (\delta_t - \langle \hat{u}_t, d_t - d_{t+1} \rangle - D_{\phi_t}(d_{t+1}, d_t) + \phi_t(d_{t+1}) - \phi_{t+1}(d_{t+1})) \right] \quad (8)$$

$$328 \quad + \phi_{T+1}(e_{i^*}) - \phi_1(d_1),$$

$$329$$

330 where $e_{i^*}(i) = 1$ if $i = i^*$ and $e_{i^*}(i) = 0$ for $i \in [K] \setminus \{i^*\}$.

331 **Lemma 2.** When the traditional Shannon entropy is used as the regularizer, ϕ_t is defined as
332

$$333 \quad \phi_t(p) = -\alpha_t f(p), \quad \text{where } f(p) = \sum_{i \in [K]} p(i) \ln \frac{1}{p(i)}.$$

$$334$$

$$335$$

336 It holds for any $s : [K] \rightarrow \mathbb{R}$ and $p, q \in \mathcal{P}(K)$ that
337

$$338 \quad \langle s, q - p \rangle - D_{\phi_t}(q, p) \leq \alpha_t \sum_{i \in [K]} p(i) \zeta \left(\frac{-s(i)}{\alpha_t} \right),$$

$$339$$

$$340$$

341 where $\zeta(x) = \exp(-x) + x - 1$.

342 **Lemma 3.** If ϕ_t is given by 3, it holds for any $s : [K] \rightarrow \mathbb{R}$ and $p, q \in \mathcal{P}(K)$ that
343

$$344 \quad \langle s, q - p \rangle - D_{\phi_t}(q, p) \leq \alpha_t \sum_{i \in [K]} \min \left\{ p(i) \zeta \left(\frac{-s(i)}{\alpha_t} \right), (1 - p(i)) \zeta \left(\frac{s(i)}{\alpha_t} \right) \right\}, \quad (9)$$

$$345$$

346 where $\zeta(x) = \exp(-x) + x - 1$.

347 **Lemma 4.** Suppose ϕ_t is defined as in 3 and $\delta_t \geq \sqrt[3]{\frac{K}{\alpha_t}}$. Then, the regret satisfies $R_T \leq R_T^a + e_1 \alpha_1$,
348 where
349

$$350 \quad R_T^a = O \left(\mathbf{E} \left[\sum_{t=1}^T \left(\delta_t + \frac{|K|v_t}{\delta_t \alpha_t} + (\alpha_{t+1} - \alpha_t) e_{t+1} \right) \right] \right), \quad (10)$$

$$351$$

$$352$$

353 and the sequences $\{e_t\}$ and $\{v_t\}$ are given by

$$354 \quad e_t = - \sum_{i \in [K]} g(d_t(i)), \quad v_t = \sum_{i \in [K]} d_t(i) (1 - d_t(i)). \quad (11)$$

$$355$$

$$356$$

357 We use the above proposition along with the following lemma, which bounds the sums E_T and V_T .

358 **Lemma 5.** Consider the following definitions:
359

$$360 \quad E_T = \sum_{t=1}^T e_t, \quad V_T = \sum_{t=1}^T v_t, \quad \tilde{k} = O \left(\frac{1}{\sqrt{m_1}} \left(\frac{K \log T}{m_2} + m_2 \right) \right), \quad (12)$$

$$361$$

$$362$$

363 with input parameters $m_1, m_2 > 0$ satisfying $m_1 \geq 2 \ln K$. Then, for any $i^* \in [K]$, the sums E_T
364 and V_T are bounded by

$$365 \quad E_T \leq 2S(i^*) \ln \frac{eKT}{S(i^*)}, \quad V_T \leq 2S(i^*), \quad (13)$$

$$366$$

367 where $S(i^*)$ is as given in 17.

368 From Proposition 1 (the bound in 7) and Lemma 5 (the bounds in 13), if $\bar{S} \geq m_1^3$, we have
369

$$370 \quad R_T^a = O \left(\mathbf{E} \left[m_1 S(i^*)^{2/3} + \tilde{k} \sqrt{S(i^*) \log(KT) S(i^*)^{1/3}} \right] \right)$$

$$371$$

$$372 \leq O \left((m_1 + \tilde{k} \sqrt{\log(KT)}) \bar{S}^{2/3} \right), \quad (14)$$

$$373$$

374 where the inequality follows from Jensen's inequality. Hence, there exists \bar{k} such that,
375

$$376 \quad R_T^a \leq \bar{k} \cdot \bar{S}^{2/3}$$

$$377 \quad \text{where } \bar{k} = O \left(m_1 + \tilde{k} \sqrt{\log(KT)} \right) \quad (15)$$

378 As a consequence, we obtain 5. Since $\bar{S} \leq T$, in adversarial regimes, it follows from 5 that
 379

$$380 \quad R_T^b = O\left(\bar{k} \cdot \max\left\{T^{2/3}, m_1^2\right\}\right) = O\left(\bar{k} \cdot T^{2/3}\right). \quad (16)$$

382 Let us next show 6. This relies on the following lemma, which provides a lower bound on the regret
 383 using self-bounding parameters.

384 **Lemma 6.** *We introduce the following parameters $S(i^*)$ and \bar{S} , which will be used when applying
 385 the self-bounding technique:*

$$387 \quad S(i^*) = \sum_{t=1}^T (1 - d_t(i^*)), \quad \bar{S}(i^*) = \mathbf{E}[S(i^*)], \quad \bar{S} = \min_{i^* \in [K]} \bar{S}(i^*), \quad (17)$$

390 We note that these values are clearly bounded as $0 \leq \bar{S} \leq \bar{S}(i^*) \leq T$ for any $i^* \in [K]$. In an
 391 adversarial regime with a self-bounding constraint, the regret can be bounded from below:

$$392 \quad R_T^b \geq \frac{\Delta_{\min}}{2} \bar{S} - C. \quad (18)$$

395 From 15 and Lemma 6, for any $\theta \in (0, 1]$, we have

$$397 \quad R_T^b = (1 + \theta)R_T^b - \theta R_T^b = O\left((1 + \theta)\bar{k} \cdot \bar{S}^{2/3} - \theta \Delta_{\min} \bar{S} + \theta C\right). \quad (19)$$

