
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FACTOR GRAPH OPTIMIZATION OF ERROR-
CORRECTING CODES FOR BELIEF PROPAGATION
DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The design of optimal linear block codes capable of being efficiently decoded is of
major concern, especially for short block lengths. As near capacity-approaching
codes, Low-Density Parity-Check (LDPC) codes possess several advantages over
other families of codes, the most notable being its efficient decoding via Belief
Propagation. While many LDPC code design methods exist, the development
of efficient sparse codes that meet the constraints of modern short code lengths
and accommodate new channel models remains a challenge. In this work, we
propose for the first time a gradient-based data-driven approach for the design of
sparse codes. We develop locally optimal codes with respect to Belief Propagation
decoding via the learning of the Factor graph under channel noise simulations. This
is performed via a novel complete graph tensor representation of the Belief Propa-
gation algorithm, optimized over finite fields via backpropagation and coupled with
an efficient line-search method. The proposed approach is shown to outperform
the decoding performance of existing popular codes by orders of magnitude and
demonstrates the power of data-driven approaches for code design.

1 INTRODUCTION

Reliable digital communication is of major importance in the modern information age and involves
the design of codes that can be robustly and efficiently decoded despite noisy transmission channels.
Over the last half-century, significant research has been dedicated to the study of capacity-approaching
Error Correcting Codes (ECC) (Shannon, 1948). Despite the initial focus on short and medium-length
linear block codes (Berlekamp, 1974), the development of long channel codes (Forney, 1966; Costello
& Forney, 2007) has emerged as a viable approach to approaching channel capacity (Berrou et al.,
1993; MacKay, 1999; Richardson et al., 2001; Richardson & Urbanke, 2001; Arikan, 2008; Luby
et al., 2001; Kudekar et al., 2011).

While the NP-hard maximum likelihood rule defines the target decoding of a given code, developing
more practical solutions generally relies on theories grounded upon asymptotic analysis over conven-
tional communication channels. However, modern communication systems rely on the design of short
and medium-block-length codes (Liva et al., 2016) and the latest communication settings provide
new types of channels. This is mainly due to emergent applications in the modern wireless realm
requiring the transmission of short data units, such as remote command links, Internet of Things, and
messaging services (De Cola et al., 2011; Boccardi et al., 2014; Paolini et al., 2015; Durisi et al.,
2016; ESTI, 2021). These challenges call for the formulation of data-driven solutions, capable of
adapting to various settings of interest and constraints, generally uncharted by existing theories.

The vast majority of existing machine-learning solutions to the ECC problem concentrate on the
design of neural decoders. The first neural models focused on the implementation of parameterized
versions of the legacy Belief Propagation (BP) decoder (Nachmani et al., 2016; 2018; Lugosch &
Gross, 2017; Nachmani & Wolf, 2019; Buchberger et al., 2020). Recently, state-of-the-art learning-
based de novo decoders have been introduced, borrowing from well-proven architectures from
other domains. A Transformer-based decoder that incorporates the code into the architecture has
been recently proposed by (Choukroun & Wolf, 2022a), outperforming existing methods by sizable
margins and at a fraction of their time complexity. This architecture has been subsequently integrated

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

into a denoising diffusion models paradigm, further improving results (Choukroun & Wolf, 2022b).
Subsequently, a universal neural decoder has been proposed in (Choukroun & Wolf, 2024c), capable
of unified decoding of codes from different families, lengths, and rates. Most recently and related
to our work, (Choukroun & Wolf, 2024a) developed an end-to-end learning framework capable of
co-learning binary linear block codes along with the neural decoder.

However, neural decoding methods require increased computational and memory complexity com-
pared to their well-established classical counterparts. Due to these challenges, and the non-trivial
acceleration and implementation required, neural decoders were never deployed in real-world systems,
as far as we know.

In this work, given the ubiquity and advantages of the Belief Propagation (BP) algorithm (Pearl,
1988; Richardson et al., 2001) for sparse codes, we consider the optimization of codes with respect
to BP via the learning of the underlying factor/Tanner graph. From a graphical probabilistic model
perspective (Koller & Friedman, 2009), BP being a marginalization algorithm, a gradient-based of
a score metric method is given for the structure learning of BP’s underlying Bayesian network in
an end-to-end fashion. As far as we can ascertain, this is the first time a gradient-based data-driven
solution is given for the design of the codes themselves based on a classical decoder. Such a solution
induces a very low overhead (if any) for integration into the existing decoding solutions.

Beyond the conceptual novelty, we make three technical contributions: (i) we formulate the data-
driven optimization objective adapted to the setting of interest (e.g., channel noise, code structure),
(ii) we reformulate BP in a tensor fashion to learn the connectivity of the factor graph through
backpropagation, and (iii) we propose a differentiable and fast optimization approach via a line-
search method adapted to the relaxed binary programming setting. Applied to a wide variety of
codes, our method produces codes that outperform existing codes on various channel noise settings,
demonstrating the power and flexibility of the method in adapting to realistic settings of interest.

2 RELATED WORKS

Neural decoder or data-driven contributions generally focus on short and moderate-length codes for
two main reasons. First, classical decoders reach the capacity of the channel for large codes, and
second, the emergence of short data units applications driven by the Internet of Things (e.g., smart
metering networks, messaging services, etc.) requires effective decoders for short to moderate-length
codes. For example, 5G Polar codes have code lengths of 32 to 1024 (Liva et al., 2016; ESTI, 2021).

Previous work on neural decoders is generally divided into two main classes: model-free and model-
based. Model-free decoders employ general types of neural network architectures (Cammerer et al.,
2017; Gruber et al., 2017; Kim et al., 2018b; Bennatan et al., 2018; Jiang et al., 2019a; Choukroun &
Wolf, 2022a;b; 2024c;b). Model-based decoders implement parameterized versions of classical Belief
Propagation (BP) decoders, where the Tanner graph is unfolded into an NN in which scalar weights
are assigned to each variable edge. This results in an improvement in comparison to the baseline
BP method for short codes (Nachmani et al., 2016; Nachmani & Wolf, 2019; Raviv et al., 2020;
2023; Kwak et al., 2023). While model-based decoders benefit from a strong theoretical background,
the architecture is overly restrictive, which generally enforces its coupling with high-complexity
NN (Nachmani & Wolf, 2021). Also, the improvement gain generally vanishes for more iterations
and longer codewords (Hoydis et al., 2022) and the integration cost remains very high due to both
computational and memory requirements.

While neural decoders show improved performance in various communication settings, there has been
very limited success in the design of novel neural coding methods, which remain impracticable for
deployment (O’Shea & Hoydis, 2017; Kim et al., 2018a; Jiang et al., 2019b). Recently, (Choukroun
& Wolf, 2024a) provided a new differentiable way of designing binary linear block codes (i.e.,
parity-check matrices) for a given neural decoder also showing improved performance with classical
decoders.

Belief-propagation decoding has multiple advantages for LDPC codes (Gallager, 1962; Richardson
& Urbanke, 2001; Richardson et al., 2001). A large number of LDPC code (parity check matrix)
design techniques exist in the literature, depending on the design criterion. Among them, Gallager
(Gallager, 1962) developed the first regular LDPC codes as the concatenations of permuted sub-
matrices. MacKay (MacKay & Neal, 1995) demonstrated the ability of sparse codes to reach near-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

capacity limits via semi-randomly generated matrices. Irregular LDPC codes have been developed
by (Richardson et al., 2001; Luby et al., 2001; Chung et al., 2001) where the decoding threshold
can be optimized via density-evolution. Progressive Edge Growth (Hu et al., 2001; 2005) has been
proposed to design large girth codes. Certain classes of LDPC array codes have been presented
in (Eleftheriou & Olcer, 2002) and LDPC codes with combinatorial design constraints have been
developed in (Vasic & Milenkovic, 2004). Finite geometry codes have been developed in (Lucas
et al., 2000; Kou et al., 2001) and repeat-accumulate codes have been proposed by (Yang et al., 2004;
Jin et al., 2000; Narayanaswami, 2001). However, the classical methods are not data-driven and
are difficult to adapt to the design of codes under constrained settings of interest (e.g., short codes,
modern channels, structure constraints, etc.). Most related to our work are methods for structure
learning (Koller & Friedman, 2009) for Bayesian networks such as the Chow-Liu Algorithm (Chow &
Liu, 1968) or search-based methods (Tian, 2013). Related to greedy search-based methods, Elkelesh
et al. (2019) recently suggested the application of classical genetic algorithms for the discovery of
better IRA codes.

