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Abstract
Federated prompt learning (FPL) for vision-
language models is a powerful approach to collab-
oratively adapt models across distributed clients
while preserving data privacy. However, exist-
ing FPL approaches suffer from a trade-off be-
tween performance and robustness, particularly
in out-of-distribution (OOD) shifts, limiting their
reliability in real-world scenarios. The inherent
in-distribution (ID) data heterogeneity among dif-
ferent clients makes it more challenging to main-
tain this trade-off. To fill this gap, we introduce
a Federated OOD-aware Context Optimization
(FOCoOp) framework, which captures diverse dis-
tributions among clients using ID global prompts,
local prompts, and OOD prompts. Specifically,
FOCoOp leverages three sets of prompts to create
both class-level and distribution-level separations,
which adapt to OOD shifts through bi-level dis-
tributionally robust optimization. Additionally,
FOCoOp improves the discrimination consistency
among clients, i.e., calibrating global prompts,
seemly OOD prompts, and OOD prompts by
Semi-unbalanced optimal transport. The exten-
sive experiments on real-world datasets demon-
strate that FOCoOp effectively captures decen-
tralized heterogeneous distributions and enhances
robustness of different OOD shifts. The project is
available at GitHub.

1. Introduction
In recent days, pretrained vision-language models (VLMs),
e.g., CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021), are widely studied for their benefits of unifying multi-
modal data and learning transferrable representation across
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downstream tasks (Liu et al., 2024). To meet the necessity
of privacy preservation, federated prompt learning (FPL)
methods are recently emerging, which utilize transferrable
knowledge of VLMs by collaboratively tuning prompt con-
texts with decentralized data (Guo et al., 2023b; Li et al.,
2024). It reduces the overwhelming computation and com-
munication burdens and brings effective personalized trans-
ferring under privacy regularization. However, the existing
FPL methods mainly suffer from a significant trade-off be-
tween performance and out-of-distribution (OOD) robust-
ness, i.e., enhancing the accuracy comes at the cost of failing
to generalize covariate-shift data or detect semantic-shift
data (Lafon et al., 2025; Kumar et al., 2022). As shown
in Fig. 1, though the classification accuracies of existing
FPL methods (e.g., FedOTP (Li et al., 2024), and Prompt-
Folio (Pan et al., 2024)) benefit from maintaining global
generalization and local personalization, they almost fail to
harness OOD robustness, e.g., detecting OOD samples in
downstream tasks. Because OOD samples are completely
unseen to the pretraining distribution of the CLIP or the
fine-tuning distribution of clients in FPL (Liao et al., 2024b;
Yu et al., 2023).

This brings the problem of enhancing OOD robustness for
federated prompt learning on pretrained VLMs.

Applying federated OOD-aware prompt learning on VLMs
suffers from two aspects of challenges, i.e., CH1: How to
maintain the class-level and distribution-level separations
for distinguishing client data samples? and CH2: How
to enhance the consistency of OOD robustness among all
clients? The first challenge arises when applying prompt
learning in federated scenarios, leading to inferior class
discrimination and reduced distinction between different
distributions. Because each client is not only limited to ex-
ploit the whole in-distribution (ID) data distribution, but also
unavailable for modeling the OOD shifts of data distribu-
tion (Liao et al., 2024b). On one thing, it is inevitable for the
client model to be overfitting for prompt learning with local
data, degrading generalization for unseen ID data in other
clients, and covariate-shift data (Cui et al., 2024). On an-
other thing, it brings a mismatch between OOD prompts and
real-world OOD distributions, impacting client detection
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Figure 1: The performance and OOD robustness of FPL methods. The FPR95 reflects detection capability, while ACC and
CACC are generalization performance on ID data and covariate-shift data, respectively.

capability, as in Fig. 1. The second challenge stems from
personalization of heterogeneous data, where variations in
domains and class representations hinder achieving perfor-
mance consistency. The inherent heterogeneity of client data
prevents the direct application of centralized OOD methods,
limiting their effectiveness in improving the OOD robust-
ness of FPL. In Fig. 1, the adaptions of FedAvg (McMahan
et al., 2017) with centralized OOD prompt tuning methods
fail to effectively handle heterogeneous data, where only
FedGalLoP (Lafon et al., 2025) maintains its performance.
The crucial reason is that each client maintains the local
OOD robustness on heterogeneous data distribution, which
is inconsistent among clients in FPL. Even clients in FedGal-
Lop are still confused about identifying data unseen at local
but presented in other clients (Yu et al., 2023).

In this work, we promote the OOD robustness of federated
prompt learning on VLMs, and propose a Federated OOD-
aware Context Optimization framework, i.e., FOCoOp.
Specifically, FOCoOp integrates the Bi-level OOD Sepa-
rations (BOS) and Global-view OOD Consistency (GOC)
modules to simultaneously learn global ID prompts for gen-
eralization, local prompts for personalization, and OOD
prompts for detection. To address CH1 in each client,
BOS learns three types of prompts to align local ID images
with bi-level distributionally robust optimization, which per-
turbs global prompts and OOD prompts to explore wider
semantic matching with limited image data. The perturba-
tions on global prompts improve class-level separation by
penalizing the mismatching scores with ID image data, thus
avoiding interference with the original class discrimination
among decentralized data. Similarly, BOS perturbs OOD
prompts to minimize the impact of overall semantic match-
ing between ID image data and OOD prompts, bringing
more distinctive distribution-level separation. For tackling
CH2 in server, GOC aggregates global prompts from par-
ticipating clients, and aligns them with OOD prompts via
Semi-unbalanced optimal transport mapping. Based on the
mapping, GOC selects seemly OOD prompts that are mostly
close to ID global prompts, to calibrate aggregated global
prompts, and sends the most distant OOD prompts back to
clients. This approach mitigates ambiguous identification of

OOD prompts for each client, reducing misclassification of
data in other clients, and detecting semantically novel OOD
data from a global perspective.

To conclude, our main contributions come from four as-
pects: (1) we are the first to propose a federated OOD-aware
prompt learning framework, i.e., FOCoOp, which maintains
performance without sacrificing OOD robustness. (2) We
design the BOS module, which leverages bi-level distri-
butionally robust optimization to enhance class-matching
between images and prompts while ensuring a clear separa-
tion between ID and OOD data. (3) We develop the GOC
module, which utilizes semi-unbalanced optimal transport
mapping to calibrate OOD prompts and global prompts
in consistency. (4) In experiments, we validate the effec-
tiveness of FOCoOp on extensive real-world datasets with
different tasks, achieving consistently competitive results.

2. Related Work
2.1. Federated Learning on VLMs

Federated learning (FL) models decentralized data in each
client and aggregate client models for a global model in
server (McMahan et al., 2017). Personalized federated
learning emphasizes tailoring to personalized performance
through regularization (Li et al., 2020; Karimireddy et al.,
2020), contrastive learning (Li et al., 2021), model decou-
pling (Chen & Chao, 2021; Dong et al., 2022), hyperbolic
modeling (Liao et al., 2023; Liu et al., 2025a), and so on.
However, conventional FL methods require the collabora-
tion of client models with full parameter sets on the server,
which becomes impractical as model size is growing by
scaling law (Li et al., 2024; Cui et al., 2024). Recent works
have explored parameter-efficient fine-tuning methods to
reduce the communication and computation costs. For ex-
ample, PFPT (Weng et al., 2024) uses visual prompts to
tackle class-imbalance problem in pretrained vision models,
and FLoRA (Wang et al., 2024b) utilizes Low-rank adapters
with varying ranks to fine-tune language models. Similarly,
we further consider using federated prompt learning to col-
laboratively adapt client data by tunable textual prompts
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rather than entire VLMs, reducing communication and com-
putation cost (Guo et al., 2023b;a). Recently, a series of
work focuses on balancing personalization and generaliza-
tion, e.g., CLIP2FL (Shi et al., 2024), DiPrompt (Bai et al.,
2024a), FedOTP (Li et al., 2024), FedTPG (Qiu et al., 2023)
and pFedPG (Yang et al., 2023). FedFolio (Pan et al., 2024)
further provides theoretical insights into trade-offs between
generalization and personalization. Although these methods
improve federated prompt learning for heterogeneous data,
these works overlook the OOD robustness issues.

2.2. OOD Robustness in Federated Learning

It is a long-term issue but rarely a topic for improving OOD
robustness in federated scenarios (Hendrycks & Gimpel,
2016; Li & Wang, 2024; Huang et al., 2024). Recent FL
methods aim to enhance generalization by preserving in-
variant relationships between data and labels (Jiang & Lin,
2022; Tan et al., 2023; Tang et al., 2022), smoothing lo-
cal loss landscapes (Qu et al., 2022), and capturing robust
representations to handle heterogeneous distributions and
adapt to unseen clients (Yuan et al., 2021; Nguyen et al.,
2022a; Guo et al., 2023c; Liu et al., 2021). FedGOG (Zhou
et al., 2025a) further improves OOD generalization in de-
centralized graph data (Zhou et al., 2025b). Meanwhile,
FOSTER (Yu et al., 2023) learns a class-conditional gen-
erator to synthesize virtual external-class OOD samples
and facilitate OOD detection in FL for the first time. And
FOOGD (Liao et al., 2024b) captures global distribution
with score matching model to tackle OOD generalization
and detection simultaneously. Nevertheless, these models
are not scalable for large pretrained VLMs and struggle to
directly adapt to FPL while maintaining OOD robustness.