398 We have

$$400 \quad (1 + \theta)\bar{k} \cdot \bar{S}^{2/3} - \theta \Delta_{\min} \bar{S} = \left(\frac{(1 + \theta)^3 \bar{k}^3}{\theta^2 \Delta_{\min}^2}\right)^{1/3} (\theta \Delta_{\min} \bar{S})^{2/3} - \theta \Delta_{\min} \bar{S}$$

$$401 \quad = O\left(\frac{(1 + \theta)^3 \bar{k}^3}{\theta^2 \Delta_{\min}^2}\right) = O\left(\left(1 + \frac{1}{\theta^2}\right) \frac{\bar{k}^3}{\Delta_{\min}^2}\right), \quad (20)$$

405 where the second equality follows from $x^{1/3}y^{2/3} \leq \frac{1}{3}x + \frac{2}{3}y$ for any $x, y \geq 0$. Combining these
 406 inequalities, we obtain

$$407 \quad R_T^b = O\left(\left(1 + \frac{1}{\theta^2}\right) \frac{\bar{k}^3}{\Delta_{\min}^2} + \theta C\right). \quad (21)$$

409 By choosing θ that minimizes the right-hand side, we obtain 6.

411 Setting $m_1 = \Theta((K \log T \cdot \log(KT))^{1/3})$ and $m_2 = \Theta(\sqrt{K \log T})$, we obtain

$$413 \quad \bar{k} = O\left((K \log T \cdot \log(KT))^{1/3}\right). \quad (22)$$

415 Then we get that an algorithm achieves $R_T^b = \tilde{O}(K^{1/3}T^{2/3})$ for adversarial environments,
 416 $R_T^b = O\left(\frac{K \log T \log(KT)}{\Delta_{\min}^2}\right)$ for stochastic environments, and $R_T^b = O\left(\frac{K \log T \log(KT)}{\Delta_{\min}^2} +\right.$

$$417 \quad \left. \left(\frac{C^2 K \log T \log(KT)}{\Delta_{\min}^2}\right)^{1/3}\right)$$
 for adversarially-corrupted stochastic environments. Finally, since $R_T =$

$$418 \quad \frac{K}{K-1} R_T^b$$
, this does not change the order of magnitude we have obtained. Therefore, we can subse-
 419 quently arrive at the result in 1.

422 6 EXPERIMENTS

425 To represent an environment, we use a preference matrix, where the first row corresponds to the arm
 426 with the highest total value, the second row corresponds to the second-best arm, and so on (Figure 1
 427 (a)). For the adversarial setting, we construct a reversed preference matrix (Figure 1 (b)), where the
 428 first row corresponds to the worst arm and the last row to the best.

429 The environment alternates between the original and reversed matrices: the algorithm learns on the
 430 original matrix for 100 rounds, then on the reversed one for 150 rounds. The extra 50 rounds help
 431 offset any residual influence from learning in the original environment. And due to the rearrange-
 432 ment inequality, this setting of the environment can cause the most severe regret when changing the

432 environment. In the corrupted setting, we modify the preference matrix by swapping the first and
 433 second rows (Figure 1 (c)) every 500 rounds.
 434

Figure 1: Experimental Setting of Three Preference Matrices.

446 For comparison, we evaluate two established algorithms for dueling bandits with Borda winner:
 447 Borda-Confidence-Bound (BCB) for stochastic environments, and Dueling-EXP3 (D-EXP3) for ad-
 448 versarial environments (Saha et al., 2021). In each experiment, the reported results are averaged
 449 over five independent runs. As shown in Figure 2, our algorithm achieves better performance than
 450 D-EXP3 in the stochastic setting, outperforms BCB in the adversarial setting, and surpasses both
 451 algorithms in the corrupted setting.
 452

Figure 2: Experimental Results in Three Environments.

7 CONCLUSION AND FUTURE SCOPES

470 We address the dueling bandits problem under the Borda winner benchmark, where the goal is to
 471 minimize regret from relative preferences across stochastic, corrupted stochastic, and adversarial
 472 environments without prior knowledge of the setting. We overcome the core challenge of extending
 473 existing frameworks, such as the DB-MAB reduction tailored for Condorcet winners, which fails
 474 due to Borda’s global averaging nature requiring full preference matrix estimation. Our key
 475 contributions include: (1) the first unified best-of-three-worlds (BoTW) framework for Borda winners,
 476 achieving nearly optimal regrets of $\tilde{O}(K^{1/3}T^{2/3})$ in adversarial, $O(K \log^2 T / \Delta_{\min}^2)$ in stochastic,
 477 and $O(K \log^2 T / \Delta_{\min}^2 + (C^2 K \log^2 T / \Delta_{\min}^2)^{1/3})$ in corrupted settings; (2) an FTRL algorithm
 478 with a hybrid negative entropy regularizer and time-varying rates for adaptive self-bounding; (3)
 479 empirical validation demonstrating superior robustness over baselines.

480 Our BoTW framework for Borda winners opens potential extensions to contextual dueling bandits,
 481 where preferences depend on side information (Dudík et al., 2015). By adapting our FTRL with
 482 hybrid regularization, we could explore unified BoTW regret bounds for stochastic, corrupted, and
 483 adversarial settings. In addition, our framework can be extended to human feedback reinforcement
 484 learning (RLHF), where dueling bandits model preference-based alignment (Christiano et al., 2017),
 485 potentially achieving robust BoTW guarantees under noisy or adversarial feedback by using our
 486 adaptive regularization approach.

486 REFERENCES
487

488 Arpit Agarwal, Shivani Agarwal, and Prathamesh Patil. Stochastic dueling bandits with adver-
489 sarial corruption. In Vitaly Feldman, Katrina Ligett, and Sivan Sabato (eds.), *Proceedings of*
490 *the 32nd International Conference on Algorithmic Learning Theory*, volume 132 of *Proceed-
491 ings of Machine Learning Research*, pp. 217–248. PMLR, 16–19 Mar 2021. URL <https://proceedings.mlr.press/v132/agarwal21a.html>.
492

493 Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both stochas-
494 tic and adversarial bandits. In Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir (eds.), *29th*
495 *Annual Conference on Learning Theory*, volume 49 of *Proceedings of Machine Learning Re-
496 search*, pp. 116–120, Columbia University, New York, New York, USA, 23–26 Jun 2016. PMLR.
497 URL <https://proceedings.mlr.press/v49/auer16.html>.
498

499 Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-based
500 online learning with dueling bandits: A survey. *Journal of Machine Learning Research*, 22:1–108,
501 2021.

