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ABSTRACT

The dueling bandits (DB) problem addresses online learning from relative prefer-
ences, where the learner queries pairs of arms and receives binary win-loss feed-
back. Most existing work focuses on designing algorithms for specific stochastic
or adversarial environments. Recently, a unified algorithm has been proposed
that achieves convergence across all settings. However, this approach relies on
the existence of a Condorcet winner, which is often not achievable, particularly
when the preference matrix changes in the adversarial setting. Aiming for a
more general Borda winner objective, there currently exists no unified frame-
work that simultaneously achieves optimal regret across these environments. In
this paper, we explore how the follow-the-regularized-leader (FTRL) algorithm
can be employed to achieve this objective. We investigate a hybrid negative en-
tropy regularizer and demonstrate that it enables us to achieve O(K'/3T%/3) re-
gret in the adversarial setting, O(K log® T'/A2 . ) regret in the stochastic setting,
and O(K log® T /A2, +(C?K log® T /A2, )'/?) regret in the corrupted setting,
where K is the arm set size, T is the horizon, A,;, is the minimum gap between
the optimal and sub-optimal arms, and C' is the corruption level. These results
align with the state-of-the-art in individual settings, while eliminating the need to
assume a specific environment type. We also present experimental results demon-
strating the advantages of our algorithm over baseline methods across different
environments.

1 INTRODUCTION

In online sequential decision making, the multi-armed bandit framework (MAB) has played a crucial
role in optimizing decisions under uncertainty (Lattimore & Szepesvari, [2020). Traditional MAB
relies on absolute numerical rewards, which can often be noisy or challenging to obtain from users.
To overcome this limitation, the dueling bandits (DB) problem provides a robust alternative using
relative comparisons, where the learner queries pairs of actions (arms) and receives binary feedback
on the preferred option (Bengs et al., 2021). This approach closely mirrors real-world scenarios
where comparative judgments are more natural and reliable and has broad applications in areas such
as search optimization, tournament ranking, retail management, and reinforcement learning from
human feedback (RLHF) (Yue & Joachims, [2009; |Dudik et al., 2011} |Christiano et al., 2017).

DB algorithms aim to minimize regret over a given horizon, defined as the cumulative gap between
the rewards of designated winners and the rewards obtained. The Condorcet and Borda winners
are among the most widely studied winner objectives (Yue et al., 2012} Bengs et al.| 2021)). Exist-
ing research has explored various preference settings, including the stochastic case where relative
preferences are fixed (Yue & Joachims| [2009), the adversarial case with arbitrarily changing prefer-
ences(Saha et al.,[2021)), and the corrupted case, which lies between them (Agarwal et al., [2021)).

Despite the importance of these contributions, they provide convergence guarantees only under spe-
cific environments. Once the environment shifts—for instance, when an algorithm tailored for the
stochastic setting is applied to an adversarial one—the performance can degrade to linear regret. De-
signing algorithms that achieve optimal performance across environments without relying on prior
knowledge has therefore become a problem of broad interest in the field (Bubeck & Slivkins|, |2012;
Zimmert & Seldin, 2021} [Kong et al.| |2023}; [Tsuchiya et al.l 2023} Tto & Takemura, [2023bga; [Ito
et al., [2022).
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Table 1: Regret bounds comparison under different environments and winners, where K is the num-
ber of arms, 7" is the time horizon, C is the corruption level, A, is the minimum sub-optimality
gap (to the optimal arm). O hides polylogarithmic factors.

Environment

Algorithm Adversarial Stochastic Corrupted Stochastic
Condorcet

Saha & Gaillard! (2022) fe KlogT KlogT
Versatile-DB O(VET) 0 ( Amin ) 0 ( B T VK + O)
Borda

Saha et al.| (2021) N o1/372/3

Dueling-EXP3 OKYT") o o

Saha et al.| (2021) o 0 (Klog(KT)) o

BCB Alin

Ours O(K/372/3) 0 (Klog TQIC_»g(KT)) 0 (Klog T21§g(KT)

(C2K10gT10g(KT)>1/3
7K log T'log(KT)

min

Saha & Gaillard| (2022) study the best-of-three-world problem for dueling bandits under the Con-
dorcet winner. They propose a DB-MAB reduction framework and demonstrate that existing analy-
ses for MAB can be adapted to yield best-of-three-world guarantees for the DB setting. However, the
Condorcet winner—defined as the arm that is preferred over every other arm with probability greater
than 0.5 may not always exist, particularly in adversarial environments where the preference matrix
evolves over time. By contrast, the Borda winner, defined as the arm that maximizes the average
preference probability over all other arms, always exists regardless of the environment. Neverthe-
less, extending [Saha & Gaillard| (2022)’s DB-MAB reduction to the Borda winner is challenging
because the regret definitions fundamentally differ: Condorcet regret decomposes into dominance
gaps that enable a clean MAB mapping, whereas Borda regret aggregates average scores, render-
ing the Theorem 2 in [Saha & Gaillard| (2022)—which assumes pairwise independence for regret
bounds—inapplicable from the outset. Therefore, establishing a best-of-three-world analysis for
dueling bandits under the Borda winner remains an open problem.

In this paper, we address these gaps by developing an FTRL-based framework that directly opti-
mizes the Borda score of the selected arms, rather than reducing the problem to a standard MAB
formulation. Our approach leverages a hybrid negative entropy regularizer and demonstrates that
the proposed algorithm simultaneously achieves performance guarantees across different environ-
ments. Specifically, we establish regret upper bounds of O(K'/3T2/3) in the adversarial setting,
O(K log? T/A2,.) in the stochastic setting, and O(K log? T /A2, + (C*Klog> T/A2; )*/?) in
the corrupted setting, where K is the arm set size, T is the horizon, Ay, is the minimum gap
between the optimal and sub-optimal arms, and C' is the corruption level. Table [I] summarizes
these results and compares our guarantees with those of existing works. To the best of our knowl-
edge, this is the first algorithm to achieve a best-of-three-worlds guarantee for the dueling bandit
problem under the general Borda winner objective. Moreover, our algorithm achieves the optimal
O(K'/3T?/3) adversarial regret of |Saha et al[(2021) and retains the key O(K /A2, ) scaling for
stochastic environments. We also provide empirical validation on different environments where our
algorithm demonstrates consistent advantages over baselines for a fixed environment type.