2.3. OOD Robustness on Pretrained VLMs

The pretrained VLMs contain large-scale model parameters
and provide transferrable representation for OOD gener-
alization and zero-shot capabilities (Radford et al., 2021;
Jia et al., 2021; Liu et al., 2025b). However, VLMs rely
heavily on pretrained textual-image matching distribution,
causing the degradation of generalization and detection ca-
pabilities once the textual prompts are diverse and incor-
rect (Zhou et al., 2022; Mayilvahanan et al., 2023; Yang
et al., 2024; Shu et al., 2023). CoOp (Zhou et al., 2022) pro-
poses to learn the representation vector of prompt context
words during adapting pretrained VLMs, enhancing the
generalization on distribution shifts. To enhance robust-
ness, OOD generalization and detection are further explored.
For instance, CDC (Zhang et al., 2024) employs causal
analysis (Wang et al., 2024a; 2025a; Qi et al., 2024) to
identify task-irrelevant knowledge interference. Similarly,
CLIPN (Wang et al., 2023) finetunes VLMs to generate neg-
ative prompts that assess the probability of an OOD concept.
Moreover, ID-Like (Bai et al., 2024b) extends pretrained

VLMs to detect OOD data that is highly correlated with ID
data. With the constraints of data privacy and heterogeneity
of FPL, it is further demanding to efficiently and consis-
tently apply prompt tuning on pretrained VLMs to adapt
decentralized data.

3. Methodology
3.1. Problem Setting

Federated Prompt Learning Formulation. As shown
in Fig. 2, FPL methods collaboratively adapt pretrained
VLMs with decentralized data among a server and K clients
by fine-tuning prompts, i.e., N tunable context embed-
dings t = {e1, · · · , eN}. The server is responsible for
the generalization of prompts in a global view. And each
client k focuses on fine-tuning prompts for frozen VLM
using local heterogeneous data DID

k = {(xk,j , yk,j)}Nk
j=1,

where xk,j denotes j-th input sample and yk,j is the asso-
ciated label. For ID image xk,j belonging to class c, i.e.,
yk,j = c, the image encoder I extracts its visual represen-
tation, hk,j = Iθ(xk,j). Correspondingly, we compute the
textual embeddings for context prompts based on text en-
coder T , i.e., ec = Tθ(t,nc), where nc is the class name
embedding of yk,j , and all prompts are randomly initialized.
Then FPL minimizes similarity between image data and
prompt corresponding to its label, which is cosine distances,
i.e., sθ(xk,j , t) =

Iθ(xk,j)Tθ(t,nc)
∥Iθ(xk,j)∥∥Tθ(t,nc)∥ =

hk,jec

∥hk,j∥∥ec∥ . And
we denote S(x, t) = S(h, e) = exp (sθ(x,t)/τ) as simi-
larity score. After model converges, prompts for aggre-
gation in each client k are sent to the server, e.g., tc =∑K

k=1
|Dk,c|∑
k |Dk,c|tk,c.

Objective of FOCoOp. FOCoOp is a FPL framework
that captures heterogeneous client distributions and en-
hances OOD robustness by using three sets of prompts,
i.e., (1) ID global prompts T g = {tg}Cc=1 of C classes that
captures shared ID global distribution, (2) OOD prompts
T o = {to}Uu=1 that are trained to mismatch with ID data,
and (3) ID local prompts T l

k = {tlk}Cc=1 that captures het-
erogeneous distribution in each client k. In detail, the local
prompts T l

k adapt local data to realize personalization of
client k. The global prompts T g enhance the generalization
of covariate-shift and heterogeneity in a global view. And
the OOD prompts T o capture the mismatching relationship
between ID visual data and OOD textual prompts. The over-
all objective is to maintain performance as well as enhance
OOD robustness:

min
K∑

k=1

ℓG(DID
k ,DID-C

k ,T l
k,T

g,T o) + ℓO(DOOD,T l
k,T

g,T o),

(1)
where ℓG(·) is the in-distribution generalization loss on local
testing ID data DID

k and covariate-shift data DID-C
k , ℓO(·) is

the out-of-distribution detection loss for OOD data DOOD.
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Figure 2: Framework of FOCoOp. For each client, FOCoOp uses bi-level OOD separations module to fine-tune three sets of
prompts adapting to pretrained VLM. While in the server, FOCoOp leverages the global-view OOD consistency module to
enhance the discrimination among ID global prompts and OOD prompts.

3.2. Client: Bi-Level OOD Separations

For the sake of limited access to training data, it mainly
includes two aspects of OOD robustness, i.e., OOD gener-
alization and OOD detection, in federated prompt learning
for VLMs (Liao et al., 2024b; Bai et al., 2023). Regarding
OOD generalization, FOCoOp needs to maintain the class-
matching between ID prompts and intriguing ID data that are
heterogeneous, covariate-shifted, and presented in untrained
clients. In terms of OOD detection, FOCoOp should identify
semantic shifts, rather than mistakenly categorizing unseen
samples from other clients as outliers. To tackle the above
issues, we first introduce the initialization and modeling
procedure of prompt tuning for three sets of prompts. Then
we devise bi-level distributionally robust optimization for
widely capturing intriguing relationships between different
prompts and image data, i.e., (1) class-matching between im-
age and prompts of the same class, and (2) distribution-level
separation between local image data and OOD prompts.

Prompt Context Initialization. For three sets of prompts,
the textual inputs are formulated with class labels tc =
{t,nc}, where nc are the word embeddings corresponding
to the c-th class name. The global prompts tg and local
prompts tl share the same ID class set, while OOD prompts
to are initialized with candidate class names sampled from
a lexical database, i.e., WordNet (Fellbaum, 1998), which is
widely used in OOD robustness (Jiang et al., 2024; Zhang
et al., 2025). Specifically, we calculate the negative cosine
similarities between textual embeddings ec for ID classes
{yc}Cc=1 and ẽu for OOD candidate classes {yu}Uu=1, i.e.,

du = Percentileη∈[0,1]

(
{− cos (ẽu, ec)}Cc=1

)
,∀u∈[U],

(2)
where t is the fixed context embedding of “a photo the

[CLASS NAME]”. Following (Jiang et al., 2024), we select
the top U negative class labels {nu}Uu=1 based on their
distances, i.e., TopU ({du}Uu=1).

Local Prompt Fine-tuning. After initialization, we com-
pute the similarity scores, and leverage them as prediction
probability (Li et al., 2024; Zhou et al., 2022). To realize
the class-level separation, we encourage the similarity score
of image and ID prompts associated with its label to be high,
while hindering remaining similarity scores to be low. The
prediction loss can be formulated as:

ℓP = Ex∼D [− log(p(y = c|x)] , (3)

where p(y = c|x) = S(x,tc)∑C
i=1 S(x,ti)+

∑U
u=1 S(x,tou)

with ρ-

proportional ID prompts fusion tc = (1 − ρ)tlc + ρtgc .
Similarly, we encourage distribution-level separation, by op-
timizing the loss for prediction probability of all ID prompts
that are larger than OOD prompts, i.e.,

ℓD = Ex∈D [− log p(yID = 1|x)] , (4)

where p(yID = 1|x) =
∑C

c=1 S(x,tc)∑C
c=1 S(x,tc)+

∑U
u=1 S(x,tou)

= 1 −∑U
u=1 S(x,tou)∑C

c=1 S(x,tc)+
∑U

u=1 S(x,tou)
. In this case, we obtain the over-

all objective of constructing class-level and distribution-
level separation as below,

L(x,θ, tl, tg, to) = Ex∈D [− log p(y = c|x)p(yID = 1|x)] .
(5)

Bi-level Prompts distributionally robust optimization.
Though we can achieve the OOD robustness via tuning
prompts based on Eq. (5), the separations are intriguing
to realize, since the data is heterogeneous and limited in
local tuning. To realize the wider distribution exploration
for fine-tuning ID local data, we further introduce bi-level
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distributionally robust optimization. Specifically, we per-
turb the global prompts and OOD prompts to the worst-case,
whose distribution is mostly divergent from clean prompt
distribution by a given discrepancy constraint. Note that
global prompts enhance generalization without compromis-
ing local personalization. We aim to explore perturbed
global prompts within a broad space defined by an optimal
transport (OT) divergence from the original global prompts.
Unlike KL-divergence, capturing categorical distribution
without considering geometry in feature space, OT diver-
gence preserves the geometry of latent feature spaces, which
is vital to text-image feature matching in VLMs. While
OOD prompts are designed to enhance the detection of
open-world semantic shifts unseen during training, they
often result in outliers that are geometrically distant from
the clean prompt distribution, yet difficult to separate or
remove (Wang, 2025). Therefore, OOD prompts are con-
strained using an unbalanced optimal transport (Liao et al.,
2024a; Liu et al., 2024) divergence, simultaneously captur-
ing geometric uncertainty and non-geometric contamination.
That is, we seek the worst-case of prompt distributions to
match image with textual prompts in a point-to-uncertainty
set way, i.e.,

LBDRO = inf
θ

sup
P̂∈P,Q̂∈Q

Et̂g∼P̂ ,t̂o∼Q̂L(x,θ, t
l, t̂g, t̂o),

s.t.

{
P = {P ∈ D : DOT(P, P0) ≤ η1},
Q = {Q ∈ D : DUOT(Q,Q0) ≤ η2},

(6)

where P0 and Q0 are estimated distributions of global
prompts T g and OOD prompts T o, respectively, η1 and
η2 are discrepancy constrains, DOT and DUOT are optimal
transport distance and unbalanced optimal transport distance
defined in Appendix C.1 and C.2, respectively.

Theorem 3.1. Suppose that the optimal dual variables
τ∗1 and τ∗2 are strictly positive, bi-level separation loss
L(x,θ, tl, tg, to) in Eq. (5) is continuous and differentiable,
Bi-level distributionally robust optimization in Eq. (6) can
be solved via:

t̂g = argmin
t̂g

Etg∼P0

[
sup
t̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]

,

t̂o = argmin
t̂o

Eto∼Q0

[
sup
t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}]
.

L̂BDRO = argmin
θ

τ2µ logEt̂g,t̂o

[
exp(

f(θ)

τ2µ
)

]
,

(7)
where µ is the regularization of KL divergence, f(θ) =
L(x,θ, tl, t̂g, t̂o) − τ1c(t̂

g, tg) − τ2c
(
t̂o, to

)
, L(t{·}) is

short for L(x,θ, tl, tg, c(t̂g, tg) is the cost function of opti-
mal transport, i.e., computing L2-norm distance, to) opti-
mizing t{·}.

