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ABSTRACT

The dueling bandits (DB) problem addresses online learning from relative prefer-
ences, where the learner queries pairs of arms and receives binary win-loss feed-
back. Most existing work focuses on designing algorithms for specific stochastic
or adversarial environments. Recently, a unified algorithm has been proposed
that achieves convergence across all settings. However, this approach relies on
the existence of a Condorcet winner, which is often not achievable, particularly
when the preference matrix changes in the adversarial setting. Aiming for a
more general Borda winner objective, there currently exists no unified frame-
work that simultaneously achieves optimal regret across these environments. In
this paper, we explore how the follow-the-regularized-leader (FTRL) algorithm
can be employed to achieve this objective. We investigate a hybrid negative en-
tropy regularizer and demonstrate that it enables us to achieve O(K 1/372/3) re-

gret in the adversarial setting, O(K log® T'/AZ . ) regret in the stochastic setting,

min

and O(K log? T/A2. +(C?K log® T /A2 )'/3) regret in the corrupted setting,
where K is the arm set size, T is the horizon, A ,;;, is the minimum gap between
the optimal and sub-optimal arms, and C' is the corruption level. These results
align with the state-of-the-art in individual settings, while eliminating the need to
assume a specific environment type. We also present experimental results demon-
strating the advantages of our algorithm over baseline methods across different
environments.

1 INTRODUCTION

In online sequential decision making, the multi-armed bandit framework (MAB) has played a crucial
role in optimizing decisions under uncertainty (Lattimore & Szepesvaril [2020). Traditional MAB
relies on absolute numerical rewards, which can often be noisy or challenging to obtain from users.
To overcome this limitation, the dueling bandits (DB) problem provides a robust alternative using
relative comparisons, where the learner queries pairs of actions (arms) and receives binary feedback
on the preferred option (Bengs et al.l |2021b). This approach closely mirrors real-world scenarios
where comparative judgments are more natural and reliable and has broad applications in areas such
as search optimization, tournament ranking, retail management, and reinforcement learning from
human feedback (RLHF) (Yue & Joachims, [2009; |Dudik et al., 2011} |Christiano et al., 2017).

DB algorithms aim to minimize regret over a given horizon, defined as the cumulative gap between
the rewards of designated winners and the rewards obtained. The Condorcet and Borda winners are
among the most widely studied winner objectives (Yue et al., [2012; Bengs et al., 2021a)). Exist-
ing research has explored various preference settings, including the stochastic case where relative
preferences are fixed (Yue & Joachims| 2009), the adversarial case with arbitrarily changing prefer-
ences(Saha et al.| 2021)), and the corrupted case, which lies between them (Agarwal et al., 2021).

Despite the importance of these contributions, they provide convergence guarantees only under spe-
cific environments. Once the environment shifts—for instance, when an algorithm tailored for the
stochastic setting is applied to an adversarial one—the performance can degrade to linear regret. De-
signing algorithms that achieve optimal performance across environments without relying on prior
knowledge has therefore become a problem of broad interest in the field (Bubeck & Slivkins} 2012}
Zimmert & Seldin) 2021} |[Kong et al., 2023).
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Table 1: Regret bounds comparison under different environments and winners, where K is the num-
ber of arms, 7" is the time horizon, C is the corruption level, A, is tNhe minimum sub-optimality
gap (to the optimal arm), and A; is the sub-optimality gap for arm ¢. O hides polylogarithmic fac-
tors.

Environment
Reference Adversarial Stochastic Corrupted Stochastic
Condorcet
Saha & Gaillard (2022) O(VEKT) O (£LsT) O (KT 4 VE +.C)
Borda
Saha et al|(2021) O(K/3172/3) O (K5uen ) —
Agarwal et al. (2021) — — (A Aﬁ)
+0 (4 )
Ours O(K'/372/3) O (K log T ;gg(KT)) (K log T log(KT)
( Klongog(KT))l/3

Saha & Gaillard| (2022) study the best-of-three-world problem for dueling bandits under the Con-
dorcet winner. They propose a DB-MAB reduction framework and demonstrate that existing analy-
ses for MAB can be adapted to yield best-of-three-world guarantees for the DB setting. However, the
Condorcet winner—defined as the arm that is preferred over every other arm with probability greater
than 0.5 may not always exist, particularly in adversarial environments where the preference matrix
evolves over time. By contrast, the Borda winner, defined as the arm that maximizes the average
preference probability over all other arms, always exists regardless of the environment. Neverthe-
less, extending [Saha & Gaillard| (2022)’s DB-MAB reduction to the Borda winner is challenging
because the regret definitions fundamentally differ: Condorcet regret decomposes into dominance
gaps that enable a clean MAB mapping, whereas Borda regret aggregates average scores, render-
ing the Theorem 2 in [Saha & Gaillard| (2022)—which assumes pairwise independence for regret
bounds—inapplicable from the outset. Therefore, establishing a best-of-three-world analysis for
dueling bandits under the Borda winner remains an open problem.