2 RELATED WORK

Research has mostly targeted specific settings—stochastic, adversarial, and corrupted stochastic—
along with key winner types, such as the Condorcet winner (an arm that beats all others more than
half the time) and the Borda winner (an arm with the highest average preference score). In stochastic
settings with Condorcet winners, where preferences stay constant, algorithms like RUCB perform
well under Condorcet winners by balancing exploration and exploitation (Zoghi et al.| [2014)); fur-
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ther progress includes approaches that test for winners to identify them more efficiently in low-noise
cases (Haddenhorst et al., |2021) and versatile methods that work across stochastic and adversarial
worlds while keeping strong stochastic guarantees (Saha & Gaillard| 2022). For Borda winners in
stochastic DB, techniques based on generalized linear models help estimate the full preference ma-
trix to reduce regret (Wu et al.,|2024), and adaptations for non-stationary environments use weighted
Borda scores to handle slight changes over time (Suk & Agarwal, 2024b). Moving to adversarial
settings, where preferences can shift unpredictably, MAB-style reductions allow algorithms to han-
dle Condorcet winners robustly (Saha & Gaillard,[2022). For Borda winners here, the Dueling-Exp3
algorithm delivers strong results even without a Condorcet winner existing (Saha et al., [2021)), and
multi-dueling versions manage interactions between dependent arms (Gajane, 2024). In corrupted
environments, which mix stable stochastic preferences with bounded adversarial noise, robust meth-
ods like Winner Isolation with Recourse protect against disruptions for Condorcet winners (Agarwal
et al.| [2021)), and studies of attacks show how stochastic setups can be vulnerable (Jun et al., [2018));
however, no tailored approaches yet exist for Borda winners in this mixed setting. Other winner
concepts, like Copeland winners (which maximize direct wins against others) for handling cycles in
preferences (Zoghi et al.l 2015) and Von Neumann winners (mixed strategies that tie or beat all pure
arms) for contextual scenarios (D1 et al.,[2025)), broaden the framework further. Overall, while these
works advance DB in isolated cases, a unified best-of-three-worlds solution for Borda winners—
delivering top performance without knowing the environment in advance—is still missing, which
inspires our FTRL-based method.

Best-of-both-worlds (BoBW) and best-of-three-worlds (BoTW) algorithms deliver near-optimal re-
gret without prior environment knowledge, adapting across stochastic, adversarial, and corrupted
settings. In multi-armed bandits, foundational BoOBW methods introduce algorithms that perform
well in both stochastic and adversarial regimes by integrating exploration mechanisms (Bubeck &
Slivkins, 2012), while subsequent work achieves nearly optimal pseudo-regret bounds for these
settings (Auer & Chiang, 2016; [Zimmert & Seldin, 2021). Notably, (Zimmert & Seldin, 2021)
introduces an optimal FTRL-based algorithm using Tsallis entropy regularization, providing tight
pseudo-regret bounds in both stochastic and adversarial regimes. For linear bandits, BoBW de-
signs attain near instance-optimality in stochastic cases and minimax-optimality in adversarial ones
using optimistic online mirror descent with loss estimators (Lee et al., [2021), or exploration-by-
optimization to balance exploration and optimization (Ito & Takemura, |2023a). In BoTW for lin-
ear bandits, which incorporates corrupted environments, follow-the-regularized-leader (FTRL) with
negative entropy regularization and self-bounding analysis yields adaptive regret across all three
worlds (Kong et al., |2023)), and variance-adaptive algorithms tune bounds hierarchically to noise
levels in stochastic, corrupted, and adversarial regimes (Ito & Takemura, 2023b)). For linear contex-
tual bandits, BoBW methods provide near-optimal regret in stochastic and adversarial settings via
debiased estimators and FTRL with tailored perturbations (Kuroki et al., 2024). In dueling bandits,
BoBW analyses via multi-armed bandit reductions offer guarantees under Condorcet winners for
stochastic and adversarial preferences (Saha & Gaillard, [2022); yet, no BoTW frameworks exist,
especially for Borda winners, creating a gap in unified adaptation that our FTRL approach fills.

3 PROBLEM SETTING

We study the problem dueling bandits, an online decision-making framework that involves a set
of K items, denoted by [K] = {1,2,..., K}, over a time horizon of T rounds. At the beginning
of the process, the environment determines a sequence of preference matrices My, Ms, ..., M
in advance, where each M; € [0,1]%*¥ encodes the pairwise preference probabilities in round
t € [T]:={1,2,...,T}. Each matrix M, satisfies the following structural properties: M, (i,j) =
1 — M,(j,i) for all i,j € [K], and M,(i,i) = % for all i € [K]. Here, M(i,;) represents
the probability that item ¢ beats item j in a pairwise comparison in round ¢. At each round ¢ €
[T], the learner selects two distinct items z;,y; € [K], and observes stochastic feedback f; ~
Bernoulli(My(z¢, y:)), where f; = 1 indicates that item z; wins, and f; = 0 indicates that item y;
wins. To evaluate item quality, we introduce the Borda score of item i € [K] at round ¢, defined as

ou(i) = 7= Z]K:1 i Me(i, j), which measures the average probability that item 7 wins against

a randomly chosen distinct item. And the Borda winner i* € [K] is the item with the highest
. - T .

cumulative Borda score over all rounds: i* = arg max;ec(x] Y ;1 0¢(%).



