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ABSTRACT

The design of optimal linear block codes capable of being efficiently decoded is of
major concern, especially for short block lengths. As near capacity-approaching
codes, Low-Density Parity-Check (LDPC) codes possess several advantages over
other families of codes, the most notable being its efficient decoding via Belief
Propagation. While many LDPC code design methods exist, the development
of efficient sparse codes that meet the constraints of modern short code lengths
and accommodate new channel models remains a challenge. In this work, we
propose for the first time a gradient-based data-driven approach for the design of
sparse codes. We develop locally optimal codes with respect to Belief Propagation
decoding via the learning of the Factor graph under channel noise simulations. This
is performed via a novel complete graph tensor representation of the Belief Propa-
gation algorithm, optimized over finite fields via backpropagation and coupled with
an efficient line-search method. The proposed approach is shown to outperform
the decoding performance of existing popular codes by orders of magnitude and
demonstrates the power of data-driven approaches for code design.

1 INTRODUCTION

Reliable digital communication is of major importance in the modern information age and involves
the design of codes that can be robustly and efficiently decoded despite noisy transmission channels.
Over the last half-century, significant research has been dedicated to the study of capacity-approaching
Error Correcting Codes (ECC) (Shannon, 1948). Despite the initial focus on short and medium-length
linear block codes (Berlekamp, 1974), the development of long channel codes (Forney, 1966; Costello
& Forney, 2007) has emerged as a viable approach to approaching channel capacity (Berrou et al.,
1993; MacKay, 1999; Richardson et al., 2001; Richardson & Urbanke, 2001; Arikan, 2008; Luby
et al., 2001; Kudekar et al., 2011).

While the NP-hard maximum likelihood rule defines the target decoding of a given code, developing
more practical solutions generally relies on theories grounded upon asymptotic analysis over conven-
tional communication channels. However, modern communication systems rely on the design of short
and medium-block-length codes (Liva et al., 2016) and the latest communication settings provide
new types of channels. This is mainly due to emergent applications in the modern wireless realm
requiring the transmission of short data units, such as remote command links, Internet of Things, and
messaging services (De Cola et al., 2011; Boccardi et al., 2014; Paolini et al., 2015; Durisi et al.,
2016; ESTI, 2021). These challenges call for the formulation of data-driven solutions, capable of
adapting to various settings of interest and constraints, generally uncharted by existing theories.

The vast majority of existing machine-learning solutions to the ECC problem concentrate on the
design of neural decoders. The first neural models focused on the implementation of parameterized
versions of the legacy Belief Propagation (BP) decoder (Nachmani et al., 2016; 2018; Lugosch &
Gross, 2017; Nachmani & Wolf, 2019; Buchberger et al., 2020). Recently, state-of-the-art learning-
based de novo decoders have been introduced, borrowing from well-proven architectures from
other domains. A Transformer-based decoder that incorporates the code into the architecture has
been recently proposed by (Choukroun & Wolf, 2022a), outperforming existing methods by sizable
margins and at a fraction of their time complexity. This architecture has been subsequently integrated
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into a denoising diffusion models paradigm, further improving results (Choukroun & Wolf, 2022b).
Subsequently, a universal neural decoder has been proposed in (Choukroun & Wolf, 2024c), capable
of unified decoding of codes from different families, lengths, and rates. Most recently and related
to our work, (Choukroun & Wolf, 2024a) developed an end-to-end learning framework capable of
co-learning binary linear block codes along with the neural decoder.

However, neural decoding methods require increased computational and memory complexity com-
pared to their well-established classical counterparts. Due to these challenges, and the non-trivial
acceleration and implementation required, neural decoders were never deployed in real-world systems,
as far as we know.

In this work, given the ubiquity and advantages of the Belief Propagation (BP) algorithm (Pearl,
1988; Richardson et al., 2001) for sparse codes, we consider the optimization of codes with respect
to BP via the learning of the underlying factor/Tanner graph. From a graphical probabilistic model
perspective (Koller & Friedman, 2009), BP being a marginalization algorithm, a gradient-based of
a score metric method is given for the structure learning of BP’s underlying Bayesian network in
an end-to-end fashion. As far as we can ascertain, this is the first time a gradient-based data-driven
solution is given for the design of the codes themselves based on a classical decoder. Such a solution
induces a very low overhead (if any) for integration into the existing decoding solutions.

Beyond the conceptual novelty, we make three technical contributions: (i) we formulate the data-
driven optimization objective adapted to the setting of interest (e.g., channel noise, code structure),
(ii) we reformulate BP in a tensor fashion to learn the connectivity of the factor graph through
backpropagation, and (iii) we propose a differentiable and fast optimization approach via a line-
search method adapted to the relaxed binary programming setting. Applied to a wide variety of
codes, our method produces codes that outperform existing codes on various channel noise settings,
demonstrating the power and flexibility of the method in adapting to realistic settings of interest.

2 RELATED WORKS

Neural decoder or data-driven contributions generally focus on short and moderate-length codes for
two main reasons. First, classical decoders reach the capacity of the channel for large codes, and
second, the emergence of short data units applications driven by the Internet of Things (e.g., smart
metering networks, messaging services, etc.) requires effective decoders for short to moderate-length
codes. For example, 5G Polar codes have code lengths of 32 to 1024 (Liva et al., 2016; ESTI, 2021).

Previous work on neural decoders is generally divided into two main classes: model-free and model-
based. Model-free decoders employ general types of neural network architectures (Cammerer et al.,
2017; Gruber et al., 2017; Kim et al., 2018b; Bennatan et al., 2018; Jiang et al., 2019a; Choukroun &
Wolf, 2022a;b; 2024c;b). Model-based decoders implement parameterized versions of classical Belief
Propagation (BP) decoders, where the Tanner graph is unfolded into an NN in which scalar weights
are assigned to each variable edge. This results in an improvement in comparison to the baseline
BP method for short codes (Nachmani et al., 2016; Nachmani & Wolf, 2019; Raviv et al., 2020;
2023; Kwak et al., 2023). While model-based decoders benefit from a strong theoretical background,
the architecture is overly restrictive, which generally enforces its coupling with high-complexity
NN (Nachmani & Wolf, 2021). Also, the improvement gain generally vanishes for more iterations
and longer codewords (Hoydis et al., 2022) and the integration cost remains very high due to both
computational and memory requirements.

While neural decoders show improved performance in various communication settings, there has been
very limited success in the design of novel neural coding methods, which remain impracticable for
deployment (O’Shea & Hoydis, 2017; Kim et al., 2018a; Jiang et al., 2019b). Recently, (Choukroun
& Wolf, 2024a) provided a new differentiable way of designing binary linear block codes (i.e.,
parity-check matrices) for a given neural decoder also showing improved performance with classical
decoders.

