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ABSTRACT

Language agents, which use a large language model (LLM) capable of in-context
learning to interact with an external environment, have emerged as a promising
approach to control tasks. We present a language-agent approach that offers state-
of-the-art performance in formal theorem-proving. Our method, COPRA, uses a
high-capacity, black-box LLM (GPT-4) as part of a policy for a stateful back-
tracking search. During the search, the policy can select proof tactics and retrieve
lemmas and definitions from an external database. Each selected tactic is executed
in the underlying proof framework, and the execution feedback is used to build the
prompt for the next policy invocation. The search also tracks selected information
from its history and uses it to reduce hallucinations and unnecessary LLM queries.
We evaluate COPRA on the miniF2F benchmark for Lean and a set of Coq tasks
from the Compcert project. On these benchmarks, COPRA is significantly better
than one-shot invocations of GPT-4, as well as state-of-the-art models fine-tuned
on proof data, at finding correct proofs quickly.

1 INTRODUCTION

Automatically proving formal theorems (Newell et al., 1957) is a longstanding challenge in com-
puter science. Autoregressive language models (Polu & Sutskever, 2020; Han et al., 2021; Yang
et al., 2023) have recently emerged as an effective approach to this problem. Such models are
trained on proofs written in frameworks like Coq (Huet et al., 1997) or Lean (de Moura et al., 2015),
which allows proof goals to be iteratively simplified using a set of tactics. Theorem-proving then
amounts to generating a sequence of tactics that iteratively “discharges” a given proof goal.

A weakness of this method is that it does not model the interaction between the model and the un-
derlying proof framework. The application of a tactic is an action that changes the state of the proof
and the interpretation of future tactics. By ignoring these game-like dynamics, autoregressive mod-
els miss out on a valuable source of feedback and end up being more susceptible to hallucinations.

In this paper, we show that the nascent paradigm of large-language-model (LLM) agents (Yao et al.,
2022; Wang et al., 2023; Shinn et al., 2023) can help address this weakness. Here, one uses an LLM
as a agent that interacts with an external environment. Information gathered through interaction is
used to update the LLM’s prompt, eliciting new agent behavior because of in-context learning.

Our approach, called COPRA1 (Figure 1), uses an off-the-shelf, high-capacity LLM (GPT-4 (Ope-
nAI, 2023a)) as part of a policy in that interacts with a proof environment like Coq or Lean. At each
time step, the policy consumes a textual prompt and chooses to use an available tactic, or backtrack,
or retrieve relevant lemmas and definitions from an external corpus. When the policy selects a tac-
tic, we “execute” it using the underlying proof assistant. The feedback from the execution is used to
construct a new prompt for the policy, and the process repeats.

COPRA goes beyond prior language-agent methods in using domain knowledge and information
from the search history to use LLM queries frugally. When tactics fail, the policy records this
information and uses it to avoid future failures. The policy also has access to a symbolic procedure
that checks if one goal is “simpler” than another. A tactic is only used when it simplifies the agent’s
proof obligations (ruling out, among other things, cyclic tactic sequences).

1COPRA is an acronym for “In-context Prover Agent”.
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Figure 1: An overview of COPRA. The system implements a policy that interacts with a proof
environment (Coq or Lean). Internally, a COPRA policy consists of an LLM (GPT-4), a stack-
based backtracking search, a retrieval mechanism, a dictionary tracking past failures, and a prompt
serialization protocol that constructs LLM prompts using the stack and environment feedback and
parse LLM outputs into actions.

We have integrated COPRA with both the Coq and the Lean environments. We evaluate the system
using the miniF2F (Zheng et al., 2021) benchmark for competition-level mathematical reasoning
in Lean and a set of Coq proof tasks (Sanchez-Stern et al., 2020) from the Compcert (Leroy, 2009)
project on verified compilation. Using a new metric called prove-at-k-guidance-steps, we show that
COPRA can converge to correct proofs faster than competing approaches, including the state-of-the-
art models (Yang et al., 2023; Sanchez-Stern et al., 2020) trained on formal proof data. We also
show that when COPRA fails, it fails quicker than the baseline methods.

To summarize our contributions, we offer: (i) The first approach to formal theorem-proving that
leverages LLMs while also modeling interactions between the model and the underlying proof
framework; (ii) the first language agent, from any domain, to integrate LLM policies with a search
that minimizes LLM queries and hallucinations by tracking domain-specific information from the
past; and (iii) an implementation of COPRA that interacts with the Coq and Lean proof environments,
and an evaluation on two domains — mathematics competition problems and formal verification —
that shows COPRA to find proofs faster than competing approaches.

2 THEOREM-PROVING AS A CONTROL PROBLEM

2.1 BACKGROUND ON THEOREM-PROVING

A formal proof starts with a set of unmet obligations stated in a formal language and applies a
sequence of proof tactics to progressively eliminate these obligations. Each obligation o consists of
a goal g and a hypothesis h. The goal g consists of the propositions that need to be proved in order
to meet o; the hypothesis h captures assumptions that can be made in the proof of g. The prover’s
long-term objective is to reduce the obligations to the empty set.
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(a)

theorem mod_arith_2
(x : N) : x % 2 = 0

→ (x * x) % 2 = 0
:=
begin

intro h,
rw nat.mul_mod,
rw h,
rw nat.zero_mul,
refl,

end

(b)

x: N
h: x % 2 = 0
⊢ x * x % 2 = 0

(c)

begin
intro h,
have h1 : x = 2 * (x

/ 2)
:= (nat.
mul_div_cancel' h)
.symm,

rw h1,
rw nat.mul_div_assoc

_
(show 2 | 2, from
dvd_refl _),

rw [mul_assoc, nat.
mul_mod_right],

end

Figure 2: (a) A Lean theorem and a correct proof found
by COPRA. (b) Proof state after the first tactic. (c) An
incorrect proof generated by GPT-4.

We illustrate this process with the ex-
ample in Figure 2-(a). This example
shows a Lean (de Moura et al., 2015)
proof, automatically generated using
COPRA, of a basic theorem about mod-
ular arithmetic. The proof first applies
the intro tactic, which changes a goal
P → Q to a hypothesis P and a goal
Q. Next, it applies the rw (rewrite) tac-
tic, which gives a way to apply sub-
stitutions to goals and hypotheses, sev-
eral times. It ends with the application
of the refl (reflexivity) tactic, which
eliminates goals that say that a value is
equal to itself.

Existing LLM-based approaches to au-
tomatic theorem-proving view such
proofs as purely syntactic artifacts.
However, the rigorous semantics of
proofs can be difficult to learn using
such an approach, leading to the gen-
eration of incorrect proofs. Figure 2-(c) shows a GPT-4-generated incorrect proof of our theorem.