In this paper, we address these gaps by developing an FTRL-based framework that directly opti-
mizes the Borda score of the selected arms, rather than reducing the problem to a standard MAB
formulation. Our approach leverages a hybrid negative entropy regularizer and demonstrates that
the proposed algorithm simultaneously achieves performance guarantees across different environ-
ments. Speciﬁcally, we establish regret upper bounds of O(K 1/372/3) in the adversarial setting,
O(K log® T /A2 ) in the stochastic setting, and oK log? T/A2, + (CzKlog T/Amm)l/3) in
the corrupted setting, where K is the arm set size, 7" is the horizon, A, is the minimum gap be-
tween the optimal and sub-optimal arms, and C' is the corruption level. Table [T] summarizes these
results and compares our guarantees with those of existing works. To the best of our knowledge,
this is the first algorithm to achieve a best-of-three-worlds guarantee for the dueling bandit problem
under the general Borda winner objective. Moreover, the theoretical guarantees we establish in each
environment match the state-of-the-art bounds for the corresponding setting. We also provide empir-
ical validation on different environments where our algorithm demonstrates consistent advantages
over baselines for a specific environment type.

2 RELATED WORK

Research has mostly targeted specific settings—stochastic, adversarial, and corrupted stochastic—
along with key winner types, such as the Condorcet winner (an arm that beats all others more than
half the time) and the Borda winner (an arm with the highest average preference score). In stochastic
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settings with Condorcet winners, where preferences stay constant, algorithms like RUCB perform
well under Condorcet winners by balancing exploration and exploitation (Zoghi et al., 2014); fur-
ther progress includes approaches that test for winners to identify them more efficiently in low-noise
cases (Haddenhorst et al., |2021) and versatile methods that work across stochastic and adversarial
worlds while keeping strong stochastic guarantees (Saha & Gaillard, |2022). For Borda winners in
stochastic DB, techniques based on generalized linear models help estimate the full preference ma-
trix to reduce regret (Wu et al.;2024)), and adaptations for non-stationary environments use weighted
Borda scores to handle slight changes over time (Suk & Agarwal, [2024)). Moving to adversarial set-
tings, where preferences can shift unpredictably, MAB-style reductions allow algorithms to handle
Condorcet winners robustly (Saha & Gaillard| [2022). For Borda winners here, the Dueling-Exp3
algorithm delivers strong results even without a Condorcet winner existing (Saha et al.,|2021), and
multi-dueling versions manage interactions between dependent arms (Gajane} |2024). In corrupted
environments, which mix stable stochastic preferences with bounded adversarial noise, robust meth-
ods like Winner Isolation with Recourse protect against disruptions for Condorcet winners (Agarwal
et al.| 2021])), and studies of attacks show how stochastic setups can be vulnerable (Jun et al., [2018));
however, no tailored approaches yet exist for Borda winners in this mixed setting. Other winner
concepts, like Copeland winners (which maximize direct wins against others) for handling cycles in
preferences (Zoghi et al.,2015)) and Von Neumann winners (mixed strategies that tie or beat all pure
arms) for contextual scenarios (D1 et al.|[2025)), broaden the framework further. Overall, while these
works advance DB in isolated cases, a unified best-of-three-worlds solution for Borda winners—
delivering top performance without knowing the environment in advance—is still missing, which
inspires our FTRL-based method.

Best-of-both-worlds (BoBW) and best-of-three-worlds (BoTW) algorithms deliver near-optimal re-
gret without prior environment knowledge, adapting across stochastic, adversarial, and corrupted
settings. In multi-armed bandits, foundational BoBW methods introduce algorithms that perform
well in both stochastic and adversarial regimes by integrating exploration mechanisms (Bubeck &
Slivkins| 2012), while subsequent work achieves nearly optimal pseudo-regret bounds for these
settings (Auer & Chiang, 2016; [Zimmert & Seldinl, 2021). Notably, (Zimmert & Seldin, 2021)
introduces an optimal FTRL-based algorithm using Tsallis entropy regularization, providing tight
pseudo-regret bounds in both stochastic and adversarial regimes. For linear bandits, BoBW de-
signs attain near instance-optimality in stochastic cases and minimax-optimality in adversarial ones
using optimistic online mirror descent with loss estimators (Lee et al., [2021), or exploration-by-
optimization to balance exploration and optimization (Ito & Takemura, 2023a)). In BoTW for lin-
ear bandits, which incorporates corrupted environments, follow-the-regularized-leader (FTRL) with
negative entropy regularization and self-bounding analysis yields adaptive regret across all three
worlds (Kong et al., [2023), and variance-adaptive algorithms tune bounds hierarchically to noise
levels in stochastic, corrupted, and adversarial regimes (Ito & Takemura, |2023b). For linear contex-
tual bandits, BoOBW methods provide near-optimal regret in stochastic and adversarial settings via
debiased estimators and FTRL with tailored perturbations (Kuroki et al., 2024)). In dueling bandits,
BoBW analyses via multi-armed bandit reductions offer guarantees under Condorcet winners for
stochastic and adversarial preferences (Saha & Gaillard, 2022); yet, no BoTW frameworks exist,
especially for Borda winners, creating a gap in unified adaptation that our FTRL approach fills.