Belief-propagation decoding has multiple advantages for LDPC codes (Gallager, 1962; Richardson
& Urbanke, 2001; Richardson et al., 2001). A large number of LDPC code (parity check matrix)
design techniques exist in the literature, depending on the design criterion. Among them, Gallager
(Gallager, 1962) developed the first regular LDPC codes as the concatenations of permuted sub-
matrices. MacKay (MacKay & Neal, 1995) demonstrated the ability of sparse codes to reach near-
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capacity limits via semi-randomly generated matrices. Irregular LDPC codes have been developed
by (Richardson et al., 2001; Luby et al., 2001; Chung et al., 2001) where the decoding threshold
can be optimized via density-evolution. Progressive Edge Growth (Hu et al., 2001; 2005) has been
proposed to design large girth codes. Certain classes of LDPC array codes have been presented
in (Eleftheriou & Olcer, 2002) and LDPC codes with combinatorial design constraints have been
developed in (Vasic & Milenkovic, 2004). Finite geometry codes have been developed in (Lucas
et al., 2000; Kou et al., 2001) and repeat-accumulate codes have been proposed by (Yang et al., 2004;
Jin et al., 2000; Narayanaswami, 2001). However, the classical methods are not data-driven and
are difficult to adapt to the design of codes under constrained settings of interest (e.g., short codes,
modern channels, structure constraints, etc.). Most related to our work are methods for structure
learning (Koller & Friedman, 2009) for Bayesian networks such as the Chow-Liu Algorithm (Chow &
Liu, 1968) or search-based methods (Tian, 2013). Related to greedy search-based methods, Elkelesh
et al. (2019) recently suggested the application of classical genetic algorithms for the discovery of
better IRA codes.

3 BACKGROUND

We assume a standard transmission protocol using a linear block code C. The code is defined by a
generator matrix G ∈ {0, 1}n×k and the parity check matrix H ∈ {0, 1}(n−k)×n is defined such that
HGT = 0 over the order 2 Galois field GF (2). The parity check matrix H entails what is known as
a Tanner graph (Tanner, 1981), which consists of n variable nodes and (n− k) check nodes. The
edges of this bipartite graph correspond to the on-bits of the matrix H .

The input message m ∈ {0, 1}k (column vector) is encoded by G to a codeword c ∈ C ⊂ {0, 1}n
satisfying Hc = H(Gm) = 0 and transmitted via a Binary-Input Symmetric-Output channel, e.g.,
an AWGN channel. Let y denote the channel output represented as y = cs + ε, where cs denotes
the transmission modulation of c (e.g., Binary Phase Shift Keying (BPSK)), and ε is random noise
independent of the transmitted c. The main goal of the decoder fH : Rn → Rn conditioned on the
code (i.e., H) is to provide a soft approximation x̂ = fH(y) of the codeword.

The Belief Propagation algorithm allows the iterative transmission (propagation) of a current code-
word estimate (belief) via a Trellis graph determined according to a factor graph defined by the code
(i.e., the Tanner graph). The factor graph is unrolled into a Trellis graph, initiated with n variable
nodes, and composed of two types of interleaved layers defined by the check/factor nodes and variable
nodes. An illustration of the Tanner graph unrolled to the Trellis graph is given in Figure 1.

As a message-passing algorithm, Belief Propagation operates on the Trellis graph by propagating
the messages from variable nodes to check nodes and from check nodes to variable nodes, in an
alternative and iterative fashion. The input layer generally corresponds to the vector of log-likelihood
ratios (LLR) L ∈ Rn of the channel output y defined as

Lv = log

(
Pr (cv = 1|yv)
Pr (cv = 0|yv)

)
.

Here, we describe ECC’s classical notation of BP with, v ∈ {1, . . . , n} denotes the index cor-
responding to the vth element of the channel output y, for the corresponding bit cv we wish to
recover.

Let xi be the vector of messages that a column/layer in the Trellis graph propagates to the next one.
At the first round of message passing, a variable node type of computation is performed such that

x2k+1
e = x2k+1

(c,v) = Lv +
∑

e′∈N(v)\{(c,v)}

x2k
e′ . (1)

Here, each message indexed by the edge e = (c, v) on the Tanner graph and N(v) =
{(c, v)|H(c, v) = 1}, i.e, the set of all edges in which v participates. By definition x0 = 0
such that the messages are directly determined by the vector L for k = 0.

For even layers, the check layer performs the following

x2k
e = x2k

(c,v) = 2arctanh

 ∏
e′∈N(c)\{(c,v)}

tanh

(
x2k−1
e′

2

) (2)
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Figure 1: For the Hamming(7,4) Code: (a) parity check matrix, the induced (b) Tanner graph, and (c)
the corresponding unrolled Trellis graph with two iterations, with odd layers in blue and even layers
in red. In (d) we present our approach for structure learning via the learned binary weighting of the
edges of the complete bipartite factor graph unlike the conventional sparse representation.

where N(c) = {(c, v)|H(c, v) = 1} is the set of edges in the Tanner graph in which row c of the
parity check matrix H participates.

The final vth output layer of the BP algorithm, which corresponds to the soft-decision output of the
codeword, is given by

ov = Lv +
∑

e′∈N(v)

x2L
e′

(3)

4 METHOD

The performance of BP is strongly tied to the underlying Tanner graph induced by the code. BP
and its variants are generally implemented over a fixed sparse graph, such that the only degree of
freedom resides in the number of decoding iterations. While several recent contributions (Nachmani
et al., 2016; Nachmani & Wolf, 2019) aim to enhance the BP algorithm by augmenting the Trellis
graph with neural networks, these approaches assume and maintain fixed codes. Here, we propose
optimizing the code for the BP algorithm on a decoding setting of interest. Given a trainable binary
parity check matrix H , we wish to obtain BP-optimized codes by solving the following parameterized
optimization problem

H∗ = argmin
H∈{0,1}(n−k)×n

Em∼Bernk(1/2),ε∼Z,T∈N+
D
(
fH,T

(
ϕ(G(H)m) + ε

)
,m

)
+R(H) (4)

Here, G(H) denotes a generator matrix defined by H (i.e., HGT = 0), ϕ denotes the modulation
function such that cs = ϕ(c), and Z is the channel noise distribution. fH,T denotes the BP decoder
built upon H with T discrete iterations (sampled uniformly from a given set), D denotes the distance
metric of interest, and R denotes the potential hard/soft regularization of interest, e.g., sparsity or
constraints on the code structure.