2.2 A MARKOV DECISION PROCESS FORMULATION

By contrast, COPRA is based on a view of automatic theorem-proving as a control problem. Like
prior work on reinforcement learning (RL) for proof synthesis (Wu et al., 2021), we view a theorem-
prover as a policy that interacts with a stateful proof environment (e.g., Lean) and model the interac-
tion between the policy and the environment as a deterministic Markov Decision Process (MDP). We
depart from prior RL-based work for theorem-proving by imposing a partial order on MDP states,
adding execution feedback in error states, and allowing history-dependent policies.

Now we describe the different components of our proof MDP.

States. As before, let an obligation be a pair (g, h), where g is a goal and h a hypothesis. A
state of the MDP is either a special symbol called error or a set O = {o1, . . . , ok} of obligations
oi. The MDP has a unique initial state oin with a single obligation (gin , hin), where the goal gin
and the hypothesis hin are extracted from the user-provided theorem that we are trying to prove.
Its unique final state QED is the empty obligation set. The special error symbol is accompanied
by textual feedback in the form of an execution error message, execution feedback, from the proof
environment.

Following Sanchez-Stern et al. (2020), we define a partial order ⊑ over states that defines when a
state is “at least as hard” than another and use it to avoid actions that do not lead to progress in the
proof. Formally, for states O1 and O2 with O1 ̸= error and O2 ̸= error , O1 ⊑ O2 iff

∀ oi = (gi, hi) ∈ O1. ∃ok = (gk, hk) ∈ O2. gk = gi ∧ (hk → hi).

Intuitively, O1 ⊑ O2 if for every obligation in O1, there is a stronger obligation in O2. We assume
we have an efficient symbolic procedure that can check this relationship for any pair of states. The
procedure is sound, meaning that if it reports O1 ⊑ O2, the relationship actually holds. However, it
is incomplete, i.e., it may not detect all relationships of the form O1 ⊑ O2.

Actions and Transitions. The actions in our MDP are the proof environment’s tactics. The transi-
tion function T (O, a) determines the result of applying an action a to a state O. When a is a tactic,
we assume the underlying proof environment to return a state O′ that results from applying a to O.
If a is a “bad” tactic, then O′ equals error ; otherwise, O′ is a new set of obligations. We assume that
our agent can evaluate T (O, a) for any state O and action a. While this assumption is unacceptable
in many MDP problems, it is reasonable in the theorem-proving setting.

Rewards. As usual, we assume a reward function R(O, a) that evaluates an action a at a state O.
Concretely, we consider rewards of the form R(O, a) = r̃, where r̃ is a very high positive value if
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T (O, a) = QED, a high negative value if T (O, a) = error , and a small negative value otherwise.
The small negative reward on the successful execution of the action incentivises smaller proofs.

Histories and Policies. A history of length N is a sequence

h = ⟨(O0, a0, O
′
0, r0), (O1, a1, O

′
1, r1), . . . , (ON−1, aN−1, O

′
N , rN )⟩

such that O0 = Oin and for all i, ri = R(Oi, ai) and O′
i = T (Oi, ai). Intuitively, a history records

the interactions between the prover agent and the proof environment up to a point of time. We denote
by hi the i-th prefix of h. For example, h0 = ⟨⟩, h1 = ⟨(O0, a0, O

′
0, r0)⟩, and so on.

A policy is a probabilistic function π that maps histories to distributions over pairs (O, a), where O
is a state and a is an action. Intuitively, at each point, the policy determines the next query to make to
the proof environment. A policy can have an internal state as well as access to external knowledge
(specifically, a lemma database). A trajectory of a policy π is a history h as above such that for
each i, Pr[π(hi) = (Oi, ai)] > 0. Letting each ri = r̃i, the reward from a trajectory is simply
the average 1

N

∑
i r̃i. We define the aggregate reward of π as the expected reward from trajectories

sampled from π.

Language Agents. Given our setup, one can naturally pose the problem of reinforcement-learning
a policy with optimal aggregate reward. In this paper, we do not take on this problem. Instead, we
consider a fixed policy — a wrapper around a pretrained LLM (GPT-4) that can learn in-context —
and show that this policy can achieve a high reward. It is this policy that defines our language agent.

3 THE COPRA AGENT

COPRA(O)

1 PUSH(st , O)
2 ρ← RETRIEVE(O)
3 for j ← 1 to t
4 do p← PROMPTIFY(st ,Bad(O), ρ, r)
5 a ∼ PARSEACTION(LLM(p))
6 O′ ← T (O, a), r ← R(O, a)
7 if O′ = QED
8 then terminate successfully
9 else if O′ = error or

∃O′′ ∈ st . O′′ ⊑ O′

10 then add a to Bad(O)
11 else COPRA(O′)
12 POP(st)

Figure 3: The search procedure in COPRA. T is the en-
vironment’s transition function and R is the reward func-
tion. st is a stack, initialized to be empty. Bad(O) is a
set of actions, initialized to ∅, that are known to be bad
at O. LLM is an LLM, PROMPTIFY generates a prompt,
PARSEACTION parses the output of the LLM into an ac-
tion (repeatedly querying the LLM in case there are for-
matting errors in its output), and RETRIEVE gathers rele-
vant lemmas and definitions from an external source. The
procedure is initially called with argument Oin .

A COPRA policy has access to an LLM
(in practice, GPT-4) and performs a
depth-first search. During the search,
it records information about failed ac-
tions. It also uses the ⊑ relation
over states to checks that it is making
progress on the proof.

Figure 3 shows pseudocode for such a
policy. The policy maintains a stack of
MDP states and a “failure dictionary”
Bad that maps a state to a set of actions
that are known to be “unproductive” at
the state. At each search step, the al-
gorithm pushes the current state on the
stack and retrieves external lemmas and
definitions relevant to the state. After
this, it repeatedly serializes the stack
and Bad(O) into a prompt and feeds
it to the LLM. The LLM’s output is
parsed into an action, and the agent ex-
ecutes it in the environment.

One outcome of the action could be that
the agent arrives at QED. Alternatively,
the new state could be an error or repre-
sent obligations that are at least as hard
as what is currently on the stack (for ex-
ample, this could be because of a cycle
in a tactic). In this case, the agent rejects the new state. Otherwise, it recursively continues the proof
from the new state. After issuing a few queries to the LLM, the agent backtracks.

Prompt Serialization Protocol. The routines PROMPTIFY and PARSEACTION together constitute
the prompt serialization protocol and are critical to the success of the policy. Now we elaborate on
these procedures.
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Figure 4: We highlight the different parts of the prompts to show how we use the state stack and the
execution feedback from the environment. This figure shows the low-level details of the interactions
between COPRA and LLM as shown in Figure 1

PROMPTIFY carefully places the different pieces of information relevant to the proof in the prompt.
It also includes logic for trimming this information to fit the most relevant parts in the LLM’s context
window. Every prompt has two parts: the “system prompt” and the “agent prompt.”

The agent prompts are synthetically generated using a context-free grammar and contain information
about the state stack (including the current proof state), the execution feedback for the previous
action, and the set of actions we know to avoid at the current proof state.