By constructing the class-level and distribution-level sep-

arations with bi-level distributionally robust optimization,
the local prompt tuning explores wider perception for the
generalization via global prompts as well as detection via
OOD prompts. The algorithm is presented in Algorithm 2.

3.3. Server: Global-view OOD Consistency

Although we can maintain the robustness-aware separations
in each client, the data heterogeneity prevents the prompts
from optimizing to a consistent optimum for the global dis-
tribution. In other words, in each client, global prompts,
local prompts, and OOD prompts are fine-tuned by the
reference of local data distribution, causing them to be indis-
tinguishable in the server. For example, the OOD prompts
in one client match unseen data from other clients with high
similarity scores, hurting the generalization in a global view.
The seemly OOD prompts are actually ID global prompts to
be optimized, bringing the necessity to calibrate the global
prompts and OOD prompts in the server. To resolve this
ambiguity while preserving generalization performance, we
introduce semi-unbalanced optimal transport (SemiUOT)
alignment. Specifically, we align the OOD prompts learned
among all clients with the global prompts to avoid inconsis-
tent OOD robustness.

Prompt Aggregation. The server collects global prompts
{T g

k }Kk=1 and OOD prompts tuned in clients {T o
k }Kk=1. For

global prompts of clients, we aggregate them in terms of
the corresponding class tgc =

∑K
k=1

|Dk,c|∑
k |Dk,c|t

g
k,c as con-

ventional federated methods do (McMahan et al., 2017).
However, tgc is limited in generalization, since they cap-
ture different client data distributions. Moreover, the OOD
prompts capture the misalignment between local ID data
and prompt context, mistakenly identifying the ID data from
other clients as outlier. To enhance the discrimination of
global prompts T g = {tgc}Cc=1 and OOD prompts T o, we
seek out the seemly OOD prompts by aligning the distribu-
tions of global and OOD prompts using semi-unbalanced
optimal transport. We first concatenate {T o

k }Kk=1 into T o
KU ,

and apply SemiUOT with T g. The marginal probability of
global prompts is constrained to be uniform to avoid bias,
while the marginal probability of OOD prompts is loosely
constrained to explore wider OOD space. The objective is:

min
π≥0

JSemiUOT = ⟨C,π⟩+ τKL(π⊤1KU∥a)

s.t. π1C = b,π ∈ RC×KU , πcj ≥ 0 ∀j∈[KU ],
(8)

where the a and b are probability weights initialized
equally as a⊤1KU = b⊤1C , C ∈ RC×KU de-
notes the cost matrix and it can be calculated via
Ccj = ||tgc − toj ||22 ∀j∈[KU ],c∈[C]. KL(π⊤1∥a) =[∑KU

j=1 πcj log
∑KU

m=1 πcj

ac
−

∑KU
m=1 πcj + ac

]
denotes the KL

Divergence between two probability masses π⊤1 ∈ RKU

and a ∈ RKU . Next, we optimize Eq. (8) via Frank-Wolfe
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Algorithm (Clarkson, 2010; Jaggi, 2013), which seeks the
optimization direction and update it by gradient descent.
Theorem 3.2. Semi-Unbalanced Optimal Transport Op-
timization of Eq. (8) can be solved by Frank-Wolfe Algo-
rithm (Clarkson, 2010; Jaggi, 2013), which iteratively up-
dates πi+1 = πi − β(πi − si), with step size β = 1

i+2
following Armijo condition (Armijo, 1966) and optimal di-
rection si satisfying:

sicj =

{
bij , if ci = argmin

c
∇JSemiUOT

(
πi
·j
)

0, otherwise
,

(9)

with initialization s0cj =

{
bj , c = 0

0, otherwise
.

The optimal mapping matrix π∗ is used to figure out the
seemly OOD prompts and enhance the OOD prompts in a
global consistency.

Prompt Calibration. Finally, we seek seemly OOD
prompts T̃ o and mapping π̃ based on the top-M OOD
prompts whose probabilities satisfying TopM (π∗⊤1KU ).
Then we transport it to the semantic space of global prompts,
and update the global prompts via exponential moving
weight updating.

T g = αT g + (1− α)π̃⊤T̃ o. (10)

While the remaining OOD prompts are filtered to keep top
U OOD prompts with less signigicant alignment potential,
i.e., TopU (−π∗⊤1KU ). The final OOD prompts for global
updating are reformulated as

T o = T o
U = T o

UK [TopU (π
∗⊤1KU )]. (11)

Since the updated OOD prompts are mostly distant from
ID global prompts, we enhance the discrimination between
the ID distribution and OOD distribution, bringing good
detection.

In each communication round, the server sends the updated
global prompts T g and OOD prompts T o as the consistent
initial points for local adapting sequentially. We finally have
communication of federated OOD-aware prompt learning,
whose overall procedure is in Algorithm 1. By jointly uti-
lizing Bi-level OOD robustness separation in local client
modeling based on Algorithm 2, and global-view OOD ro-
bustness consistency in Algorithm 3, FOCoOp resolves the
trade-off between performance and OOD robustness, at the
same time.

4. Experiments
4.1. Experimental Setup

Datasets. We study the OOD robustness of federated
prompt learning on fifteen datasets. In terms of main-

taining performance and OOD robustness, we simu-
late heterogeneous distribution following both Dirichlet
and Pathlogical settings (McMahan et al., 2017; Li et al.,
2020) on CIFAR-100 (Krizhevsky et al., 2009) and TinyIm-
ageNet (Le & Yang, 2015) as conventional work does (Liao
et al., 2024b). We test the generalization based on CIFAR-
100-C (Hendrycks & Dietterich, 2018) and TinyImageNet-
C (Le & Yang, 2015). Meanwhile, we compute on iNatu-
ralist (Van Horn et al., 2018), iSUN (Xiao et al., 2010),
Places (Zhou et al., 2017), and Texture (Cimpoi et al.,
2014b) for evaluating the OOD detection capability in
the testing phase, following existing CLIP-based meth-
ods (Wang et al., 2023; Miyai et al., 2024). To widely evalu-
ate OOD generalization and detection, we follow previous
work of federated prompt learning (Cui et al., 2024; Guo
et al., 2023b;a), to study (1) heterogeneous label shift gen-
eralization on Food101 (Bossard et al., 2014), DTD (Cim-
poi et al., 2014a), Caltech101 (Fei-Fei et al., 2004), Flow-
ers (Nilsback & Zisserman, 2008), and OxfordPet (Parkhi
et al., 2012) to predict the accuracy of personalization fol-
lowing pathological heterogeneity, and (2) feature shift do-
main generalization on DomainNet (Peng et al., 2019), and
Office-Caltech10 (Gong et al., 2012), by leave-one-domain-
out validation strategy (Nguyen et al., 2022b). Specifically,
for N − 1 domains of one dataset, we train each client with
distinct domain data, and test its model generalization on
the whole target data of remaining one domain.

Comparison Methods. We categorize the comparison
methods into two types, i.e., (1) Existing Federated
prompt learning methods: PromptFL (Guo et al., 2023b),
FedOTP (Li et al., 2024), FedPGP (Cui et al., 2024), Prompt-
Folio (Pan et al., 2024), (2) Adapting existing centralized
OOD Detection methods for federated scenarios: Fed-
LAPT (Zhang et al., 2025), FedGalLoP (Lafon et al., 2025),
FedLoCoOp (Miyai et al., 2024). The method implementa-
tion details are illustrated in Appendix D.

Implementation Details and Evaluation Metrics. We con-
duct experiments on ViT-B/16 (Dosovitskiy, 2020) CLIP
models. To study the heterogeneity generalization on
CIFAR-100/TinyImageNet datasets, we simulate both cross-
device and cross-silo scenarios. That is, we set local train-
ing epoch E = 2, communication round T = 25, and the
number of clients K = 10 for fully participation. While in
cross-device setting, we choose local training epochs E = 2,
communication rounds T = 100 , and K = 100 for 10%
participation. To obtain fair comparisons, all comparison
methods are tuned for converging using their best hyper-
parameters, and we report the average of the results from
three random seeds. We set the learnable prompt vectors
with length as 16, embedding size as 512, class token posi-
tion as ’end’, and random initialization. We choose 1 prompt
per class for both local and global ID prompts, and 100 OOD
prompts in total. We report the average Top-1 accuracies
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Table 1: Main results of federated prompt learning on CIFAR-100 and TinyImageNet.

Heterogeneity Pathological Non-overlap (K = 10) Pathological Overlap (K = 100)
Datasets CIFAR-100 TinyImageNet CIFAR-100 TinyImageNet
Methods ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC
PromptFL 69.35 65.14 84.51 68.28 65.58 59.37 76.75 69.82 72.86 68.98 82.07 70.92 70.76 65.36 72.51 73.38
FedOTP 90.68 88.73 38.22 87.56 82.40 78.68 57.12 79.18 89.76 78.01 51.05 85.89 74.48 71.29 66.61 73.09
FedPGP 85.78 82.35 51.57 84.68 81.85 76.29 50.86 83.05 72.06 67.74 83.25 71.83 68.91 63.76 72.50 73.47
PromptFolio 91.82 89.60 44.26 88.06 88.03 83.39 42.84 87.34 81.99 75.86 73.53 75.71 78.16 73.27 61.08 79.66
FedLoCoOp 64.13 60.23 77.59 68.76 58.08 52.05 72.96 72.07 72.93 67.98 79.76 70.54 69.05 63.22 67.92 75.06
FedGalLoP 91.19 88.63 41.45 89.64 87.18 82.55 45.54 86.53 91.37 81.70 57.78 87.42 82.92 78.78 53.38 83.71
FedLAPT 60.35 56.73 82.44 67.51 60.67 55.79 73.46 71.05 60.42 57.05 83.42 68.77 60.76 56.17 74.06 70.49
FOCoOp 93.85 91.47 19.50 95.42 88.35 83.56 21.73 96.56 94.10 82.23 24.00 92.82 83.53 79.20 38.05 89.85
-w/o-BOS 91.07 89.06 27.31 93.08 84.39 78.16 31.09 92.60 91.35 77.45 32.85 92.30 79.83 72.25 46.30 86.30
-w/o-GOC 88.04 85.09 37.01 87.47 85.69 80.29 28.48 93.10 89.10 74.05 41.85 88.08 72.20 66.33 50.13 86.07

Table 2: Main results of federated prompt learning on CIFAR-100 with different Dirichlet distributions.