Several challenges arise from this optimization problem: (i) the optimization is highly non-
differentiable and results in an NP-hard binary non-linear integer programming problem, (ii) the
computation of the codewords c = Gm is both highly non-differentiable (matrix-vector multiplication
over GF (2) in case symmetry is not maintained during the optimization(Richardson & Urbanke,
2001)) and computationally expensive (inverse via Gaussian elimination of H), (iii) the modulation
ϕ(·) can be non-differentiable, and last but most important, (iv) BP assumes a fixed code (i.e., the
factor graph edges) upon which the decoder is implemented.

Learning the Factor graph via Tensor Belief Backpropagation To obtain BP codes, we propose
a structure/Tanner graph learning approach, where the bipartite graph is assumed as complete with
learnable binary-weighted edges. This way, the tensor reformulation of BP weighted by H allows a
differentiable optimization of the Tanner graph itself. The two alternating stages of BP can now be
represented in a differentiable matrix form rather than its static graph formulation, where the variable
layers can be rewritten as

Qij = Li +
∑

j′∈Ci\j

Rj′i ≡ Li +
∑
j′

Rj′iHj′i −Rji , (5)

4
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Algorithm 1: Tensor Belief Propagation
1 function BP(llr, H, iters, eps=1e-7)

// llr is the batched LLR matrix, (B, n)
// H is the binary parity-check matrix, (n-k,n)
// iters is the number of BP iterations

2 H = H.unsqueeze(dim=0).T
3 C = llr.unsqueeze(dim=-1)
4 for t in range(iters) do
5 Q = C if t == 0 else C + sum(R*H,dim=-1).unsqueeze(dim=-1) - R
6 tmp = tanh(0.5*Q)
7 R = 2*atanh( prod(tmp*H+(1-H),dim=1)/tmp )

8 return C.squeeze()+sum(R*H,dim=-1)

where Rij are the check layers, which are now represented as

Rji = 2arctanh

 ∏
i′∈Vj\i

tanh

(
Qi′j

2

)
= 2arctanh

(∏
i′

(
tanh

(
Qi′jHji′

2

)
+ (1−Hji′)

)
/ tanh

(
Qij

2

))
,

(6)

where Ci and Vj correspond to the non-zero elements in column i and row j of H , respectively,
while the ones elements in (1−H) ∈ {0, 1}(n−k)×n satisfy the identity element of multiplication.
Potential zero denominators have not been observed but can be handled via regularization or omission.
As we can observe, BP remains differentiable with respect to H as a composition of differentiable
functions.

We provide in Algorithm 1 the pseudo-code for the tensor formulation of the BP algorithm, imple-
menting Eq. 6 and 5.

Belief Propagation Codes Optimization The tensor reformulation solves the major challenge of
graph learning (challenge (iv)). Challenges (ii) and (iii) are also eliminated in our formulation. First,
since for any given H the conditional independence of error probability under symmetry (Richardson
& Urbanke, 2001) is satisfied for message passing algorithms, it is enough to optimize the zero
codeword only, i.e., c = Gm = 0, removing then any dependency on G in the objective (challenge
(ii)). As a byproduct, we obtain that the optimization problem is invariant to the choice of modulation,
whether differentiable or not (challenge (iii)).

To optimize H (challenge (i)) we relax the NP-hard binary programming problems to an unconstrained
objective where, given a parameter matrix Ω ∈ R(n−k)×n, we have H := H(Ω) = bin(Ω). Here
bin(·) refers to the element-wise binarization operator implemented via the shifted straight-through-
estimator (STE) (Bengio et al., 2013) defined such that

bin(u) = (1− sign(u))/2 , ∂ bin(u)/∂u := −0.51|u|≤1 (7)

Finally, opting for the binary cross-entropy loss (BCE) as the Bit Error rate (BER) discrepancy
measure D = BCE, we obtain the following empirical risk objective

L(Ω) =
T∑

t=1

n∑
i=1

BCE
(
fbin(Ω),t

(
cs + εi

)
, c

)
+R(bin(Ω)) (8)

where cs = ϕ(c) denotes the modulated zero codeword and εi denotes the ith noise sample drawn
from the channel noise distribution. This objective aims to provide optimal decoding on different
numbers of (variable) decoding iterations t (Nachmani et al., 2016).

While highly non-convex, the objective is (sub)differentiable when considering the STE definition
of the gradient (Bengio et al., 2013; Yin et al., 2019) and thus optimizable via classical first-order

5
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Algorithm 2: Belief Propagation Codes Optimization
1 function Loss(H, x, y, BPiters=5)

// H is the initial binary parity-check matrix, (n-k,n)
// BPiters is the number of BP iterations

2 return BCE(BP(computeLLR(y), H, BPiters),x)

3 function BPCodesOptimization(H, iters)
// H is the initial binary parity-check matrix, (n-k,n)
// iters is the number of optimization iterations

4 Ω = 1-2*H
5 for t in range(iters) do
6 x,y = getData()
7 Loss(bin(Ω),x,y).backward()
8 lambdas = Ω/Ω.grad
9 lambdas = sorted(lambdas[lambdas>0].view(-1))[:50]

10 Ω = Ω - Ω.grad*lambdas[argmin([Loss(bin(Ω -lambda*Ω.grad),x,y)
for lambda in lambdas]]

11 if converged: break

12 return bin(Ω)

methods. Since H is binary, only changes in the sign of Ω are relevant for the optimization, so most
gradient descent iterations remain ineffective in reducing the objective using conventional small
learning-rate regimes. Thus, given the gradient ∇ΩL computed on sufficiently representative batch,
we propose a line-search procedure capable of finding the optimal step size.

Binary Line-Search Conventional first-order optimization methods with small learning rate
regimes have two major drawbacks with binarization (Rastegari et al., 2016; Courbariaux et al.,
2016). First, they are generally slow since only gradient steps modifying the sign of the binarized
tensor induce a modification of the loss. Second, they have difficulties in converging to local minima
because of oscillating behavior around zero.

In general, efficient line search methods (Nocedal & Wright, 2006) assume local convexity or a smooth
objective (Wolf, 1978) or, alternatively, apply exhaustive search on a given interval. Since this is not
our case, we propose a novel efficient grid-search approach optimized to our binary programming
setting. While classical grid search methods look for the optimal step size on handcrafted predefined
sample points, in our binary setting we can search only for the step sizes inducing a flip of the sign in
Ω, provably limiting the maximum number of relevant grid samples to n(n−k). Thus, the line-search
problem is now given by

λ∗ = argmin
λ∈IΩ

L(Ω− λ∇ΩL), IΩ = {sij =
(Ω)ij

(∇ΩL)ij
|si > 0} , (9)

which corresponds to the (parallelizable) objective evaluation on the obtained grid. The same
formulation can support other more practical line-search objectives instead of the cross-entropy loss
L, such as the non-differentiable BER or Frame Error Rate (FER) instead of the Bayesian BCE loss.