The system prompt describes the rules of engagement for the LLM. It contains a grammar (distinct
from the one for agent prompts) that we expect the LLMs to follow when it proposes a course of
action. The grammar carefully incorporates cases when the response is incomplete because of the
LLM’s token limits. We parse partial responses to extract the next action using the PARSEACTION
routine. PARSEACTION also identifies formatting errors (if any) in the LLM’s responses, possibly
communicating with the LLM multiple times until these errors are resolved. Figure 4 shows an
example back-and-forth between COPRA and LLM, highlighting the low-level details of the use of
state stack, execution feedback from ITP, etc.

4 EVALUATION

Our findings about COPRA are that: (i) the approach can find proofs significantly quicker than the
state-of-the-art finetuning-based baselines, both in terms of number of LLM queries and wall-clock
time; (ii) in problems where all current methods fail, COPRA fails faster; (iii) the use of GPT-4, as
opposed to GPT-3.5, within the agent is essential for success; and (iv) backtracking significantly
improves the system’s performance on harder problems. Now we elaborate on our experimental
methodology and these results.

Implementing COPRA. Our implementation of COPRA can have GPT-3.5, GPT-4, GPT-4-turbo
(OpenAI, 2023b) or CodeLlama (Roziere et al., 2023) as the underlying LLM and can interact with
both the Lean and the Coq proof environments. Because of the substantial cost of GPT-4 queries,
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we cap the number of LLM queries that COPRA can make by 60. To further reduce costs, COPRA
first tries to prove its theorems in a single LLM query (one-shot prompting), and then it invokes the
agent behavior when it fails to find a proof via one-shot prompting. At first, the retrieval mechanism
is not used by the agent to keep the prompts smaller and cost-effective, but if the agent fails to find
the proofs then retrieval is used to enrich the proof state before prompting the LLM. More details
about the setup can be found in Appendix A.1.1.

The “system prompt” in the one-shot approach is slightly different than that for COPRA, containing
instructions to generate a proof in one go rather than step by step. For both COPRA and the one-shot
baselines, the prompt contains a single proof example that clarifies how proofs need to be formatted.
This proof example remains the same for all test cases.

Figure 5: COPRA vs. REPROVER on the
miniF2F benchmark

Benchmarks. We evaluate our approach on two do-
mains: (i) miniF2F (Zheng et al., 2021), a collection
of 244 Lean formalizations of mathematics competition
problems, solved using a range of techniques such as in-
duction, algebraic manipulation, and contradiction; and
(ii) a set of Coq problems from the CompCert compiler
verification project (Leroy, 2009) that was previously
used to evaluate the PROVERBOT9001 system Sanchez-
Stern et al. (2020).

Baselines. We compare with one-shot invocations of
GPT-3.5 and GPT-4 in both the miniF2F and the Com-
pcert domains. We also consider an ablation of COPRA
that uses GPT-3.5 as its LLM and another that does not
use backtracking. Additionally, we also consider GPT-4-
turbo, and CodeLLama models for miniF2F domain. For
the miniF2F dataset, we also have additional baselines

with models like GPT-4-turbo (OpenAI, 2023b) and CodeLlama (Roziere et al., 2023), and abla-
tions with COPRA’s retrieval capabilities disabled. As for fine-tuned baselines, a challenge is that all
existing open-source theorem-proving systems only target a single-proof environment. As a result,
we had to choose different baselines for the Lean (miniF2F) and Coq (Compcert) domains.

Our fine-tuned baseline for the miniF2F domain is REPROVER, a state-of-the-art open-source
prover that is part of the Leandojo project (Yang et al., 2023). We use BM25 search on Lean’s
mathlib library for retrieval of relevant lemmas.

In the Compcert domain, we compare with PROVERBOT9001 (Sanchez-Stern et al., 2020), which,
while not LLM-based, is the best publicly available model for Coq. Unlike miniF2F, this benchmark
comes with a large training set as well as a test set, and we use the training set for retrieving relevant
lemmas and definitions. Our retrieval mechanism, in this case, is a simple BM25 search.

Figure 6: COPRA vs. PROVER-
BOT9001 on the Compcert benchmark.

For cost reasons, our evaluation for Compcert uses 118
out the 501 theorems used in the original evaluation of
PROVERBOT9001 Sanchez-Stern et al. (2020). For fair-
ness, we include all the 98 theorems proved by PROVER-
BOT9001 in our subset. The remaining theorems are ran-
domly sampled.

Metric: pass@k-guidance-steps. The standard metric
for evaluating theorem-provers is pass@k (Lample et al.,
2022; Yang et al., 2023). In this metric, a prover is given
a budget of k proof attempts; the method is considered
successful if one of these attempts leads to success. How-
ever, a key objective of our research is to discover proofs
quickly, with fewer LLM queries and lower wall-clock
time. The pass@k metric does not evaluate this charac-
teristic as it does not quantify the number of LLM queries
or amount of time needed by a proof attempt.
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Approach
# Theorems

proved
/# Theorems

%
proved

Avg.
Guidance

Steps
in Total

Avg.
Guidance

Steps
on Failure

Avg.
Guidance

Steps
on Pass

miniF2F Test Dataset
CodeLlama One Shot 0/244 0.0% 1 1 0
GPT 3.5 One Shot 7/244 2.8% 1 1 1
COPRA (CodeLlama) 14/244 5.73% 11.55 11.96 4.78
GPT 4 One Shot 26/244 10.6% 1 1 1
GPT 4-turbo One Shot 29/244 11.88% 1 1 1
COPRA (GPT-3.5) (without retrieval) 29/244 11.89% 12.83 14.23 2.45
ReProver (without retrieval) 54/244 22.13% 350.7 427.24 81.6
COPRA (GPT-4) (without retrieval) 57/244 23.36% 20.94 26.79 1.75
ReProver (with retrieval) 61/244 24.9% 1015.32 1312.89 122.62
ReProver (with retrieval) (official) - 26.5% - - -
COPRA (GPT-4-turbo) (with retrieval) 67/244 27.45% 39.42 52.67 4.41

CompCert Test Dataset
GPT 3.5 One-Shot 10/118 8.47% 1 1 1
GPT 4 One-Shot 36/118 30.51% 1 1 1
Proverbot 98/118 83.05% 184.7 256.8 170.0
COPRA (GPT-4) 76/118 64.41% 12.9 10.9 16.57

Table 1: Aggregate statistics for COPRA and the baselines on miniF2F and Compcert
Approach Avg. Time In Seconds

Per Proof Per Guidance Step
On Pass On Fail All On Pass On Fail All

ReProver (on CPU) (without retrieval) 279.19 618.97 543.78 3.42 1.45 1.55
ReProver (on GPU) (without retrieval) 267.94 601.35 520.74 2.06 0.44 0.48
ReProver (on GPU) (with retrieval) 301.19 605.29 529.27 2.45 0.46 0.52
COPRA (GPT-3.5) 39.13 134.26 122.21 15.97 9.43 9.53
COPRA (GPT-4) (without retrieval) 30.21 191.73 140.86 17.26 7.16 6.73
COPRA (GPT-4-turbo) (with retrieval) 68.38 598.66 450.88 15.50 11.36 11.43