Under review as a conference paper at ICLR 2026

The learner’s performance is quantified by the rotal regret: R = Zthl pt, where p; = oy(i*) —

% (o4(z4) + o4(y)), which compares the Borda score of the Borda winner with the average score of
the items chosen by the learner at each round.

For convenience, we also define the shifted Borda score for item i € [K|] at round ¢ as wy (i) =

+ Z]K:1 M,(i, ), which includes the self-comparison term M;(i,i) = 3. The corresponding
shifted regret is RY. = Zthl [w(i*) — & (wi(x¢) + we(y.))], where i* is the same Borda winner
as defined above.

This is a shifted version of the original Borda score o¢ (i) = 25 > ;2 Mi(i, j), where the summa-
tion now includes the term M (i, 4) = 1. The relationship between them is w (i) = £ty (i) + 5%,
which does not change the identity of the optimal item or the proportionality of the regret (with

Ry = 5 RY).

The shifted Borda score is defined and used primarily to simplify the construction of unbiased esti-
mates for item scores in adversarial dueling bandits problem with Borda winner (Saha et al.,[2021).
In our algorithm, estimates are derived from binary preference feedback on pairs sampled i.i.d. with
replacement from a distribution d;. Including self-comparisons in w;(¢) allows for symmetric and
straightforward expectation calculations, avoiding the need to exclude self-pairs (which would com-
plicate sampling without replacement and increase variance).

3.1 PREFERENCE REGIMES

We define the stochastic, adversarially corrupted stochastic, and adversarial environments for du-
eling bandits using the self-bounding constraint framework from |Zimmert & Seldin| (2021). These
adapt standard multi-armed bandit models to pairwise comparisons, fitting dueling bandits. They
unify regret analysis across adversarial levels, as in Zimmert & Seldin (2021). An environment
follows a self-bounding constraint with (A, C, T) if, for any algorithm,

T

S AL -C

t=1

R, >E : (1)

where A : [K]| — [0, 1]. Here, I; is a representative arm sampled from the algorithm’s distribution
m, and since x4 and y; are independently and identically distributed from 7, the average score over
the pair is equivalent to the performance of a single arm I;.

Stochastic Environments: This is a special case with a (A, 0, T') self-bounding constraint (Zimmert
& Seldin, 2021), where A(i) = w(i*) — w(7) for a fixed distribution D over scores w;.(In the
stochastic dueling bandits setting, the Borda score of any arm/item is a fixed deterministic constant
that remains identical across all rounds) Scores w, are drawn independently from D for each ¢, and
the (pseudo-)regret satisfies the inequality with C' = 0.

Adversarially Corrupted Stochastic Environments with Corruption Level C: This is a case with
a (A, 2C,T) self-bounding constraint (Zimmert & Seldin, [2021)), where C' > 0 is the total corrup-
tion budget (adjusted for the factor of 2 from bounded regret differences). A is as in the stochastic
case for some D. Scores w; satisfy Zthl max; |w (i) — w;(i)| < C for w, ~ D independently per
t. When C = 0, it reduces to stochastic.

Adversarial Environments: This covers all adversarial settings as a regime with a (A, 27, T') self-
bounding constraint (Zimmert & Seldin, 2021) for any A : [K] — [0,1]. Scores w; are chosen
arbitrarily by an adversary without assumptions. The constraint is vacuous with C' = 27T (from
bounded losses in [0, 1] and max deviation), including all adversarial cases.

These regimes span settings for regret analysis, from adversarial to stochastic.

4 ALGORITHM

In this section, we introduce the proposed follow-the-regularized-leader algorithm for dueling ban-
dits in adversarial, stochastic, and corrupted environments, and present its pseudocode in
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In this approach, we define a probability distribution 7; over A[K]| (the K -simplex), as follows:

t—1
dy € arg max {Z<ﬁs,p> - ¢t(p)} yme = (1= 6¢)de + 6:Uk, 2
PEA[K] s=1

Where U is an uniform distribution which satisfies Uk (i) = 1/K. And for initialization, set d; as
the uniform distribution with each component equal to %

Algorithm 1 FTRL for Dueling Bandits

Require: Regularizers {¢; }+, parameters {d; }+, arm count K
1: foreachroundt =1,2,...,7 do

ii.d.
2:  Draw x;,y; ~ m

3: Observe fi(zs,y:) ~ Ber(My(xs,y))

4 Setiny(i) « HEE Yo HuSIHUE) for all i € [K]
5. dy e argmaxyeano {0 (s ) — 60(p)}

6: Ty <— (1 — 5t)dt + (5tUK

7: end for

The algorithm computes a distribution 7; over the K-simplex A(K) = {p : [K] — [0,1] |
> ie(x) P(i) = 1} in each round ¢, as defined in [2| from the original formulation. Firstly, it pro-

ceeds to independently sample z; and y; from m; The preference feedback fi(z¢,y:) follows a
Bernoulli distribution with parameter M (z;, y;) Based on observations, the unbiased estima-
tor 4; : [K] — R updates as shown in Then it solves for d; by maximizing the sum of inner
products with prior unbiased estimators minus a regularizer (S| where (a,b) = 3, x; a(i)b(i), and

¢+ : A(K) — Ris a convex Legendre function. Next, 7; mixes dy, using d; € [0, 0.5] (@).