Training The optimization parameters are the following: the initial H (i.e., initial Ω), the maximum
number of optimization steps (if convergence is not reached), the number and quality of the data
samples, the grid search length, and the number of BP iterations.

We assume that an initial H is given by the user as the code to be improved. The number of
optimization steps is set to 20 iterations. The training noise is sampled randomly per batch in the
{3, . . . , 7} normalized SNR (i.e. Eb/N0) range but can be modified according to the noise setting
of interest. The number of data samples per optimization iteration is set to 4.9M for every code as
sufficient gradient estimation, and the data samples are required to have non-zero syndrome. Because
of computational constraints, the number of BP iterations during training is fixed and set to 5, while
other ranges or values of interest can be used instead. For faster optimization, the grid search is
heuristically restricted to the first 50 smallest step sizes as the optimal step size is generally in the
vicinity of the working point (Appendix C) . Training and experiments are performed on 8× 12GB
GeForce RTX 2080 Ti GPUs and require 2.96 minutes on average per optimization step.
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Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. PEGX means
the degree of each node is of X% under the Progressive Edge Growth construction.

Channel AWGN Fading Bursting
Method BP Our BP Our BP Our
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH(63,45) 4.06
4.21

4.91
5.24

6.04
6.59

5.44
5.70

6.93
7.35

8.60
9.16

3.09
3.13

3.46
3.55

3.90
4.04

3.96
4.10

4.58
4.80

5.27
5.56

3.60
3.67

4.32
4.52

5.19
5.59

4.05
4.21

5.07
5.40

6.27
6.85

CCSDS(128,64) 6.46
7.32

9.61
10.83

13.99
15.43

7.34
8.61

10.48
12.26

14.37
16.00

5.72
6.43

7.42
8.29

9.47
10.28

6.73
8.05

8.45
10.07

10.45
12.37

5.29
5.98

7.81
8.85

11.25
12.53

6.23
7.39

8.80
10.43

11.90
13.28

LDPC(121,60) 4.81
5.31

7.17
7.96

10.75
11.85

7.70
8.86

10.87
11.91

14.25
14.41

4.10
4.42

5.23
5.61

6.68
7.04

6.68
7.71

8.47
9.67

10.50
11.76

3.97
4.31

5.75
6.37

8.40
9.25

6.23
7.26

8.89
10.03

11.98
12.88

LDPC(121,80) 6.59
7.35

9.68
10.94

13.43
15.46

7.77
8.75

11.21
12.45

15.06
15.67

4.60
4.97

5.80
6.29

7.22
7.82

5.55
6.25

6.90
7.80

8.36
9.47

5.30
5.81

7.60
8.50

10.66
12.15

6.23
6.99

8.87
10.09

12.19
13.74

LDPC(128,64) 3.66
4.00

4.65
5.16

5.80
6.42

5.54
6.56

7.37
8.70

9.44
10.81

3.22
3.51

3.80
4.18

4.44
4.84

4.86
5.64

5.94
6.85

7.15
8.14

3.23
3.48

4.08
4.51

5.09
5.66

3.72
4.13

5.00
5.72

6.54
7.66

LDPC(32,16) 4.36
4.64

5.59
6.07

7.18
7.94

5.48
5.76

7.02
7.44

8.92
9.41

4.03
4.29

4.70
5.06

5.47
5.90

5.26
5.43

6.02
6.23

6.82
6.97

3.88
4.09

4.89
5.26

6.18
6.76

4.77
5.01

6.02
6.35

7.52
7.96

LDPC(96,48) 6.73
7.50

9.48
10.61

12.98
14.26

7.22
8.29

9.96
11.12

13.37
14.06

3.83
4.17

4.57
4.94

5.35
5.73

5.37
6.14

6.51
7.38

7.71
8.65

5.68
6.33

7.94
8.91

10.90
11.99

5.90
6.71

8.19
9.28

10.91
11.75

LTE(132,40) 2.94
3.37

3.32
3.79

3.57
4.09

3.25
3.93

3.71
4.49

4.04
4.89

3.17
3.60

3.45
3.82

3.67
4.01

4.49
5.32

4.99
5.81

5.47
6.31

2.75
3.17

3.17
3.62

3.47
3.96

2.99
3.53

3.44
4.03

3.78
4.41

MACKAY(96,48) 6.75
7.59

9.45
10.52

12.85
14.09

7.03
7.99

9.63
10.97

12.78
14.05

6.28
7.04

7.86
8.76

9.55
10.64

6.53
7.47

8.06
9.32

9.77
11.19

5.72
6.39

7.97
8.90

10.81
11.91

5.95
6.82

8.23
9.41

10.91
12.71

POLAR(128,86) 3.76
4.02

4.17
4.67

4.58
5.38

4.83
5.37

5.87
6.88

6.58
8.10

3.15
3.28

3.53
3.73

3.91
4.18

3.64
3.92

4.28
4.70

4.94
5.52

3.48
3.65

3.96
4.31

4.37
4.97

3.69
3.87

4.51
4.91

5.18
5.91

RS(60,52) 4.41
4.54

5.32
5.52

6.41
6.64

5.02
5.07

6.38
6.47

7.99
8.12

3.11
3.13

3.41
3.43

3.77
3.81

3.37
3.38

3.73
3.75

4.12
4.15

3.85
3.91

4.58
4.72

5.44
5.67

4.17
4.21

5.18
5.27

6.40
6.56

LDPC PEG2(64,32) 4.38
4.38

5.12
5.13

6.04
6.04

4.45
4.44

5.19
5.19

6.10
6.10

4.08
4.08

4.44
4.44

4.81
4.81

4.10
4.10

4.46
4.47

4.85
4.85

4.07
4.06

4.69
4.69

5.43
5.43

4.07
4.06

4.70
4.69

5.43
5.44

LDPC PEG5(64,32) 6.02
6.63

8.20
9.06

10.95
12.30

6.53
7.13

8.73
9.48

11.56
12.20

5.63
6.19

6.86
7.52

8.31
9.02

6.22
6.96

7.48
8.34

8.82
9.85

5.18
5.68

6.97
7.75

9.34
10.19

5.59
6.12

7.41
8.06

9.51
10.13

LDPC PEG10(64,32) 3.98
4.27

5.17
5.77

6.70
7.67

5.56
6.25

7.22
8.28

9.13
10.59

3.52
3.71

4.18
4.47

4.95
5.30

5.02
5.60

6.00
6.72

7.11
7.90

3.48
3.67

4.47
4.90

5.75
6.46

4.26
4.73

5.50
6.22

7.01
8.01

The full training algorithm (pseudocode) is given in Algorithm 2. Given an initial parity check matrix,
the algorithm optimizes H iteratively upon convergence. At each iteration, after computing the
gradient on sufficiently large statistics (line 7), the line search procedure (line 10) searches for the
optimal step size among those that flip the values of H (line 9).