Table 2: Average time taken by our approach (COPRA) and ReProver on miniF2F dataset.
To address this concern, we introduce a new metric, pass@k-guidance, and evaluate COPRA and
its competitors using this metric. Here, we measure the number of correct proofs that a prover
can generate with a budget of k or fewer guidance steps from the LLM or any neural model. For
LLMs, one guidance step is a single inference query. One challenge here is that we want this metric
to be correlated with the number of correct proofs that the prover produces within a wall-clock
time budget; however, the cost of an inference query is proportional to the number of responses
generated per query. To maintain the correlation between the number of inference queries and wall-
clock time, we restrict each inference on LLM to a single response. (more details about the metric
is in Appendix A.1.3)

Results Figure 5 shows our comparison results for the miniF2F domain. As we see, COPRA out-
performs REPROVER, completing, within just 60 guidance steps, problems that REPROVER could
not solve even after a thousand guidance steps. This is remarkable given that COPRA is based on a
black-box foundation model and REPROVER was fine-tuned for at least a week on a dataset derived
from Lean’s Mathlib library. For fairness, we ran REPROVER multiple times with 16, 32, and 64
(default) as the maximum number of guidance steps per proof step. We obtained the highest success
rates with 64 guidance steps.

Figure 6 shows a comparison between COPRA and PROVERBOT9001.

Approach
# Theorems

proved
/# Theorems

%
proved

miniF2F Test Dataset
COPRA (GPT-4)
w/o backtracking 56/244 22.95%

COPRA (GPT-4) 57/244 23.36%
CompCert Test Dataset

COPRA (GPT-4)
w/o backtracking 52/118 44.06%

COPRA (GPT-4) 76/118 64.41%

Table 3: Ablation showing the effectiveness of backtracking

We find that COPRA is significantly
faster than PROVERBOT9001. Since
we put a cap of 60 guidance steps on
COPRA, it cannot prove all the theo-
rems that PROVERBOT9001 eventu-
ally proves. However, as shown in
the figure, COPRA proves many more
theorems than PROVERBOT9001 if
only 60 guidance steps are allowed.
Specifically, we prove 77.5% of the
proofs found by PROVERBOT9001 in
less than 60 steps.
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theorem algebra_sqineq_at2malt1
(a : R) :
a * (2 - a) ≤ 1 :=
begin

have h : ∀ (x : R), 0 ≤ (1 - x) ˆ 2,
from λ x, pow_two_nonneg (1 - x),
calc a * (2 - a)

= 1 - (1 - a) ˆ 2 : by ring
... ≤ 1 : sub_le_self _ (h a),

end

Figure 7: A theorem in the ‘algebra’ category that CO-
PRA could prove but REPROVER could not.

Aggregate statistics for the two ap-
proaches, as well as a comparison with
the one-shot GPT-3.5 and GPT-4 baselines
(details of baseline setup are mentioned in
Appendix A.1.2), appear in Table 1. It
is clear from this data that the language-
agent approach offers a significant advan-
tage over the one-shot approach. For ex-
ample, COPRA solves more than twice
as many problems as the one-shot GPT-4
baseline, which indicates that it does not
just rely on GPT-4 recalling the proof from
its memory (we discuss this in more details
in Appendix A.1.5). Also, the use of GPT-
4 as opposed to GPT-3.5 seems essential.

We establish the correlation between the number of guidance steps needed for a proof and wall-
clock time in Table 2 (more details are discussed in Appendix A.1.4). Although the average time per
guidance step is higher for COPRA, COPRA still finds proofs almost 9x faster than REPROVER. This
can explained by the fact that our search is more effective as it uses 46x fewer guidance steps than
REPROVER. These guidance steps not only contain the average time spent on generating responses
from LLM but at times have some contribution corresponding to the execution of the tactic on the
Lean environment itself.

Table 2 also offers data on when the different approaches report failures. Since REPROVER uses a
timeout for all theorems, we also use a timeout of 10 minutes while considering failures in Table 2.
The data indicates that COPRA is comparatively better at giving up when the problem is too hard to
solve. We also note that less time is spent per guidance step in case of failure for all approaches.

We show the impact of ablating the backtracking feature of COPRA in Table 3. We note that back-
tracking has a greater positive impact in the Compcert domain. We hypothesize that this is because
the Compcert problems are more complex and backtracking helps more when the proofs are longer.

Finally, we offer an analysis of the different categories of miniF2F problems solved by COPRA
and REPROVER in Figure 8. We see that certain kinds of problems, for example, International
Mathematics Olympiad (IMO) problems and theorems that require induction, are difficult for all
approaches. However, Figure 8b shows that COPRA takes fewer steps consistently across various
categories of problems in miniF2F.

From our qualitative analysis, there are certain kinds of problems where the language-agent approach
seems especially helpful. For instance, Figure 7 shows a problem in the ‘algebra’ category that
REPROVER could not solve. More examples of interesting Coq and Lean proofs that COPRA found
appear in the appendix.

5 RELATED WORK

Supervised Learning for Theorem-Proving. There is a sizeable literature on search-based
theorem-proving techniques based on supervised learning. These methods train a model to pre-
dict the next proof step at each point in a proof. This model is then used to guide a search technique,
e.g., best-first or depth-limited search, that synthesizes a proof. Earlier methods of this sort used
small-scale neural networks (Yang & Deng, 2019; Sanchez-Stern et al., 2020; Huang et al., 2019)
as predictors. More recent methods, such as GPT-f (Polu & Sutskever, 2020), PACT (Han et al.,
2021), HyperTree Proof Search (Lample et al., 2022), and REPROVER (Yang et al., 2023), have
used LLMs. COPRA has some resemblance with the latter approaches. However, it departs from
these prior methods in using execution feedback and a more sophisticated search algorithm.

The recent Draft-Sketch-Proof (Jiang et al., 2022) method relies on informal proofs to generate
formal proofs. Other methods like Baldur (First et al., 2023) generate the whole proof in one shot
using an LLM and then repair it. The main ideas in these efforts — the use of informal proofs and
repair models — are orthogonal to our approach (we discuss this in more detail in Appendix A.1.6).
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(a) Problems solved in different categories (b) Number of guidance steps in different categories

Figure 8: Breakdown of theorems proved in various categories

Reinforcement Learning for Theorem-Proving. Kaliszyk et al. (2018) pioneered the use of RL
in theorem-proving; subsequently, Wu et al. (2021) gave TacticZero, a deep RL approach to the
problem. TacticZero does not use LLMs, thus missing out on a key source of generic mathematical
knowledge. Also, COPRA has retrieval capabilities that TacticZero lacks.

Language Agents. Several distinct LLM agent architectures have been proposed over the last year
(Significant-Gravitas, 2023; Yao et al., 2022; Shinn et al., 2023; Wang et al., 2023). These models
combine an LLM’s capability to use tools Schick et al. (2023), decompose a task into subtasks (Wei
et al., 2022; Yao et al., 2023), and self-reflect (Shinn et al., 2023) However, we are the first to offer
an LLM agent for theorem-proving. We also distinguish ourselves from prior work along these lines
by introducing a more efficient stateful search in the policy.