3 BACKGROUND

We assume a standard transmission protocol using a linear block code C. The code is defined by a
generator matrix G ∈ {0, 1}n×k and the parity check matrix H ∈ {0, 1}(n−k)×n is defined such that
HGT = 0 over the order 2 Galois field GF (2). The parity check matrix H entails what is known as
a Tanner graph (Tanner, 1981), which consists of n variable nodes and (n− k) check nodes. The
edges of this bipartite graph correspond to the on-bits of the matrix H .

The input message m ∈ {0, 1}k (column vector) is encoded by G to a codeword c ∈ C ⊂ {0, 1}n
satisfying Hc = H(Gm) = 0 and transmitted via a Binary-Input Symmetric-Output channel, e.g.,
an AWGN channel. Let y denote the channel output represented as y = cs + ε, where cs denotes
the transmission modulation of c (e.g., Binary Phase Shift Keying (BPSK)), and ε is random noise
independent of the transmitted c. The main goal of the decoder fH : Rn → Rn conditioned on the
code (i.e., H) is to provide a soft approximation x̂ = fH(y) of the codeword.

The Belief Propagation algorithm allows the iterative transmission (propagation) of a current code-
word estimate (belief) via a Trellis graph determined according to a factor graph defined by the code
(i.e., the Tanner graph). The factor graph is unrolled into a Trellis graph, initiated with n variable
nodes, and composed of two types of interleaved layers defined by the check/factor nodes and variable
nodes. An illustration of the Tanner graph unrolled to the Trellis graph is given in Figure 1.

As a message-passing algorithm, Belief Propagation operates on the Trellis graph by propagating
the messages from variable nodes to check nodes and from check nodes to variable nodes, in an
alternative and iterative fashion. The input layer generally corresponds to the vector of log-likelihood
ratios (LLR) L ∈ Rn of the channel output y defined as

Lv = log

(
Pr (cv = 1|yv)
Pr (cv = 0|yv)

)
.

Here, we describe ECC’s classical notation of BP with, v ∈ {1, . . . , n} denotes the index cor-
responding to the vth element of the channel output y, for the corresponding bit cv we wish to
recover.

Let xi be the vector of messages that a column/layer in the Trellis graph propagates to the next one.
At the first round of message passing, a variable node type of computation is performed such that

x2k+1
e = x2k+1

(c,v) = Lv +
∑

e′∈N(v)\{(c,v)}

x2k
e′ . (1)

Here, each message indexed by the edge e = (c, v) on the Tanner graph and N(v) =
{(c, v)|H(c, v) = 1}, i.e, the set of all edges in which v participates. By definition x0 = 0
such that the messages are directly determined by the vector L for k = 0.

For even layers, the check layer performs the following

x2k
e = x2k

(c,v) = 2arctanh

 ∏
e′∈N(c)\{(c,v)}

tanh

(
x2k−1
e′

2

) (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: For the Hamming(7,4) Code: (a) parity check matrix, the induced (b) Tanner graph, and (c)
the corresponding unrolled Trellis graph with two iterations, with odd layers in blue and even layers
in red. In (d) we present our approach for structure learning via the learned binary weighting of the
edges of the complete bipartite factor graph unlike the conventional sparse representation.

where N(c) = {(c, v)|H(c, v) = 1} is the set of edges in the Tanner graph in which row c of the
parity check matrix H participates.

The final vth output layer of the BP algorithm, which corresponds to the soft-decision output of the
codeword, is given by

ov = Lv +
∑

e′∈N(v)

x2L
e′

(3)

4 METHOD

The performance of BP is strongly tied to the underlying Tanner graph induced by the code. BP
and its variants are generally implemented over a fixed sparse graph, such that the only degree of
freedom resides in the number of decoding iterations. While several recent contributions (Nachmani
et al., 2016; Nachmani & Wolf, 2019) aim to enhance the BP algorithm by augmenting the Trellis
graph with neural networks, these approaches assume and maintain fixed codes. Here, we propose
optimizing the code for the BP algorithm on a decoding setting of interest. Given a trainable binary
parity check matrix H , we wish to obtain BP-optimized codes by solving the following parameterized
optimization problem

H∗ = argmin
H∈{0,1}(n−k)×n

Em∼Bernk(1/2),ε∼Z,T∈N+
D
(
fH,T

(
ϕ(G(H)m) + ε

)
,m

)
+R(H) (4)

Here, G(H) denotes a generator matrix defined by H (i.e., HGT = 0), ϕ denotes the modulation
function such that cs = ϕ(c), and Z is the channel noise distribution. fH,T denotes the BP decoder
built upon H with T discrete iterations (sampled uniformly from a given set), D denotes the distance
metric of interest, and R denotes the potential hard/soft regularization of interest, e.g., sparsity or
constraints on the code structure.

Several challenges arise from this optimization problem: (i) the optimization is highly non-
differentiable and results in an NP-hard binary non-linear integer programming problem, (ii) the
computation of the codewords c = Gm is both highly non-differentiable (matrix-vector multiplication
over GF (2) in case symmetry is not maintained during the optimization(Richardson & Urbanke,
2001)) and computationally expensive (inverse via Gaussian elimination of H), (iii) the modulation
ϕ(·) can be non-differentiable, and last but most important, (iv) BP assumes a fixed code (i.e., the
factor graph edges) upon which the decoder is implemented.

Learning the Factor graph via Tensor Belief Backpropagation To obtain BP codes, we propose
a structure/Tanner graph learning approach, where the bipartite graph is assumed as complete with
learnable binary-weighted edges. This way, the tensor reformulation of BP weighted by H allows a
differentiable optimization of the Tanner graph itself. The two alternating stages of BP can now be
represented in a differentiable matrix form rather than its static graph formulation, where the variable
layers can be rewritten as

Qij = Li +
∑

j′∈Ci\j

Rj′i ≡ Li +
∑
j′

Rj′iHj′i −Rji , (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: Tensor Belief Propagation
1 function BP(llr, H, iters, eps=1e-7)

// llr is the batched LLR matrix, (B, n)
// H is the binary parity-check matrix, (n-k,n)
// iters is the number of BP iterations

2 H = H.unsqueeze(dim=0).T
3 C = llr.unsqueeze(dim=-1)
4 for t in range(iters) do
5 Q = C if t == 0 else C + sum(R*H,dim=-1).unsqueeze(dim=-1) - R
6 tmp = tanh(0.5*Q)
7 R = 2*atanh(prod(tmp*H+(1-H),dim=1)/tmp)

8 return C.squeeze()+sum(R*H,dim=-1)

where Rij are the check layers, which are now represented as

Rji = 2arctanh

 ∏
i′∈Vj\i

tanh

(
Qi′j

2

)
= 2arctanh

(∏
i′

(
tanh

(
Qi′jHji′

2

)
+ (1−Hji′)

)
/ tanh

(
Qij

2

))
,

(6)

where Ci and Vj correspond to the non-zero elements in column i and row j of H , respectively,
while the ones elements in (1−H) ∈ {0, 1}(n−k)×n satisfy the identity element of multiplication.
Potential zero denominators have not been observed but can be handled via regularization or omission.
As we can observe, BP remains differentiable with respect to H as a composition of differentiable
functions.

We provide in Algorithm 1 the pseudo-code for the tensor formulation of the BP algorithm, imple-
menting Eq. 6 and 5.

Belief Propagation Codes Optimization The tensor reformulation solves the major challenge of
graph learning (challenge (iv)). Challenges (ii) and (iii) are also eliminated in our formulation. First,
since for any given H the conditional independence of error probability under symmetry (Richardson
& Urbanke, 2001) is satisfied for message passing algorithms, it is enough to optimize the zero
codeword only, i.e., c = Gm = 0, removing then any dependency on G in the objective (challenge
(ii)). As a byproduct, we obtain that the optimization problem is invariant to the choice of modulation,
whether differentiable or not (challenge (iii)).