5 EXPERIMENTS

We evaluate our framework on five classes of linear codes: various Low-Density Parity Check (LDPC)
codes (Gallager, 1962; Abu-Surra et al., 2010), Polar codes (Arikan, 2008), Reed Solomon codes
(Reed & Solomon, 1960), Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri,
1960) and random codes. All the parity check matrices are taken from (Helmling et al., 2019) except
the LDPC codes created using the popular Progressive Edge Growth framework (Hu et al., 2005;
MacKay).

We consider three types of channel noise under BPSK modulation. We first test our framework
with the canonical AWGN channel given as y = cs + ε with ε ∼ N (0, σIn). We also consider the
Rayleigh fading channel, where y = h⊙ cs + ε, with h the iid Rayleigh distributed fading vector
with coefficient 1 and ε the regular AWGN noise, where we assume ideal channel state information.
Finally, we consider the AWGN channel with Gaussian mixture channel (also referred to as bursty
noise (Kurmukova & Gunduz, 2024)) simulating wireless channel interference as y = cs + ε + ζ
with ε the AWGN and ζi ∼ N (0,

√
2σ) with probability ρ = 0.1 and ζi = 0 with probability 1− ρ.

The results are reported as negative natural logarithm bit error rates (BER) for three different
normalized SNR values (Eb/N0), following the conventional testing benchmark, e.g., (Nachmani &
Wolf, 2019; Choukroun & Wolf, 2022a). BP-based results are obtained after ℓ = 5 BP iterations in
the first row and ℓ = 15 in the second row of the results tables. During testing, at least 105 random
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(a) (b) (c)

Figure 2: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel
on the sparse codes only. We provide the mean and standard deviation as well as the minimum and
maximum improvements.

codewords are decoded, to obtain at least 50 frames with errors at each SNR value. For this section,
we performed a small hyperparameter search as reported in Appendix A, where the final code is
selected to have the lowest average BER on the SNR test range.

The results are provided in Table 1, where our method means BP applied on the learned code
initialized by the given classical code. We also provide in Appendix B the same table with a broader
SNR range (Eb/N0 ∈ {3, . . . , 7}). We provide in Appendix J the standard visualization of the BER
and BLER vs Eb/N0 curves on several codes. We further show the performance of the proposed
method on the state-of-the-art 5G NR LDPC short blocklenght codes (Richardson & Kudekar, 2018;
3GPP, 2018) We provide the overall improvement statistics (i.e., mean, std, min, max) in dB on
all the sparse codes in Figure 2 and we extend the analysis to all the codes in Appendix F. For
completeness, we provide in Appendix H a comparison with the genetic algorithm of Elkelesh et al.
(2019) where our method demonstrates much better performance while being faster by orders of
magnitude. We also show in Appendix I that our method can outperform the performance of the SCL
algorithm (Tal & Vardy, 2015) even on very short codes where the performances are close to ML
decoding.

Evidently, our method improves by large margins all code families on the three different channel
noise scenarios and with both numbers of decoding iterations, demonstrating the capacity of the
framework to provide improved codes on multiple settings of interest.

6 ANALYSIS

Initialization and Random Codes We provide in Figure 3 the performance of the proposed method
on random codes initialized with different sparsity rates. The parity check matrix is initialized in
a systematic form H = [In−k, P ] for full rank initialization, where P ∼ Bern(n−k)×k(p). We
can observe that the framework can greatly improve the performance of the original random code.
Most importantly, we can observe that different initializations provide convergence to different local
optima and that better initialization generally induces convergence to a better minimum. Performance
on other code lengths is provided in Appendix G. Finally, good initialization (i.e., (large) well-
performing sparse codes under BP decoding) requires perturbation at initialization or during training
(c.f., Appendix A) in order to get extracted from local minima.

8
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Figure 3: Performance of the method on random codes under different sparsity rate initialization p.

Figure 4: Performance of the method on constrained systematic random codes under different sparsity
rate initialization p on the AWGN channel.

Constrained Codes In Figure 4 we provide the performance of the method on constrained system-
atic random codes as described in the previous paragraph, while here, we constrain them to maintain
their systematic form during the optimization, i.e., only the parity matrix elements of P are optimized
(via Ω). The optimization is performed by backpropagating over the P tensor only, similarly to having
a hard structure constraint on the identity part of H . While maintaining a structure of interest, we can
observe this regularization can further improve the convergence quality (e.g., p = 0.1) compared to
the unconstrained setting of Figure 3. Performance on other code lengths is provided in Appendix G.
Any constraint (e.g., dual diagonal) can be similarly added to the code.

In Figure 5 we present the sparsification of the codes created by the framework. Here, ∆ =
100(Sb − So)/Sb represents the sparsity ratio, with Sb and So being the sparsity of the baseline
code and our code, respectively. We can observe that optimization always provides sparser codes.
Nevertheless, we also observed that the optimization does not modify the girth of the code. We
provide in Appendix F the column weights distribution of the initial and learned parity check matrices.

In Figure 6 we present the performance of the method on random codes with sparsity constraint,
i.e., R(H) = λ∥H∥1, with λ ∈ R+. We can observe that adding a sparsity constraint is generally
not profitable since the optimization over BP already induces sparse codes, suggesting that gradient
descent’s inductive bias and BP have similar sparsity enforcement effects.

Learned Codes Visualization We depict in Figure 7 the learned codes via the visualization of the
parity-check matrices. We can observe that for low-density codes the modifications remain small,

Figure 5: Sparsity reduction of
the proposed codes.

Figure 6: Performance of the method with L1 regularization for
different values of the regularization factor λ for random codes
with p = 0.25 on the AWGN channel.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 7: Visualization of the original (first row) and the learned parity check matrices (second row)
for (a) LDPC(32,16), (b) LDPC(128,64), (c) BCH(63,45) and (d) Random(64,32,p = 0.5). "PCM
iter X" denotes the final iteration Parity Check Matrix of the optimization.

since the code is already near local optimum, while for denser codes the change can be substantial.
It further shows SGD’s inductive bias seems not to impact BP inductive bias assuming sparse (i.e.,
no-loop or tree) connections. Also, the optimized codes tend to be more sparse than the original.