3 PROBLEM SETTING

We study the problem dueling bandits, an online decision-making framework that involves a set
of K items, denoted by [K] = {1,2,..., K}, over a time horizon of T rounds. At the beginning
of the process, the environment determines a sequence of preference matrices My, Mo, ..., Mr,
where each M; € [0,1]5*X encodes the pairwise preference probabilities in round ¢ € [T] :=
{1,2,...,T}. Each matrix M, satisfies the following structural properties: M;(i,j) = 1 — M(j,1)
for all 4, j € [K], and M,(i,i) = 1 forall i € [K]. Here, M,(i, j) represents the probability that
item ¢ beats item j in a pairwise comparison in round ¢.

At each round ¢ € [T, the learner selects two distinct items x;,y; € [K], and observes stochastic
feedback f; ~ Bernoulli(My(z¢,y:)), where f; = 1 indicates that item z; wins, and f; = 0
indicates that item y; wins.
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To evaluate item quality, we introduce the Borda score of item ¢ € [K] at round ¢, defined as o (i) =
ﬁ Zfil M, (i, j), which measures the average probability that item ¢ wins against a randomly
i

chosen distinct item. And the Borda winner ¢* € [K] is the item with the highest cumulative Borda
score over all rounds: i* = arg max;¢(x) ZtT:l o¢(7).

The learner’s performance is quantified by the fotal regret: Ry = 23:1 pt, where p; = oy (i*) —
% (o4(z4) + o4 (y¢)), which compares the Borda score of the Borda winner with the average score of
the items chosen by the learner at each round.

We also define the shifted Borda score for item i € [K] at round t as wy (i) = & Z]K=1 M, (i, 7).

which includes the self-comparison term M (i,4) = % The corresponding shifted regret is RY, =
S [we(6*) — 3 (we(a4) + wi(ye))], where i* is the same Borda winner as defined above.

This is a shifted version of the original Borda score o¢(i) = 25 > j+i Mi(i, j), where the summa-
tion now includes the term M (i, 4) = 1. The relationship between them is w (i) = £ty (i) + 5%,
which does not change the identity of the optimal item or the proportionality of the regret (with
Ry = 55 RY).

The shifted Borda score is defined and used primarily to simplify the construction of unbiased esti-
mates for item scores in adversarial dueling bandits problem with Borda winner (Saha et al.,[2021).
In our algorithm, estimates are derived from binary preference feedback on pairs sampled i.i.d. with
replacement from a distribution d;. Including self-comparisons in w;(¢) allows for symmetric and
straightforward expectation calculations, avoiding the need to exclude self-pairs (which would com-
plicate sampling without replacement and increase variance).

3.1 PREFERENCE REGIMES

We define the stochastic, adversarially corrupted stochastic, and adversarial environments for du-
eling bandits using the self-bounding constraint framework from |Zimmert & Seldin| (2021). These
adapt standard multi-armed bandit models to pairwise comparisons, fitting dueling bandits. They
unify regret analysis across adversarial levels, as in [Zimmert & Seldin| (2021). An environment
follows a self-bounding constraint with (A, C, T') if, for any algorithm,

T

S A -C

t=1

Ry > E ) (1)

where A : [K]| — [0, 1]. Here, I; is a representative arm sampled from the algorithm’s distribution
74, and since x; and y; are independently and identically distributed from 7, the average score over
the pair is equivalent to the performance of a single arm ;.

Stochastic Environments: This is a special case with a (A, 0, T') self-bounding constraint (Zimmert
& Seldin, 2021), where A(i) = Egop[—w(i)] — min;« Egop[—w(i*)] for a fixed distribution D
over scores wy. Scores w; are drawn independently from D for each ¢, and the (pseudo-)regret
satisfies the inequality with C' = 0.

Adversarially Corrupted Stochastic Environments with Corruption Level C: This is a case with
a (A, 2C,T) self-bounding constraint (Zimmert & Seldin, [2021)), where C' > 0 is the total corrup-
tion budget (adjusted for the factor of 2 from bounded regret differences). A is as in the stochastic
case for some D. Scores w; satisfy ZtT:1 max; |w (i) — w;(i)| < C for w; ~ D independently per
t. When C = 0, it reduces to stochastic.

Adversarial Environments: This covers all adversarial settings as a regime with a (A, 27, T') self-
bounding constraint (Zimmert & Seldin, 2021) for any A : [K] — [0,1]. Scores w; are chosen
arbitrarily by an adversary without assumptions. The constraint is vacuous with C' = 2T (from
bounded losses in [0, 1] and max deviation), including all adversarial cases.

These regimes span settings for regret analysis, from adversarial to stochastic.
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4 ALGORITHM

In this section, we introduce the proposed follow-the-regularized-leader algorithm for dueling ban-
dits in adversarial, stochastic, and corrupted environments, and present its pseudocode in m

In this approach, we define a probability distribution 7; over A[K] (the K -simplex), as follows:

t—1
di € arg max {Z@sd@ - ¢7t(P)} s = (1= 6¢)de + Srur, 2
PEA[K] s=1

For initialization, set d; as the uniform distribution with each component equal to %

Algorithm 1 FTRL for Dueling Bandits
Require: Regularizers {¢; }+, parameters {d; }+, arm count K
1: for eachroundt =1,2,...,7T do
2:  Draw x4, y, bd- e
. Observe fi(xt,y:) ~ Ber(My(z¢,yt))

Set G4 (7) + 1}{(:1;(:} Z]e[K] UHye=itfi(@ey1) if'{;)(“ v) forall i € (K]