To optimize H (challenge (i)) we relax the NP-hard binary programming problems to an unconstrained
objective where, given a parameter matrix Ω ∈ R(n−k)×n, we have H := H(Ω) = bin(Ω). Here
bin(·) refers to the element-wise binarization operator implemented via the shifted straight-through-
estimator (STE) (Bengio et al., 2013) defined such that

bin(u) = (1− sign(u))/2 , ∂ bin(u)/∂u := −0.51|u|≤1 (7)

Finally, opting for the binary cross-entropy loss (BCE) as the Bit Error rate (BER) discrepancy
measure D = BCE, we obtain the following empirical risk objective

L(Ω) =
T∑

t=1

n∑
i=1

BCE
(
fbin(Ω),t

(
cs + εi

)
, c

)
+R(bin(Ω)) (8)

where cs = ϕ(c) denotes the modulated zero codeword and εi denotes the ith noise sample drawn
from the channel noise distribution. This objective aims to provide optimal decoding on different
numbers of (variable) decoding iterations t (Nachmani et al., 2016).

While highly non-convex, the objective is (sub)differentiable when considering the STE definition
of the gradient (Bengio et al., 2013; Yin et al., 2019) and thus optimizable via classical first-order

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2: Belief Propagation Codes Optimization
1 function Loss(H, x, y, BPiters=5)

// H is the initial binary parity-check matrix, (n-k,n)
// BPiters is the number of BP iterations

2 return BCE(BP(computeLLR(y), H, BPiters),x)

3 function BPCodesOptimization(H, iters)
// H is the initial binary parity-check matrix, (n-k,n)
// iters is the number of optimization iterations

4 Ω = 1-2*H
5 for t in range(iters) do
6 x,y = getData()
7 Loss(bin(Ω),x,y).backward()
8 lambdas = Ω/Ω.grad
9 lambdas = sorted(lambdas[lambdas>0].view(-1))[:50]

10 Ω = Ω - Ω.grad*lambdas[argmin([Loss(bin(Ω -lambda*Ω.grad),x,y)
for lambda in lambdas]]

11 if converged: break

12 return bin(Ω)

methods. Since H is binary, only changes in the sign of Ω are relevant for the optimization, so most
gradient descent iterations remain ineffective in reducing the objective using conventional small
learning-rate regimes. Thus, given the gradient ∇ΩL computed on sufficiently representative batch,
we propose a line-search procedure capable of finding the optimal step size.

Binary Line-Search Conventional first-order optimization methods with small learning rate
regimes have two major drawbacks with binarization (Rastegari et al., 2016; Courbariaux et al.,
2016). First, they are generally slow since only gradient steps modifying the sign of the binarized
tensor induce a modification of the loss. Second, they have difficulties in converging to local minima
because of oscillating behavior around zero.

In general, efficient line search methods (Nocedal & Wright, 2006) assume local convexity or a smooth
objective (Wolf, 1978) or, alternatively, apply exhaustive search on a given interval. Since this is not
our case, we propose a novel efficient grid-search approach optimized to our binary programming
setting. While classical grid search methods look for the optimal step size on handcrafted predefined
sample points, in our binary setting we can search only for the step sizes inducing a flip of the sign in
Ω, provably limiting the maximum number of relevant grid samples to n(n−k). Thus, the line-search
problem is now given by

λ∗ = argmin
λ∈IΩ

L(Ω− λ∇ΩL), IΩ = {sij =
(Ω)ij

(∇ΩL)ij
|si > 0} , (9)

which corresponds to the (parallelizable) objective evaluation on the obtained grid. The same
formulation can support other more practical line-search objectives instead of the cross-entropy loss
L, such as the non-differentiable BER or Frame Error Rate (FER) instead of the Bayesian BCE loss.

Training The optimization parameters are the following: the initial H (i.e., initial Ω), the maximum
number of optimization steps (if convergence is not reached), the number and quality of the data
samples, the grid search length, and the number of BP iterations.

We assume that an initial H is given by the user as the code to be improved. The number of
optimization steps is set to 20 iterations. The training noise is sampled randomly per batch in the
{3, . . . , 7} normalized SNR (i.e. Eb/N0) range but can be modified according to the noise setting
of interest. The number of data samples per optimization iteration is set to 4.9M for every code as
sufficient gradient estimation, and the data samples are required to have non-zero syndrome. Because
of computational constraints, the number of BP iterations during training is fixed and set to 5, while
other ranges or values of interest can be used instead. For faster optimization, the grid search is
heuristically restricted to the first 50 smallest step sizes as the optimal step size is generally in the
vicinity of the working point (Appendix C) . Training and experiments are performed on 8× 12GB
GeForce RTX 2080 Ti GPUs and require 2.96 minutes on average per optimization step.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. PEGX means
the degree of each node is of X% under the Progressive Edge Growth construction.

Channel AWGN Fading Bursting
Method BP Our BP Our BP Our
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