Heterogeneity α = 0.1 α = 0.5 α = 5.0

Methods ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC
PromptFL 71.22 67.55 76.58 72.20 75.65 71.52 82.13 69.65 74.92 71.37 79.52 74.25
FedOTP 76.81 73.50 61.88 79.14 68.43 65.67 73.78 73.45 66.20 63.16 77.73 71.15
FedPGP 76.77 72.55 74.81 74.45 72.95 69.25 83.65 71.37 73.01 69.15 82.57 72.65
PromptFolio 80.07 76.89 65.30 77.95 75.98 71.98 78.61 71.44 74.19 70.60 79.64 72.74
FedLoCoOp 67.87 63.70 76.81 70.40 74.44 70.35 73.28 72.56 74.87 70.98 74.82 73.72
FedGalLoP 80.53 77.61 60.72 82.66 75.87 72.85 68.72 79.66 74.32 71.14 72.72 79.13
FedLAPT 61.20 57.54 80.28 69.97 59.41 56.33 81.97 66.73 60.03 56.29 80.13 68.42
FOCoOp 82.42 78.52 46.56 86.98 77.71 73.59 54.26 83.40 77.66 73.59 51.02 83.22
-w/o-BOS 79.18 76.04 54.30 82.34 74.39 70.55 58.40 81.27 75.09 71.76 54.92 81.64
-w/o-GOC 78.66 75.99 53.97 82.56 74.78 70.88 57.83 81.55 75.04 71.50 55.20 81.85

for generalization of ID (ACC↑) and ID-C (CACC↑). We
compute maximum concept matching (MCM) (Ming et al.,
2022) as OOD detection score, which is based on similar-
ity between textual features and image features. Based on
MCM, we report the standard metrics used for OOD detec-
tion, i.e., AUROC (↑) and FPR95 (↓) (Yang et al., 2024).

4.2. Performance Evaluation

Maintaining performance and OOD robustness on het-
erogeneous data. We study the capability of Maintaining
performance and OOD robustness on heterogeneous data
on CIFAR-100, TinyImageNet, and additional five datasets
on Tab. 1, Tab. 2, and Tab. 3. Without specification, we
use brightness covariate shift as ID-C and texture as OOD
data. Since DTD and Texture are identical, and Texture is
commonly used for generalization in FPL methods, we eval-
uate its detection performance by using iSUN as the OOD
dataset. Firstly, existing FPL methods are not OOD-
aware. PromptFL does not perform well because it does not
adapt to heterogeneity. The FPL methods considering het-
erogeneity, e.g., PromptFolio, achieve better results for both
generalization ID data and ID-C data, but fail significantly
in detecting OOD data. This indicates that these meth-
ods can maintain the class-level separation among clients
while ignoring the distribution-level separation between ID
and OOD data. Secondly, existing OOD-aware methods
are hindered by heterogeneous data. FedLoCoOp and

FedLAPT perform worse in both generalization and detec-
tion, meaning that they cannot robustly capture semantic-
matching between image data and contextual prompts with
a few of samples. FedGalLoP can achieve OOD robustness,
even performing best on OxfordPets. However, it still lacks
of discrimination between ID and OOD data, due to locally
identifying OOD samples without a global consistency of
discrimination. Thirdly, FOCoOp maintains the perfor-
mance and OOD robustness. FOCoOp outperforms other
baselines on different heterogeneities and different participa-
tion settings. Specifically, FOCoOp detects OOD effectively
without sacrificing the prediction performance, validating
that class-level separation and distribution-level separation
are supposed to be considered at the same time. With the
benefits of global-view discrimination between ID global
prompts and OOD prompts, the bi-level separations become
more consistent and powerful among clients, achieving the
best results.

Ablation Studies. We design two variants of FOCoOp by
removing bi-level OOD separations (-w/o-BOS), and global-
view OOD consistency (-w/o-GOC), respectively, to verify
the effects of different modules. Though both variants suf-
fer from performance degradation compared with FOCoOp,
their detection capability remains competitive. This means
that both BOS and GOC play a crucial role in distinguishing
semantic-shift data, either considering local distribution-
level separation or enhancing prompts discrimination in a
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Table 3: Other datasets comparison (%) on the Pathological heterogeneity
setting (K = 10).

Food101 DTD Caltech101 Flowers102 OxfordPets
ACC FPR95 ACC FPR95 ACC FPR95 ACC FPR95 ACC FPR95

PromptFL 11.87 83.16 57.11 83.47 72.83 44.18 24.03 82.25 46.23 59.88
FedOTP 51.88 73.05 91.60 25.07 66.46 50.43 84.38 40.12 88.52 37.34
FedPGP 42.91 70.13 76.02 13.60 67.95 54.79 74.11 53.60 62.44 50.38
PromptFolio 49.94 64.39 90.37 20.86 74.72 43.53 77.73 41.42 88.03 21.83
FedLoCoOp 14.25 87.97 56.25 39.21 69.67 43.79 46.86 69.25 35.89 85.42
FedGalLoP 94.58 12.11 91.15 17.57 86.48 31.09 96.58 18.07 99.09 1.70
FedLAPT 9.09 87.53 39.26 19.36 53.84 54.13 7.07 84.80 33.10 74.92
FOCoOp 95.52 5.19 95.23 13.29 87.89 14.22 98.50 1.86 98.74 5.52
-w/o-BOS 72.55 27.02 93.29 22.61 79.44 22.14 98.17 1.94 97.66 7.47
-w/o-GOC 78.40 19.59 94.51 20.13 79.41 24.27 98.09 2.59 98.16 6.14
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Figure 3: The average generalization results
on data with different covariate-shifts.

Table 4: Domain generalization on DomainNet (left) and Office (right). The column notations are short for domain names.

Method C I P Q R S Avg (DN) A Ca D W Avg (O)

PromptFL 96.28 74.84 95.81 60.28 96.77 96.36 86.72 96.21 94.64 99.20 97.03 96.77
FedOTP 91.03 61.52 86.98 53.04 91.16 89.73 78.91 94.64 93.15 98.93 96.46 95.80
FedPGP 93.67 75.07 93.62 58.09 95.44 95.48 85.23 95.17 95.36 99.73 97.45 96.93
PromptFolio 95.24 75.64 94.78 59.02 95.58 95.41 85.95 96.73 94.29 98.66 97.59 96.82
FedLoCoOp 95.34 72.31 92.78 60.11 96.07 96.12 85.46 96.47 94.15 93.60 95.33 94.89
FedGalLoP 95.62 75.40 94.78 65.08 96.23 96.71 87.30 97.30 96.33 99.73 98.58 97.99
FedLAPT 92.36 66.54 89.02 48.38 94.07 92.07 80.41 77.28 84.61 86.40 86.86 83.79
FOCoOp 96.44 76.59 96.72 62.99 97.16 96.22 87.68 98.21 96.54 99.71 98.20 98.16
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Figure 4: Detection Comparison on CIFAR100.
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(b)  TinyImageNet Comparison
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Figure 5: The Effect of different number of shots.

global view. FOCoOp-w/o-GOC has a more significant per-
formance drop, illustrating that simply applying bi-level
distribution robustness optimization is inferior in heteroge-
neous data. This also verified the importance of maintaining
consistency of ID global prompts and OOD prompts.

Visualization. In Fig. 6, we model FOCoOp on Cifar10 (10
ID prompts and OOD prompts, respectively), and sample
100 images per class to compute the average of similari-
ties between images and prompts. The diagonal of the ID

Figure 6: Similarity heatmap of FOCoOp.

prompt matrix shows the highest similarities, suggesting
intra-class alignment and clear class separation. Meanwhile,
the similarities of OOD prompts are notably lower than
those of ID prompts, further indicating clear distribution
separation.

Domain Generalization. We study the domain generaliza-
tion on DomainNet and Office in Tab. 4. FOCoOp achieves
state-of-the-art domain generalization, yet FedGalLoP and
PromptFolio also perform competitively, indicating that all
methods effectively leverage the transferability of pretrained
VLMs for feature-shift distributions. Compared with label-
shifts, heterogeneity impact slightly on all methods, making
PromptFL performs well in domain generalization. Among
the methods evaluated, FedLAPT exhibits the lowest gen-
eralization performance, suggesting that FedLAPT is less
effective in leveraging domain-agnostic features.
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Figure 7: Hyperparameter sensitivity studies.

Method capability on other datasets. To comprehensively
evaluate the OOD robustness of FPL methods, we present
the average ID-C covariate shift generalization in Fig. 3
and OOD semantic shift detection in Fig. 4 and Appendix
Fig. 9. Additionally, we provide detailed numerical re-
sults in Tables 11–14 Appendix. FOCoOp demonstrates the
strongest generalization and detection performance, con-
sistently achieving the highest accuracy and OOD robust-
ness across different covariate-shifts and semantic-shifts on
CIFAR-100 and TinyImageNet. FedGalLoP performs well
in ID-C generalization, while suffering from detection due
to lacking consistent discrimination among clients. FedOTP
and FedPGP strike a balance between generalization and
robustness. In contrast, FedLAPT and PromptFL exhibit
significant performance degradation, hindering their ability
to consistently align image and contextual prompts while
compromising OOD robustness.