6 CONCLUSION

We have presented COPRA, the first LLM-agent approach to formal theorem-proving. The approach
departs from prior LLM-based theorem-proving techniques by explicitly modeling the interaction
between the prover and the proof environment. It also goes beyond prior language-agent approaches
for any domain in using a stateful backtracking search within the policy.

Many questions remain open. First, we gave our GPT-4 a budget of a maximum of 60 inferences
per problem for cost reasons. Whether the learning dynamics would drastically change with a much
larger inference budget remains to be seen. A related question is whether a GPT-4-scale model is
truly essential for our task. We have shown that the cheaper GPT-3.5 agent is not competitive against
our GPT-4 agent; however, it is possible that a different, more affordable foundation model would
have done better. Finally, our proof MDP also enables approaches where an LLM policy is fine-
tuned using RL. It remains to be seen how such an approach, done by necessity with smaller-scale
models, would compare with our in-context-learning approach.

7 REPRODUCIBILITY STATEMENT

We are releasing all the code needed to run COPRA as supplementary material. The code contains
all “system prompts” described in Section A.4 and Section A.3, along with any other relevant data
needed to run COPRA. However, to use our code, one must use their own OpenAI API keys. An
issue with reproducibility in our setting is that the specific models served via the GPT-4 and GPT-
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3.5 APIs may change over time. In our experiments, we set the “temperature” parameter to zero to
ensure the LLM outputs are as deterministic as possible.

REFERENCES

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The
Lean theorem prover (system description). In Automated Deduction-CADE-25: 25th Interna-
tional Conference on Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25,
pp. 378–388. Springer, 2015.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: whole-proof generation and
repair with large language models. arXiv preprint arXiv:2303.04910, 2023.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W Ayers, and Stanislas Polu. Proof artifact
co-training for theorem proving with language models. arXiv preprint arXiv:2102.06203, 2021.

Daniel Huang, Prafulla Dhariwal, Dawn Song, and Ilya Sutskever. Gamepad: A learning environ-
ment for theorem proving. In ICLR, 2019.

Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. Rapport
Technique, 178, 1997.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, sketch, and prove: Guiding formal theorem
provers with informal proofs. arXiv preprint arXiv:2210.12283, 2022.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. Reinforcement learning
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Approach
# Theorems

proved
/# Theorems

%
proved

Avg.
Guidance

Steps
in Total

Avg.
Guidance

Steps
on Failure

Avg.
Guidance

Steps
on Pass

miniF2F Test Dataset
GPT 4-turbo One Shot 29/244 11.88% 1 1 1

COPRA (GPT-4-turbo)
(agent + retrieval) 56/244 22.95% 18.75 23.63 2.35

COPRA (GPT-4-turbo)
(agent) 60/244 24.59% 21.64 27.47 3.76

COPRA (GPT-4-turbo)
(agent + one-shot) 62/244 25.40% 22.58 28.57 3.70

COPRA (GPT-4-turbo)
(agent + one-shot + retrieval) 67/244 27.45% 39.42 52.67 4.41

Table 4: Aggregate statistics for COPRA capabilities and COPRA ensemble on miniF2F

A.1 EVALUATION DETAILS

A.1.1 COPRA IMPLEMENTATION SETUP DETAILS

We introduce a common proof environment for COPRA, which can also be used by any other ap-
proach for theorem proving. The proof environment is agnostic of language and domain, having a
common interface that makes COPRA work seamlessly for both Lean and Coq. As per our knowl-
edge, this is the first language and domain-agnostic interface that can allow training or testing of
various neural theorem-proving approaches. In the future, we plan to support more proof languages.
We also have support for various LLMs other than GPTs, including open LLMs like Llama 2 (Tou-
vron et al., 2023), Code Llama (Roziere et al., 2023), etc. All the theorems are searched within a
timeout of 10 minutes and with a maximum of 60 LLM inference calls (whichever exhausts first).
To make it comparable across various LLMs, only one response is generated for one inference. All
these responses are generated with the temperature set to zero, which ensures that the responses
generated are more deterministic, focussed, and comparable.

We use GPT-3.5, GPT-4, GPT-4-turbo (OpenAI, 2023b), and CodeLLama (Roziere et al., 2023) to
test the capabilities of COPRA. We find that it is best to use COPRA’s different capabilities in an
ensemble, which makes it not only more accurate but enhances its performance. Therefore, we first
use one-shot prompting to find the proof, then we use COPRA without retrieval upon failure and
then run COPRA with retrieval only when we fail again. To ensure fairness in comparison, we make
sure that the number of guidance steps is capped at 60 and the 10-minute timeout is spread across all
these three executions. From Table 4, it is clear that despite the significant overlap between the three
executions, the ensemble covers more cases. One possible reason could be that the addition of extra
information from retrieval can sometimes be misleading because the retriever is not perfect and it
can find lemmas that are not completely relevant to proving the goal. Nevertheless, sometimes these
extra lemmas are handy, so we can best use the different capabilities as an ensemble.

A.1.2 ONE-SHOT BASELINE SETUP DETAILS

We run the one-shot GPT-4 baseline by calling the LLM exactly once. Additional queries are only
used when the response is incomplete or ill-formatted. To ensure a fair comparison of one-shot
baseline with GPT-4 COPRA agent with 60 inference calls allowed, we always set the temperature
parameter as zero for all LLM queries.

A.1.3 METRIC: pass@k-guidance-steps

The main motivation behind the pass@k-guidance-steps is to assess the speed of the proposed ap-
proach and the effectiveness of the LLM or neural network to guide the proof search. It is a rea-
sonable metric because it does a more even-handed trade-off in accounting for the time taken to
complete a proof and at the same time ignores very low-level hardware details.

Different approaches need a different amount of guidance from a neural model to find the right
proof. For example, approaches like Baldur (First et al., 2023), DSP (Jiang et al., 2022), etc.,
generate the whole proof all at once. On the other hand, GPT-f (Polu & Sutskever, 2020), PACT
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Figure 9: COPRA vs. REPROVER on the miniF2F benchmark

(Han et al., 2021), REPROVER (Yang et al., 2023), Proverbot (Sanchez-Stern et al., 2020), or our
approach generate the proofs step by step. We argue that pass@k-guidance-steps is a fairer metric
to compare these different types of approaches because it correlates with the effectiveness of the
proof-finding algorithm in an implementation-agnostic way. Since the exact time might not always
be a good reflection of the effectiveness because of hardware differences, network throttling, etc.,
it makes sense to not compare directly on metrics like pass@k-minutes or pass@k-seconds. Not
only these metrics will be brittle and very sensitive to the size, hardware, and other implementation
details of the model, but not every search implementation will be based on a timeout. For example,
Proverbot does not use timeout-based search (and hence we don’t compare on the basis of time with
Proverbot9001).