BCH(63,45) 4.06
4.21

4.91
5.24

6.04
6.59

5.44
5.70

6.93
7.35

8.60
9.16

3.09
3.13

3.46
3.55

3.90
4.04

3.96
4.10

4.58
4.80

5.27
5.56

3.60
3.67

4.32
4.52

5.19
5.59

4.05
4.21

5.07
5.40

6.27
6.85

CCSDS(128,64) 6.46
7.32

9.61
10.83

13.99
15.43

7.34
8.61

10.48
12.26

14.37
16.00

5.72
6.43

7.42
8.29

9.47
10.28

6.73
8.05

8.45
10.07

10.45
12.37

5.29
5.98

7.81
8.85

11.25
12.53

6.23
7.39

8.80
10.43

11.90
13.28

LDPC(121,60) 4.81
5.31

7.17
7.96

10.75
11.85

7.70
8.86

10.87
11.91

14.25
14.41

4.10
4.42

5.23
5.61

6.68
7.04

6.68
7.71

8.47
9.67

10.50
11.76

3.97
4.31

5.75
6.37

8.40
9.25

6.23
7.26

8.89
10.03

11.98
12.88

LDPC(121,80) 6.59
7.35

9.68
10.94

13.43
15.46

7.77
8.75

11.21
12.45

15.06
15.67

4.60
4.97

5.80
6.29

7.22
7.82

5.55
6.25

6.90
7.80

8.36
9.47

5.30
5.81

7.60
8.50

10.66
12.15

6.23
6.99

8.87
10.09

12.19
13.74

LDPC(128,64) 3.66
4.00

4.65
5.16

5.80
6.42

5.54
6.56

7.37
8.70

9.44
10.81

3.22
3.51

3.80
4.18

4.44
4.84

4.86
5.64

5.94
6.85

7.15
8.14

3.23
3.48

4.08
4.51

5.09
5.66

3.72
4.13

5.00
5.72

6.54
7.66

LDPC(32,16) 4.36
4.64

5.59
6.07

7.18
7.94

5.48
5.76

7.02
7.44

8.92
9.41

4.03
4.29

4.70
5.06

5.47
5.90

5.26
5.43

6.02
6.23

6.82
6.97

3.88
4.09

4.89
5.26

6.18
6.76

4.77
5.01

6.02
6.35

7.52
7.96

LDPC(96,48) 6.73
7.50

9.48
10.61

12.98
14.26

7.22
8.29

9.96
11.12

13.37
14.06

3.83
4.17

4.57
4.94

5.35
5.73

5.37
6.14

6.51
7.38

7.71
8.65

5.68
6.33

7.94
8.91

10.90
11.99

5.90
6.71

8.19
9.28

10.91
11.75

LTE(132,40) 2.94
3.37

3.32
3.79

3.57
4.09

3.25
3.93

3.71
4.49

4.04
4.89

3.17
3.60

3.45
3.82

3.67
4.01

4.49
5.32

4.99
5.81

5.47
6.31

2.75
3.17

3.17
3.62

3.47
3.96

2.99
3.53

3.44
4.03

3.78
4.41

MACKAY(96,48) 6.75
7.59

9.45
10.52

12.85
14.09

7.03
7.99

9.63
10.97

12.78
14.05

6.28
7.04

7.86
8.76

9.55
10.64

6.53
7.47

8.06
9.32

9.77
11.19

5.72
6.39

7.97
8.90

10.81
11.91

5.95
6.82

8.23
9.41

10.91
12.71

POLAR(128,86) 3.76
4.02

4.17
4.67

4.58
5.38

4.83
5.37

5.87
6.88

6.58
8.10

3.15
3.28

3.53
3.73

3.91
4.18

3.64
3.92

4.28
4.70

4.94
5.52

3.48
3.65

3.96
4.31

4.37
4.97

3.69
3.87

4.51
4.91

5.18
5.91

RS(60,52) 4.41
4.54

5.32
5.52

6.41
6.64

5.02
5.07

6.38
6.47

7.99
8.12

3.11
3.13

3.41
3.43

3.77
3.81

3.37
3.38

3.73
3.75

4.12
4.15

3.85
3.91

4.58
4.72

5.44
5.67

4.17
4.21

5.18
5.27

6.40
6.56

LDPC PEG2(64,32) 4.38
4.38

5.12
5.13

6.04
6.04

4.45
4.44

5.19
5.19

6.10
6.10

4.08
4.08

4.44
4.44

4.81
4.81

4.10
4.10

4.46
4.47

4.85
4.85

4.07
4.06

4.69
4.69

5.43
5.43

4.07
4.06

4.70
4.69

5.43
5.44

LDPC PEG5(64,32) 6.02
6.63

8.20
9.06

10.95
12.30

6.53
7.13

8.73
9.48

11.56
12.20

5.63
6.19

6.86
7.52

8.31
9.02

6.22
6.96

7.48
8.34

8.82
9.85

5.18
5.68

6.97
7.75

9.34
10.19

5.59
6.12

7.41
8.06

9.51
10.13

LDPC PEG10(64,32) 3.98
4.27

5.17
5.77

6.70
7.67

5.56
6.25

7.22
8.28

9.13
10.59

3.52
3.71

4.18
4.47

4.95
5.30

5.02
5.60

6.00
6.72

7.11
7.90

3.48
3.67

4.47
4.90

5.75
6.46

4.26
4.73

5.50
6.22

7.01
8.01

The full training algorithm (pseudocode) is given in Algorithm 2. Given an initial parity check matrix,
the algorithm optimizes H iteratively upon convergence. At each iteration, after computing the
gradient on sufficiently large statistics (line 7), the line search procedure (line 10) searches for the
optimal step size among those that flip the values of H (line 9).

5 EXPERIMENTS

We evaluate our framework on five classes of linear codes: various Low-Density Parity Check (LDPC)
codes (Gallager, 1962; Abu-Surra et al., 2010), Polar codes (Arikan, 2008), Reed Solomon codes
(Reed & Solomon, 1960), Bose–Chaudhuri–Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri,
1960) and random codes. All the parity check matrices are taken from (Helmling et al., 2019) except
the LDPC codes created using the popular Progressive Edge Growth framework (Hu et al., 2005;
MacKay).

We consider three types of channel noise under BPSK modulation. We first test our framework
with the canonical AWGN channel given as y = cs + ε with ε ∼ N (0, σIn). We also consider the
Rayleigh fading channel, where y = h⊙ cs + ε, with h the iid Rayleigh distributed fading vector
with coefficient 1 and ε the regular AWGN noise, where we assume ideal channel state information.
Finally, we consider the AWGN channel with Gaussian mixture channel (also referred to as bursty
noise (Kurmukova & Gunduz, 2024)) simulating wireless channel interference as y = cs + ε + ζ
with ε the AWGN and ζi ∼ N (0,

√
2σ) with probability ρ = 0.1 and ζi = 0 with probability 1− ρ.

The results are reported as negative natural logarithm bit error rates (BER) for three different
normalized SNR values (Eb/N0), following the conventional testing benchmark, e.g., (Nachmani &
Wolf, 2019; Choukroun & Wolf, 2022a). BP-based results are obtained after ℓ = 5 BP iterations in
the first row and ℓ = 15 in the second row of the results tables. During testing, at least 105 random

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

Figure 2: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel
on the sparse codes only. We provide the mean and standard deviation as well as the minimum and
maximum improvements.

codewords are decoded, to obtain at least 50 frames with errors at each SNR value. For this section,
we performed a small hyperparameter search as reported in Appendix A, where the final code is
selected to have the lowest average BER on the SNR test range.

The results are provided in Table 1, where our method means BP applied on the learned code
initialized by the given classical code. We also provide in Appendix B the same table with a broader
SNR range (Eb/N0 ∈ {3, . . . , 7}). We provide in Appendix J the standard visualization of the BER
and BLER vs Eb/N0 curves on several codes. We further show the performance of the proposed
method on the state-of-the-art 5G NR LDPC short blocklenght codes (Richardson & Kudekar, 2018;
3GPP, 2018) We provide the overall improvement statistics (i.e., mean, std, min, max) in dB on
all the sparse codes in Figure 2 and we extend the analysis to all the codes in Appendix F. For
completeness, we provide in Appendix H a comparison with the genetic algorithm of Elkelesh et al.
(2019) where our method demonstrates much better performance while being faster by orders of
magnitude. We also show in Appendix I that our method can outperform the performance of the SCL
algorithm (Tal & Vardy, 2015) even on very short codes where the performances are close to ML
decoding.

Evidently, our method improves by large margins all code families on the three different channel
noise scenarios and with both numbers of decoding iterations, demonstrating the capacity of the
framework to provide improved codes on multiple settings of interest.

6 ANALYSIS

Initialization and Random Codes We provide in Figure 3 the performance of the proposed method
on random codes initialized with different sparsity rates. The parity check matrix is initialized in
a systematic form H = [In−k, P] for full rank initialization, where P ∼ Bern(n−k)×k(p). We
can observe that the framework can greatly improve the performance of the original random code.
Most importantly, we can observe that different initializations provide convergence to different local
optima and that better initialization generally induces convergence to a better minimum. Performance
on other code lengths is provided in Appendix G. Finally, good initialization (i.e., (large) well-
performing sparse codes under BP decoding) requires perturbation at initialization or during training
(c.f., Appendix A) in order to get extracted from local minima.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Performance of the method on random codes under different sparsity rate initialization p.

Figure 4: Performance of the method on constrained systematic random codes under different sparsity
rate initialization p on the AWGN channel.

Constrained Codes In Figure 4 we provide the performance of the method on constrained system-
atic random codes as described in the previous paragraph, while here, we constrain them to maintain
their systematic form during the optimization, i.e., only the parity matrix elements of P are optimized
(via Ω). The optimization is performed by backpropagating over the P tensor only, similarly to having
a hard structure constraint on the identity part of H . While maintaining a structure of interest, we can
observe this regularization can further improve the convergence quality (e.g., p = 0.1) compared to
the unconstrained setting of Figure 3. Performance on other code lengths is provided in Appendix G.
Any constraint (e.g., dual diagonal) can be similarly added to the code.

In Figure 5 we present the sparsification of the codes created by the framework. Here, ∆ =
100(Sb − So)/Sb represents the sparsity ratio, with Sb and So being the sparsity of the baseline
code and our code, respectively. We can observe that optimization always provides sparser codes.
Nevertheless, we also observed that the optimization does not modify the girth of the code. We
provide in Appendix F the column weights distribution of the initial and learned parity check matrices.

In Figure 6 we present the performance of the method on random codes with sparsity constraint,
i.e., R(H) = λ∥H∥1, with λ ∈ R+. We can observe that adding a sparsity constraint is generally
not profitable since the optimization over BP already induces sparse codes, suggesting that gradient
descent’s inductive bias and BP have similar sparsity enforcement effects.

Learned Codes Visualization We depict in Figure 7 the learned codes via the visualization of the
parity-check matrices. We can observe that for low-density codes the modifications remain small,

Figure 5: Sparsity reduction of
the proposed codes.