502 Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adver-
503 sarial bandits. In Shie Mannor, Nathan Srebro, and Robert C. Williamson (eds.), *Proceed-
504 ings of the 25th Annual Conference on Learning Theory*, volume 23 of *Proceedings of Ma-
505 chine Learning Research*, pp. 42.1–42.23, Edinburgh, Scotland, 25–27 Jun 2012. PMLR. URL
506 <https://proceedings.mlr.press/v23/bubeck12b.html>.
507

508 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
509 reinforcement learning from human preferences. In *Proceedings of the 31st International Con-
510 ference on Neural Information Processing Systems (NeurIPS)*, pp. 4302–4310, 2017.

511 Qiwei Di, Jiafan He, and Quanquan Gu. Nearly optimal algorithms for contextual dueling bandits
512 from adversarial feedback. In *Forty-second International Conference on Machine Learning*, 2025.
513 URL <https://openreview.net/forum?id=ATNEHkXFrW>.
514

515 Miroslav Dudík, John Langford, and Lihong Li. Doubly robust policy evaluation and learning. In
516 *Proceedings of the 28th International Conference on Machine Learning*, ICML’11, pp. 1097–
517 1104, June 2011.

518 Miroslav Dudík, Katja Hofmann, Robert E. Schapire, Aleksandrs Slivkins, and Masrour Zoghi.
519 Contextual dueling bandits. In *Proceedings of The 28th Conference on Learning Theory*, vol-
520 ume 40 of *Proceedings of Machine Learning Research*, pp. 563–587, Paris, France, 03–06 Jul
521 2015. PMLR. URL <https://proceedings.mlr.press/v40/Dudik15.html>.
522

523 Pratik Gajane. Adversarial multi-dueling bandits. In *ICML 2024 Workshop on Models of Hu-
524 man Feedback for AI Alignment*, 2024. URL <https://openreview.net/forum?id=5dhgCowdri>.
525

527 Björn Haddenhorst, Viktor Bengs, Jasmin Brandt, and Eyke Hüllermeier. Testification of condorcet
528 winners in dueling bandits. In Cassio de Campos and Marloes H. Maathuis (eds.), *Proceed-
529 ings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence*, volume 161 of
530 *Proceedings of Machine Learning Research*, pp. 1195–1205. PMLR, 27–30 Jul 2021. URL
531 <https://proceedings.mlr.press/v161/haddenhorst21a.html>.
532

533 Shinji Ito and Kei Takemura. An exploration-by-optimization approach to best of both worlds in
534 linear bandits. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023a.
535 URL <https://openreview.net/forum?id=vBHKSTgcYQ>.
536

537 Shinji Ito and Kei Takemura. Best-of-three-worlds linear bandit algorithm with variance-adaptive re-
538 gret bounds. In Gergely Neu and Lorenzo Rosasco (eds.), *Proceedings of Thirty Sixth Conference*
539 *on Learning Theory*, volume 195 of *Proceedings of Machine Learning Research*, pp. 2653–2677.
540 PMLR, 12–15 Jul 2023b. URL <https://proceedings.mlr.press/v195/ito23a.html>.
541

540 Shinji Ito, Taira Tsuchiya, and Junya Honda. Nearly optimal best-of-both-worlds al-
 541 gorithms for online learning with feedback graphs. In S. Koyejo, S. Mohamed,
 542 A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural Infor-
 543 mation Processing Systems*, volume 35, pp. 28631–28643. Curran Associates, Inc.,
 544 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/b7aea253ab34a773967f1e4cdea9e4fb-Paper-Conference.pdf.

545 Kwang-Sung Jun, Lihong Li, Yuzhe Ma, and Xiaojin Zhu. Adversarial attacks on stochastic ban-
 546 dits. In *Advances in Neural Information Processing Systems 31: Annual Conference on Neural
 547 Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*,
 548 pp. 3644–3653, 2018.

549 Johannes Kirschner, Tor Lattimore, and Andreas Krause. Information directed sampling for linear
 550 partial monitoring. In Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings of Thirty Third
 551 Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp.
 552 2328–2369. PMLR, 09–12 Jul 2020. URL <https://proceedings.mlr.press/v125/kirschner20a.html>.

553 Fang Kong, Canzhe Zhao, and Shuai Li. Best-of-three-worlds analysis for linear bandits with follow-
 554 the-regularized-leader algorithm. In *Proceedings of Thirty Sixth Conference on Learning Theory*,
 555 volume 195, pp. 657–673. PMLR, 2023.

556 Yuko Kuroki, Alberto Rumi, Taira Tsuchiya, Fabio Vitale, and Nicolò Cesa-Bianchi. Best-of-
 557 both-worlds algorithms for linear contextual bandits. In Sanjoy Dasgupta, Stephan Mandt,
 558 and Yingzhen Li (eds.), *Proceedings of The 27th International Conference on Artificial Intel-
 559 ligence and Statistics*, volume 238 of *Proceedings of Machine Learning Research*, pp. 1216–
 560 1224. PMLR, 02–04 May 2024. URL <https://proceedings.mlr.press/v238/kuroki24a.html>.

561 Tor Lattimore and Csaba Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020.

562 Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, and Xiaojin Zhang. Achieving near
 563 instance-optimality and minimax-optimality in stochastic and adversarial linear bandits simulta-
 564 neously. In Marina Meila and Tong Zhang (eds.), *Proceedings of the 38th International Con-
 565 ference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp.
 566 6142–6151. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/lee21h.html>.

567 Aadirupa Saha and Pierre Gaillard. Versatile dueling bandits: Best-of-both world analyses for learn-
 568 ing from relative preferences. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
 569 vari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Ma-
 570 chine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 19011–19026.
 571 PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/saha22a.html>.