5 REGRET-BOUND ANALYSIS

Using the regularizer defined in[3] we can gain the regret bound in[I} We consider the regularizer
functions defined as

oe(p) = oy Z g(p(3)),where g(z) =azlnz+ (1 —-2)In(l — ), 3)
i€[K]

where the parameters d; and o, are defined by &1 = max {mg, 8K} and

1 miv Mo /
52 _ Z 1Vt g1 = Oét+ 2Vt _ 6/ (4)
t

173’ 12’
my + (Zszl vs> 8, (m + Zf L véeb“)

with my,mg > 0 as input parameters such that m; > 2log K (used for computing ¢; and oy to
ensure lower bounds) and ms > 0 (used to initialize oy = max{ms, 8K} and update ;1 1),

Additionally, {e;}, {v;} are defined by

ee=— Y g(di(i)), wve=Y_ dii)(1—dyi)).

i€[K] 1€[K]

Remark 1. The step sizes are designed to enable the algorithm to adapt automatically to the under-
lying environment. In the adversarial setting, to achieve the T?/ regret bound, we set 5, ~ t=1/3,
ayp ~ t2/3 and Qi1 — Qi ~ t=1/3 as these rates ensure that the regret terms in Lemmabalance
appropriately when vy and e; remain constant. In the stochastic setting, where v, and e; decrease
from non-zero values to zero as the distribution concentrates on the optimal arm, the step sizes
are chosen such that the regret can be controlled through the S*/* term. By applying the inequal-
ity x'/3y%/3 < iaz + Sy in the self-bounding analysis (cf. equation equation @), we derive the
logarithmic regret bound of O(log T'/ A

mzn)
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Theorem 1. For any T, [I|with ¢, 6, and o defined by [3|and Henjoys a regret bound of
Rr < k- max {5’2/3, m%} , where
1 (KlogT
V1

Consequently, if T > K3, we have Ry = O (l_sz/ 3) in the adversarial regime and

§3 O2k3 1/3
RT=0<A2 +<A2 ) ©)

in adversarial regimes with self-bounding constraints.

k=0 (m1 + + m2> log(KT)> : 6))

ma

for stochastic envi-

This implies: O(K'/3T2/3) for adversarial environments, O(%‘w)

min

KlogTzlog(KT) + (C2K10g’£log(KT) )1/3)

min min

ronments, and O( for corrupted stochastic environments.

Discussions. The core challenge in extending best-of-both-worlds (BoBW) or best-of-three-
worlds (BoTW) analyses to dueling bandits under the Borda winner benchmark lies in the fun-
damental mismatch between existing frameworks, such as the DB—MAB reduction in|Saha & Gail-
lard| (2022)), and the inherent global nature of Borda scores. [Saha & Gaillard (2022) provides a
unified algorithm achieving optimal regrets across stochastic and adversarial environments under
the Condorcet winner (CW) assumption, relying on a regret definition that decomposes into dom-
inance gaps (e.g., E[Rr] %]E[R_LT + Ri17]. In their setting where R_; r and Ry, r are
the regrets achieved by the two multi-armed bandit algorithms corresponding to the two duelists,
where A(i,7) = P(i,j) — 1/2) to enable clean mapping to independent MAB instances. How-
ever, this fails for Borda winners because the regret definitions fundamentally differ: CW regret
leverages pairwise independence via uniform dominance, whereas Borda regret aggregates average
scores (o4 (i*) — %(at(xt) + o+(y+))), rendering the Theorem 2 in|Saha & Gaillard| (2022)—which
assumes such decomposition for regret bounds—inapplicable from the outset. This disparity arises
from Borda’s lack of uniform dominance, necessitating global preference matrix estimation that in-
troduces coupled dependencies across all pairs. To circumvent this, we adopt an FTRL approach,
directly optimizing over the simplex to embrace Borda’s global averages.

Our FTRL algorithm uses a hybrid negative entropy regularizer ¢:(p) = ¢, g(p(i)), where
g(x) = zlnx + (1 — 2)In(1l — z), to address problems when using the standard Shannon en-
tropy (¢¢(p) = Y, p(i)Inp(i)). In the stability bound Shannon entropy produces a positive
quadratic term in the Taylor expansion for small s O, i)%/ar + O(s/a3)),
which disrupts the recursive closure of the self-bounding 1nequa11ty in [I] iand falls to control the pro-
cess quantity v, = >, dy(i)(1 — d;(7)). This stalls the analysis, as it cannot maintain the recursive
structure needed for unified regret bounds. Our regularizer, however, yields a negative quadratic term
(X, p(i)s(i) — 3p(i)s(i)?/aw + O(s*/a?)), which enables tight recursive control of v;, ensuring
the self-bounding inequality closes effectively across all regimes.

Proof of the main theorem. The proof relies on a series of lemmas and a key proposition, which
we present as they are used to establish the result.

We begin by introducing the proposition that bounds a specific regret term [2%..

Proposition 1. We begin by introducing the proposition that bounds a specific regret term R%., which
is an auxiliary regret term based on the shifted Borda score. Let us define parameters 6; and o as

in [I} then R% satisfying [I0]is bounded as
) ) (7

Rj =0 (
This proposition is supported by the following lemmas which provide the intermediate bounds.

m1V2/ + k\/m1 + (log K + ET) (ml + V1/3>

where Ep = Zthl ey, Vr = Zthl v, and k = O (\/% (%ET + mg)).
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Lemma 1. The Bregman divergence that we use is Dy, (p,q) = ¢+(p ) o:(q) — (Vor(q),p — q).
If I is chosen following 7, so that Pr[I; = i | ] = (i), the regret is bounded by

R} <E Z (@, dy — diy1) = Dy, (dig1, de) + Ge(dir) = drya1(diga))

= ®)
+ori1(eir) — d1(dv),
where e;« (i) = 1ifi = i* and e;« (i) = 0 for i € [K] \ {i*}.
Lemma 2. When the traditional Shannon entropy is used as the regularizer, ¢, is defined as
_ 1
¢i(p) = —aef(p), where f(p)= Y p(i)ln—.
1€[K] p(z)
It holds for any s : [K] — R and p, q € P(K) that
. —5(1
<3»q_p>_D¢t(va)§at ZP(Z)C( ())7

ie[K] at

where ((z) = exp(—z) + = — 1.
Lemma 3. If ¢, is given by[3] it holds for any s : [K] — R and p,q € P(K) that