Figure 6: Performance of the method with L1 regularization for
different values of the regularization factor λ for random codes
with p = 0.25 on the AWGN channel.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 7: Visualization of the original (first row) and the learned parity check matrices (second row)
for (a) LDPC(32,16), (b) LDPC(128,64), (c) BCH(63,45) and (d) Random(64,32,p = 0.5). "PCM
iter X" denotes the final iteration Parity Check Matrix of the optimization.

since the code is already near local optimum, while for denser codes the change can be substantial.
It further shows SGD’s inductive bias seems not to impact BP inductive bias assuming sparse (i.e.,
no-loop or tree) connections. Also, the optimized codes tend to be more sparse than the original.

We provide in Appendix C visualizations of the line search optimization, demonstrating the high
non-convexity and the proximity of the optimum to the current estimate. We provide in Appendix D
statistics on convergence rates and typical convergence curves demonstrating the fast and monotonic
convergence. Finally, we provide in Appendix E the performance of the learned code on the efficient
Min-Sum approximation of the BP algorithm and show that the learned code outperforms the
baseline codes over the Min-Sum framework as well.

7 CONCLUSIONS

We present a novel gradient-based optimization method of binary linear block codes for the Belief
Propagation algorithm. The proposed framework enables the differentiable optimization of the factor
graph via weighted tensor representation. The optimization is efficiently carried out via a tailor-made
grid search procedure that is aware of the binary constraint of the optimization problem.

A common criticism of ML-based ECC is that the neural decoder cannot be deployed directly without
the application of massive deep-learning acceleration methods. Here, we show that the code can
be designed efficiently in a data-driven fashion on differentiable formulations of classical decoders.
The optimization of codes may open the door to the establishment of new industry standards and
the creation of new families of codes. Future work includes the development of more efficient
optimization methods, able to define better initializations and to escape bad local minima.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

3GPP. 5g nr multiplexing and channel coding (ts 38.212). https://portal.3gpp.org, 2018.

Shadi Abu-Surra, David DeClercq, Dariush Divsalar, and William E Ryan. Trapping set enumerators
for specific ldpc codes. In 2010 Information Theory and Applications Workshop (ITA), pp. 1–5.
IEEE, 2010.

Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes. In 2008
IEEE International Symposium on Information Theory, pp. 1173–1177. IEEE, 2008.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep learning for decoding of linear codes-a
syndrome-based approach. In 2018 IEEE International Symposium on Information Theory (ISIT),
pp. 1595–1599. IEEE, 2018.

Elwyn R Berlekamp. Key papers in the development of coding theory. (No Title), 1974.

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In Proceedings of ICC’93-IEEE International Conference
on Communications, volume 2, pp. 1064–1070. IEEE, 1993.

Federico Boccardi, Robert W Heath, Angel Lozano, Thomas L Marzetta, and Petar Popovski. Five
disruptive technology directions for 5g. IEEE communications magazine, 52(2):74–80, 2014.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and control, 3(1):68–79, 1960.

Andreas Buchberger, Christian Häger, Henry D Pfister, Laurent Schmalen, et al. Learned decimation
for neural belief propagation decoders. arXiv preprint arXiv:2011.02161, 2020.

Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan ten Brink. Scaling deep learning-
based decoding of polar codes via partitioning. In GLOBECOM 2017-2017 IEEE Global Commu-
nications Conference, pp. 1–6. IEEE, 2017.

A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage, D. Barthou,
T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. Aff3ct: A fast forward error correction
toolbox! Elsevier SoftwareX, 10:100345, October 2019. ISSN 2352-7110. doi: https://doi.
org/10.1016/j.softx.2019.100345. URL http://www.sciencedirect.com/science/
article/pii/S2352711019300457.

Yoni Choukroun and Lior Wolf. Error correction code transformer. Advances in Neural Information
Processing Systems (NeurIPS), 2022a.

Yoni Choukroun and Lior Wolf. Denoising diffusion error correction codes. In The Eleventh
International Conference on Learning Representations, 2022b.

Yoni Choukroun and Lior Wolf. Learning linear block error correction codes. In The Forty-first
International Conference on Machine Learning, 2024a.

Yoni Choukroun and Lior Wolf. Deep quantum error correction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 64–72, 2024b.

Yoni Choukroun and Lior Wolf. A foundation model for error correction codes. In The Twelfth
International Conference on Learning Representations, 2024c. URL https://openreview.
net/forum?id=7KDuQPrAF3.

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462–467, 1968.

Sae-Young Chung, G David Forney, Thomas J Richardson, and Rüdiger Urbanke. On the design of
low-density parity-check codes within 0.0045 db of the shannon limit. IEEE Communications
letters, 5(2):58–60, 2001.

11

http://www.sciencedirect.com/science/article/pii/S2352711019300457
http://www.sciencedirect.com/science/article/pii/S2352711019300457
https://openreview.net/forum?id=7KDuQPrAF3
https://openreview.net/forum?id=7KDuQPrAF3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Daniel J Costello and G David Forney. Channel coding: The road to channel capacity. Proceedings
of the IEEE, 95(6):1150–1177, 2007.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Tomaso De Cola, Enrico Paolini, Gianluigi Liva, and Gian Paolo Calzolari. Reliability options
for data communications in the future deep-space missions. Proceedings of the IEEE, 99(11):
2056–2074, 2011.

Giuseppe Durisi, Tobias Koch, and Petar Popovski. Toward massive, ultrareliable, and low-latency
wireless communication with short packets. Proceedings of the IEEE, 104(9):1711–1726, 2016.

Evangelos Eleftheriou and Sedat Olcer. Low-density parity-check codes for digital subscriber lines.
In 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002
(Cat. No. 02CH37333), volume 3, pp. 1752–1757. IEEE, 2002.

Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, Laurent Schmalen, and Stephan Ten Brink.
Decoder-in-the-loop: Genetic optimization-based ldpc code design. IEEE access, 7:141161–
141170, 2019.

ESTI. 5g nr multiplexing and channel coding. etsi 3gpp ts 38.212. https://www.
etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_
138212v160200p.pdf, 2021.

GD Forney. Concatenated codes. cambridge. Massachusetts: Massachusetts Institute of Technology,
1966.

Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):
21–28, 1962.

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. On deep learning-based
channel decoding. In 2017 51st Annual Conference on Information Sciences and Systems (CISS),
pp. 1–6. IEEE, 2017.

Michael Helmling, Stefan Scholl, Florian Gensheimer, Tobias Dietz, Kira Kraft, Stefan Ruzika, and
Norbert Wehn. Database of Channel Codes and ML Simulation Results. www.uni-kl.de/
channel-codes, 2019.

Jakob Hoydis, Sebastian Cammerer, Fayçal Ait Aoudia, Avinash Vem, Nikolaus Binder, Guillermo
Marcus, and Alexander Keller. Sionna: An open-source library for next-generation physical layer
research. arXiv preprint, Mar. 2022.

Xiao-Yu Hu, Evangelos Eleftheriou, and D-M Arnold. Progressive edge-growth tanner graphs. In
GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270), volume 2,
pp. 995–1001. IEEE, 2001.

Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter-Michael Arnold. Regular and irregular progressive
edge-growth tanner graphs. IEEE transactions on information theory, 51(1):386–398, 2005.

Yihan Jiang, Sreeram Kannan, Hyeji Kim, Sewoong Oh, Himanshu Asnani, and Pramod Viswanath.
Deepturbo: Deep turbo decoder. In 2019 IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE, 2019a.

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels.
Advances in neural information processing systems, 32, 2019b.

Hui Jin, Aamod Khandekar, Robert McEliece, et al. Irregular repeat-accumulate codes. In Proc. 2nd
Int. Symp. Turbo codes and related topics, pp. 1–8. Citeseer, 2000.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feedback
codes via deep learning. In Advances in Neural Information Processing Systems (NIPS), pp. 9436–
9446, 2018a.