572 Aadirupa Saha, Tomer Koren, and Yishay Mansour. Adversarial dueling bandits. In Marina Meila
 573 and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*,
 574 volume 139 of *Proceedings of Machine Learning Research*, pp. 9235–9244. PMLR, 18–24 Jul
 575 2021. URL <https://proceedings.mlr.press/v139/saha21a.html>.

576 Joe Suk and Arpit Agarwal. Non-stationary dueling bandits under a weighted borda criterion.
 577 *Transactions on Machine Learning Research*, 2024a. ISSN 2835-8856. URL <https://openreview.net/forum?id=KZRnDZ70M2>. Featured Certification.

578 Joe Suk and Arpit Agarwal. Non-stationary dueling bandits under a weighted borda criterion.
 579 *Transactions on Machine Learning Research*, 2024b. ISSN 2835-8856. URL <https://openreview.net/forum?id=KZRnDZ70M2>. Featured Certification.

580 Taira Tsuchiya, Shinji Ito, and Junya Honda. Best-of-both-worlds algorithms for partial monitoring.
 581 In Shipra Agrawal and Francesco Orabona (eds.), *Proceedings of The 34th International Con-
 582 ference on Algorithmic Learning Theory*, volume 201 of *Proceedings of Machine Learning Re-
 583 search*, pp. 1484–1515. PMLR, 20 Feb–23 Feb 2023. URL <https://proceedings.mlr.press/v201/tsuchiya23a.html>.

594 Yue Wu, Tao Jin, Qiwei Di, Hao Lou, Farzad Farnoud, and Quanquan Gu. Borda regret mini-
 595 mization for generalized linear dueling bandits. In Ruslan Salakhutdinov, Zico Kolter, Katherine
 596 Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceed-
 597 ings of the 41st International Conference on Machine Learning*, volume 235 of *Proceed-
 598 ings of Machine Learning Research*, pp. 53571–53596. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/wu24m.html>.

600 Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval systems as a
 601 dueling bandits problem. In *ICML '09: Proceedings of the 26th Annual International Conference
 602 on Machine Learning*, pp. 1201–1208, 2009. doi: 10.1145/1553374.1553527. URL <https://doi.org/10.1145/1553374.1553527>.

605 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
 606 problem. *Journal of Computer and System Sciences*, 78:1538–1556, 2012. doi: 10.1016/j.jcss.
 607 2011.12.028. URL <https://doi.org/10.1016/j.jcss.2011.12.028>.

608 Julian Zimmert and Yevgeny Seldin. Tsallis-inf: An optimal algorithm for stochastic and adversarial
 609 bandits. *Journal of Machine Learning Research*, 22(28):1–49, 2021. URL <http://jmlr.org/papers/v22/19-753.html>.

610 Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten De Rijke. Relative upper con-
 611 fidence bound for the k-armed dueling bandit problem. In *Proceedings of the 31st Interna-
 612 tional Conference on Machine Learning (ICML)*, volume 32, pp. 10–18. PMLR, 2014. URL
 613 <https://proceedings.mlr.press/v32/zoghi14.pdf>.

614 Masrour Zoghi, Zohar Karnin, Shimon Whiteson, and Maarten de Rijke. Copeland dueling ban-
 615 dits. In *Advances in Neural Information Processing Systems 28: Annual Conference on Neural
 616 Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada*, pp.
 617 307–315, 2015.

621 A SUPPLEMENTARY PROOF OF LEMMAS AND PROPOSITION IN THE MAIN 622 TEXT

623 A.1 LEMMA 1

624 If I_t is chosen following π_t so that $\Pr[I_t = i \mid \pi_t] = \pi_t(i)$, the regret is bounded by

$$625 \quad R_T \leq \mathbf{E} \left[\sum_{t=1}^T (\delta_t - \langle \hat{u}_t, d_t - d_{t+1} \rangle - D_{\phi_t}(d_{t+1}, d_t) + \phi_t(d_{t+1}) - \phi_{t+1}(d_{t+1})) \right] \quad (23)$$

$$626 \quad + \phi_{T+1}(e_{i^*}) - \phi_1(d_1),$$

627 where $e_{i^*}(i) = 1$ if $i = i^*$ and $e_{i^*}(i) = 0$ for $i \in [K] \setminus \{i^*\}$.

628 *Proof.* From the definition of the algorithm, we have

$$629 \quad R_T(i^*) = \mathbf{E} \left[\sum_{t=1}^T w_t(i^*) - \sum_{t=1}^T w_t(I_t) \right] = \mathbf{E} \left[\sum_{t=1}^T \langle -w_t, \pi_t - e_{i^*} \rangle \right]$$

$$630 \quad = \mathbf{E} \left[\sum_{t=1}^T \langle -w_t, d_t - e_{i^*} \rangle + \sum_{t=1}^T \delta_t \langle -w_t, u_K - d_t \rangle \right]$$

$$631 \quad \leq \mathbf{E} \left[\sum_{t=1}^T \langle -w_t, d_t - e_{i^*} \rangle + \sum_{t=1}^T \delta_t \right]$$

$$632 \quad = \mathbf{E} \left[\sum_{t=1}^T \langle -\hat{u}_t, d_t - e_{i^*} \rangle + \sum_{t=1}^T \delta_t \right],$$

648 where the second equality follows from $I_t \sim \pi_t$, the inequality follows from $\langle -w_t, u_K - d_t \rangle \leq$
 649 $\langle -w_t, u_K \rangle \leq 1$, and the last equality follows from the fact that \hat{u}_t is an unbiased estimator for w_t .
 650 Further, from Exercise 28.12 of the book by Lattimore & Szepesvári (2020), we have

$$652 - \sum_{t=1}^T \langle \hat{u}_t, d_t - e_{i^*} \rangle \leq \sum_{t=1}^T (-\langle \hat{u}_t, d_t - d_{t+1} \rangle - D_{\phi_t}(d_{t+1}, d_t) + \phi_t(d_{t+1}) - \phi_{t+1}(d_{t+1})) \\ 653 + \phi_{T+1}(e_{i^*}) - \phi_1(d_1).$$

655 Combining this, we obtain the regret bound in 8. \square

659 A.2 LEMMA 2

661 *Proof.* Consider the partial derivative of the left-hand side expression with respect to each $q(i)$:

$$663 \frac{\partial}{\partial q(i)} (\langle s, q - p \rangle - D_{\phi_t}(q, p)) = s(i) - \alpha_t(\ln q(i) - \ln p(i)).$$