(5,4 —p) = Dy, (¢,p) < ou Y min {p(i)C (_;iz)) (1 =p(2))¢ (So(j)) } : 9)

i€[K] ¢

where ((z) = exp(—x) + x — 1.
Lemma 4. Suppose ¢, is defined as inand 0r > ¢ O% Then, the regret satisfies Rt < R} +ejay,

where
ZT K |v,
‘77’1 = O E (5f —+ (Stat + (at+1 — O[t) 6t+1> 5 (10)

t=1
and the sequences {e;} and {v;} are given by

e =—Y_ g(di(i)), = > di(i) (1= du(i)) . (11)

i€[K] 1€[K]

We use the above proposition along with the following lemma, which bounds the sums Er and V7.
Lemma 5. Consider the following definitions:

E ET:e 1% ET:U 2 O( L (KlogT+m>) (12)
T = 1y T = ty = 2 )
=1 t—1 v m2

with input parameters my, ma > 0 satisfying my > 21n K. Then, for any i* € [K], the sums Er
and Vi are bounded by

KT
° Vi < 25(i%), (13)

< 25(i*) In ——
Er <25(@*)In SG) <

where S(i*) is as given in[I7]
From Proposition 1| (the bound in and Lemmaﬁ (the bounds in , if § > m‘i‘, we have
aTO( {mlS( 2/3+k\/S log(KT)S(i*)l/g’})
0 ((m1 + I%Mlog(KT)) 52/3) : (14)

where the inequality follows from Jensen’s inequality. Hence, there exists & such that,
R% < k-§%3

where k=0 (m1 + lZ:Vlog(KT))

15)
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As a consequence, we obtain Since S < T, in adversarial regimes, it follows fromthat

RbT:O(E-max{T2/3,m§}) :O(E~T2/3>. (16)

Let us next show [6] This relies on the following lemma, which provides a lower bound on the regret
using self-bounding parameters.

Lemma 6. We introduce the following parameters S(i*) and S, which will be used when applying
the self-bounding technique:

T
S(i*) =Y _(1—di(i*)), S(i*) =E[SG*)], S§= min S(i%), (17)

et i*€[K]

We note that these values are clearly bounded as 0 < S < S(i*) < T for any i* € [K]. In an
adversarial regime with a self-bounding constraint, the regret can be bounded from below:

AminS, —C. (18)

R >
= 9

From and Lemma@ for any 6 € (0, 1], we have

Rt = (1+0)Rh —6R: =0 ((1 L Ok 523 — 0AmnS + ac) : (19)
We have
T &2/3 = (1 +9)31_€3 1/3 =\ 2/3 _
(1+0)3k3 1\ &
~o(Gar)=o((+@)ar) @

where the second equality follows from z'/3y2/3 < 1z + 2y for any 2,y > 0. Combining these

inequalities, we obtain -
b 1 k3
R =0 1+ 72 ) AT +0C ). 21

min

By choosing ¢ that minimizes the right-hand side, we obtain 6}
Setting m1 = © ((K log T - log(KT))'/?) and my = © (/K log T, we obtain

k=0 ((K log T - 1og(KT))1/3) . (22)

Then we get that an algorithm achieves R} = O(K'/*T2/3) for adversarial environments,

Ry = O(%%(KT)) for stochastic environments, and R} = O(%‘)g(m +
C?K log T log(KT)

o —

min

min min

1/3 . . . . .
) / ) for adversarially-corrupted stochastic environments. Finally, since Ry =

%R’{F, this does not change the order of magnitude we have obtained. Therefore, we can subse-
quently arrive at the result in[I]

6 EXPERIMENTS

To represent an environment, we use a preference matrix, where the first row corresponds to the arm
with the highest total value, the second row corresponds to the second-best arm, and so on (Figure
(a)). For the adversarial setting, we construct a reversed preference matrix (Figureﬂ] (b)), where the
first row corresponds to the worst arm and the last row to the best.

The environment alternates between the original and reversed matrices: the algorithm learns on the
original matrix for 100 rounds, then on the reversed one for 150 rounds. The extra 50 rounds help
offset any residual influence from learning in the original environment. And due to the rearrange-
ment inequality, this setting of the environment can cause the most severe regret when changing the
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environment. In the corrupted setting, we modify the preference matrix by swapping the first and
second rows (Figure|[T](c)) every 500 rounds.

(a) Preference Matrix (b) Reversed Preference Matrix (c) Corrupted Preference Matrix

Figure 1: Experimental Setting of Three Preference Matrices.

For comparison, we evaluate two established algorithms for dueling bandits with Borda winner:
Borda-Confidence-Bound (BCB) for stochastic environments, and Dueling-EXP3 (D-EXP3) for ad-
versarial environments 2021). In each experiment, the reported results are averaged
over five independent runs. As shown in Figure [2} our algorithm achieves better performance than
D-EXP3 in the stochastic setting, outperforms BCB in the adversarial setting, and surpasses both
algorithms in the corrupted setting.

(a) Stochastic Environment (b) Adversarial Environment (c) Corrupted Environment

Figure 2: Experimental Results in Three Environments.

7 CONCLUSION AND FUTURE SCOPES

We address the dueling bandits problem under the Borda winner benchmark, where the goal is to
minimize regret from relative preferences across stochastic, corrupted stochastic, and adversarial
environments without prior knowledge of the setting. We overcome the core challenge of extending
existing frameworks, such as the DB-MAB reduction tailored for Condorcet winners, which fails
due to Borda’s global averaging nature requiring full preference matrix estimation. Our key con-
tributions include: (1) the first unified best-of-three-worlds (BoTW) framework for Borda winners,
achieving nearly optimal regrets of O(K'/3T?/3) in adversarial, O(K log® T /A2, ) in stochastic,
and O(K log> T/A2. + (C?Klog? T/A2. )'/3) in corrupted settings; (2) an FTRL algorithm

with a hybrid negative entropy regularizer and time-varying rates for adaptive self-bounding; (3)
empirical validation demonstrating superior robustness over baselines.