12

https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
www.uni-kl.de/channel-codes
www.uni-kl.de/channel-codes

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Communication algorithms via deep learning. In Sixth International Conference on Learning
Representations (ICLR), 2018b.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Yu Kou, Shu Lin, and Marc PC Fossorier. Low-density parity-check codes based on finite geometries:
a rediscovery and new results. IEEE Transactions on Information theory, 47(7):2711–2736, 2001.

Shrinivas Kudekar, Thomas J Richardson, and Rüdiger L Urbanke. Threshold saturation via spatial
coupling: Why convolutional ldpc ensembles perform so well over the bec. IEEE Transactions on
Information Theory, 57(2):803–834, 2011.

Anastasiia Kurmukova and Deniz Gunduz. Friendly attacks to improve channel coding reliability. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13292–13300, 2024.

Hee-Youl Kwak, Dae-Young Yun, Yongjune Kim, Sang-Hyo Kim, and Jong-Seon No. Boosting
learning for ldpc codes to improve the error-floor performance. arXiv preprint arXiv:2310.07194,
2023.

Gianluigi Liva, Lorenzo Gaudio, Tudor Ninacs, and Thomas Jerkovits. Code design for short blocks:
A survey. arXiv preprint arXiv:1610.00873, 2016.

Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE Transactions on information
Theory, 47(2):585–598, 2001.

Rainer Lucas, Marc PC Fossorier, Yu Kou, and Shu Lin. Iterative decoding of one-step majority
logic deductible codes based on belief propagation. IEEE Transactions on Communications, 48(6):
931–937, 2000.

Loren Lugosch and Warren J Gross. Neural offset min-sum decoding. In 2017 IEEE International
Symposium on Information Theory (ISIT), pp. 1361–1365. IEEE, 2017.

David MacKay. Progressive edge growth implementation. https://inference.org.uk/
mackay/PEG_ECC.html.

David JC MacKay. Good error-correcting codes based on very sparse matrices. IEEE transactions
on Information Theory, 45(2):399–431, 1999.

David JC MacKay and Radford M Neal. Good codes based on very sparse matrices. In IMA
International Conference on Cryptography and Coding, pp. 100–111. Springer, 1995.

Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. In Advances in
Neural Information Processing Systems, pp. 2326–2336, 2019.

Eliya Nachmani and Lior Wolf. Autoregressive belief propagation for decoding block codes. arXiv
preprint arXiv:2103.11780, 2021.

Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 341–346. IEEE, 2016.

Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David Burshtein, and Yair Be’ery.
Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected Topics in
Signal Processing, 12(1):119–131, 2018.

Ravi Narayanaswami. Coded modulation with low density parity check codes. PhD thesis, Texas
A&M University, 2001.

Jorge Nocedal and Stephen J. Wright. Line Search Methods, pp. 30–65. Springer New York,
New York, NY, 2006. ISBN 978-0-387-40065-5. doi: 10.1007/978-0-387-40065-5_3. URL
https://doi.org/10.1007/978-0-387-40065-5_3.

13

https://inference.org.uk/mackay/PEG_ECC.html
https://inference.org.uk/mackay/PEG_ECC.html
https://doi.org/10.1007/978-0-387-40065-5_3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Timothy J O’Shea and Jakob Hoydis. An introduction to machine learning communications systems.
arXiv preprint arXiv:1702.00832, 2017.

Enrico Paolini, Cedomir Stefanovic, Gianluigi Liva, and Petar Popovski. Coded random access:
Applying codes on graphs to design random access protocols. IEEE Communications Magazine,
53(6):144–150, 2015.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Nir Raviv, Avi Caciularu, Tomer Raviv, Jacob Goldberger, and Yair Be’ery. perm2vec: Graph
permutation selection for decoding of error correction codes using self-attention. arXiv preprint
arXiv:2002.02315, 2020.

Tomer Raviv, Alon Goldmann, Ofek Vayner, Yair Be’ery, and Nir Shlezinger. Crc-aided learned
ensembles of belief-propagation polar decoders. arXiv preprint arXiv:2301.06060, 2023.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300–304, 1960.

Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density parity-check codes under
message-passing decoding. IEEE Transactions on information theory, 47(2):599–618, 2001.

Thomas J Richardson, Mohammad Amin Shokrollahi, and Rüdiger L Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE transactions on information theory,
47(2):619–637, 2001.

Tom Richardson and Shrinivas Kudekar. Design of low-density parity check codes for 5g new radio.
IEEE Communications Magazine, 56(3):28–34, 2018.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Ido Tal and Alexander Vardy. List decoding of polar codes. IEEE Transactions on Information
Theory, 61(5):2213–2226, 2015.

R Tanner. A recursive approach to low complexity codes. IEEE Transactions on information theory,
27(5):533–547, 1981.

Stephan Ten Brink. 5g ldpc codes code construction and performance. https://webdemo.inue.uni-
stuttgart.de/webdemos/08research/5GLDPCCodes/index.php?id = 0.

Jin Tian. A branch-and-bound algorithm for mdl learning bayesian networks. arXiv preprint
arXiv:1301.3897, 2013.

Bane Vasic and Olgica Milenkovic. Combinatorial constructions of low-density parity-check codes for
iterative decoding. IEEE Transactions on information theory, 50(6):1156–1176, 2004.

Jack Wolf. Efficient maximum likelihood decoding of linear block codes using a trellis. IEEE
Transactions on Information Theory, 24(1):76–80, 1978.

Michael Yang, William E Ryan, and Yan Li. Design of efficiently encodable moderate-length high-rate
irregular ldpc codes. IEEE Transactions on Communications, 52(4):564–571, 2004.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A HYPER-PARAMETER TUNING

Under the problem’s stochastic optimization, we provide here the different modifications used to
obtain better performance. The first set of training/optimization hyperparameters is the Eb/N0 range
defined as (u, 7) with u ∈ {3, 4, 5}. The second set of hyperparameters is the data sampling, where
we experimented with random data (i.e., classical setting) and data with non-zero syndromes only.
Finally, for better backpropagation, we also experimented with a soft approximation H̃ of the binary
H during the optimization, defined as

H̃ij =

{
(−1)zϵ, if Hij = 0
1, else

where z ∼ Bern(0.5) and ϵ is a small scalar (10−7 in our experiments). We note we only used a size
15 random subset of all the possible permutations of the hyperparameters mentioned above.

B MORE SNR RESULTS

We provide results on a larger range of SNRs in Table 2.

Table 2: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold.

Channel AWGN Fading Bursting
Method BP Our BP Our BP Our
Eb/N0 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