Table 5: Pathological Non-overlap (10 clients, K=10)

Dataset CIFAR100 TinyImageNet
Method(%) ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC

PromptFolio 51.96 47.47 50.14 86.45 44.70 30.64 57.57 83.03
FedOTP 55.34 50.98 61.38 74.92 43.61 28.98 72.67 73.86
FedLoCoOp 17.03 12.09 93.36 52.66 9.44 4.96 93.63 56.40
FOCoOp 60.94 55.92 28.83 95.54 49.96 35.89 53.51 87.75

Sensitivity Analysis of Hyperparameters. We present a
comprehensive hyperparameter sensitivity analysis, which
examines the effect of shot numbers in {1, 2, 4, 8, 16}
in Fig. 5, effect of ID global and local prompt fu-
sion ρ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8} in Fig. 7(a-

b), coefficient of updating global prompts α =
{0, 0.2, 0.4, 0.6, 0.8, 1.0} in Fig. 7(c-d), BDRO hyperpa-
rameters τ1 = {0.1, 1, 2, 3, 4, 5, 10} in Fig. 7(e), and
τ2 = {0.1, 1, 2, 4, 6, 8, 10} in Fig. 7(f) on ACC and FPR95
across CIFAR-100 and TinyImageNet datasets. We substi-
tute ViT-B/16 with ResNet50 (He et al., 2016) to verify in
Tab. 5. We can find that: (1) FOCoOp outperforms in all
cases, and we select 8 shots per class for prompt learning
as it approximates convergence. (2) Increasing ρ initially
improves accuracy but degrades performance beyond an op-
timal threshold ρ = 2, which reflects the same behavior in
FPR95. (3) α influences the calibration of ID global prompts
with seemly OOD prompts, where different datasets have
different turning points. (4) The effects of τ1 and τ2 are
different, i.e., τ1 can find the trade-off points where the op-
timal transport regularization is the best for classification,
while τ2 increasingly encourages uncertainty exploration
to have better detection as the value grows. (5) The results
validate that FOCoOp maintains strong generalization and
detection capabilities even with smaller models.

5. Conclusion
In this work, we propose FOCoOp, a Federated OOD-aware
Context Optimization framework to enhance robustness
and performance in Federated Prompt Learning for VLMs.
FOCoOp integrates bi-level OOD separations to improve
class-matching and distribution separations, and global-view
OOD consistency to align and calibrate global and OOD
prompts via semi-unbalanced optimal transport. Extensive
experiments across fifteen datasets demonstrate that FO-
CoOp effectively handles heterogeneous distributions, im-
proves OOD detection, and achieves state-of-the-art per-
formance without compromising generalization, making it
a promising solution for federated vision-language model
learning.
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The supplemental materials consist of five sections: (A) related work details, (B) algorithms, (C) theoretical analysis of
optimization, (D) datasets and implementation, and (E) additional experimental results.

A. Related Work
A.1. Federated Learning on VLMs

Federated learning (FL) models decentralized data in each client and aggregate client models for a global model at
server (McMahan et al., 2017). Personalized federated learning emphasizes tailoring to diverse client data to preserve
personalized performance through techniques such as regularization (Li et al., 2020; Karimireddy et al., 2020), contrastive
learning (Li et al., 2021), and the decoupling of model parameters (Chen & Chao, 2021; Dong et al., 2022), among
others. However, conventional personalized federated learning methods requires the collaboration of client models with full
parameter sets on the server, which becomes impractical as model size grows due to scaling laws (Li et al., 2024; Cui et al.,
2024). Federated prompt learning collaboratively adapts client data by tunable prompts rather than entire VLMs, which not
only utilizes the generalization ability of pre-trained VLMs like CLIP to learn transferable representations, but also preserves
data privacy through federated learning (Li et al., 2024; Guo et al., 2023a). PromptFL (Guo et al., 2023b) learns a unified
prompt for all clients to enable federated learning. CLIP2FL (Shi et al., 2024) bridges server and client communication
using CLIP, handling heterogeneous and long-tailed data. FedPR (Feng et al., 2023) designs federated visual prompts for
domain-specific tasks like MRI reconstruction. FedOTP (Li et al., 2024) balances global alignment and personalization
with an optimal transport optimization-based approach. FedTPG (Qiu et al., 2023) and pFedPG (Yang et al., 2023) enhance
generalization through prompt generation techniques. pFedPrompt (Guo et al., 2023a) adapts prompts for personalized
federated learning. FedPGP (Cui et al., 2024) balances generalization and personalization via low-rank decomposition and
CLIP guidance. FedFolio (Pan et al., 2024) further provides theoretical insights into trade-offs between generalization and
personalization. While these methods improve federated prompt learning, these works overlook the OOD robustness issues,
suffering from the trade-off between performance and talking OOD shifts.

A.2. OOD Robustness in Federated Learning

OOD robustness indicates the capability of model to discriminate distribution shifts, e.g., performance generalization for
covariate shifts and outlier detection for semantic shifts (Hendrycks & Gimpel, 2016; Li & Wang, 2024; Huang et al., 2024),
which is a long-term issue but seldom studied in federated scenarios. Recent FL methods aim to enhance generalization by
preserving invariant relationships between data and labels (Jiang & Lin, 2022; Tan et al., 2023; Tang et al., 2022), smoothing
local loss landscapes (Qu et al., 2022), and capturing robust representations to handle heterogeneous distributions and adapt
to unseen clients (Yuan et al., 2021; Nguyen et al., 2022a; Guo et al., 2023c; Liu et al., 2021). Meanwhile, FOSTER (Yu
et al., 2023) learns a class-conditional generator to synthesize virtual external-class OoD samples and facilitate OOD
detection in FL for the first time. And FOOGD (Liao et al., 2024b) captures global distribution with score matching model,
and simultaneously tackles OOD generalization and detection based on score function values. Nevertheless, these models
are not scalable for large pretrained VLMs and fail to adapt the federated prompt learning to enhance OOD robustness for
VLMs.

A.3. OOD Robustness on Pretrained VLMs

The pretrained VLMs contain large-scale model parameters and provide transferrable representation for OOD generalization
and zero-shot capabilities (Radford et al., 2021; Jia et al., 2021). However, VLMs rely heavily on pretrained textual-image
matching distribution, causing the degradation of generalization and detection capabilities once the textual prompts are
diverse and incorrect (Zhou et al., 2022; Mayilvahanan et al., 2023; Yang et al., 2024). CoOp (Zhou et al., 2022) proposes to
learn the representation vector of prompt context words during adapting pretrained VLMs, enhancing the generalization on
distribution shifts. Motivated by this, CLIPN (Wang et al., 2023) fineunes VLMs to generate negative prompts that access
the probability of an OOD concept. Moreover, ID-Like (Bai et al., 2024b) extends pretrained VLMs to detect OOD data that
are highly correlated with ID data. With the constraints of private data and data heterogeneity of FPL, it is further demanding
to efficiently and consistently apply prompt tuning on pretrained VLMs to adapt decentralized data. This problem is still
unresolved in existing work, since they cannot adapt decentralized data and detect OOD data in a global view.
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B. Algorithm
The overall algorithm of FOCoOp is in Algorithm 1. The steps 1-12 are main procedure of communication server and clients
with prompts. In step 9, clients execute local training to improve prompt learning and build bi-level OOD separations, where
the details are illustrated in steps 14-24. And the server will calibrate global prompts and OOD prompts in a global view in
step 11, which enhances discriminations. Additionally, we provide the crucial algorithms for bi-level OOD separations and
global-view OOD consistency as follows. By jointly utilizing Bi-level OOD robustness separation in local client modeling
based on Algorithm 2, and global-view OOD robustness consistency in Algorithm 3, FOCoOp resolves the trade-off between
performance and OOD robustness, at the same time.

Algorithm 1 Training procedure of FOCoOp
Input: Batch size B, communication rounds T , number of clients K, local steps E, dataset D = ∪k∈[K]Dk

Output: context prompts, i.e., T g
T , {T l

k,T }Kk=1, and T o
T

1: Server executes():
2: Initialize prompts T g

0 , {T l
k,0}Kk=1, and T o

0 with random distribution
3: for t = 0, 1, . . . , T − 1 do
4: for each client k = 1 to K in parallel do
5: if t == 0 then
6: Send {T l

k,0} to client k
7: end if
8: Send prompts T g

t and T o
t to client k

9: {T g
k,t,T

o
k,t} ← Client executes(k, {T g

t , T o
t })

10: end for
11: Calibrate prompts {T g

t+1, T o
t+1} to achieve global OOD consistency by Algorithm 3

12: end for
13: return {T g

T ,T
o
T }

14: Client executes(k, {T g
t ,T

o
t }):

15: Assign prompts from server to local model {T g
k,t,T

o
k,t} ← {T

g
t ,T

o
t }

16: for each local epoch e = 1, 2, ..., E do
17: for batch of samples (xk

1:B ,y
k
1:B) ∈ Dk do

18: Obtain the latent viusal representation for image data hk
1:B = Iθ(xk

1:B),
19: Obtain the latent textual representations for prompts ec = Tθ(tc,nc) with tc = (1− ρ)tlc + ρtgc , ẽu = Tθ(tou,nu)
20: Compute the similarity scores S(h, e) between visual representations hk

1:B and textual representations {ec}Cc=1

and {ẽu}Uu=1

21: Optimize prompts to build bi-level OOD separations by Algorithm 2
22: end for
23: end for
24: return θE

k to server

C. Theoretical Analysis
Definition C.1 (Optimal Transport Distance). The optimal transport distance is the distribution divergence between two
probability masses P̂ and P0, i.e.,

DOT(P̂ , P0) = inf
π∈π(P̂ ,P0),t̂∼P̂ ,t∼P0

∫
c(t̂, t)dπ

s.t. π1 = a, π2 = b,

(12)

with π(P̂ , P0) is the couplings between P̂ and P0, π1 and π2 are marginals of π with assumption a⊤1 = b⊤1, and c(t̂, t)
is short for the non-negative metric cost of samples t̂ ∼ P̂ and t ∼ P0.