A.1.4 pass@k-guidance-steps VERSUS WALL-CLOCK TIME

We show that pass@k-guidance, correlates very well with wall-clock time for finding proofs by
using the metric pass@k-seconds. pass@k-seconds measures the number of proofs that an approach
can find in less than k seconds. The plot in Figure 9 shows that pass@k-seconds follows the same
trend as pass@k-guidance-steps as shown in Figure 5.

We can use the comparison of COPRA with REPROVER (Yang et al., 2023) on the miniF2F dataset
to explain the correlation between finding proofs fast and pass@k-guidance-steps. From Table 2, we
know that on average the time taken per guidance (which includes time taken to execute the proof
steps on ITP as well) is around 1.55 seconds for REPROVER and 6.73 seconds for COPRA. Given
that REPROVER’s guidance LLM is small, we can assume that REPROVER doesn’t take any time
(zero time) to query its LLM and spends most of the 1.55 seconds running the proof steps on ITP.
Now, we can reasonably estimate GPT-4 average response time to be 5 seconds (6.73 - 1.55) from
Table 2. However, we see that the number of guidance used by REPROVER is about 46x higher on
success. This interestingly shows up in the wall clock time too which is around 9x higher ( 46x/5)
for REPROVER on success, so there is a tradeoff between the two, but the number of guidance steps
dominates when the guidance model is not good. So, if the guidance model is good (it may be as
big as GPT), we can empirically argue that asymptotically the search will converge to proof faster
(given that it can be found using that guidance model).

A.1.5 DATA LEAKAGE IN GPT-4

With LLM pretraining data getting larger and larger, it is hard to know if there is any accidental
leakage of the evaluation set in the training data of the LLM itself. The data leakage problem is
applicable to all generative AI approaches based on large pretrained models, whose pretraining data
is rarely publicly accessible. For coding and language generation tasks, which have been studied
in more depth, the use of large pretrained LLMs has now become standard, simply because the
benefits of scale are simply too significant to ignore. We believe that AI-for-math is also taking a
similar trajectory.
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Data leakages can be direct or indirect hints to solve the evaluation set. Even with open LLMs
like Llama (Touvron et al., 2023), it is computationally hard to detect these hints in the pertaining
data given the LLMs are trained on trillions of tokens. However, after a thorough analysis of the
proofs generated by COPRA on the miniF2F dataset, we can safely conclude that data leakage isn’t
a significant contributor to our results, for several reasons.

First, we note that COPRA significantly outperforms one-shot invocations of GPT-4. If the results
on COPRA were significantly tainted by data leakage, we would have expected better performance
from one-shot GPT-4.

Second, not all the formal proofs of the miniF2F test dataset are available online (only 80 proofs are
available in Lean). It is highly unlikely that GPT-4 has been trained on proof-state and tactic pair
generated by hooking up the Lean Interactive Theorem Prover (ITP). Moreover, since the ground
truth of miniF2F test for Lean is still not available, even if it were trained on proof-states one still
needs to manually annotate ground truth tactics. Given that GPT-4 is a general-purpose LLM, it
is highly unlikely that while training GPT-4 the miniF2F dataset was first manually annotated, and
then proof-state and tactic pair information was collected by hooking up the Lean ITP.

Also, in our agent interactions, we limit ourselves only to the goal at that point. There is no mention
of the original theorem anywhere (except for the very first proof-state), so the chances that GPT-4
can correlate any intermediate state with the original theorem are very low unless it can somehow
manage to simulate Lean’s interactive theorem proving within itself. It is also improbable that GPT-
4 has seen the proof-state in the same format that we use, let alone using the execution feedback
which has not been used in any known previous works.

One could hypothesize that some of the one-shot GPT-4 proofs might be influenced by potential
training on the miniF2F dataset. However, this doesn’t seem to be true because we see that most of
the proofs we generated were either not mentioned in the miniF2F test dataset or completely different
from the manually written proofs in the miniF2F test dataset (including the first step mismatch).
Table 5 shows the detailed analysis of proofs generated by COPRA and the proofs mentioned in
miniF2F test dataset for Lean. From the Table 5, it is clear that most of the proofs generated by
COPRA are different from the proofs mentioned in the miniF2F . The ones that are exactly the same
are simple single-tactic proofs that just use exactly one of the linarith, nlinarith, or norm num
tactics without any arguments. If we set aside these straightforward simple cases, then about 92%
of the proofs generated by COPRA are either different from the proofs mentioned in the miniF2F
or do not have a proof mentioned in the miniF2F dataset. Out of all proofs generated by COPRA
about 25.37% proofs are for theorems that have no proofs mentioned in the miniF2F test dataset as
compared to 22.95% for REPROVER. Some of the proofs generated by our approach as compared
to proofs mentioned in the miniF2F test dataset are shown in Figure 10.

Finally, the ability of agent interactions to enhance the basic LLM approach seems to transcend
OpenAI’s LLMs. We ran COPRA on the recently released CodeLLama LLM. From Table 1, CO-
PRA improved CodeLlama’s capabilities to prove theorems by about 5% on miniF2F dataset. This
indicates that the in-context learning capabilities that we build are transferable and LLM-agnostic.

A.1.6 COMPARISON WITH METHODS USING INFORMAL PROOFS

A formal proof is something that can be automatically verified using an Interactive Theorem Prover
(ITP), whereas an informal proof can only be verified by a human. ITP is a software tool to assist
with the development of formal proofs by human-machine collaboration. This involves some sort of
interactive proof editor, or other interfaces, with which a human can guide the search for proofs. Of-
ten formal proofs are much more rigorous and pedantic than informal proofs. So informal proof can
be loosely considered as a proof sketch based on which one can write rigorous machine-checkable
formal proofs.

Methods that use DSP (Jiang et al., 2022) pipeline that uses informal proofs to find the formal
proofs work very well on datasets like miniF2F which have problems from math competitions.
However, real-world math formulations are not necessarily math competition problems with well-
known informal proofs. Certain domains like software verification like CompCert don’t have any
notion of informal proofs. It is important to note that having access to informal proofs (human-
written or LLM-generated) simplifies the problem of synthesizing the formal proof into more of
a translation problem, and that is one of the reasons why DSP-like approaches perform well on
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Proofs
in

miniF2F

Proofs
NOT in

miniF2F
Total

Single-Tactic
Simple Proofs

Two-Tactic
Proofs

Longer
OR

Complex
Proofs

Total

Tactics Used
——

Proof Count
linarith norm num nlinarith two tactics

> 2 tactics
OR

1 tactic
multi-args

sorry

miniF2F
Proof
Count

11 12 2 16 39 80 164 244

Exact
Match
COPRA
Count

7 9 1 4 0 21 0 21

1st Tactic
Match
COPRA
Count

7 9 1 7 1 25 0 25

Distinct
COPRA
Count

2 3 1 8 15 29 17 46 / 67
68.65%

Distinct
COPRA
Count

ex
Single-Tactic

- - - 8 15 29 17 46 / 50
92%

All
COPRA
Count

9 12 2 12 15 50 17 67

Table 5: Analysis of proof generated by COPRA on miniF2F test dataset for Lean.

miniF2F dataset. These approaches will work very well if the LLM can use its memory component
to effectively recall the informal proof of a well-known math competition problem. However, a
lot of formal theorem proving happens on a completely new set of formalizations which are heavily
customized depending on the domain. For example, in the field of software verification, we will have
a custom mathematical model defined for the software which has no informal proofs or definitions
which can be recalled from memory by the LLMs. It is also important to note that the accuracy
numbers in (Jiang et al., 2022) are not directly comparable to ours because they use different proof
languages. Isabelle is used in DSP-like approaches which have powerful automatic reasoning tools
like Sledgehammer, unlike Lean.