BCH(63,45) 3.35
3.40

4.06
4.21

4.91
5.24

6.04
6.59

7.47
8.35

4.23
4.36

5.44
5.70

6.93
7.35

8.60
9.16

10.27
11.10

2.77
2.79

3.09
3.13

3.46
3.55

3.90
4.04

4.37
4.61

3.42
3.50

3.96
4.10

4.58
4.80

5.27
5.56

5.99
6.36

3.00
3.02

3.60
3.67

4.32
4.52

5.19
5.59

6.25
6.93

3.24
3.31

4.05
4.21

5.07
5.40

6.27
6.85

7.67
8.55

CCSDS(128,64) 4.32
4.82

6.46
7.32

9.61
10.83

13.99
15.43

18.27
18.51

4.99
5.80

7.34
8.61

10.48
12.26

14.37
16.00

17.38
18.15

4.37
4.89

5.72
6.43

7.42
8.29

9.47
10.28

11.84
12.88

5.22
6.22

6.73
8.05

8.45
10.07

10.45
12.37

12.36
14.87

3.62
3.97

5.29
5.98

7.81
8.85

11.25
12.53

15.59
17.10

4.32
5.05

6.23
7.39

8.80
10.43

11.90
13.28

14.76
15.56

LDPC(121,60) 3.33
3.53

4.81
5.31

7.17
7.96

10.75
11.85

15.69
17.01

5.29
6.18

7.70
8.86

10.87
11.91

14.25
14.41

16.82
17.04

3.24
3.44

4.10
4.42

5.23
5.61

6.68
7.04

8.56
8.77

5.18
6.04

6.68
7.71

8.47
9.67

10.50
11.76

12.31
14.21

2.87
2.98

3.97
4.31

5.75
6.37

8.40
9.25

12.16
13.10

4.32
5.02

6.23
7.26

8.89
10.03

11.98
12.88

14.91
15.14

LDPC(121,80) 4.50
4.85

6.59
7.35

9.68
10.94

13.43
15.46

18.51
19.61

5.28
5.85

7.77
8.75

11.21
12.45

15.06
15.67

18.40
18.30

3.67
3.89

4.60
4.97

5.80
6.29

7.22
7.82

8.95
9.58

4.42
4.89

5.55
6.25

6.90
7.80

8.36
9.47

10.00
11.21

3.74
3.94

5.30
5.81

7.60
8.50

10.66
12.15

14.88
16.45

4.32
4.73

6.23
6.99

8.87
10.09

12.19
13.74

16.31
17.55

LDPC(128,64) 2.88
3.04

3.66
4.00

4.65
5.16

5.80
6.42

7.03
7.77

4.07
4.71

5.54
6.56

7.37
8.70

9.44
10.81

11.71
12.92

2.73
2.90

3.22
3.51

3.80
4.18

4.44
4.84

5.14
5.54

3.95
4.55

4.86
5.64

5.94
6.85

7.15
8.14

8.38
9.59

2.58
2.68

3.23
3.48

4.08
4.51

5.09
5.66

6.21
6.88

2.80
2.97

3.72
4.13

5.00
5.72

6.54
7.66

8.30
9.86

LDPC(32,16) 3.45
3.59

4.36
4.64

5.59
6.07

7.18
7.94

9.19
10.23

4.29
4.47

5.48
5.76

7.02
7.44

8.92
9.41

11.23
12.03

3.44
3.62

4.03
4.29

4.70
5.06

5.47
5.90

6.31
6.83

4.53
4.67

5.26
5.43

6.02
6.23

6.82
6.97

7.61
7.81

3.10
3.21

3.88
4.09

4.89
5.26

6.18
6.76

7.82
8.58

3.78
3.93

4.77
5.01

6.02
6.35

7.52
7.96

9.22
9.72

LDPC(96,48) 4.72
5.20

6.73
7.50

9.48
10.61

12.98
14.26

16.87
17.80

5.17
5.85

7.22
8.29

9.96
11.12

13.37
14.06

16.45
17.19

3.19
3.44

3.83
4.17

4.57
4.94

5.35
5.73

6.17
6.58

4.38
4.99

5.37
6.14

6.51
7.38

7.71
8.65

8.94
9.77

4.03
4.40

5.68
6.33

7.94
8.91

10.90
11.99

14.27
15.55

4.23
4.71

5.90
6.71

8.19
9.28

10.91
11.75

13.61
14.06

LTE(132,40) 2.49
2.85

2.94
3.37

3.32
3.79

3.57
4.09

3.81
4.32

2.72
3.26

3.25
3.93

3.71
4.49

4.04
4.89

4.36
5.22

2.82
3.29

3.17
3.60

3.45
3.82

3.67
4.01

3.89
4.21

3.97
4.78

4.49
5.32

4.99
5.81

5.47
6.31

5.96
6.84

2.30
2.63

2.75
3.17

3.17
3.62

3.47
3.96

3.70
4.19

2.48
2.92

2.99
3.53

3.44
4.03

3.78
4.41

4.05
4.70

MACKAY(96,48) 4.77
5.28

6.75
7.59

9.45
10.52

12.85
14.09

16.37
17.43

5.03
5.63

7.03
7.99

9.63
10.97

12.78
14.05

16.11
17.49

4.98
5.55

6.28
7.04

7.86
8.76

9.55
10.64

11.30
12.58

5.18
5.93

6.53
7.47

8.06
9.32

9.77
11.19

11.58
13.14

4.08
4.47

5.72
6.39

7.97
8.90

10.81
11.91

13.92
15.23

4.28
4.79

5.95
6.82

8.23
9.41

10.91
12.71

14.02
15.81

POLAR(128,86) 3.25
3.36

3.76
4.02

4.17
4.67

4.58
5.38

5.12
6.19

3.72
3.96

4.83
5.37

5.87
6.88

6.58
8.10

7.21
9.00

2.80
2.87

3.15
3.28

3.53
3.73

3.91
4.18

4.26
4.60

3.10
3.26

3.64
3.92

4.28
4.70

4.94
5.52

5.58
6.30

2.95
3.02

3.48
3.65

3.96
4.31

4.37
4.97

4.78
5.66

2.96
3.03

3.69
3.87

4.51
4.91

5.18
5.91

5.73
6.88

RS(60,52) 3.65
3.70

4.41
4.54

5.32
5.52

6.41
6.64

7.80
8.04

3.98
4.00

5.02
5.07

6.38
6.47

7.99
8.12

9.73
9.80

2.86
2.87

3.11
3.13

3.41
3.43

3.77
3.81

4.16
4.24

3.05
3.06

3.37
3.38

3.73
3.75

4.12
4.15

4.53
4.56

3.26
3.27

3.85
3.91

4.58
4.72

5.44
5.67

6.43
6.78

3.42
3.42

4.17
4.21

5.18
5.27

6.40
6.56

7.75
8.01

PGE2(64,32) 3.78
3.78

4.38
4.38

5.12
5.13

6.04
6.04

7.17
7.16

3.84
3.84

4.45
4.44

5.19
5.19

6.10
6.10

7.22
7.23

3.74
3.74

4.08
4.08

4.44
4.44

4.81
4.81

5.20
5.20

3.75
3.75

4.10
4.10

4.46
4.47

4.85
4.85

5.24
5.24

3.54
3.54

4.07
4.06

4.69
4.69

5.43
5.43

6.29
6.29

3.54
3.54

4.07
4.06

4.70
4.69

5.43
5.44

6.30
6.30

PGE5(64,32) 4.41
4.78

6.02
6.63

8.20
9.06

10.95
12.30

14.40
15.75

4.82
5.26

6.53
7.13

8.73
9.48

11.56
12.20

14.41
14.90

4.56
4.98

5.63
6.19

6.86
7.52

8.31
9.02

9.78
10.76

5.09
5.67

6.22
6.96

7.48
8.34

8.82
9.85

10.16
11.24

3.84
4.13

5.18
5.68

6.97
7.75

9.34
10.19

12.25
13.40

4.19
4.55

5.59
6.12

7.41
8.06

9.51
10.13

11.84
12.27

PGE10(64,32) 3.08
3.20

3.98
4.27

5.17
5.77

6.70
7.67

8.49
9.72

4.21
4.62

5.56
6.25

7.22
8.28

9.13
10.59

11.11
12.84

2.96
3.08

3.52
3.71

4.18
4.47

4.95
5.30

5.81
6.24

4.16
4.60

5.02
5.60

6.00
6.72

7.11
7.90

8.33
9.24

2.75
2.82

3.48
3.67

4.47
4.90

5.75
6.46

7.28
8.26

3.30
3.57

4.26
4.73

5.50
6.22

7.01
8.01

8.80
10.06

C LINE SEARCH OPTIMIZATION

In Figure 8 we provide visualizations of the line search procedure. We provide BER with respect to
the step size λi indexed by i (λ0 ≡ 0). We can observe the high non-convexity of the objective, with
the presence of several local minima. We can also notice the proximity of the optimum to the current
parity-check estimate (i.e., λ0).

D CONVERGENCE RATE

In Figure 9 we provide statistics on the number of optimization iterations for convergence (a). We
also provide (b,c,d) typical convergence. We can observe that the framework typically converges
within a few iterations and that the loss decreases monotonically.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 8: BER in function of the step size index i on AWGN channel. (a) Averaged BER over the
optimization iterations for 4 codes. (b,c,d) BER per optimization iteration for the first 5 optimization
iterations and the first 10 indices for three different codes. Here λ0 = 0 denotes the original BER.

(a) (b) (c) (d)

Figure 9: (a) Histogram of the number of required iterations until convergence. (b) Convergence
rate of the Frame Error Rate for three codes on (b) AWGN, (c) fading, and (d) bursting channel. We
selected the three codes with the largest number of iterations. The FER is averaged over all the tested
Eb/N0 = {3, . . . 7} range.