Our BoTW framework for Borda winners opens potential extensions to contextual dueling bandits,
where preferences depend on side information (Dudik et all 2015). By adapting our FTRL with
hybrid regularization, we could explore unified BoTW regret bounds for stochastic, corrupted, and
adversarial settings. In addition, our framework can be extended to human feedback reinforcement
learning (RLHF), where dueling bandits model preference-based alignment (Christiano et al.}[2017),
potentially achieving robust BoTW guarantees under noisy or adversarial feedback by using our
adaptive regularization approach.
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A SUPPLEMENTARY PROOF OF LEMMAS AND PROPOSITION IN THE MAIN
TEXT

A.1 LEMMA 1

If I; is chosen following 7; so that Pr[I; = i | m;] = m¢(4), the regret is bounded by

T
Rr <E Z (0¢ = (g, dy — dyg1) — Do, (dpg1,dy) + o (dig1) — ¢t+1(dt+1))] (23)

t=1

+ori1(eir) = ¢1(dr),
where e;« (i) = 1if4 = ¢* and e; (i) = 0 for i € [K]\ {i*}.

Proof. From the definition of the algorithm, we have

rT T
Rr(i*) =E Zwt(z*) - Zwt(ft) =E
Lt=1 t=1

T
Z<_wta7"t - 61‘*)]
t=1

rr

= E Z(—wt, dy — ei) + Z(st<_wtvuK - dt>]

t t=1

T
(—wy, dy — €5+) + Zét]
t=1

T
(=g, dy —e5+) + Zét‘| )

t=1

Il
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] =
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where the second equality follows from I; ~ 7, the inequality follows from (—w¢, ux — di) <
(—wy, ug) < 1, and the last equality follows from the fact that 4, is an unbiased estimator for w;.
Further, from Exercise 28.12 of the book by |[Lattimore & Szepesvari| (2020), we have

T
E (g, dy — €4+) <
t—1

B

(—(tt, dy — dir1) — D, (diy1,de) + de(di1) — dey1(digr))

t

+ ¢ri1(eir) — d1(dy).

l
—

Combining this, we obtain the regret bound in|[g] O

A.2 LEMMA 2

Proof. Consider the partial derivative of the left-hand side expression with respect to each ¢(7):

f‘?qa(i) ((s,¢ = p) = Dy, (¢,p)) = 5(1) — as(Ing(é) — Inp(7)).

Since the expression is concave in ¢, the maximum over q € Rﬁ) occurs where this derivative

vanishes, namely at ¢*(i) = p(i) exp (S( )) Therefore,

(s,q—p) — Dg,(q,p) < (s,¢" —p) — Dg,(¢*,p)

= > [s(i)(q" (i) — p(i)) — o (¢ (4) Ing* (i) — p(i) In p(i)

1€[K]
—(g" (i) = p(@))(Inp(3) + 1))]
> (—s(i)p(i) + s(i)q" (i) — g™ (i) In ¢* () + cvp(i) In p(i)

i€[K]
+ae (g™ (4) — p(i)) (Inp(i) + 1))
= Y (=s(D)p(i) + ar(q” (i) — p(i)))

ie[K]
= oy iezufqpu)c <_Zi’)> .

The initial equality stems from the Bregman divergence formula. The subsequent simplification uses
Ing*(i) = lnp(i) + () "and the later step substitutes g *(1) = p(i) exp ( (¢ )> This establishes the

oy ?

result for Lemma 2.

A.3 LEMMA 3

Proof. Let us introduce a non-negative function d(y, x) for x,y € (0, 1), given by
d(y,z) = ylng +r—y=ylhy—zlhe— (y—z)(lnz+1).
x

This d represents the Bregman divergence on the interval (0,1) corresponding to the potential
¢ (x) = xInz. When ¢, follows [3| its associated Bregman divergence Dy, (g, p) can be writ-
ten as

Dy, (q,p) = v Y _ [d(q(i), p(i)) + d(1 — q(i), 1 = p(i))] .

i€[K]

13



Under review as a conference paper at ICLR 2026

Consequently, we derive

(5,0 —p) = Do, (a,p) = Y [s(i)(q(i) — p(i)) — au (d(q(i), p(i)) + d(1 = q(i), 1 = p(i)))]

i€[K]
< Z min {s(7)(q(?) — p(i)) — axd(q(7), p(7)),
i€[K]

—s(@)(p(i) — q(i)) — axd(1 — q(i), 1 = p(i))} -

Drawing from the reasoning in the proof of lemma?2 , it follows that

s(1)(q() — p(i)) — wd(q(2), p(i)) < crp(i)¢ (—s(z’)) |

Qi

Analogously, we can establish
s(i)(q(i) — p(i)) — cud(1 — (i), 1 = p(i))
= s(0)((1 =p(@)) = (1 = (1)) — e [(1 — (1)) In(1 = ¢(2)) — (1 — p(2)) In(1 — p(7))
= ((L=q(2)) = (1 = p(2)))(In(1 — p(2)) + 1)}

< a1 - pli))C (”) .