Our approach is generic and can work for any domain where formal theorem proving is used. It is
one of the first methods which is domain and proof language agnostic.

A.2 EXAMPLE PROOFS GENERATED FOR MINIF2F

Fig. 11 shows some other interesting proofs generated by our approach on miniF2F dataset.

A.3 SYSTEM PROMPTS FOR MINIF2F

Parts of the ‘system prompt’ used by COPRA for theorem proving in Lean are shown in Fig. 12.
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(a.1)

theorem algebra_sqineq_at2malt1
(a : R) :
a * (2 - a) ≤ 1 :=

begin
suffices: 0 ≤ aˆ2 - 2*a + 1, nlinarith,
suffices: 0 ≤ (a - 1)ˆ2, nlinarith,
nlinarith,

end

(b.1)

theorem mathd_algebra_270
(f : R → R)
(h0 : ∀ x ̸= -2, f x = 1 / (x + 2)) :
f (f 1) = 3/7 :=

begin
rw [h0, h0],
norm_num,
linarith,
rw h0,
norm_num,
linarith,

end

(c.1)

theorem mathd_numbertheory_229 :
(5ˆ30) % 7 = 1 :=

begin
have five_to_thirty_is_one :

(5ˆ30 : zmod 7) = 1 :=
begin

have five_to_the_six_is_one : (5ˆ6 :
zmod 7) = 1, by dec_trivial,
have break_power : (5ˆ30 : zmod 7) =
(5ˆ6)ˆ5, by norm_num,
rw break_power,
rw five_to_the_six_is_one,
norm_num,

end,
change 5ˆ30 ≡ 1 [MOD 7],
rw ←zmod.eq_iff_modeq_nat,
exact_mod_cast five_to_thirty_is_one,

end

(a.2)

theorem algebra_sqineq_at2malt1
(a : R) :
a * (2 - a) ≤ 1 :=
begin

-- We will complete the square to
show that the expression is at most
1.

have h : a * (2 - a) = 1 - (1 - a)ˆ2,
{ ring },
rw h,
-- Now we show that (1 - a)ˆ2 is non-

negative, which implies 1 - (1 - a)ˆ2
is at most 1.

apply sub_le_self,
apply pow_two_nonneg,

end

(b.2)

theorem mathd_algebra_270
(f : R → R)
(h0 : ∀ x ̸= -2, f x = 1 / (x + 2)) :
f (f 1) = 3/7 :=
begin

have h1 : f 1 = 1 / (1 + 2) := h0 1 (
by linarith),
rw h1,
rw h0,
field_simp,
ring,
apply ne_of_gt,
norm_num,

end

(c.2)

theorem mathd_numbertheory_229 :
(5ˆ30) % 7 = 1 :=
begin

norm_num,
end

Figure 10: Some proofs found by COPRA as compared to the proofs mentioned in the miniF2F
test dataset. It is interesting to see that the proofs generated by COPRA are different from the proofs
mentioned in the repository. This is especially true when the proofs are longer. It is also worth noting
that occasionally COPRA can find very simple proofs for longer proofs mentioned in miniF2F test
dataset. (a.1), (b.1), and (c.1) show the proofs as mentioned in the miniF2F dataset, while (a.2),
(b.2), and (c.2) show the corresponding proofs generated by COPRA.
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(a)

theorem
mathd_algebra_246

(a b : R)
(f : R → R)
(h0 : ∀ x, f x = a * xˆ4

- b * xˆ2 + x + 5)
(h2 : f (-3) = 2) :
f 3 = 8 :=
begin

rw h0,
rw h0 at h2,
ring_nf,
linarith,

end

(b)

theorem
mathd_numbertheory_247
(n : N)
(h0 : (3 * n) % 2 = 11)

:
n % 11 = 8 :=
begin

cases (nat.
mod_two_eq_zero_or_one
(3 * n)),

exfalso,
linarith,
linarith,

end

(c)

theorem mathd_algebra_44
(s t : R)
(h0 : s = 9 - 2 * t)
(h1 : t = 3 * s + 1) :
s = 1 ∧ t = 4 :=
begin

split,
{

rw h0 at h1,
linarith

},
rw h0 at h1,
rw h1 at h0,
linarith,

end

(d)

theorem amc12b_2002_p2
(x : Z)
(h0 : x = 4) :
(3 * x - 2) * (4 * x +

1) - (3 * x - 2) *
(4 * x) + 1 = 11 :=

begin
ring_nf,
rw h0,
ring,

end

(e)

theorem mathd_algebra_107
(x y : R)
(h0 : xˆ2 + 8 * x + yˆ2 - 6 *

y = 0) :
(x + 4)ˆ2 + (y-3)ˆ2 = 5ˆ2 :=
begin

rw pow_two at h0,
rw add_assoc at h0,
rw add_comm (x * x) (8 *
x + y ˆ 2) at h0,
rw add_comm (8 * x) (y ˆ
2) at h0,
rw add_assoc at h0,
rw add_comm (y ˆ 2) (8 *
x + x * x) at h0,
rw add_assoc at h0,
ring_nf at h0,
rw pow_two,
rw pow_two,
ring_nf,
rw ←add_assoc,
rw h0,
linarith,

end

Figure 11: Some other interesting proofs generated for miniF2F by COPRA. The length of the proofs
generated shows that interaction with the environment helps in fixing the errors encountered while
writing long proofs. These long sequences of rewrites are not easy to synthesize without knowing
the exact execution feedback from the environment which often contains the hint to fix the rewrites.
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You are a proficient formal theorem-proving agent in Lean 3. You can predict
the next proof step given the current proof state. The proof state is
described in the following format:

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a human-readable
serialized version of the proof state as shown while running `lean`
command. Each goal, might also accompany some hypotheses, which are
described under the keyword `[HYPOTHESES] i`. Each hypothesis within
`[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`.

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`,
etc. The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Lean
tactic. For example, `[STEPS][STEP]rw h1 at h2,[STEP]{linarith},`.