E IMPACT ON OTHER BP VARIANTS

In Table 3 we provide the performance of the learned code on the more efficient Min-Sum approxi-
mation of the Sum-Product algorithm. We can observe that the codes learned with BP consistently
outperform the performance of the Min-Sum approximation as well. For some codes, the training
range may need to be adjusted. We note our method can be applied to neural BP decoders as well.
The direct optimization over BP approximations and augmentations is left for future work.

F IMPROVEMENT STATISTICS ON ALL THE CODES

We provide in Figure 10 the statistics of improvement on all the codes presented in Table 2.

G MORE RANDOM CODES

We provide in Figure 11 the performance of the proposed method on random codes initialized with
different sparsity rates on different lengths. We also provide in Figure 12 the performance of the
proposed method on constrained systematic random codes initialized with different sparsity rates on
different lengths.

H COMPARISON WITH GENETIC ALGORITHM

We provide in table 4 a comparison with the genetic algorithm of Elkelesh et al. (2019). We note
that the method requires 230 offspring/code evaluations per iteration, with 300 iterations (Fig. 7 in
(Elkelesh et al., 2019)) or even an infinite loop (cf. the provided MATLAB code). Our algorithm is
tested on 50 line-search steps as described in in the paper on 2 to 25 iterations (cf. App. D), which
means that Elkelesh et al. (2019) requires approximately 25 to 313 times more computations than
our proposed method. The performance presented are for 75 and 150 iterations of the algorithm,
representing around 70 and 140 times slower performance than our approach, respectively, while they

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: A comparison of the negative natural logarithm of Bit Error Rate (BER) for five normalized
SNR values of our method applied on the Min-Sum BP algorithm. NE = no errors spotted under the
testing limits.

BP Method Sum-Product Min-Sum
Method Baseline Our Baseline Our
Eb/N0 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

BCH(63,45) 3.35
3.40

4.06
4.22

4.92
5.24

5.98
6.60

7.39
8.33

3.48
3.57

4.30
4.49

5.29
5.69

6.51
7.17

8.12
9.17

3.04
3.22

3.79
4.09

4.89
5.41

6.33
7.06

8.13
9.14

3.21
3.40

4.09
4.44

5.32
5.89

6.84
7.60

8.65
10.00

CCSDS(128,64) 4.32
4.82

6.47
7.30

9.62
10.70

13.80
15.50

18.40
17.90

4.44
4.99

6.66
7.57

9.73
11.00

13.60
15.60

18.30
NE

4.21
4.76

6.62
7.66

10.40
12.20

15.10
17.70

19.40
NE

4.35
4.97

6.82
8.03

10.50
12.30

15.00
17.40

21.00
NE

LDPC(32,16) 3.46
3.61

4.39
4.66

5.60
6.07

7.20
7.87

9.23
10.30

3.62
3.80

4.59
4.91

5.83
6.36

7.45
8.16

9.52
10.70

3.36
3.55

4.38
4.69

5.75
6.21

7.65
8.21

10.10
10.90

3.53
3.74

4.61
4.93

6.01
6.50

7.92
8.44

10.10
11.10

LDPC(96,48) 4.70
5.20

6.73
7.55

9.52
10.70

13.20
14.40

17.30
18.50

5.01
5.70

7.11
8.13

9.92
11.30

13.50
14.70

16.90
17.40

4.71
5.23

6.96
7.89

9.95
11.50

14.20
15.10

18.30
19.10

4.98
5.68

7.16
8.32

10.10
12.00

14.00
14.80

15.80
15.80

(a) (b) (c)

Figure 10: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel on
all the codes from Table 2. We provide the mean and standard deviation as well as the minimum and
maximum improvements.

remain below our performance. We note here, as described in the paper, that combining the methods
by allowing the perturbation of the parity-check matrix at a local minima may allow the discovery of
other better local optimum.

Table 4: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as Eb/N0 = {5}. GA denotes the genetic algorithm of Elkelesh et al. (2019) with k
training iterations.

Channel AWGN
Method BP Our GA k = 75 GA k = 150
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6

CCSDS(128,64) 6.46
7.32

9.61
10.83

13.99
15.43

7.34
8.61

10.48
12.26

14.37
16.00

6.86
7.87

9.95
11.31

13.38
15.56

7.09
8.23

10.40
11.79

14.08
16.04

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 11: Performance of the method on random codes under different sparsity rate initialization p.

Figure 12: Performance of the method on constrained systematic random codes under different
sparsity rate initialization p on the AWGN channel.

I COMPARISON WITH SUCCESSIVE CANCELATION LIST

We provide in Table 5 a comparison with the powerful Polar codes (Arikan, 2008) under SCL
decoding (Tal & Vardy, 2015) (O(LNlog(N))) for very short-length code (32,16) in which SCL is
close to ML decoding. The SCL results are obtained using the implementation of Cassagne et al.
(2019).

We provide the performance of BP and of our method with the same Polar code initialization (BP
(Polar) and Our(Polar)) and with 5G LDPC code initialization (BP (5G LDPC), Our (5G LDPC)).
SCL performance is provided with the corresponding Polar code.

We can observe that even in the extremely short length setting where sparsity is hard to obtain our
method is able to remarkably improve the performance over existing short-length low-density codes
and get close to the ML bound even within very few number of iterations, even with bad initialization.
With good initialization (good sparse code), our method provides state-of-the-art performance.

J BER VS SNR CURVES

We provide standard visualizations of the BER and BLER performance with respect to the perfor-
mance on multiple codes and channels. Figures 15, 14 provide performance on the AWGN and fading
channel, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 5: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as Eb/N0 = {5}. The first and the second row of the SCL algorithm denote
performance with a list length of 1 and 32 respectively.

Method SCL BP (Polar) Our (Polar) BP (5G LDPC) Our (5G LDPC)
Eb/N0 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

(32,16) 6.22
6.45

8.06
8.37

10.28
10.60

4.36
4.64

5.59
6.07

7.18
7.94

5.48
5.76

7.02
7.44

8.92
9.41

6.06
6.57

7.53
8.17

9.23
10.16

6.63
7.11

8.53
8.92

10.36
11.31

(64,32) 7.36
8.10

9.82
10.73

12.98
14.00 - - - - - - 7.59

8.36
9.75
10.50

12.10
13.02

7.87
8.75

10.12
11.17

12.92
13.76

(128,64) 8.49
9.59

11.46
13.12

16.16
17.48 - - - - - - 9.90

12.31
13.20
15.98

16.73
18.06

9.98
12.04

13.27
16.18

17.02
18.66

Figure 13: BER and BLER performance of the method on different codes on the AWGN channel.

K COLUMN WEIGHT DISTRIBUTION

We provide in Figure 15 an analysis of the column weight distribution of the original and learned
parity check matrices on several codes and channel settings. While the method modifies substantially
the distribution for non-sparse codes, BP’s inductive bias seems to push the LDPC codes towards a
non-uniform distribution of the variable nodes’ degree.

L PERFORMANCE ON 5G LDPC CODES

We provide in Figure 16a performance analysis on short state-of-the-art 5G NR LDPC (protograph
based) codes (Richardson & Kudekar, 2018; Ten Brink; 3GPP, 2018).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 14: BER and BLER performance of the method on different codes on the Fading channel.

(a) (b) (c)

Figure 15: Column weight distribution of the parity check matrices on the (a) BCH(63,45) (b)
POLAR(128,86) and (c) LDPC(121,80) codes. Top row and second row are for the AWGN and
Fading channel, respectively.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 16: BER and BLER performance of the method on different SOTA 5G LDPC codes.

21

	Introduction
	Related Works
	Background
	Method
	Experiments
	Analysis
	Conclusions
	Hyper-Parameter Tuning
	More SNR results
	Line Search Optimization
	Convergence Rate
	Impact on other BP Variants
	Improvement Statistics on all the Codes
	More Random Codes
	Comparison with Genetic Algorithm
	Comparison with Successive Cancelation List
	BER vs SNR Curves
	Column Weight Distribution
	Performance on 5G LDPC Codes