We provide in Appendix C visualizations of the line search optimization, demonstrating the high
non-convexity and the proximity of the optimum to the current estimate. We provide in Appendix D
statistics on convergence rates and typical convergence curves demonstrating the fast and monotonic
convergence. Finally, we provide in Appendix E the performance of the learned code on the efficient
Min-Sum approximation of the BP algorithm and show that the learned code outperforms the
baseline codes over the Min-Sum framework as well.

7 CONCLUSIONS

We present a novel gradient-based optimization method of binary linear block codes for the Belief
Propagation algorithm. The proposed framework enables the differentiable optimization of the factor
graph via weighted tensor representation. The optimization is efficiently carried out via a tailor-made
grid search procedure that is aware of the binary constraint of the optimization problem.

A common criticism of ML-based ECC is that the neural decoder cannot be deployed directly without
the application of massive deep-learning acceleration methods. Here, we show that the code can
be designed efficiently in a data-driven fashion on differentiable formulations of classical decoders.
The optimization of codes may open the door to the establishment of new industry standards and
the creation of new families of codes. Future work includes the development of more efficient
optimization methods, able to define better initializations and to escape bad local minima.
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A HYPER-PARAMETER TUNING

Under the problem’s stochastic optimization, we provide here the different modifications used to
obtain better performance. The first set of training/optimization hyperparameters is the Eb/N0 range
defined as (u, 7) with u ∈ {3, 4, 5}. The second set of hyperparameters is the data sampling, where
we experimented with random data (i.e., classical setting) and data with non-zero syndromes only.
Finally, for better backpropagation, we also experimented with a soft approximation H̃ of the binary
H during the optimization, defined as

H̃ij =

{
(−1)zϵ, if Hij = 0
1, else

where z ∼ Bern(0.5) and ϵ is a small scalar (10−7 in our experiments). We note we only used a size
15 random subset of all the possible permutations of the hyperparameters mentioned above.

B MORE SNR RESULTS

We provide results on a larger range of SNRs in Table 2.

Table 2: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold.

Channel AWGN Fading Bursting
Method BP Our BP Our BP Our
Eb/N0 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