T < (1 — (St)dt + (st’U,K

3

4

5. dy < argmax,ca (k) {22:11 (G, p) — (bt(p)}
6

7: end for

The algorithm computes a distribution 7; over the K-simplex A(K) = {p : [K] — [0,1] |
> ie(x) P(i) = 1} in each round ¢, as defined in [2| from the original formulation. Firstly, it pro-

ceeds to independently sample z; and y; from d; The preference feedback f;(xy,y:) follows a
Bernoulli distribution with parameter M; (x¢, y;) Based on observations, the unbiased estimator
@y : [K] — R updates as shown in {4 Then it solves for d; by maximizing the sum of inner prod-
ucts with prior unbiased estimators minus a regularizer |5) where (a,b) = >~ k) a(i)b(i), @y is an
unbiased estimator of wy, and ¢; : A(K) — R is a convex Legendre function. Equivalently, the
optimization problem for d; can be reformulated as a minimization problem by taking the negative
of 1:

i—1
d; € arg min {Z(—ﬁs,m + (bt(p)} . 3)

PEA[K] | s—1

Next, m; mixes d; with the uniform distribution uk (i) = 1/K for i € [K], using §; € [0, 0.5] ([6).
The Bregman divergence that we will then use is Dy, (p, ¢) = ¢+(p) — ¢:(q) — (Vo (q),p — q).

5 REGRET-BOUND ANALYSIS

Using the regularizer defined in 4] we can gain the regret bound in[I] We consider the regularizer

functions defined as
¢e(p) = v Y g(p(i)), where
i€[K) 4)
g(z)=zInz+ (1 —z)In(1l — ),

where the parameters J; and «; are defined by @; = max {mo, 8K} and
1 miv Mo
5 =7 g e =t - 75 O =0+ \/ , (5)
my + (Eizl Us) oy (m + Zt ! vseerl)

with mq,mg > 0 as input parameters such that m; > 2log K (used for computing ¢} and oy to
ensure lower bounds) and mz > 0 (used to initialize a; = max{ms, 8K} and update a¢11),
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Additionally, {e;}, {v;} are defined by

etZ—Z (de(4)), Zdt ) (1 —de(2)).

i€[K] i€[K]
Theorem 1. For any T, the [[|with ¢, 6, and o defined by Hland P|enjoys a regret bound of

Ry <k- max{gw?’,m?} ,  where

_ 1 [KlogT
k:O(m1+m< njf +m2> log(KT)>. (6)

Consequently, if T > K3, we have Ry = O (ETz/S) in the adversarial regime and

i3 253 1/3
RT:O<A2 +(A2 ) (N

in adversarial regimes with self-bounding constraints.

K log T'log(KT
og T log( ))for

This implies the regret bounds: O(K'/3T2/3) for adversarial environments, O( AT

stochastic environments, and O(

2
Klog T log(KT) | (& Klog 7 108(KT) )1/3) for corrupted stochastic

min min

environments.

Discussions. The core challenge in extending best-of-both-worlds (BoBW) or best-of-three-
worlds (BoTW) analyses to dueling bandits under the Borda winner benchmark lies in the funda-
mental mismatch between existing frameworks, such as the DB-MAB reduction in|Saha & Gaillard
(2022), and the inherent global nature of Borda scores. |Saha & Gaillard, (2022) provides a unified
algorithm achieving optimal regrets across stochastic and adversarial environments under the Con-
dorcet winner (CW) assumption, relying on a regret definition that decomposes into dominance gaps
(e.g.. E[Rr] = $E[R_1,1 + Ry1,7], where A(i,j) = P(i,j) — 1/2) to enable clean mapping to
independent MAB instances. However, this fails for Borda winners because the regret definitions
fundamentally differ: CW regret leverages pairwise independence via uniform dominance, whereas
Borda regret aggregates average scores (0(i*) — 3(o¢(x¢) 4+ 0¢(y:))), rendering the Theorem 2
in [Saha & Gaillard| (2022)—which assumes such decomposition for regret bounds—inapplicable
from the outset. This disparity arises from Borda’s lack of uniform dominance, necessitating global
preference matrix estimation that introduces coupled dependencies across all pairs. Consequently,
direct extensions lead to suboptimal dependencies, such as inflated K factors in stochastic regrets
or linear corruption terms in corrupted settings. To circumvent this, we adopt an FTRL approach,
directly optimizing over the simplex to embrace Borda’s global averages, enabling unified BoTW
regrets without environment priors.

Our FTRL algorithm uses a hybrid negative entropy regularizer ¢:(p) = ¢ >, g(p(i)), where
g(x) = zlnx + (1 — 2)In(1l — x), to address problems when using the standard Shannon en-
tropy (¢¢(p) = o Y, p(i) Inp(i)). In the stability bound ' Shannon entropy produces a positive
quadratic term in the Taylor expansion for small s O, ol i)%/ap + O(s/a3)),
which disrupts the recursive closure of the self-bounding 1nequa11ty in [I] iand falls to control the pro-
cess quantity v, = >, d;(i)(1 — d;(7)). This stalls the analysis, as it cannot maintain the recursive
structure needed for unified regret bounds. Our regularizer, however, yields a negative quadratic term
(X, p(i)s(i) — 3p(i)s(i)?/aw + O(s*/a?)), which enables tight recursive control of v;, ensuring
the self-bounding inequality closes effectively across all regimes.