665 Since the expression is concave in q , the maximum over $q \in \mathbb{R}_{>0}^K$ occurs where this derivative
 666 vanishes, namely at $q^*(i) = p(i) \exp\left(\frac{s(i)}{\alpha_t}\right)$. Therefore,

$$669 \langle s, q - p \rangle - D_{\phi_t}(q, p) \leq \langle s, q^* - p \rangle - D_{\phi_t}(q^*, p) \\ 670 = \sum_{i \in [K]} [s(i)(q^*(i) - p(i)) - \alpha_t(q^*(i) \ln q^*(i) - p(i) \ln p(i) \\ 671 - (q^*(i) - p(i))(\ln p(i) + 1))] \\ 672 = \sum_{i \in [K]} (-s(i)p(i) + s(i)q^*(i) - \alpha_t q^*(i) \ln q^*(i) + \alpha_t p(i) \ln p(i) \\ 673 + \alpha_t(q^*(i) - p(i))(\ln p(i) + 1)) \\ 674 = \sum_{i \in [K]} (-s(i)p(i) + \alpha_t(q^*(i) - p(i))) \\ 675 = \alpha_t \sum_{i \in [K]} p(i) \left(\exp\left(\frac{s(i)}{\alpha_t}\right) - 1 - \frac{s(i)}{\alpha_t} \right) \\ 676 = \alpha_t \sum_{i \in [K]} p(i) \zeta\left(\frac{-s(i)}{\alpha_t}\right).$$

686 The initial equality stems from the Bregman divergence formula. The subsequent simplification uses
 687 $\ln q^*(i) = \ln p(i) + \frac{s(i)}{\alpha_t}$, and the later step substitutes $q^*(i) = p(i) \exp\left(\frac{s(i)}{\alpha_t}\right)$. This establishes the
 688 result for Lemma 2. \square

691 A.3 LEMMA 3

693 *Proof.* Let us introduce a non-negative function $d(y, x)$ for $x, y \in (0, 1)$, given by

$$695 d(y, x) = y \ln \frac{y}{x} + x - y = y \ln y - x \ln x - (y - x)(\ln x + 1).$$

697 This d represents the Bregman divergence on the interval $(0, 1)$ corresponding to the potential
 698 $\phi^{(1)}(x) = x \ln x$. When ϕ_t follows 3, its associated Bregman divergence $D_{\phi_t}(q, p)$ can be written as

$$701 D_{\phi_t}(q, p) = \alpha_t \sum_{i \in [K]} [d(q(i), p(i)) + d(1 - q(i), 1 - p(i))].$$

702 Consequently, we derive
 703

$$\begin{aligned}
 704 \langle s, q - p \rangle - D_{\phi_t}(q, p) &= \sum_{i \in [K]} [s(i)(q(i) - p(i)) - \alpha_t (d(q(i), p(i)) + d(1 - q(i), 1 - p(i)))] \\
 705 &\leq \sum_{i \in [K]} \min \{s(i)(q(i) - p(i)) - \alpha_t d(q(i), p(i)), \\
 706 &\quad -s(i)(p(i) - q(i)) - \alpha_t d(1 - q(i), 1 - p(i))\}.
 \end{aligned}$$

707 Drawing from the reasoning in the proof of lemma2 , it follows that
 708

$$711 s(i)(q(i) - p(i)) - \alpha_t d(q(i), p(i)) \leq \alpha_t p(i) \zeta \left(\frac{-s(i)}{\alpha_t} \right).$$

712 Analogously, we can establish
 713

$$\begin{aligned}
 714 s(i)(q(i) - p(i)) - \alpha_t d(1 - q(i), 1 - p(i)) \\
 715 &= s(i)((1 - p(i)) - (1 - q(i))) - \alpha_t \left[(1 - q(i)) \ln(1 - q(i)) - (1 - p(i)) \ln(1 - p(i)) \right. \\
 716 &\quad \left. - ((1 - q(i)) - (1 - p(i))) (\ln(1 - p(i)) + 1) \right] \\
 717 &\leq \alpha_t (1 - p(i)) \zeta \left(\frac{s(i)}{\alpha_t} \right).
 \end{aligned}$$

718 By integrating these, we arrive at the inequality stated in 9. This concludes the demonstration of
 719 Lemma 3. \square
 720

721 A.4 LEMMA 4

722 *Proof.* To establish this result, we start by applying Lemma 3 to analyze the term $\langle -\hat{u}_t, d_t - d_{t+1} \rangle - D_{\phi_t}(d_{t+1}, d_t)$. For every $t \in [T]$ and $i \in [K]$, we notice that $\hat{u}_t(i) \leq K/\delta_t^2$. This inequality arises
 723 from the expression for $\hat{u}_t(i)$ in 1, combined with the lower bound $\pi_t(i) \geq \delta_t/K$ for all $i \in [K]$.
 724 Since $\delta_t \geq (K/\alpha_t)^{1/3}$, it follows that $\alpha_t \delta_t^2 \geq K \delta_t^{-1}$, implying $\hat{u}_t(i) \leq \alpha_t \delta_t^{-1}$.
 725

726 Using the inequality $\zeta(x) \leq x^2/2$ for $|x| \leq 1$, and noting that $|s(i)|/\alpha_t \leq \delta_t^{-1}$ for $s = \hat{u}_t$, we
 727 derive
 728

$$\begin{aligned}
 729 \langle -\hat{u}_t, d_t - d_{t+1} \rangle - D_{\phi_t}(d_{t+1}, d_t) &\leq \alpha_t \sum_{i \in [K]} \min \left\{ d_t(i) \zeta \left(\frac{-\hat{u}_t(i)}{\alpha_t} \right), (1 - d_t(i)) \zeta \left(\frac{\hat{u}_t(i)}{\alpha_t} \right) \right\} \\
 730 &\leq \frac{K v_t}{\delta_t \alpha_t}.
 \end{aligned}$$