BCH(63,45) 3.35
3.40

4.06
4.21

4.91
5.24

6.04
6.59

7.47
8.35

4.23
4.36

5.44
5.70

6.93
7.35

8.60
9.16

10.27
11.10

2.77
2.79

3.09
3.13

3.46
3.55

3.90
4.04

4.37
4.61

3.42
3.50

3.96
4.10

4.58
4.80

5.27
5.56

5.99
6.36

3.00
3.02

3.60
3.67

4.32
4.52

5.19
5.59

6.25
6.93

3.24
3.31

4.05
4.21

5.07
5.40

6.27
6.85

7.67
8.55

CCSDS(128,64) 4.32
4.82

6.46
7.32

9.61
10.83

13.99
15.43

18.27
18.51

4.99
5.80

7.34
8.61

10.48
12.26

14.37
16.00

17.38
18.15

4.37
4.89

5.72
6.43

7.42
8.29

9.47
10.28

11.84
12.88

5.22
6.22

6.73
8.05

8.45
10.07

10.45
12.37

12.36
14.87

3.62
3.97

5.29
5.98

7.81
8.85

11.25
12.53

15.59
17.10

4.32
5.05

6.23
7.39

8.80
10.43

11.90
13.28

14.76
15.56

LDPC(121,60) 3.33
3.53

4.81
5.31

7.17
7.96

10.75
11.85

15.69
17.01

5.29
6.18

7.70
8.86

10.87
11.91

14.25
14.41

16.82
17.04

3.24
3.44

4.10
4.42

5.23
5.61

6.68
7.04

8.56
8.77

5.18
6.04

6.68
7.71

8.47
9.67

10.50
11.76

12.31
14.21

2.87
2.98

3.97
4.31

5.75
6.37

8.40
9.25

12.16
13.10

4.32
5.02

6.23
7.26

8.89
10.03

11.98
12.88

14.91
15.14

LDPC(121,80) 4.50
4.85

6.59
7.35

9.68
10.94

13.43
15.46

18.51
19.61

5.28
5.85

7.77
8.75

11.21
12.45

15.06
15.67

18.40
18.30

3.67
3.89

4.60
4.97

5.80
6.29

7.22
7.82

8.95
9.58

4.42
4.89

5.55
6.25

6.90
7.80

8.36
9.47

10.00
11.21

3.74
3.94

5.30
5.81

7.60
8.50

10.66
12.15

14.88
16.45

4.32
4.73

6.23
6.99

8.87
10.09

12.19
13.74

16.31
17.55

LDPC(128,64) 2.88
3.04

3.66
4.00

4.65
5.16

5.80
6.42

7.03
7.77

4.07
4.71

5.54
6.56

7.37
8.70

9.44
10.81

11.71
12.92

2.73
2.90

3.22
3.51

3.80
4.18

4.44
4.84

5.14
5.54

3.95
4.55

4.86
5.64

5.94
6.85

7.15
8.14

8.38
9.59

2.58
2.68

3.23
3.48

4.08
4.51

5.09
5.66

6.21
6.88

2.80
2.97

3.72
4.13

5.00
5.72

6.54
7.66

8.30
9.86

LDPC(32,16) 3.45
3.59

4.36
4.64

5.59
6.07

7.18
7.94

9.19
10.23

4.29
4.47

5.48
5.76

7.02
7.44

8.92
9.41

11.23
12.03

3.44
3.62

4.03
4.29

4.70
5.06

5.47
5.90

6.31
6.83

4.53
4.67

5.26
5.43

6.02
6.23

6.82
6.97

7.61
7.81

3.10
3.21

3.88
4.09

4.89
5.26

6.18
6.76

7.82
8.58

3.78
3.93

4.77
5.01

6.02
6.35

7.52
7.96

9.22
9.72

LDPC(96,48) 4.72
5.20

6.73
7.50

9.48
10.61

12.98
14.26

16.87
17.80

5.17
5.85

7.22
8.29

9.96
11.12

13.37
14.06

16.45
17.19

3.19
3.44

3.83
4.17

4.57
4.94

5.35
5.73

6.17
6.58

4.38
4.99

5.37
6.14

6.51
7.38

7.71
8.65

8.94
9.77

4.03
4.40

5.68
6.33

7.94
8.91

10.90
11.99

14.27
15.55

4.23
4.71

5.90
6.71

8.19
9.28

10.91
11.75

13.61
14.06

LTE(132,40) 2.49
2.85

2.94
3.37

3.32
3.79

3.57
4.09

3.81
4.32

2.72
3.26

3.25
3.93

3.71
4.49

4.04
4.89

4.36
5.22

2.82
3.29

3.17
3.60

3.45
3.82

3.67
4.01

3.89
4.21

3.97
4.78

4.49
5.32

4.99
5.81

5.47
6.31

5.96
6.84

2.30
2.63

2.75
3.17

3.17
3.62

3.47
3.96

3.70
4.19

2.48
2.92

2.99
3.53

3.44
4.03

3.78
4.41

4.05
4.70

MACKAY(96,48) 4.77
5.28

6.75
7.59

9.45
10.52

12.85
14.09

16.37
17.43

5.03
5.63

7.03
7.99

9.63
10.97

12.78
14.05

16.11
17.49

4.98
5.55

6.28
7.04

7.86
8.76

9.55
10.64

11.30
12.58

5.18
5.93

6.53
7.47

8.06
9.32

9.77
11.19

11.58
13.14

4.08
4.47

5.72
6.39

7.97
8.90

10.81
11.91

13.92
15.23

4.28
4.79

5.95
6.82

8.23
9.41

10.91
12.71

14.02
15.81

POLAR(128,86) 3.25
3.36

3.76
4.02

4.17
4.67

4.58
5.38

5.12
6.19

3.72
3.96

4.83
5.37

5.87
6.88

6.58
8.10

7.21
9.00

2.80
2.87

3.15
3.28

3.53
3.73

3.91
4.18

4.26
4.60

3.10
3.26

3.64
3.92

4.28
4.70

4.94
5.52

5.58
6.30

2.95
3.02

3.48
3.65

3.96
4.31

4.37
4.97

4.78
5.66

2.96
3.03

3.69
3.87

4.51
4.91

5.18
5.91

5.73
6.88

RS(60,52) 3.65
3.70

4.41
4.54

5.32
5.52

6.41
6.64

7.80
8.04

3.98
4.00

5.02
5.07

6.38
6.47

7.99
8.12

9.73
9.80

2.86
2.87

3.11
3.13

3.41
3.43

3.77
3.81

4.16
4.24

3.05
3.06

3.37
3.38

3.73
3.75

4.12
4.15

4.53
4.56

3.26
3.27

3.85
3.91

4.58
4.72

5.44
5.67

6.43
6.78

3.42
3.42

4.17
4.21

5.18
5.27

6.40
6.56

7.75
8.01

PGE2(64,32) 3.78
3.78

4.38
4.38

5.12
5.13

6.04
6.04

7.17
7.16

3.84
3.84

4.45
4.44

5.19
5.19

6.10
6.10

7.22
7.23

3.74
3.74

4.08
4.08

4.44
4.44

4.81
4.81

5.20
5.20

3.75
3.75

4.10
4.10

4.46
4.47

4.85
4.85

5.24
5.24

3.54
3.54

4.07
4.06

4.69
4.69

5.43
5.43

6.29
6.29

3.54
3.54

4.07
4.06

4.70
4.69

5.43
5.44

6.30
6.30

PGE5(64,32) 4.41
4.78

6.02
6.63

8.20
9.06

10.95
12.30

14.40
15.75

4.82
5.26

6.53
7.13

8.73
9.48

11.56
12.20

14.41
14.90

4.56
4.98

5.63
6.19

6.86
7.52

8.31
9.02

9.78
10.76

5.09
5.67

6.22
6.96

7.48
8.34

8.82
9.85

10.16
11.24

3.84
4.13

5.18
5.68

6.97
7.75

9.34
10.19

12.25
13.40

4.19
4.55

5.59
6.12

7.41
8.06

9.51
10.13

11.84
12.27

PGE10(64,32) 3.08
3.20

3.98
4.27

5.17
5.77

6.70
7.67

8.49
9.72

4.21
4.62

5.56
6.25

7.22
8.28

9.13
10.59

11.11
12.84

2.96
3.08

3.52
3.71

4.18
4.47

4.95
5.30

5.81
6.24

4.16
4.60

5.02
5.60

6.00
6.72

7.11
7.90

8.33
9.24

2.75
2.82

3.48
3.67

4.47
4.90

5.75
6.46

7.28
8.26

3.30
3.57

4.26
4.73

5.50
6.22

7.01
8.01

8.80
10.06

C LINE SEARCH OPTIMIZATION

In Figure 8 we provide visualizations of the line search procedure. We provide BER with respect to
the step size λi indexed by i (λ0 ≡ 0). We can observe the high non-convexity of the objective, with
the presence of several local minima. We can also notice the proximity of the optimum to the current
parity-check estimate (i.e., λ0).

D CONVERGENCE RATE

In Figure 9 we provide statistics on the number of optimization iterations for convergence (a). We
also provide (b,c,d) typical convergence. We can observe that the framework typically converges
within a few iterations and that the loss decreases monotonically.
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(a) (b) (c) (d)

Figure 8: BER in function of the step size index i on AWGN channel. (a) Averaged BER over the
optimization iterations for 4 codes. (b,c,d) BER per optimization iteration for the first 5 optimization
iterations and the first 10 indices for three different codes. Here λ0 = 0 denotes the original BER.

(a) (b) (c) (d)

Figure 9: (a) Histogram of the number of required iterations until convergence. (b) Convergence
rate of the Frame Error Rate for three codes on (b) AWGN, (c) fading, and (d) bursting channel. We
selected the three codes with the largest number of iterations. The FER is averaged over all the tested
Eb/N0 = {3, . . . 7} range.

E IMPACT ON OTHER BP VARIANTS

In Table 3 we provide the performance of the learned code on the more efficient Min-Sum approxi-
mation of the Sum-Product algorithm. We can observe that the codes learned with BP consistently
outperform the performance of the Min-Sum approximation as well. For some codes, the training
range may need to be adjusted. We note our method can be applied to neural BP decoders as well.
The direct optimization over BP approximations and augmentations is left for future work.

F IMPROVEMENT STATISTICS ON ALL THE CODES

We provide in Figure 10 the statistics of improvement on all the codes presented in Table 2.

G MORE RANDOM CODES

We provide in Figure 11 the performance of the proposed method on random codes initialized with
different sparsity rates on different lengths. We also provide in Figure 12 the performance of the
proposed method on constrained systematic random codes initialized with different sparsity rates on
different lengths.