Definition C.2 (Unbalanced Optimal Transport Distance). The optimal transport distance is the distribution divergence
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Algorithm 2 Training procedure of Bi-level Distributional Robustness Optimization
Input: Batch size B,local steps E, dataset D = ∪k∈[K]Dk

Output: Robust model parameters θ, Worst case global prompts and OOD prompts, i.e.,
T g and T o

1: Sample x1:B ∼ Dk

2: Initialize random noise for global prompts ϵgc ∼ N (0, σI), ∀c ∈ {1, . . . , C}
3: Perturb global prompts t̂gc = tgc + ϵgc
4: for Exploration step n = 1 to N do
5: gϵgc = ∇ϵgc

[
argmint̂g Etg∼P0

[
supt̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]
− γ∥ϵgc∥1

]
6: ϵgc ← ϵgc + lrgϵgc , ∀c ∈ {1, . . . , C}
7: end for
8: Estimate robust global prompts t̂g via t̂gc ← tgc + ϵgc
9: Initialize random noise for global prompts ϵou ∼ N (0, σI), ∀u ∈ {1, . . . , U}

10: Perturb OOD prompts t̂ou = tou + ϵou
11: for Exploration step m = 1 to M do
12: oϵou

= ∇ϵou

[
argmint̂o Eto∼Q0

[
supt̂o∼Q̂

{
L(t̂o)− τ1c(t̂

o, to)
}]
− γ∥ϵou∥1

]
13: ϵou ← ϵou + lroϵou

, ∀u ∈ {1, . . . , U}
14: end for
15: Estimate robust OOD prompts t̂ou ← tou + ϵou
16: Update parameters of θt by computing the gradient of Eq. (30)

Algorithm 3 Training procedure of Semi-unbalanced optimal transport based prompt calibration
Input: prompt sets {T g

k,t,T
o
k,t} ← from participating client k

Output: Robust model parameters θ, global-view consistent global prompts and OOD prompts, i.e.,
T g and T o

1: Concatenate OOD prompts from clients T o
KU ← {T o

k }Kk=1

2: Aggregate global prompts from clients by class tgc =
∑K

k=1
Dk,c∑
k Dk,c

tgk,c ∀c∈[C] and obtain T g
s in server

3: Seek the semi-unbalanced optimal transport π∗ between OOD prompts T o
KU and T g

s

4: Estimate robust global prompts t̂g via Eq. (8)
5: Compute the η−percentile of matching probabilities π∗⊤1KU to figure out top-M as seemly-OOD prompts
6: Update global prompts T g

t+1 with seemly-OOD prompts by Eq. (10)
7: Update OOD prompts T o

t+1 by Eq. (11) where top-U prompts satisfying η−percentile of negative matching probabilities
−π∗⊤1KU

between two probability masses Q̂ and Q0, i.e.,

DUOT(Q̂,Q0) = inf
γ∈γ(Q̂,Q0),t̂∼Q̂,t∼Q0

∫
c(t̂, t)dγ + µ1DKL(γ1∥Q̂) + µ2DKL(γ2∥Q0), (13)

where γ(Q̂,Q0) is the couplings between Q̂ and Q0, γ1 and γ2 are marginals of γ, µ1 and µ2 are regularization coefficient,
c(t̂, t) is short for the non-negative metric cost of samples t̂ ∼ Q̂ and t ∼ Q0. In terms of (Wang et al., 2025b), considering
µ1 = 0, Eq. (13) can be rewritten as a special case:

inf
Q̂,γ∈γ(Q̂,Q0),t̂∼Q̂,t∼Q0

{∫
c(t̂, t)dγ + µDKL(Q̂∥Q0)

}
. (14)

Theorem C.3. Suppose that the optimal dual variable τ∗1 and τ∗2 are strictly positive, bi-level separation loss
L(x,θ, tl, tg, to) in Eq. (5) is concave and differentiable, Bi-level distribution robust optimization in Eq. (6) can be
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solved via: 

t̂g = argmin
t̂g

Etg∼P0

[
sup
t̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]

,

t̂o = argmin
t̂o

Eto∼Q0

[
sup
t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}]
.

L̂BDRO = τ2µ logEt̂g,t̂o

[
exp(

L(x,θ, tl, t̂g, t̂o)− τ1c(t̂
g, tg)− τ2c

(
t̂o, to

)
τ2µ

)

]
,

(15)

where µ is the regularization of KL divergence, L(t{·}) is short for L(x,θ, tl, tg, to) optimizing t{·}.

Proof. The OOD loss can be written as

L =
1

B

B∑
b=1

[− logL(xb,θ, t
l, tg, to)]

=
1

B

B∑
b=1

− logEx∈D [− log p(y = c|x)p(yID = 1|x)] ,

(16)

with p(y = c|x) = S(x,tc)∑C
c=1 S(x,tc)+

∑U
u=1 S(x,tou)

and p(yID = 1|x) =
∑C

c=1 S(x,tc)∑C
c=1 S(x,tc)+

∑U
u=1 S(x,tou)

= 1 −∑U
u=1 S(x,tou)∑C

c=1 S(x,tc)+
∑U

u=1 S(x,tou)
.

The corresponding distribution robust optimization objective is rewritten as:

LBDRO(x, t
l, tg, to) = inf

θ
sup

P∈P,Q∈Q
Et̂g∼P,t̂o∼Q − logL(xb,θ, t

l, t̂g, t̂o),

s.t.

{
P = {P ∈ D : DOT(P, P0) ≤ η1},
Q = {Q ∈ D : DUOT(Q,Q0) ≤ η2},

(17)

where DOT and DUOT are optimal transport distance and unbalanced optimal transport distance defined in Appendix C.2
and C.1.

First, we expand Eq. (17) with Lagrangian multipliers:

LBDRO = inf
τ1≥0,τ2≥0

sup
P̂∈P,Q̂∈Q

Et̂g∼P,t̂o∼Q

[
− logL(xb,θ, t̂

l, t̂g, t̂o)
]
− τ1

(
DOT(P̂ , P0)− η1

)
− τ2

(
DUOT(Q̂,Q0)− η2

)
= inf

τ1≥0,τ2≥0
sup

P̂∈P,Q̂∈Q
Et̂g∼P̂ ,t̂o∼Q̂ −

[
logL(xb,θ, t̂

l, t̂g, t̂o)
]
− τ1

[
inf

π∈π(P,P0)

∫
c(t̂g, tg)dπ(t̂g, tg)− η1

]
− τ2

[
inf

γ∈γ(Q,Q0)

(∫
c(t̂o, to)dγ(t̂o, to) + µDKL(Q̂∥Q0)

)
− η2

]
.

(18)
Then we optimize for the worst-case distribution of global prompts tg that are independent with ood prompts to, meaning
that we can treat Q̂ as constant. By denoting − logL(xb,θ, t̂

l, t̂g, t̂o) as L(t̂g), if L(t̂g) is upper semi-continuous, we can
obtain the dual form of Eq. (17) with regarding to P̂ (Bui et al., 2022; Sinha et al., 2017), which can be formulated as:

inf
τ1≥0

sup
P̂∈P

Et̂g∼P̂

[
L(t̂g)

]
− τ1

[
DOT(P̂ , P0)− η1

]
= inf

τ1≥0
sup
P̂∈P

Et̂g∼P̂

[
L(t̂g)

]
− τ1

[
Et̂g∼P̂Etg∼P0

c(t̂g, tg)− η1
]

= inf
τ1≥0

{
τ1η1 + Etg∼P0

[
sup
P̂∈P

Et̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]}

= Etg∼P0

[
sup
t̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]

,

(19)
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where the last equation holds by relaxing τ1 ≥ 0 (Sinha et al., 2017). Thus we can obtain the worst case of global prompts
via

t̂g = argmin
t̂g

Etg∼P0

[
sup
t̂g∼P̂

{
L(t̂g)− τ1c(t̂

g, tg)
}]

. (20)

Similarly, we can fix P̂ to optimize Q̂ by denoting − logL(xb,θ, t̂
l, t̂g, t̂o) as L(t̂o), as below:

inf
τ2≥0

sup
Q̂∈Q

Et̂o∼Q̂[L(t̂
o)]− τ2

[
DUOT(Q̂,Q0)− η2

]
= inf

τ2≥0
τ2η2 + sup

Q̂∈Q

{
Et̂o∼Q̂[L(t̂

o)]− τ2E(t̂o,to)∼γ

[
c
(
t̂o, to

)]
+ µDKL

(
Q̂∥Q0

)}
= inf

τ2≥0
τ2 + sup

Q̂∈Q,γ(P̂ ,P0)

Et̂o∼Q̂E(t̂o,to)∼γ

[
L(t̂o)− τ2c

(
t̂o, to

)
− τ2µ log

Q̂
(
t̂o
)

Q0

(
t̂o
)]

= inf
τ2≥0

τ2 + sup
Q̂∈Q

Et̂o∼Q̂

[
sup
t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}
− τ2µ log

Q̂
(
t̂o
)

Q0

(
t̂o
)]

(21)

Let Q =
Q̂(t̂o)
Q0(t̂o)

with the probability constraint E[Q] = 1, f(t̂o) = supt̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}
, the sencond term of

Eq. (21) can be rewritten as:

J = Et̂o∼Q̂

[
sup
t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}
− τ2µ log

Q̂
(
t̂o
)

Q0

(
t̂o
)]

= Et̂o∼Q0

[
Q̂
(
t̂o
)

Q0

(
t̂o
) sup

t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}
− τ2µ

Q̂
(
t̂o
)

Q0

(
t̂o
) log Q̂

(
t̂o
)

Q0

(
t̂o
)]

=

{
Eto∼Q0

[
Qf(t̂o)− τ2µQlogQ

]
s.t.E[Q] = 1

(22)

The Lagrangian expansion is

J = inf
µ≥0,ν≥0,τ2≥0

Eto∼Q0

[
Qf(t̂o)− τ2µQlogQ

]
− ν (E[Q]− 1) , (23)

where ν is the multiplier. Dy deviating,

∂J
∂Q

= f(t̂o)− τ2µ(logQ+ 1)− ν = 0. (24)

The optimal Q∗ is realized

Q∗ = exp(
f(t̂o)− ν

τ2µ
− 1) (25)

Then we take the optimal Q∗ back to Eq. (23), we can achieve:

J = inf
µ≥0,ν≥0,τ2≥0

τ2µEt̂∼P0

[
exp(

f(t̂o)− ν

τ2µ
− 1)

]
+ ν

= τ2µ exp(− ν

τ2µ
− 1)Et̂∼P0

[
exp(

f(t̂o)

τ2µ
)

]
+ ν.