731 where the last step uses the definition of v_t in 11 and the bound $\zeta \left(\frac{\pm \hat{u}_t(i)}{\alpha_t} \right) \leq \frac{1}{2} \left(\frac{\hat{u}_t(i)}{\alpha_t} \right)^2 \leq \frac{1}{2 \delta_t^2}$.
 732

733 Next, we bound $\phi_t(d_{t+1}) - \phi_{t+1}(d_{t+1})$. Since $\phi_t(p) = \alpha_t \sum_{i \in [K]} g(p(i))$ and $g(x) < 0$ for
 734 $x \in (0, 1)$, we have
 735

$$\begin{aligned}
 736 \phi_t(d_{t+1}) - \phi_{t+1}(d_{t+1}) &= (\alpha_t - \alpha_{t+1}) \sum_{i \in [K]} g(d_{t+1}(i)) = -(\alpha_{t+1} - \alpha_t) \sum_{i \in [K]} g(d_{t+1}(i)) \\
 737 &= (\alpha_{t+1} - \alpha_t) e_{t+1},
 \end{aligned}$$

738 where the last equality follows from $e_{t+1} = - \sum_{i \in [K]} g(d_{t+1}(i))$.
 739

740 Combining this with the bound from 8 in Lemma 1 and the inequality above, we obtain
 741

$$742 R_T \leq \mathbf{E} \left[\sum_{t=1}^T \left(\delta_t + \frac{K v_t}{\delta_t \alpha_t} + (\alpha_{t+1} - \alpha_t) e_{t+1} \right) \right] + \phi_{T+1}(e_{i^*}) - \phi_1(d_1).$$

743 Note that $\phi_{T+1}(e_{i^*}) = \alpha_{T+1} \sum_{i \in [K]} g(e_{i^*}(i)) = 0$, since $g(1) = 0$ and $g(0) = 0$. Additionally,
 744 $-\phi_1(d_1) = -\alpha_1 \sum_{i \in [K]} g(d_1(i)) = \alpha_1 e_1$. Therefore,
 745

$$746 R_T \leq R_T^a + e_1 \alpha_1,$$

747 where R_T^a is defined as in 10. This completes the proof. \square
 748

756 A.5 LEMMA 5
757

758 *Proof.* Since $d_t(i) \geq \delta_t/K \geq 1/(2K)$ for all $i \in [K]$ and $t \in [T]$, we have $v_t = \sum_{i \in [K]} d_t(i)(1 -$
759 $d_t(i)) \leq 1 - d_t(i^*) - \sum_{i \neq i^*} d_t(i)^2 \leq 1 - d_t(i^*) - (K-1) \left(\frac{\delta_t}{K}\right)^2 \leq 1 - d_t(i^*) - \frac{1}{4K}$. Therefore,
760

$$761 \quad 1 - d_t(i^*) \leq v_t + \frac{1}{4K} \leq 2v_t, \\ 762$$

763 which implies $S(i^*) \leq 2V_T$. Next, we bound E_T using the concavity of g . From Jensen's inequality
764 and the definition of $e_t = -\sum_{i \in [K]} g(d_t(i))$, we have
765

$$766 \quad e_t \geq -Kg\left(\frac{1}{K}\right) = \ln \frac{eK}{1} + (K-1) \ln(K-1) - K \ln K \geq \ln(eK), \\ 767$$

768 where the second inequality follows from $\ln(K-1) \geq \ln K - 1$. For the upper bound, note that
769 $g(x) = x \ln x + (1-x) \ln(1-x) \leq x \ln x + (1-x) \ln(1-x) + x(1-x)$ and thus $-g(x) \leq$
770 $-x \ln x - (1-x) \ln(1-x)$. Therefore,
771

$$772 \quad e_t \leq \sum_{i \in [K]} [-d_t(i) \ln d_t(i) - (1 - d_t(i)) \ln(1 - d_t(i))] \\ 773 \quad = -d_t(i^*) \ln d_t(i^*) - (1 - d_t(i^*)) \ln(1 - d_t(i^*)) \\ 774 \quad + \sum_{i \neq i^*} [-d_t(i) \ln d_t(i) - (1 - d_t(i)) \ln(1 - d_t(i))] \\ 775 \quad \leq -d_t(i^*) \ln d_t(i^*) - (1 - d_t(i^*)) \ln(1 - d_t(i^*)) + \sum_{i \neq i^*} \ln \frac{1}{d_t(i)} \\ 776 \quad \leq -d_t(i^*) \ln d_t(i^*) - (1 - d_t(i^*)) \ln(1 - d_t(i^*)) + (K-1) \ln \left(\frac{1 - d_t(i^*)}{K-1}\right) \\ 777 \quad \leq 2(1 - d_t(i^*)) \ln \frac{e(K-1)T}{1 - d_t(i^*)}, \\ 778$$

779 where the third inequality uses the concavity of \ln and Jensen's inequality, and the last inequality
780 follows from $-x \ln x \leq x$ for $x \in [0, 1]$ and $d_t(i^*) \leq 1 - 1/T$. Summing over t and using the
781 bound above, we obtain the bounds in 13. \square
782

783 A.6 LEMMA 6
784

785 *Proof.* From the definition of the regret and the self-bounding constraint, we have
786

$$787 \quad R_T \geq \mathbf{E} \left[\sum_{t=1}^T \Delta(I_t) - C \right] \geq \Delta_{\min} \mathbf{E} \left[\sum_{t=1}^T (1 - d_t(i^*)) \right] - C = \Delta_{\min} \bar{S}(i^*) - C,$$

788 where the second inequality follows from $\Delta(i) \geq \Delta_{\min}(1 - \mathbf{1}\{i = i^*\})$ and the fact that $\pi_t(i) =$
789 $(1 - \delta_t)d_t(i) + \delta_t/K \geq (1 - \delta_t)d_t(i) \geq \frac{1}{2}d_t(i)$ due to the assumption of $\delta_t \leq \frac{1}{2}$ and the definitions
790 of $S(i^*)$ and \bar{S} in 17. \square
791

792 A.7 PROPOSITION 1
793

794 *Proof.* Observe that $v_t \leq 1$ and $v_t \leq e_t \leq 2 \log K$. Introduce the auxiliary variables $l_t = \frac{v_t e_{t+1}}{\delta'_t}$
795 and $L_t = \sum_{s=1}^t l_s$. By the definition of δ'_t , it follows that
796

$$797 \quad l_t = \frac{e_{t+1} v_t}{\delta'_t} = 4 \frac{e_{t+1}}{m_1} \left(m_1 + V_t^{1/3} \right) \geq e_{t+1} \geq v_{t+1}, \\ 798$$