H COMPARISON WITH GENETIC ALGORITHM

We provide in table 4 a comparison with the genetic algorithm of Elkelesh et al. (2019). We note
that the method requires 230 offspring/code evaluations per iteration, with 300 iterations (Fig. 7 in
(Elkelesh et al., 2019)) or even an infinite loop (cf. the provided MATLAB code). Our algorithm is
tested on 50 line-search steps as described in in the paper on 2 to 25 iterations (cf. App. D), which
means that Elkelesh et al. (2019) requires approximately 25 to 313 times more computations than
our proposed method. The performance presented are for 75 and 150 iterations of the algorithm,
representing around 70 and 140 times slower performance than our approach, respectively, while they

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: A comparison of the negative natural logarithm of Bit Error Rate (BER) for five normalized
SNR values of our method applied on the Min-Sum BP algorithm. NE = no errors spotted under the
testing limits.

BP Method Sum-Product Min-Sum
Method Baseline Our Baseline Our
Eb/N0 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

BCH(63,45) 3.35
3.40

4.06
4.22

4.92
5.24

5.98
6.60

7.39
8.33

3.48
3.57

4.30
4.49

5.29
5.69

6.51
7.17

8.12
9.17

3.04
3.22

3.79
4.09

4.89
5.41

6.33
7.06

8.13
9.14

3.21
3.40

4.09
4.44

5.32
5.89

6.84
7.60

8.65
10.00

CCSDS(128,64) 4.32
4.82

6.47
7.30

9.62
10.70

13.80
15.50

18.40
17.90

4.44
4.99

6.66
7.57

9.73
11.00

13.60
15.60

18.30
NE

4.21
4.76

6.62
7.66

10.40
12.20

15.10
17.70

19.40
NE

4.35
4.97

6.82
8.03

10.50
12.30

15.00
17.40

21.00
NE

LDPC(32,16) 3.46
3.61

4.39
4.66

5.60
6.07

7.20
7.87

9.23
10.30

3.62
3.80

4.59
4.91

5.83
6.36

7.45
8.16

9.52
10.70

3.36
3.55

4.38
4.69

5.75
6.21

7.65
8.21

10.10
10.90

3.53
3.74

4.61
4.93

6.01
6.50

7.92
8.44

10.10
11.10

LDPC(96,48) 4.70
5.20

6.73
7.55

9.52
10.70

13.20
14.40

17.30
18.50

5.01
5.70

7.11
8.13

9.92
11.30

13.50
14.70

16.90
17.40

4.71
5.23

6.96
7.89

9.95
11.50

14.20
15.10

18.30
19.10

4.98
5.68

7.16
8.32

10.10
12.00

14.00
14.80

15.80
15.80

(a) (b) (c)

Figure 10: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel on
all the codes from Table 2. We provide the mean and standard deviation as well as the minimum and
maximum improvements.

remain below our performance. We note here, as described in the paper, that combining the methods
by allowing the perturbation of the parity-check matrix at a local minima may allow the discovery of
other better local optimum.

Table 4: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as Eb/N0 = {5}. GA denotes the genetic algorithm of Elkelesh et al. (2019) with k
training iterations.

Channel AWGN
Method BP Our GA k = 75 GA k = 150
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6

CCSDS(128,64) 6.46
7.32

9.61
10.83

13.99
15.43

7.34
8.61

10.48
12.26

14.37
16.00

6.86
7.87

9.95
11.31

13.38
15.56

7.09
8.23

10.40
11.79

14.08
16.04
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Figure 11: Performance of the method on random codes under different sparsity rate initialization p.

Figure 12: Performance of the method on constrained systematic random codes under different
sparsity rate initialization p on the AWGN channel.

I COMPARISON WITH SUCCESSIVE CANCELATION LIST

We provide in Table 5 a comparison with the powerful Polar codes (Arikan, 2008) under SCL
decoding (Tal & Vardy, 2015) (O(LNlog(N))) for very short-length code (32,16) in which SCL is
close to ML decoding. The SCL results are obtained using the implementation of Cassagne et al.
(2019).

We provide the performance of BP and of our method with the same Polar code initialization (BP
(Polar) and Our(Polar)) and with 5G LDPC code initialization (BP (5G LDPC), Our (5G LDPC)).
SCL performance is provided with the corresponding Polar code.

We can observe that even in the extremely short length setting where sparsity is hard to obtain our
method is able to remarkably improve the performance over existing short-length low-density codes
and get close to the ML bound even within very few number of iterations, even with bad initialization.
With good initialization (good sparse code), our method provides state-of-the-art performance.

J BER VS SNR CURVES

We provide standard visualizations of the BER and BLER performance with respect to the perfor-
mance on multiple codes and channels. Figures 15, 14 provide performance on the AWGN and fading
channel, respectively.
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Table 5: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as Eb/N0 = {5}. The first and the second row of the SCL algorithm denote
performance with a list length of 1 and 32 respectively.

Method SCL BP (Polar) Our (Polar) BP (5G LDPC) Our (5G LDPC)
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

(32,16) 6.22
6.45

8.06
8.37

10.28
10.60

4.36
4.64

5.59
6.07

7.18
7.94

5.48
5.76

7.02
7.44

8.92
9.41

6.06
6.57

7.53
8.17

9.23
10.16

6.63
7.11

8.53
8.92

10.36
11.31

(64,32) 7.36
8.10

9.82
10.73

12.98
14.00 - - - - - - 7.59

8.36
9.75
10.50

12.10
13.02

7.87
8.75

10.12
11.17

12.92
13.76

(128,64) 8.49
9.59

11.46
13.12

16.16
17.48 - - - - - - 9.90

12.31
13.20
15.98

16.73
18.06

9.98
12.04

13.27
16.18

17.02
18.66

Figure 13: BER and BLER performance of the method on different codes on the AWGN channel.

K COLUMN WEIGHT DISTRIBUTION

We provide in Figure 15 an analysis of the column weight distribution of the original and learned
parity check matrices on several codes and channel settings. While the method modifies substantially
the distribution for non-sparse codes, BP’s inductive bias seems to push the LDPC codes towards a
non-uniform distribution of the variable nodes’ degree.

L PERFORMANCE ON 5G LDPC CODES

We provide in Figure 16a performance analysis on short state-of-the-art 5G NR LDPC (protograph
based) codes (Richardson & Kudekar, 2018; Ten Brink; 3GPP, 2018).
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Figure 14: BER and BLER performance of the method on different codes on the Fading channel.

(a) (b) (c)

Figure 15: Column weight distribution of the parity check matrices on the (a) BCH(63,45) (b)
POLAR(128,86) and (c) LDPC(121,80) codes. Top row and second row are for the AWGN and
Fading channel, respectively.
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Figure 16: BER and BLER performance of the method on different SOTA 5G LDPC codes.
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