Proof of the main theorem. The proof relies on a series of lemmas and a key proposition, which
we present as they are used to establish the result.
We begin by introducing the proposition that bounds a specific regret term 7.

Proposition 1. We begin by introducing the proposition that bounds a specific regret term RS, which
is an auxiliary regret term based on the shifted Borda score. Let us define parameters 6; and o as

in [I} then R% satisfying[I1]is bounded as
) ; (8)

R;o<

my V2/3 + l;:\/m% + (log K + E7T) (m1 + V%/?’)
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where Ep = Zthl ey, Vr = Zthl v, and k = O (\/Ererl (King + mg))

This proposition is supported by the following lemmas which provide the intermediate bounds.
Lemma 1. If I; is chosen following 7y so that Pr[I; = i | m¢] = m(0), the regret is bounded by

Rr <E Z (8¢ + (=, dy — dpy1) — Dy, (dit1,de) + Pi(diy1) — ¢t+1(dt+1))]

©))
+ori1(ei-) — ¢1(dr),

where e;« (i) = 1 ifi = i* and e;~ (1) = 0 for i € [K] \ {i*}.

Lemma 2. When the traditional Shannon entropy is used as the regularizer, ¢, is defined as

¢:(p) = —wf(p), where f(p)= Z p(i) ln%.
1€[K] pit

It holds for any s : [K] — R and p,q € P(K) that

(=5,p = q) = Dy, (¢,p) < o > p(i)¢ (_S(i)) ,

ie[K] X

where ((z) = exp(—x) + = — 1.
Lemma 3. If ¢, is given by[d) it holds for any s : [K] — R and p, q € P(K) that

o (=sli) o ((s(i)
(o= )= Danlaop) < o 3 min {ptine (=22} a-pine () g
1€[K]
where ((z) = exp(—x) + = — 1.
Lemma 4. Suppose ¢ is defined as inand Oy > ¢/ a% Then, the regret satisfies Rp < R%+ejaq,

where
) | K |v
7=0|E E (5,: + Bicn + (41 — o) €t+1> ) (11)

t=1
and the sequences {e;} and {v;} are given by

er=—Y_ g(di(i)), = > di(i) (1= du(i)). (12)

i€[K] 1€[K]

We use the above proposition along with the following lemma, which bounds the sums Er and V7.
Lemma 5. Consider the following definitions:

1 KlogT
ET—Zet, VT—th, = (W( - +m2)), (13)

with input parameters my,ms > 0 satisfying my > 2In K. Then, for any i* € [K], the sums Er
and Vi are bounded by

KT
° Vi < 25(i%), (14)

< ¥ —_—
Er <2S5(@")In G <

where S(i*) is as given in[18]
From Proposition |1|(the bound in and Lemma (the bounds in , if § > mg’, we have
% =0 ( [mls( )23+ k:\/S 1og(KT)S(i*)1/3D
<0 <<m1 + l:;x/log(KT)> 52/3) , (15)
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where the inequality follows from Jensen’s inequality. Hence, there exists k such that R% < k-S2/3,

k=0 (m1 + %\/log(KT)) : (16)

As a consequence, we obtain@ Since S < T, in adversarial regimes, it follows from@that

RT:O(Z:-max{TW,m%}) :O(/%-Tm). (17)

Let us next show|[/| This relies on the following lemma, which provides a lower bound on the regret
using self-bounding parameters.

Lemma 6. We introduce the following parameters S(i*) and S, which will be used when applying
the self-bounding technique:

T
S(i*) =S (1 dy(i*)), S(*) =E[S(i*)], = min 5("), (18)

P} i*€[K]

We note that these values are clearly bounded as 0 < S < S(i*) < T for any i* € [K]. In
an adversarial regime with a self-bounding constraint, the regret can be bounded from below, as
follows:

Amin a
Ry > —=5-C. 19)
From@and Lemma@ for any 6 € (0, 1], we have
Rr=(1+0)Rr —0Rpr =0 ((1 L0k 53— 0AmnS + 90) . (20)
We have
o a2/3 - 1+ 033\ "/* =\ 2/3 -
(1 + e)k - S - aAminS - W (eAminS) - HAminS
(1+0)3k> 1\ &
=0 ( 02A12nin =0 b ﬁ A?nin ’ (21)

where the second equality follows from z'/3y*/® < i1z + 2y for any 2,y > 0. Combining these

inequalities, we obtain
1 k3

By choosing 6 that minimizes the right-hand side, we obtain
Setting m; = © ((K log T - log(KT))'/?) and my = © (y/KlogT), we obtain

k=0 ((K log T - 1og(KT))1/3) . (23)

Then we get that an algorithm achieves Ry = O(K 1372/ 3) for adversarial environments,
Ry = O(%Og(m) for stochastic environments, and Ry = O(%Og(m +

min min
C?K log T log(KT)
(&

min

1/3 . . .
) / ) for adversarially-corrupted stochastic environments.