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply h1,[STEP]rw ←h1`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]linarith,\n[ERROR MESSAGE]linarith failed to find a
contradiction\nstate:\nx y : R,\nh1 : x = 3 - 2 * y,\nh2 : 2 * x - y =
1\n⊢ false`. If the proof-step was correct then it is followed by the
keyword `[SUCCESS]`. For example, `[LAST STEP]linarith,[SUCCESS]`.
Don't generate the last proof-step again if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN
TACTIC]induction c,[END]`. Generate exactly ONE proof-step. Multiple
proof steps are more error prone, because you will not get a chance to
see intermediate proof state descriptions. Make sure that the proof
step is valid and compiles correctly in Lean 3.

↪→

↪→

↪→

↪→

↪→

↪→

You can refer to the example conversation to understand the response format
better. It might also contain some similar proof states and their
corresponding proof-steps.

↪→

↪→

Please take a note of the following:
1. Make sure to end all your responses with the keyword `[END]`. Follow the

specified format strictly.↪→

2. While generating `[RUN TACTIC]` keyword, do NOT generate the tactics
mentioned under `[INCORRECT STEPS]`......↪→

..............

Figure 12: Parts of ‘system prompt’ used by COPRA for Lean
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A.4 SYSTEM PROMPTS FOR COMPCERT

Parts of the ‘system prompt’ used by COPRA for theorem proving in Coq are shown in Fig. 13.

A.5 EXAMPLE PROOFS GENERATED FOR COMPCERT

Fig. 14 shows some interesting proofs generated by our approach on the CompCert dataset.
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You are a proficient formal theorem-proving agent in Coq. You can predict
the next proof step given the current proof state, relevant
definitions, and some possible useful lemmas/theorems. The proof state
is described in the following format:

↪→

↪→

↪→

1. All the goals are described under `[GOALS]` keyword. Each goal within
the `[GOALS]` is described under the keyword `[GOAL] i`, where `i` is a
positive integer. For example, `[GOAL] 1`, `[GOAL] 2`, etc.

↪→

↪→

2. Within each `[GOAL] i` keyword, the goal is described as a human-readable
serialized version of the proof state as shown while running `coqtop`
command. Each goal, might also accompany some hypotheses, which are
described under the keyword `[HYPOTHESES] i`. Each hypothesis within
`[HYPOTHESES]`, starts with the prefix `[HYPOTHESIS]`. Apart from the
goal and hypothesis, some OPTIONAL keywords like `[DEFINITIONS] i` and
`[THEOREMS] i` are also present which describe the relevant definitions
of symbols used in that goal, and some possible useful theorems or
lemmas which might help in simplifying the goal. Each definition within
`[DEFINITIONS]` starts with the prefix `[DEFINITION]`. Similarly, each
theorem/lemma under `[THEOREMS]` keyword starts with the prefix
`[THEOREM]`. These definitions and theorems can be used to simplify the
goal using the tactics like rewrite, apply, etc. However, it is also
possible that these definitions and theorems are not used at all.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

3. Sometimes `[GOALS]` can have description about the proof state like
`Proof finished`, `There are unfocused goals`, `Not in proof mode`,
etc. The description is described under the keyword `[DESCRIPTION]`.

↪→

↪→

4. Finally, `[STEPS]` keyword is used to describe proof-steps used so far.
Each proof step starts with the prefix `[STEP]`, and is a valid Coq
tactic ending with a `.`. For example, `[STEPS][STEP]intros
a.[STEP]induction a.`.

↪→

↪→

↪→

5. Sometimes, `[INCORRECT STEPS]` keyword optionally used to describe
proof-steps which should NOT be generated. Use this as a hint for not
generating these proof-steps again as they failed previously. For
example, `[INCORRECT STEPS][STEP]apply mul_assoc.[STEP]rewrite <- H.`.

↪→

↪→

↪→

6. There is also an optional `[LAST STEP]` keyword which describes the
proof-step generated last time. If the proof-step was incorrect, then
it is also followed by error message from Coq environment. For example,
`[LAST STEP]reflexivity.[ERROR MESSAGE]Error: In environment\nn :
nat\nUnable to unify "n" with "n + 0".`. If the proof-step was correct
then it is followed by the keyword `[SUCCESS]`. For example, `[LAST
STEP]reflexivity.[SUCCESS]`. Don't generate the last proof-step again
if it was NOT successful.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

7. Sometimes there can be errors in the format of the generated response.
This is reported using the keyword `[ERROR]` followed by the error
message. For example, `[ERROR]\nInvalid response:\n'Great! The proof is
complete.', \nStopping Reason: 'stop'.\n Please respond only in the
format specified.[END]`. This means that the response generated by you
was not in the specified format. Please follow the specified format
strictly.

↪→

↪→

↪→

↪→

↪→

↪→

If you think you know the next proof step, then start your response with
`[RUN TACTIC]` followed by the next proof-step which will help in
simplifying the current proof state. For example, `[RUN TACTIC]destruct
c.[END]`. Generate exactly ONE proof-step. Multiple proof steps are
more error prone, because you will not get a chance to see intermediate
proof state descriptions. Make sure that the proof step is valid and
compiles correctly with Coq.

↪→

↪→

↪→

↪→

↪→

↪→

........................

Figure 13: Parts of ‘system prompt’ used by COPRA for Coq
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(a)
gss :
forall l v m,
(set l v m) l = match l with R

r =>↪→

v | S sl ofs ty =>
Val.load_result

(chunk_of_type ty) v
end.

↪→

↪→

Proof.
intros l v m.
destruct l as [r | s o t].
- unfold set.
destruct (Loc.eq (R r) (R

r)); [reflexivity |
contradiction].

↪→

↪→

- unfold set.
destruct (Loc.eq (S s o t)

(S s o t));
[reflexivity |
contradiction].

↪→

↪→

↪→

Qed.

(b)
eq : forall (p q: loc), {p =

q} + {p <> q}.↪→

Proof.
decide equality.
- apply mreg_eq.
- decide equality.
- decide equality.
apply Pos.eq_dec.
decide equality.
- decide equality.

Qed.

(c)
disjoint_cons_right

:↪→

forall a l1 l2,
disjoint l1 (a ::

l2) -> disjoint
l1 l2.

↪→

↪→

Proof.
intros a l1 l2

H.↪→

unfold
disjoint.↪→

intros x1 x2 H1
H2.↪→

apply H.
assumption.
right.
assumption.

Qed.

(d)
eq_int_type :

forall (x y:
int_type),
{x=y} + {x<>y}.

↪→

↪→

↪→

Proof.
decide

equality.↪→

Qed.

(e)
set_locals_lessdef

: forall e1
e2,
env_lessdef e1
e2 -> forall
il,
env_lessdef
(set_locals il
e1)
(set_locals il
e2).

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Proof.
intros e1 e2 H.
induction il as

[| a il'].↪→

- apply H.
- intros.
apply

set_var_lessdef.↪→

apply IHil'.
apply

Val.lessdef_refl.↪→

Qed.

Figure 14: Some other interesting proofs generated for CompCert by COPRA. We can see that
these proofs are long, and often use ‘apply’ tactic which shows that COPRA can effectively use the
retrieved information to discharge the current proof state.
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