799 since $v_t \leq e_t$ implies the second inequality. Additionally,
800

$$801 \quad l_t = 4 \frac{e_{t+1}}{m_1} \left(m_1 + V_t^{1/3} \right) \leq 4 \left(m_1 + V_t^{1/3} \right) \leq 4m_1 + 4 \left(v_1 + \sum_{s=1}^{t-1} l_s \right)^{1/3} \\ 802 \quad \leq 8(m_1 + L_{t-1}), \\ 803$$

810 where the initial inequality uses $e_{t+1} \leq 2 \log K$ combined with $m_1 \geq 2 \log K$, and the final step
 811 relies on $m_1 \geq 2$ and $v_1 \leq 1$. Consequently,
 812

$$\begin{aligned} 813 \sum_{t=1}^T (\alpha_{t+1} - \alpha_t) e_{t+1} &= m_2 \sum_{t=1}^T \frac{l_t}{\sqrt{m_1 + L_{t-1}}} = 4m_2 \sum_{t=1}^T \frac{L_t - L_{t-1}}{3\sqrt{m_1 + L_{t-1}} + \sqrt{m_1 + L_{t-1}}} \\ 814 &\leq 4m_2 \sum_{t=1}^T \frac{L_t - L_{t-1}}{\sqrt{m_1 + L_t} + \sqrt{m_1 + L_{t-1}}} \\ 815 &= 4m_2 \sum_{t=1}^T \left(\sqrt{m_1 + L_t} - \sqrt{m_1 + L_{t-1}} \right) \leq 4m_2 \sqrt{L_T}, \end{aligned}$$

822 with the equality arising from the definitions of α_t and l_t , and the inequality stemming from the
 823 bound above.

824 Next, define $n_t = \frac{v_t}{\delta'_t}$ and $N_t = \sum_{s=1}^t n_s$. From the expression for δ'_t ,
 825

$$826 \quad n_t = \frac{v_t}{\delta'_t} = 4 \left(1 + \frac{1}{m_1} V_t^{1/3} \right) \geq 4.$$

827 Moreover,

$$\begin{aligned} 828 \quad n_1 &\leq 8, \quad n_{t+1} = 4 \left(1 + \frac{1}{m_1} V_{t+1}^{1/3} \right) \leq 4 \left(1 + \frac{1}{m_1} (V_t + 1)^{1/3} \right) \leq 2n_t, \\ 829 \quad n_t &\leq 4 \left(1 + t^{1/3} \right). \end{aligned}$$

830 The parameter α_t admits the lower bound

$$\begin{aligned} 831 \quad \alpha_t &= m_2 + m_2 \sum_{s=1}^{t-1} \frac{n_s}{\sqrt{m_1 + L_{s-1}}} \geq \frac{m_2}{\sqrt{m_1 + L_t}} \left(1 + \sum_{s=1}^{t-1} n_s \right) \\ 832 &= \frac{m_2}{\sqrt{m_1 + L_t}} (1 + N_{t-1}) \geq \frac{m_2 t}{\sqrt{m_1 + L_t}}, \end{aligned}$$

833 utilizing the definition in the last step. Therefore,

$$\begin{aligned} 834 \quad \sum_{t=1}^T \frac{v_t}{\delta_t \alpha_t} &\leq \sum_{t=1}^T \frac{v_t}{\delta'_t \alpha_t} \leq \sum_{t=1}^T \frac{\sqrt{m_1 + L_t}}{m_2} \frac{n_t}{1 + N_{t-1}} \leq \frac{\sqrt{m_1 + L_T}}{m_2} \sum_{t=1}^T \frac{n_t}{1 + N_{t-1}} \\ 835 &\leq O \left(\frac{\sqrt{m_1 + L_T}}{m_2} \log T \right), \end{aligned}$$

836 where the concluding inequality derives from

$$837 \quad \ln(1 + N_t) - \ln(1 + N_{t-1}) = \ln \frac{1 + N_t}{1 + N_{t-1}} = \ln \left(1 + \frac{n_t}{1 + N_{t-1}} \right) \geq \frac{1}{5} \cdot \frac{n_t}{1 + N_{t-1}},$$

838 valid since $\ln(1 + x) \geq \frac{1}{5}x$ for $x \in [0, 8]$, and the bounds ensure $\frac{n_t}{1 + N_{t-1}} \leq 8$ for every t .
 839

840 Furthermore,

$$841 \quad \sum_{t=1}^T \frac{1}{\alpha_t} \leq \sum_{t=1}^T \frac{\sqrt{m_1 + L_t}}{m_2 t} \leq \frac{\sqrt{m_1 + L_T}}{m_2} \sum_{t=1}^T \frac{1}{t} = O \left(\frac{\sqrt{m_1 + L_T}}{m_2} \log T \right).$$

842 Additionally,

$$843 \quad \sum_{t=1}^T \delta'_t \leq \sum_{t=1}^T \frac{v_t}{1 + V_t^{1/3}} \leq \frac{3m_1}{2} \sum_{t=1}^T \left(V_t^{2/3} - V_{t-1}^{2/3} \right) \leq \frac{3m_1}{2} V_T^{2/3},$$

leveraging the relation $y^{2/3} - x^{2/3} \geq \frac{2}{3}(y - x)y^{-1/3}$ for $y \geq x > 0$. Integrating these yields

$$\begin{aligned}
 & \sum_{t=1}^T \left(\delta_t + \frac{Kv_t}{\delta_t \alpha_t} + (\alpha_{t+1} - \alpha_t) e_{t+1} \right) \\
 &= \sum_{t=1}^T \left(\delta'_t + \sqrt[3]{\frac{K}{\alpha_t}} + \frac{Kv_t}{\delta_t \alpha_t} + (\alpha_{t+1} - \alpha_t) e_{t+1} \right) \\
 &= O \left(m_1 V_T^{2/3} + \left(\frac{K \log T}{m_2} + m_2 \right) \sqrt{m_1 + L_T} \right) \\
 &= O \left(m_1 V_T^{2/3} + \left(\frac{K \log T}{m_2} + m_2 \right) \sqrt{m_1 + \sum_{t=1}^T \frac{e_{t+1}}{m_1} (m_1 + V_t^{1/3})} \right) \\
 &= O \left(m_1 V_T^{2/3} + \frac{1}{\sqrt{m_1}} \left(\frac{K \log T}{m_2} + m_2 \right) \sqrt{m_1^2 + (\log K + E_T) (m_1 + V_T^{1/3})} \right),
 \end{aligned}$$

where the third line applies the bound, and the final step uses $e_{T+1} \leq 2 \log K$. \square