6 EXPERIMENTS

To represent an environment, we use a preference matrix, where the first row corresponds to the arm
with the highest total value, the second row corresponds to the second-best arm, and so on (Figure/I]
(a)). For the adversarial setting, we construct a reversed preference matrix (Figure|l| (b)), where the
first row corresponds to the worst arm and the last row to the best.

The environment alternates between the original and reversed matrices: the algorithm learns on the
original matrix for 100 rounds, then on the reversed one for 150 rounds. The extra 50 rounds help
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offset any residual influence from learning in the original environment. And due to the rearrange-
ment inequality, this setting of the environment can cause the most severe regret when changing the
environment. In the corrupted setting, we modify the preference matrix by swapping the first and
second rows (Figure[T](c)) every 500 rounds.

o H
“ﬂ o m - n
Las
5] “Hﬂ o ﬂm
: mnﬂmnﬂ o nﬂm
o0

1

ﬂmnﬂ o nﬂm

K3 - EaEaE - EaEAEIEEn ) - (e
@ . - EaEEE e e - .
(a) Preference Matrix (b) Reversed Preference Matrix (c) Corrupted Preference Matrix

Figure 1: Experimental Setting of Three Preference Matrices.

For comparison, we evaluate two established algorithms for dueling bandits with Borda winner:
Borda-Confidence-Bound (BCB) for stochastic environments, and Dueling-EXP3 (D-EXP3) for ad-
versarial environments 2021). In each experiment, the reported results are averaged
over five independent runs. As shown in Figure [2] our algorithm achieves better performance than
D-EXP3 in the stochastic setting, outperforms BCB in the adversarial setting, and surpasses both
algorithms in the corrupted setting.

(a) Stochastic Environment (b) Adversarial Environment (c¢) Corrupted Environment

Figure 2: Experimental Results in Three Environments.

7 CONCLUSION AND FUTURE SCOPES

We address the dueling bandits problem under the Borda winner benchmark, where the goal is to
minimize regret from relative preferences across stochastic, corrupted stochastic, and adversarial
environments without prior knowledge of the setting. We overcome the core challenge of extending
existing frameworks, such as the DB-MAB reduction tailored for Condorcet winners, which fails
due to Borda’s global averaging nature requiring full preference matrix estimation. Our key con-
tributions include: (1) the first unified best-of-three-worlds (BoTW) framework for Borda winners,
achieving nearly optimal regrets of O(K'/3T?/3) in adversarial, O(K log® T /A2, ) in stochastic,
and O(K log> T/A2. + (C?Klog? T/A2. )'/3) in corrupted settings; (2) an FTRL algorithm

with a hybrid negative entropy regularizer and time-varying rates for adaptive self-bounding; (3)
empirical validation demonstrating superior robustness over baselines.

Our BoTW framework for Borda winners opens potential extensions to contextual dueling bandits,
where preferences depend on side information (Dudik et all 2015). By adapting our FTRL with
hybrid regularization, we could explore unified BoTW regret bounds for stochastic, corrupted, and
adversarial settings. In addition, our framework can be extended to human feedback reinforcement
learning (RLHF), where dueling bandits model preference-based alignment (Christiano et al.}[2017),
potentially achieving robust BoTW guarantees under noisy or adversarial feedback by using our
adaptive regularization approach.
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A SUPPLEMENTARY PROOF OF LEMMAS AND PROPOSITION IN THE MAIN
TEXT

A.1 LEMMA 1

If I; is chosen following 7; so that Pr[I; = i | ] = m:(), the regret is bounded by

T
Ry <E Z (0¢ + (—1s,dt — diy1) — Dy, (dig1,ds) + ¢i(digr) — ¢t+1(dt+1))‘| (24)
=1

+ori1(en) — du(dr),
where e;« (i) = 1ifi = ¢* and e;« (i) = 0 for i € [K]\ {i*}.

Proof. From the definition of the algorithm, we have

Rr(i*) =E Zwt(i*)—zwt(ft) =E
Lt=1 =1

> (—wp,me — eﬂ]
t=1

rT T
=E Z<—wt, de — ej) + Z5t<—wnuK - dt>‘|

t t=1

T
(—wy, dy — €j+) + Z(st‘|
t=1

T
(—lg, dy — €5+) + Zét‘| )
t=1

where the second equality follows from I; ~ m, the inequality follows from (—ws, ux — dy) <

(—wy, ur) < 1, and the last equality follows from the fact that @; is an unbiased estimator for w;.
Further, from Exercise 28.12 of the book by |[Lattimore & Szepesvari| (2020), we have

Il
—

A
=
] =

t

Il
—

=E

[M]=

t

Il
—

T T
Z(*ﬂt,dt —ep) < Z ((—tg, di — dig1) — Dy, (dis1,de) + @(dev1) — Grg1(des1))
t=1 t=1

+ dri1(eir) — ¢1(dr).
Combining this, we obtain the regret bound in[9} O
A.2 LEMMA 2

Proof. Consider the partial derivative of the left-hand side expression with respect to each ¢(i):

0
dq(3)

((=s,p—q) — Dg,(q,p)) = s(i) — ar(Ingq(i) — Inp(7)).
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Since the expression is concave in ¢, the maximum over g € RI;O occurs where this derivative

vanishes, namely at ¢*(i) = p(i) exp (?) Therefore,

<*S,p - q> - D¢f(‘]7p) S <*S,p - q*> - D¢f(q*ap)
=Y [0 ®) - ¢" (i) — at (¢ () Ing* (i) — p(i) Inp(i)
i€[K]
—(¢" (1) = p(i))(In p(i) + 1))]

D (=s(i)p(i) + s(i)q" (i) — cuq* (i) Ing* (i) + cup(i) In p(i)
1€[K]

tai (g (i) — p(i))(Inp(i) + 1))
> (=s(i)pli) + onlg* (i) — p(i)))

i€[K]
= ie%:qp(i)C <;il)> .