(26)

Since ν∗ holds when its gradient equals to 0, i.e.,

∂J
∂ν

= − exp

(
− ν

τ2µ
− 1

)
Ex∼P (x)

[
exp

(
f(t̂o)

τ2µ

)]
+ 1 = 0 (27)
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We have solution ν∗ = τ2µ logEx∼P (x)

[
exp

(
f(t̂o)
τ2µ

)]
− τ2µ and finally:

min
τ2µ≥0

J = max
t̂o∼Q̂

τ2µ logEto∼P0(t)

[
exp

(
f(t̂o)

τ2µ

)]
(28)

Finally, it achieves supremum of Q̂ ∈ P:

inf
τ2≥0

sup
Q̂∈Q

Et̂o∼Q̂[L(t̂
o)]− τ2

[
DUOT(Q̂,Q0)− η2

]
= inf

τ2≥0
τ2η2 + sup

Q̂∈Q
τ2µ logEto∼P0

[
exp(

f(t̂o)

τ2µ
)

]
.

(29)

Remind that the model parameters are independent with τ1, τ2 and µ, we can treat them as hyperparameters with positive
values in optimizing Eq. (17), and finally update model with prompts by the gradient of loss

L̂BDRO = τ2µ logEt̂g,t̂o

[
exp(

L(x,θ, tl, t̂g, t̂o)− τ1c(t̂
g, tg)− τ2c

(
t̂o, to

)
τ2µ

)

]
. (30)

Similarly, we can obtain the worst case OOD prompts via

t̂o = argmin
t̂o

Eto∼Q0

[
sup
t̂o∼Q̂

{
L(t̂o)− τ2c

(
t̂o, to

)}]
. (31)

Worth to mention that, the values of η1 and η2 are constants in the optimization, which is directly controlled via τ1 and τ2,
respectively.

Theorem C.4. Semi-Unbalanced Optimal Transport Optimization of Eq. (8) can be solved by Frank-Wolfe Algorithm (Clark-
son, 2010; Jaggi, 2013), which iteratively updates πi+1 = πi − β(πi − si), with step size β = 1

i+2 following Armijo
condition (Armijo, 1966) and optimal directionsi satisfying

sicj =

{
bij , if ci = argmin

c
∇JSemiUOT

(
πi
·j
)

0, otherwise.
(32)

with initialization s0cj =

{
bj , c = 0

0, otherwise.

Proof. Now we expand semi-unbalanced optimal transport as below:

min
π≥0

JSemiUOT =

{
⟨C,π⟩+ λKL(π⊤1KU∥a)
s.t. π1C = b, πcj ≥ 0 ∀j∈[KU ],

=



C∑
c=1

KU∑
j=1

πcjCcj + λ

C∑
c=1

KU∑
j=1

πcj log

∑KU
m=1 πcj

ac
−

KU∑
m=1

πcj + ac


s.t.

C∑
c=1

πcj = bj , πcj ≥ 0 ∀j∈[KU ].

(33)

Then we can optimize the problem via Frank-Wolfe algorithm (Clarkson, 2010; Jaggi, 2013), i.e.,

argmin
si

ℓ =

C∑
c=1

KU∑
j=1

sicj∇J
(
πi
cj

)
=

C∑
c=1

KU∑
j=1

sicj

[
Ccj + τ log

∑KU
m=1 π

i
cm

ac

]

s.t.
C∑

c=1

πi
cj = bj , πi

cj ≥ 0

(34)
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The solution can be assigned, i.e.,

sicj = argmin
sicj

M∑
i=1

N∑
j=1

sicj

[
Ccj + τ log

∑KU
m=1 π

i
cm

ac

]
. (35)

Notably, Eq. (35) is a linear function, where the minimum holds on the minimal values of ∇J
(
πi
cj

)
. Since πcj ≥ 0,

∇J
(
πi
cj

)
=

[
Ccj + τ log

∑KU
m=1 πi

cm

ac

]
is the monotonically increasing function whose minimal value is determined via

columne-wise, thus we can achieve:

sicj =

{
bj , if ci = argmin

ci
∇JSemiUOT

(
πi
·j
)

0, otherwise.
(36)

Then we can update π via
πi+1 = (1− β)πi + βsi, (37)

where π̂ is the value of in last updating iteration and µ is the step-size which can be updated with Armijo linear search

methods (Armijo, 1966), e.g., β = 1/(i+2). In the beginning, we can assign s0cj =

{
bj , c = 0

0, otherwise
as our initial point,

and π will penalize the wrong guess and adjust the optimal direction s iteratively.

D. Datasets and Implementation Details
Datasets. We study the OOD robustness of federated prompt learning on fifteen datasets: CIFAR-100 (Krizhevsky
et al., 2009) and TinyImageNet (Le & Yang, 2015) for both generalization and detection, Food101 (Bossard et al., 2014),
DTD (Cimpoi et al., 2014a), Caltech101 (Fei-Fei et al., 2004), Flowers (Nilsback & Zisserman, 2008), and OxfordPet (Parkhi
et al., 2012) for label shift generalization, DomainNet (Peng et al., 2019), Office-Caltech10 (Gong et al., 2012), and PACS (Li
et al., 2017) for feature-shift (domain) generalization, CIFAR-100-C, TinyImageNet-C (Hendrycks & Dietterich, 2018) for
covariate-shift generalization, as well as Places365 (Zhou et al., 2017), Texture (Cimpoi et al., 2014b), iSUN (Xu et al.,
2015), LSUN-C and LSUN-R (Yu et al., 2015) for detection. We provide the summary of data in Tab. 6. In terms of
maintaining performance and OOD robustness, we simulate heterogeneous distribution following both Dirichlet and
Pathlogical settings (McMahan et al., 2017; Li et al., 2020) on CIFAR-100 (Krizhevsky et al., 2009) and TinyImageNet (Le &
Yang, 2015) as conventional work does (Liao et al., 2024b). We test the generaliazation based on CIFAR-100-C (Hendrycks
& Dietterich, 2018) and TinyImageNet-C (Le & Yang, 2015). Meanwhile, we study on iNaturalist (Van Horn et al., 2018),
iSUN (Xiao et al., 2010), Place (Zhou et al., 2017), and Textures (Cimpoi et al., 2014b), following existing CLIP-based
OOD detection methods (Wang et al., 2023; Miyai et al., 2024). To widely evaluate OOD generalization and detection,
we follow previous work of federated prompt learning (Cui et al., 2024; Guo et al., 2023b;a), to study (1) heterogeneous
label shift generalization on Food101 (Bossard et al., 2014), DTD (Cimpoi et al., 2014a), Caltech101 (Fei-Fei et al., 2004),
Flowers (Nilsback & Zisserman, 2008), and OxfordPet (Parkhi et al., 2012) to predict the accuracy of personalization
following pathological heterogeneity, and (2) feature shift domain generalization on DomainNet (Peng et al., 2019), and
Office-Caltech10 (Gong et al., 2012), by leave-one-domain-out validation strategy (Nguyen et al., 2022b). Specifically, for
N − 1 domains of one dataset, we train each client with distinct domain data, and test its model generalization on the whole
target data of remaining one domain.

Comparison Methods. We categorize the comparison methods into two types, i.e., (1) Existing Federated prompt
learning methods for VLMs generalization: pFedprompt (Guo et al., 2023a), PromptFL (Guo et al., 2023b), FedOTP (Li
et al., 2024), FedPGP (Cui et al., 2024), PromptFolio (Pan et al., 2024), and (2) Adaption existing centralized OOD
Detection methods for federated scenarios: FedGalLoP (Lafon et al., 2025), FedLoCoOp (Miyai et al., 2024), and
FedLAPT (Zhang et al., 2025). We select baselines from the state-of-the-art (SOTA) personalized federated learning (PFL)
methods and centralized prompt-based OOD detection methods. For centralized prompt-based OOD baselines, we choose
GalLop and LAPT due to their strong performance in both generalization and OOD detection. We also include LoCoOp, as
GalLop is proposed as an improvement over it.

• PromptFL (Guo et al., 2023b) replaces the federated model training with the federated prompt training, accelerating
both the local training and the global aggregation.
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Dataset Classes Train Test Domains Task

CIFAR100 (Krizhevsky et al., 2009) 100 50,000 10,000 1 Generalization and DetectionTinyImageNet (Le & Yang, 2015) 200 100,000 10,000 1

Food101 (Bossard et al., 2014) 101 50,500 30,300 1

Label Shift Generalization
DTD (Cimpoi et al., 2014a) 47 2,820 1,692 1

Caltech101 (Fei-Fei et al., 2004) 100 4,128 2,465 1
Flowers (Nilsback & Zisserman, 2008) 102 4.093 2,463 1

OxfordPet (Parkhi et al., 2012) 37 2,944 3,669 1

DomainNet (Peng et al., 2019) 10 18,278 4,573 6
Feature Shift (Domain) GeneralizationOffice-Caltech10 (Gong et al., 2012) 10 2,025 508 4

CIFAR-100-C (Hendrycks & Dietterich, 2018) 100 50,000 10,000 1 Covariate-Shift GeneralizationTinyImageNet-C (Hendrycks & Dietterich, 2018) 200 100,000 10,000 1

Places365 (Zhou et al., 2017) 434 18,000,000 36,000 1

Detection
Texture (Cimpoi et al., 2014b) 47 2,820 1,692 1

iSUN (Xu et al., 2015) 813 50,000 12,000 1
LSUN-C (Yu et al., 2015) 10 50,000 10,000 1
LSUN-R (Yu et al., 2015) 10 50,000 10,000 1

Table 6: Statistical details of datasets used in experiments.