B CONNECTIONS TO PARTIAL MONITORING FRAMEWORKS

In this section, we discuss the relationship between dueling bandits with Borda winner and partial monitoring games, highlighting how our approach connects to and differs from existing PM methodologies.

B.1 CONCEPTUAL RELATIONSHIP BETWEEN DUELING BANDITS WITH BORDA WINNER AND PARTIAL MONITORING GAMES

While previous studies have explored connections between dueling bandits and partial monitoring (Kirschner et al., 2020; Suk & Agarwal, 2024a), none provide a complete treatment of the Borda winner setting. Kirschner et al. (2020) analyze the Condorcet winner case, while Suk & Agarwal (2024a) address a generalized Borda formulation but not specifically the standard Borda dueling bandits problem. Their Remark 3 suggests that such generalized Borda problems may be reduced to partial monitoring with non-global observability, leading to a worst-case regret bound of $\Omega(T)$, which is not informative for our setting. Neither analysis applies directly to the DB problem with Borda winner.

We address this gap by proposing a reduction that maps the Borda dueling bandits problem to a finite PM game and by characterizing the resulting PM structure. Our reduction scheme is constructed as follows. The action set consists of all arm pairs $a = \{i, j\}$ ($i < j$) with $k = \binom{K}{2}$ total actions. The outcome set contains all possible tournament preference matrices $x \in \{0, 1\}^{\binom{K}{2}}$ with $d = 2^{\binom{K}{2}}$ outcomes. The feedback $\Phi_{a,x}$ reveals the winner of duel $\{i, j\}$ through $\{+1, -1\}$ signals. We define the Borda score as $b_x(i) = \frac{1}{K-1} \sum_{\ell \neq i} \mathbf{1}[i \succ_x \ell]$ and identify the optimal Borda arm $i^*(x) = \arg \max_i b_x(i)$. The loss function implements standard Borda regret: $L_{a,x} = b_x(i^*(x)) - \frac{1}{2}(b_x(i) + b_x(j))$.

Because the Borda score aggregates comparisons against all other arms, we prove that the resulting PM game is globally observable with parameter $k_{\Pi} = K - 1$, the weight function w_e for any two neighboring Pareto optimal actions $a = \{i^*, p\}$ and $b = \{i^*, q\}$ as $w_e(c, \sigma) = -\frac{1}{2}(w^{(p)}(c, \sigma) - w^{(q)}(c, \sigma))$, where $w^{(i)}(c, \sigma) = \frac{1}{K-1}$ if $c = \{i, \ell\}$ for some ℓ and σ indicates i wins, and 0 otherwise. This construction satisfies the global observability condition in Definition 1 of (Tsuchiya et al., 2023), since $\sum_{c=1}^k w_e(c, \Phi_{c,x}) = L_{a,x} - L_{b,x}$ for all $x \in [d]$, as required by equation (1) in their paper. And $c_G = \max\{1, k\|G\|_{\infty}\} \leq \binom{K}{2} \cdot 1/(2(K-1)) \approx K/4$.

Applying the global-observability guarantees of Tsuchiya et al. (2023) to our reduced game yields regret bounds of $O(K^{4/3}T^{2/3} \log T)$ for the adversarial setting and $O(K^2 \log^2 T / \Delta_{\min}^2)$ for the

918 stochastic setting. Both bounds incur an additional multiplicative factor of K compared with our
 919 tailored results for DB with a Borda winner. Thus, while partial monitoring offers a useful con-
 920 ceptual perspective, applying its general guarantees to the Borda dueling bandits problem results in
 921 strictly suboptimal results.
 922

923 **B.2 ALGORITHMIC AND ANALYTICAL DISTINCTIONS**
 924

925 Our approach also differs fundamentally from general partial monitoring methodologies. Although
 926 both employ FTRL-style algorithms, the choice of regularizer and the resulting analysis are substan-
 927 tially different. In globally observable PM games, the feedback matrix Φ provides strong stability
 928 guarantees: loss differences can be estimated with low variance, quantified by the game-dependent
 929 constant c_G . This structure allows Tsuchiya et al. (2023) to use the standard Shannon entropy reg-
 930 ularizer to control the key intermediate term $\langle \hat{y}_t, q_t - q_{t+1} \rangle - D_t(q_{t+1}, q_t)$ as demonstrated in the
 931 proof of their Lemma 11.
 932

933 In contrast, the Borda dueling bandits problem does not possess such global stability properties.
 934 The Borda score depends on comparisons with all other arms, and there is no analogue of the PM
 935 constant c_G that would enable the same Shannon-entropy-based argument. As a result, the analytical
 936 steps used in general PM frameworks cannot be directly replicated in our setting. To overcome this
 937 problem, we employ the hybrid entropy regularizer to derive the intermediate upper bound shown in
 938 Lemma 3. This lemma is essential for both our adversarial and stochastic analyses and represents a
 939 key technical innovation beyond standard PM approaches.
 940

941 **C LLM USAGE**
 942

943 In the draft of this paper, we utilized Grok 4. Specifically, Grok 4 was employed for language
 944 polishing to improve the clarity, grammar, and flow of the text; generating and formatting tables
 945 based on provided data and descriptions; and suggesting adjustments to the paper’s layout and struc-
 946 ture for better readability and organization. These uses were limited to editorial and presentational
 947 enhancements and did not involve generating original research ideas, technical content, proofs, or
 948 experimental designs. The authors take full responsibility for all content in the paper, ensuring its
 949 originality and scientific integrity.
 950

951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971