The initial equality stems from the Bregman divergence formula. The subsequent simplification uses
Ing*(i) = Inp(i) + 22, and the later step substitutes ¢* (i) = p(i) exp (M) This establishes the

ay iy

result for Lemma 2.

A.3 LEMMA 3

Proof. Let us introduce a non-negative function d(y, x) for x,y € (0, 1), given by
d(y,z) = ylng +r—y=ylhy—zlnz— (y—z)(lnz+1).
x

This d represents the Bregman divergence on the interval (0,1) corresponding to the potential
¢ (x) = xInz. When ¢, follows 4| its associated Bregman divergence Dy, (g, p) can be writ-

ten as
Dy, (q,p) = o Y _ [d(q(i), p(i)) + d(1 — q(i), 1 = p(i))] .
i€[K]
Consequently, we derive

(=s,p—a) = Do, (0,p) = Y [=s()(p(i) — (i) — @ (d(a(i), p(5)) + d(1 = q(i), 1 = p(0)))]
< > min{—s(i)(p(i) — q(i)) — ard(q(i), p()),
—s(i)(p() — q(i)) — ad(1 — q(i),1 — p(2)) } -

Drawing from the reasoning in the proof of lemma?2 , it follows that

—“”@@—wﬁn—ammmﬁm»<amax(_dw>.

Qi

Analogously, we can establish
—s(1)(p(é) — q(i)) — axd(1 — q(4),1 — p(i))
= s(i)(1 —p(2)) — (1 —q(i)) — o [(1 —q(1))In(1 — ¢(2)) — (1 — p(2)) In(1 — p(2))
= ((1 =q(@) = (1 = p(4)))(In(1 - p(@)) + 1)}

) s(2
< il -pline ().
Qi
By integrating these, we arrive at the inequality stated in [T0} This concludes the demonstration of

Lemma 3. O
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A.4 LEMMA 4

Proof. To establish this result, we start by applying Lemmato analyze the term (— @, dy —di11) —
Dy, (dt41,dy). Forevery t € [T] and i € [K], we notice that 4;(i) < K /7. This inequality arises
from the expression for (i) in [} combined with the lower bound 74 (i) > §;/K for all i € [K].
Since &; > (K /a;)'/?, it follows that oy 67 > K6, !, implying @, (i) < a6, *.

Using the inequality ¢(z) < 22/2 for |z| < 1, and noting that |s(i)|/a; < &, ' for s = i, we
derive

(=g, dy — diy1) — Dy, (dir1,di) < ay Z min {dt(z’)g (ﬂ:;f(l)) (1= dy(d))C (W>}

) Qi
i€[K]

< K.

T Opoy

o N2
where the last step uses the definition of v, in|12|and the bound ¢ (M) <1 (“t—(’)) < op.
t t

oY o

Next, we bound ¢¢(di+1) — de1(dey1). Since ¢u(p) = o 3ok 9(p(7)) and g(x) < 0 for
x € (0,1), we have

Ge(dit1) — Pev1(dir1) = (v — 1) Z 9(di+1(7)) = — (o1 — o) Z 9(des1(7))
1€[K] i€[K]
= (a1 — a)ert,

where the last equality follows from eq1 = — 37, ) 9(de41(i)).

Combining this with the bound from[9)in Lemma [T]and the inequality above, we obtain

a Kv
t
E <6t + m + (C!lt+1 - Oét)et+1>

t=1

Rr <E + ¢ryi(ei) — d1(dr).

Note that ¢r1(€i+) = ars1 D) 9(€ix (1)) = 0, since g(1) = 0 and g(0) = 0. Additionally,
—¢1(d1) = —a1 Y ek 9(d1(i)) = azer. Therefore,

Rr < Rt +ejay,

where 7 is defined as in@ This completes the proof. O

A5 LEMMAS
Proof. Since dy(i) > 6;/K > 1/(2K) foralli € [K] and ¢ € [T, we have v, = 3, ) di(i)(1 —
di(i)) <1 —dp(i*) = X5 di(9)” <1 —di(4") — (K — 1) (%)2 < 1—dy(i*) — 75 Therefore,