• FedOTP (Li et al., 2024) provides each client with a global prompt and a local prompt and utilizes unbalanced Optimal
Transport to align local visual features with these prompts.

• FedPGP (Cui et al., 2024) uses low-rank decomposition to adapt global prompts to heterogeneous local distributions
and integrate an extra contrastive loss, considering both personalization and generalization.

• PromptFolio (Pan et al., 2024) analyzes via feature learning theory and combines global and local prompts into a
prompt portfolio to balance generalization and personalization.

• FedGalLoP is a federated version of GalLoP (Lafon et al., 2025). GalLoP learns multiple diverse prompts leveraging
both global and local visual features, enforcing prompt diversity using the “prompt dropout” technique.

• FedLoCoOp is a federated version of LoCoOp (Miyai et al., 2024). LoCoOp uses local regularization to minimize
ID-irrelevant nuisances in CLIP features, improving the separation between ID and OOD classes.

• FedLAPT is a federated version of LAPT (Zhang et al., 2025). LAPT reduces the need for manual prompt engineering
by automatically generating distribution-aware prompts.

Implementation Details and Evaluation Metrics. We conduct experiments on ViT-B/16 (Dosovitskiy, 2020) CLIP
models. To study the heterogeneity generalization on CIFAR-100/TinyImageNet datasets, we simulate both cross-device and
cross-silo scenarios. That is, we set local training epoch E = 2, communication round T = 25, and the number of clients
K = 10 for fully participation. While in cross-device setting, we choose local training epochs E = 2, communication
rounds T = 100 , and K = 100 for 10% participation. To obtain fair comparisons, all comparison methods are tuned
for converging using their best hyper-parameters, and we report the average of the results from three random seeds. We
set the learnable prompt vectors with length as 16, embedding size as 512, class token position as ’end’, and random
initialization. We choose 1 prompt per class for both local and global ID prompts, and 100 OOD prompts in total. We
report the average Top-1 accuracies for generalization of ID (ACC↑) and ID-C (CACC↑). We compute maximum concept
matching (MCM) (Ming et al., 2022) as OOD detection score, which is based on similarity between textual features and
image features. Based on MCM, we report the standard metrics used for OOD detection, i.e., AUROC (↑) and FPR95
(↓) (Yang et al., 2024).

E. Additional Experimental Results
In this section, we report the results on CIFAR-100 and TinyImageNet under different Dirichlet distributions (Tables 6–7),
which are consistent with Tables 1–3 and further verify OOD robustness. Table 4 has been split into Tables 8 and 9 for
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Table 7: Main results of federated prompt learning on CIFAR-100 with different Dirichlet distributions (K = 10).

α = 0.1 α = 0.5 α = 5.0
Methods ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC

PromptFL 71.22 67.55 76.58 72.20 75.65 71.52 82.13 69.65 74.92 71.37 79.52 74.25
FedOTP 76.81 73.50 61.88 79.14 68.43 65.67 73.78 73.45 66.20 63.16 77.73 71.15
FedPGP 76.77 72.55 74.81 74.45 72.95 69.25 83.65 71.37 73.01 69.15 82.57 72.65
PromptFolio 80.07 76.89 65.30 77.95 75.98 71.98 78.61 71.44 74.19 70.60 79.64 72.74
FedLoCoOp 67.87 63.70 76.81 70.40 74.44 70.35 73.28 72.56 74.87 70.98 74.82 73.72
FedGalLoP 80.53 77.61 60.72 82.66 75.87 72.85 68.72 79.66 74.32 71.14 72.72 79.13
FedLAPT 61.20 57.54 80.28 69.97 59.41 56.33 81.97 66.73 60.03 56.29 80.13 68.42
FOCoOp 82.42 78.52 46.56 86.98 77.71 73.59 54.26 83.40 77.66 73.59 51.02 83.22
-w/o-BOS 79.18 76.04 54.30 82.34 74.39 70.55 58.40 81.27 75.09 71.76 54.92 81.64
-w/o-GOC 78.66 75.99 53.97 82.56 74.78 70.88 57.83 81.55 75.04 71.50 55.20 81.85

Table 8: Main results of federated prompt learning on TinyImageNet with different Dirichlet distributions (K = 10).

α = 0.1 α = 0.5 α = 5.0
Methods ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC ACC CACC FPR95 AUROC

PromptFL 70.29 63.41 69.38 73.09 73.22 65.57 68.91 75.39 73.09 66.27 71.04 74.32
FedOTP 70.36 64.49 71.82 69.75 63.32 57.87 78.70 63.59 60.94 55.44 81.14 62.17
FedPGP 74.10 67.45 66.65 75.01 71.97 64.77 68.68 73.83 70.92 64.82 70.73 74.00
PromptFolio 78.09 71.78 61.24 78.78 74.08 66.60 68.83 75.23 71.73 65.91 70.23 74.48
FedLoCoOp 65.97 58.72 70.47 72.24 71.92 63.64 67.97 75.24 72.51 64.13 65.78 75.13
FedGalLoP 79.08 73.00 58.37 80.60 74.95 68.70 64.20 79.01 72.63 66.91 65.48 77.96
FedLAPT 59.82 54.97 75.34 69.74 59.66 54.72 74.98 70.72 59.88 54.58 75.93 69.34
FOCoOp 81.58 74.74 45.44 85.16 76.31 70.06 48.92 84.42 74.41 68.80 49.86 83.17
-w/o-BOS 79.49 72.45 51.44 82.38 74.96 68.33 53.29 81.12 73.81 66.80 54.73 80.45
-w/o-GOC 78.63 71.59 54.22 80.99 73.53 66.76 55.37 80.48 72.98 66.13 56.33 79.92

clarity. Tables 10–11 provide numerical results for Figure 4 (OOD detection on various OUT datasets), while Tables 12–13
are numerical results corresponding to Figure 5 (generalization on different ID-C datasets). Figures 8–9 are also enlarged
for better readability.
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Table 9: Domain generalization on DomainNet.

Method \Domain Clipart Infograph Painting Quickdraw Real Sketch average

PromptFL 96.28 74.84 95.81 60.28 96.77 96.36 86.72
FedOTP 91.03 61.52 86.98 53.04 91.16 89.73 78.91
FedPGP 93.67 75.07 93.62 58.09 95.44 95.48 85.23
PromptFolio 95.24 75.64 94.78 59.02 95.58 95.41 85.95
FedLoCoOp 95.34 72.31 92.78 60.11 96.07 96.12 85.46
FedGalLoP 95.62 75.40 94.78 65.08 96.23 96.71 87.30
FedLAPT 92.36 66.54 89.02 48.38 94.07 92.07 80.41
FOCoOp 96.44 76.59 96.72 62.99 97.16 96.22 87.68

Table 10: Domain generalization on Office.

Method \Domain Amazon Caltech DSLR WebCam Avg
PromptFL 96.21 94.64 99.20 97.03 96.77
FedOTP 94.64 93.15 98.93 96.46 95.80
FedPGP 95.17 95.36 99.73 97.45 96.93
PromptFolio 96.73 94.29 98.66 97.59 96.82
FedLoCoOp 96.47 94.15 93.60 95.33 94.89
FedGalLoP 97.30 96.33 99.73 98.58 97.99
FedLAPT 77.28 84.61 86.40 86.86 83.79
FOCoOp 98.21 96.54 99.71 98.20 98.16

Table 11: Detection results on CIFAR-100 non-overlap pathological heterogeneity.

Dataset INaturalist Texture iSUN Places
Method FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

PromptFL 78.23 64.51 84.51 68.28 65.57 78.55 90.24 53.50
FedOTP 43.20 85.26 38.22 87.56 35.61 89.44 42.92 87.22
FedPGP 49.01 82.21 51.57 84.68 44.62 86.78 63.78 77.91
PromptFolio 40.23 87.02 44.26 88.06 35.39 89.58 54.57 82.73
FedLoCoOp 94.26 51.63 77.59 68.76 61.92 82.80 87.01 60.45
FedGalLoP 34.41 89.29 41.45 89.64 36.54 90.15 51.93 83.22
FedLAPT 80.67 55.75 82.44 67.51 64.67 78.53 86.48 55.97
FOCoOp 18.02 94.75 15.97 96.47 23.71 93.71 17.23 96.03
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Figure 8: Detection Comparison on CIFAR-100.
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Figure 9: Detection comparison on TinyImageNet.

Table 12: Detection results on TinyImageNet non-overlap pathological heterogeneity.

Dataset INaturalist Texture iSUN Places
Method FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

PromptFL 59.64 74.22 76.75 69.82 47.25 87.45 81.94 63.56
FedOTP 49.36 78.48 57.12 79.18 43.66 84.84 54.07 81.52
FedPGP 45.76 82.13 50.86 83.05 35.76 89.84 59.63 79.00
PromptFolio 35.44 87.78 42.84 87.34 28.58 91.98 45.34 85.68
FedLoCoOp 71.62 68.96 72.96 72.07 52.17 86.49 83.06 64.96
FedGalLoP 32.01 88.96 45.54 86.53 28.97 92.04 46.66 85.23
FedLAPT 70.46 63.41 73.46 70.15 37.75 90.71 72.89 67.58
FOCoOp 31.84 91.98 21.98 95.75 22.61 93.80 24.82 94.99
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Figure 10: Hyperparameter sensitivity studies.
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