Qi

By integrating these, we arrive at the inequality stated in[9] This concludes the demonstration of
Lemma 3. O

A.4 LEMMA 4

Proof. To establish this result, we start by applying Lemmato analyze the term (—t, dy — dyy1) —
Dy, (diy1,dy). Forevery t € [T] and i € [K], we notice that 4, (i) < K /7. This inequality arises
from the expression for ;(¢) in |1} combined with the lower bound (i) > §;/K for all i € [K].
Since &; > (K /ay)'/?, it follows that oy, 67 > K6; !, implying @, (i) < a6, '

Using the inequality ¢(z) < 22/2 for |z| < 1, and noting that |s(i)|/ay < 6; ! for s = 1y, we
derive

(—itgdy — 1) — Dy, (dps1,de) <y S min {dt(z’)c (-ﬂt@')) (L= d(@)e (ﬁt@‘)) }

Q. (8]
ie[K] ¢ t

KUt
< —.
drarg

o N2
where the last step uses the definition of vy in and the bound ¢ (izitt(l)) < % (’“—(Z)) < L.

Next, we bound ¢y(di+1) — dei1(diy1). Since ¢u(p) = ou Y ic(x 9(p(7)) and g(x) < 0 for
z € (0,1), we have

Gt(des1) — dr+1(dey1) = (v — i11) Z 9(di1(7)) = — (41 — ) Z 9(di11(2))

1€[K] 1€[K]
= (g1 — ag)epta,
where the last equality follows from eq.1 = — 3, ) 9(di41 ().

Combining this with the bound from §]in Lemma|[T|and the inequality above, we obtain

T
Kv
Z <5t + (570; + (g1 — Oét)€t+1)

t=1 [aaté

Rr<E + ¢rra(eis) — ¢1(da).

Note that ¢ri1(€i+) = ars1d ;15 9(€ir (1)) = 0, since g(1) = 0 and g(0) = 0. Additionally,
—¢1(d1) = —a1 Y ¢k 9(d1(i)) = azer. Therefore,

Rr < R} + e104,
where % is defined as in@l This completes the proof. [
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A.5 LEMMA S

Proof. Since dy(i) > 6;/K > 1/(2K) foralli € [K]and t € [T], we have v, = 37, ¢y de(i)(1 —
di(i)) <1 —dy(i*) = Y ippe di(6)® <1 —dy(5%) — (K — 1) (ff) < 1—dy(i*) — . Therefore,
. 1
1—d(3 )SUtJFE < 2u,
which implies S(:*) < 2Vp. Next, we bound E7 using the concavity of g. From Jensen’s inequality

and the definition of e; = — >, 51 9(d¢()), we have
1 eK
et > —Kyg 74 lnT—l—(K—1)1n(K—1)—Kan21n(eK),

where the second inequality follows from In(K — 1) > In K — 1. For the upper bound, note that
gl) =azlnz+ (1 —2)In(l —z) <zlnz+ (1 —2z)In(l —x) + (1 — z) and thus —g(z) <
—zlnz — (1 —2x) ln(l — :1:) Therefore,

er < Y [—di(i)Indy(i) — (1 = dy(i)) In(1 — dy ()]

1€[K]
— () ndy (%) — (1= dy(*)) In(1 — dy(i")
+ 37 (i) ndy(3) — (1 da(i)) (1 — ()]

iF£L*
< —di (i) Indy (i*) — (1 — de(i%)) In(1 — dy (i +Zlnd
iF£L* t
< —dy(i*) Indy (i) — (1 — dy (i*)) In(1 = dy (%)) + (K — 1) In (W)

2(1 - (i) S

where the third inequality uses the concavity of In and Jensen’s inequality, and the last inequality
follows from —zInz < z for x € [0,1] and d;(¢*) < 1 — 1/T. Summing over ¢ and using the
bound above, we obtain the bounds in[T3} O

A.6 LEMMA 6

Proof. From the definition of the regret and the self-bounding constraint, we have

T T

S Awm) -cC D (1= di(i%))
t=1 t=1

where the second inequality follows from A(i) > Amin(1 — 1{i = i*}) and the fact that (i) =
(1 —0¢)de(2) + ét/K > (1—6;)dy(i) > 3d;(i) due to the assumption of 6, < + and the definitions
of S(i )andSln O

RT Z E Z AminE} —-C= AminS(i*) - 07

A.7 PROPOSITION 1

Proof. Observe that v; < 1 and v; < e; < 2log K. Introduce the auxiliary variables [; = %
and L; = Zizl ls. By the definition of 47, it follows that

€141Vt €t+1

l = = 47

(x mq

since v; < e, implies the second inequality. Additionally,

1/3
(m1 +Vt/ ) > €41 > Vg,

my s=1

t—1 1/3
I =45 (m1+ V%) <4 (m1 + V%) < 4y +4 (m + le>

<8(mi+ Li—1),
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where the initial inequality uses e;+; < 2log K combined with m; > 2log K, and the final step
relies on m; > 2 and v; < 1. Consequently,

T

Z Qi1 — Q) €1 = mzz 4m22 Li = Lia
t=1 \/m _ 3\/m1 +Lt71+\/m1+Lt,1

t=1

Ly
<4m
22\/m1+Lt+\/m1+Lt 1

= 4m22 (\/m1 + L, — \/m1 +Lt71> < 4m2\/ﬂa
t=1

with the equality arising from the definitions of a; and [;, and the inequality stemming from the
bound above.

Next, define n; = g—: and N; = ZS 1 ns. From the expression for ¢,

Moreover,
_ L a3 1 1/3
ny <8, mypr=4(1+—V /| <41+ —(Vi+1) < 2ny,
mq m
e <4 (14077

The parameter a;; admits the lower bound

t—1
mo
1 s
m2+mzz\/m1+Ls i \/ml—i—Lt( +Zn>

s=1
meo m2t
=2 (14 Ny) > ——,
Vm1+Lt( =) vmi+ Ly

utilizing the definition in the last step. Therefore,

Z <Z\/m1+Lt ng Vm1+LTZ
(StOét - 5’0{t

mao 1+Nt_1_ 1+Nt1

where the concluding inequality derives from

1+Nt Tt 1 Nt
In(1+N)—-In(1+Nyy)=n——"=In(l+—"7F—| > ——,
( 1)~ In i-1) 1+ N, ( 1+N,_1) =5 1+ N,y

valid since In(1 + z) > L for = € [0, 8], and the bounds ensure < 8 for every t.