" 1
1_dt(l )SW‘FESQU“

which implies S(:*) < 2V. Next, we bound E7 using the concavity of g. From Jensen’s inequality
and the definition of €; = — >, ¢ (s 9(di (7)), we have

et > —Kyg (;{) = ln? +(K-1)In(K—-1)— Kln K > In(eK),

where the second inequality follows from In(K — 1) > In K — 1. For the upper bound, note that
g(x) =zlnz+ (1 —2)In(l —z) < zlnz+ (1 —2)In(l — z) + 2(1 — z) and thus —g(z) <
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—zlnz — (1 — z)In(1 — x). Therefore,

er < Y [—de(i) Indy(i) — (1 = dy(4)) In(1 — dy ()]

i1€[K]
— () ndy (%) — (1 - dy () In(1 — dy(i")
+ D [=de(D) Indy (i) — (1 = do(0)) In(1 — dy(0))]

i1
< —dy(i*) Indy(i7) — (1 = dy(i*)) In(1 = dy(i7)) + Zlnd
iFEL* t
< —dy(i") Indy (i) — (1 — dy(i*)) In(1 — dy(i")) + (K — 1) In (1;<d—t(i)>

e(K —1)T
1—dy(3*)’
where the third inequality uses the concavity of In and Jensen’s inequality, and the last inequality

follows from —zInz < z for z € [0,1] and d;(¢*) < 1 — 1/T. Summing over ¢ and using the
bound above, we obtain the bounds in[14] O

2(1 — dy(i*)) In

A.6 LEMMA 6

Proof. From the definition of the regret and the self-bounding constraint, we have

T

S OAWL) - C] > ApinE

t=1

T

Z(l - dt(Z*))‘| -C= Aming(i*) - Ca

t=1

Rr > E

where the second inequality follows from A(z) > Apmin(1 — 1{i = i*}) and the fact that 7 (i) =
(1- 6t)dt( )+ 6:/K > (1—6,)dy(i) > 1d,(i) due to the assumption of ; < 3 and the definitions
of S(i*) and S 1n. O

A.7 PROPOSITION 1

Vt€t41

Proof. Observe that vy < 1 and v; < e; < 2log K. Introduce the auxiliary variables I; = —
and L; = Zizl ls. By the definition of 0;, it follows that

€111V e
I, = 10 Gt (m1 +th/g) > et > Vi,

52 miq

since v; < e; implies the second inequality. Additionally,

-1 1/3
I, = PRas! (m1 + th/s) <4 (m1 + th/s) < 4mq +4 <vl + Zlg>
mi s=1

S 8 (ml + Lt—l) )

where the initial inequality uses e;11 < 2log K combined with m, > 2log K, and the final step
relies on m; > 2 and v; < 1. Consequently,

T

Li—Li
_ =4
; Qi1 = Q) Cpp1 = M2 Z m = Z_: 3y/mi+ L1+ /mi+ Li

t=1

Ly
< 4dmoy
Z\/m1+Lt+\/m1+Lt 1

= 4m22 (\/ml + Ly — /mu +Lt71) < 4m2\/§3
t=1
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with the equality arising from the definitions of oy and l;, and the inequality stemming from the
bound above.

Next, define n; = 5 and N; = ZZ=1 ns. From the expression for d;,
t

=g _4(1+V1/3) > 4.

Moreover,
1
niy SS, Ni41 _4<1+V;1/3> §4<1+m(‘/t+1)1/3> SQnt;
1
n; < 4 (1 +t1/3) .

The parameter a; admits the lower bound

t—1
ma
= Mo + M2 1+ Ng
Z\/m1+LS 1 \/m1+Lt< ; 6)
mo mot
=—= (14N L
\/ml—i-Lt( 1) 2 vmi+ Ly

utilizing the definition in the last step. Therefore,

T
Ut vVmi+ Ly ony < Y -I-LT
Z 5o S <> Z

6’at =1 mao 1+ Nt,1 -

<0 (m1 L 1ogT) ,

ma2

1+Nt 1

where the concluding inequality derives from

1+Nt Tt 1 Nt
In(1+N)—-In(1+Ny 1) =n——"-=In(l4+—"7—| > ——,
( i) —n( i-1) 1+ N, ( 1+Nt1 =5 14+ N,

valid since In(1 + x) > $x for z € [0, 8], and the bounds ensure < 8 for every t.

TN

Furthermore,

T T

Zi Z vVmi + Ly \/m1+L Zl vm1+LT10T

=1 Qi =1 mgt - mao t:lt mao S '
Additionally,

T
Za/ < 3my Z V23 _ V2/3 < 3m1 V2/3
1/3 ) t =

leveraging the relatlon y2/ 3—2%3 > 2(y— =)y Y3 fory > 2 > 0. Integrating these yields

d Kv
5t + —t + (Oét+1 — Ozt) Ct+1
7 6tOZt

K K
= Z <(5£ + \/ —|— 5771:& + (41 — o) €t+1>
1o

KlogT
=0 (mlvqg/g + (T:;g + m2> v my + LT>
2
KlogT T e
o (BT ) o35 )
ma =1 mi

1 Klo T
=0 <m1V7%/3 + \/771 < mf ) \/ml IOgK + ET) (m1 + V1/3>>

where the third line applies the bound, and the final step uses ery1 < 2log K. [
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B LLM USAGE

In the draft of this paper, we utilized Grok 4. Specifically, Grok 4 was employed for language
polishing to improve the clarity, grammar, and flow of the text; generating and formatting tables
based on provided data and descriptions; and suggesting adjustments to the paper’s layout and struc-
ture for better readability and organization. These uses were limited to editorial and presentational
enhancements and did not involve generating original research ideas, technical content, proofs, or
experimental designs. The authors take full responsibility for all content in the paper, ensuring its
originality and scientific integrity.
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