1+

Furthermore,

T T T
S Loy il L (YL,
o - mo t mo S '
= t= t=1
Additionally,
3m d / / 3m /
. 1 V23 _ 2 3 11,2/3
Z“Z < e (v V)=

— =1 1L+ V; =1
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leveraging the relation y?/3 — x*/® > 2(y — 2)y~1/3 for y > x > 0. Integrating these yields

T
Kv
Z <5t + Tai + (ou41 — o) €t+1>

t=1
/[K Kv
:Z 524‘ Y 7+75 ! +(Olt+1 —at)6t+1
p— o2 1O

KlogT
=0 (leT2/3 + ( W(ig + mz) vmi + LT)
2

ma

KlogT T e
=0 mﬂ/ﬁ/g + ( + TI’LQ) mi + Z Ttnil (m1 + ‘/;1/3>
1
t=1

AVALIG ma

where the third line applies the bound, and the final step uses ep 1 < 2log K. O

1 [KlogT
:O(mlvﬁ/3+ ( o8 +m2)\/m%+(logK+ET)(m1+VT1/3>>,

B CONNECTIONS TO PARTIAL MONITORING FRAMEWORKS

In this section, we discuss the relationship between dueling bandits with Borda winner and par-
tial monitoring games, highlighting how our approach connects to and differs from existing PM
methodologies.

B.1 CONCEPTUAL RELATIONSHIP BETWEEN DUELING BANDITS WITH BORDA WINNER
AND PARTIAL MONITORING GAMES

While previous studies have explored connections between dueling bandits and partial monitoring
(Kirschner et al. 2020} [Suk & Agarwall, [2024a), none provide a complete treatment of the Borda
winner setting. Kirschner et al.| (2020) analyze the Condorcet winner case, while [Suk & Agarwal
(2024a) address a generalized Borda formulation but not specifically the standard Borda dueling
bandits problem. Their Remark 3 suggests that such generalized Borda problems may be reduced
to partial monitoring with non-global observability, leading to a worst-case regret bound of Q(7'),
which is not informative for our setting. Neither analysis applies directly to the DB problem with
Borda winner.

We address this gap by proposing a reduction that maps the Borda dueling bandits problem to a finite
PM game and by characterizing the resulting PM structure. Our reduction scheme is constructed as
follows. The action set consists of all arm pairs a = {4,j} (i < j) with k = (12< ) total actions.
The outcome set contains all possible tournament preference matrices = € {0, 1}({;) with d = 2(3)
outcomes. The feedback @, , reveals the winner of duel {7,j} through {41, —1} signals. We
define the Borda score as b, (i) = =5 >, 4 1[i =5 {] and identify the optimal Borda arm i*(z) =

arg max; b, (i). The loss function implements standard Borda regret: L, = b, (i*(z)) — 5 (b, (i) +
be (4))-

Because the Borda score aggregates comparisons against all other arms, we prove that the re-
sulting PM game is globally observable with parameter k;; = K — 1, the weight function w,
for any two neighboring Pareto optimal actions a = {i*,p} and b = {i*, ¢} as we(c,0) =
—3 (WP (c,0) —wD(c,0)), where w(c,0) = L5 if ¢ = {i, ¢} for some ¢ and o indicates
1 wins, and 0 otherwise. This construction satisfies the global observability condition in Definition
1 of (ITsuchiya et al.l, |2023I), since Zle We(¢, @) = Loy — Ly, for all z € [d], as required by

equation (1) in their paper. And ¢ = max{1, k|G|l } < (g{) “1/(2(K — 1)) = K/4.

Applying the global-observability guarantees of [Tsuchiya et al|(2023) to our reduced game yields
regret bounds of O(K*/3T2/31ogT) for the adversarial setting and O(K?2log® T/A2. ) for the

min
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stochastic setting. Both bounds incur an additional multiplicative factor of K compared with our
tailored results for DB with a Borda winner. Thus, while partial monitoring offers a useful con-
ceptual perspective, applying its general guarantees to the Borda dueling bandits problem results in
strictly suboptimal results.

B.2 ALGORITHMIC AND ANALYTICAL DISTINCTIONS

Our approach also differs fundamentally from general partial monitoring methodologies. Although
both employ FTRL-style algorithms, the choice of regularizer and the resulting analysis are substan-
tially different. In globally observable PM games, the feedback matrix ® provides strong stability
guarantees: loss differences can be estimated with low variance, quantified by the game-dependent
constant cg. This structure allows [Tsuchiya et al.|(2023) to use the standard Shannon entropy reg-
ularizer to control the key intermediate term (y;, ¢; — qr+1) — Di(qi+1,¢:) as demonstrated in the
proof of their Lemma 11.

In contrast, the Borda dueling bandits problem does not possess such global stability properties.
The Borda score depends on comparisons with all other arms, and there is no analogue of the PM
constant cg that would enable the same Shannon-entropy—based argument. As a result, the analytical
steps used in general PM frameworks cannot be directly replicated in our setting. To overcome this
problem, we employ the hybrid entropy regularizer to derive the intermediate upper bound shown in
Lemma[3] This lemma is essential for both our adversarial and stochastic analyses and represents a
key technical innovation beyond standard PM approaches.

C LLM USAGE

In the draft of this paper, we utilized Grok 4. Specifically, Grok 4 was employed for language
polishing to improve the clarity, grammar, and flow of the text; generating and formatting tables
based on provided data and descriptions; and suggesting adjustments to the paper’s layout and struc-
ture for better readability and organization. These uses were limited to editorial and presentational
enhancements and did not involve generating original research ideas, technical content, proofs, or
experimental designs. The authors take full responsibility for all content in the paper, ensuring its
originality and scientific integrity.
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