Under review as a conference paper at ICLR 2025

FACTOR GRAPH OPTIMIZATION OF ERROR-
CORRECTING CODES FOR BELIEF PROPAGATION
DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

The design of optimal linear block codes capable of being efficiently decoded is of
major concern, especially for short block lengths. As near capacity-approaching
codes, Low-Density Parity-Check (LDPC) codes possess several advantages over
other families of codes, the most notable being its efficient decoding via Belief
Propagation. While many LDPC code design methods exist, the development
of efficient sparse codes that meet the constraints of modern short code lengths
and accommodate new channel models remains a challenge. In this work, we
propose for the first time a gradient-based data-driven approach for the design of
sparse codes. We develop locally optimal codes with respect to Belief Propagation
decoding via the learning of the Factor graph under channel noise simulations. This
is performed via a novel complete graph tensor representation of the Belief Propa-
gation algorithm, optimized over finite fields via backpropagation and coupled with
an efficient line-search method. The proposed approach is shown to outperform
the decoding performance of existing popular codes by orders of magnitude and
demonstrates the power of data-driven approaches for code design.

1 INTRODUCTION

Reliable digital communication is of major importance in the modern information age and involves
the design of codes that can be robustly and efficiently decoded despite noisy transmission channels.
Over the last half-century, significant research has been dedicated to the study of capacity-approaching
Error Correcting Codes (ECC) (Shannon, |1948)). Despite the initial focus on short and medium-length
linear block codes (Berlekampl |1974), the development of long channel codes (Forney, 1966; Costello
& Forneyl 2007 has emerged as a viable approach to approaching channel capacity (Berrou et al.
1993} [MacKayl (1999} Richardson et al., 2001} [Richardson & Urbankel, 2001} |Arikan, [2008; [Luby
et al.,|2001; Kudekar et al., 2011).

While the NP-hard maximum likelihood rule defines the target decoding of a given code, developing
more practical solutions generally relies on theories grounded upon asymptotic analysis over conven-
tional communication channels. However, modern communication systems rely on the design of short
and medium-block-length codes (Liva et al., 2016) and the latest communication settings provide
new types of channels. This is mainly due to emergent applications in the modern wireless realm
requiring the transmission of short data units, such as remote command links, Internet of Things, and
messaging services (De Cola et al., 2011; Boccardi et al., 2014} [Paolini et al., 2015} Durisi et al.|
2016; ESTI, [2021). These challenges call for the formulation of data-driven solutions, capable of
adapting to various settings of interest and constraints, generally uncharted by existing theories.

The vast majority of existing machine-learning solutions to the ECC problem concentrate on the
design of neural decoders. The first neural models focused on the implementation of parameterized
versions of the legacy Belief Propagation (BP) decoder (Nachmani et al., 20165 2018; Lugosch &
Gross}, 2017, [Nachmani & Wolf] 2019} [Buchberger et al.,[2020). Recently, state-of-the-art learning-
based de novo decoders have been introduced, borrowing from well-proven architectures from
other domains. A Transformer-based decoder that incorporates the code into the architecture has
been recently proposed by (Choukroun & Wolf] 2022al), outperforming existing methods by sizable
margins and at a fraction of their time complexity. This architecture has been subsequently integrated

Under review as a conference paper at ICLR 2025

into a denoising diffusion models paradigm, further improving results (Choukroun & Wolf] 2022b).
Subsequently, a universal neural decoder has been proposed in (Choukroun & Wolfl, [2024c]), capable
of unified decoding of codes from different families, lengths, and rates. Most recently and related
to our work, (Choukroun & Wolf} [2024a) developed an end-to-end learning framework capable of
co-learning binary linear block codes along with the neural decoder.

However, neural decoding methods require increased computational and memory complexity com-
pared to their well-established classical counterparts. Due to these challenges, and the non-trivial
acceleration and implementation required, neural decoders were never deployed in real-world systems,
as far as we know.

In this work, given the ubiquity and advantages of the Belief Propagation (BP) algorithm (Pearl,
1988 Richardson et al., |2001)) for sparse codes, we consider the optimization of codes with respect
to BP via the learning of the underlying factor/Tanner graph. From a graphical probabilistic model
perspective (Koller & Friedman, [2009), BP being a marginalization algorithm, a gradient-based of
a score metric method is given for the structure learning of BP’s underlying Bayesian network in
an end-to-end fashion. As far as we can ascertain, this is the first time a gradient-based data-driven
solution is given for the design of the codes themselves based on a classical decoder. Such a solution
induces a very low overhead (if any) for integration into the existing decoding solutions.

Beyond the conceptual novelty, we make three technical contributions: (i) we formulate the data-
driven optimization objective adapted to the setting of interest (e.g., channel noise, code structure),
(i) we reformulate BP in a tensor fashion to learn the connectivity of the factor graph through
backpropagation, and (iii) we propose a differentiable and fast optimization approach via a line-
search method adapted to the relaxed binary programming setting. Applied to a wide variety of
codes, our method produces codes that outperform existing codes on various channel noise settings,
demonstrating the power and flexibility of the method in adapting to realistic settings of interest.

2 RELATED WORKS

Neural decoder or data-driven contributions generally focus on short and moderate-length codes for
two main reasons. First, classical decoders reach the capacity of the channel for large codes, and
second, the emergence of short data units applications driven by the Internet of Things (e.g., smart
metering networks, messaging services, etc.) requires effective decoders for short to moderate-length
codes. For example, 5G Polar codes have code lengths of 32 to 1024 (Liva et al.,[2016; ESTI, 2021).

Previous work on neural decoders is generally divided into two main classes: model-free and model-
based. Model-free decoders employ general types of neural network architectures (Cammerer et al.,
2017; Gruber et al., 2017; [Kim et al.,|2018b; |Bennatan et al.,|2018; Jiang et al.,|2019a; (Choukroun &
'Wolf] |2022azb}; 2024cib). Model-based decoders implement parameterized versions of classical Belief
Propagation (BP) decoders, where the Tanner graph is unfolded into an NN in which scalar weights
are assigned to each variable edge. This results in an improvement in comparison to the baseline
BP method for short codes (Nachmani et al., 2016; [Nachmani & Wolf], 2019} |[Raviv et al., [2020;
2023; Kwak et al.,[2023). While model-based decoders benefit from a strong theoretical background,
the architecture is overly restrictive, which generally enforces its coupling with high-complexity
NN (Nachmani & Wolf, |2021)). Also, the improvement gain generally vanishes for more iterations
and longer codewords (Hoydis et al.,[2022) and the integration cost remains very high due to both
computational and memory requirements.

While neural decoders show improved performance in various communication settings, there has been
very limited success in the design of novel neural coding methods, which remain impracticable for
deployment (O’Shea & Hoydis| 2017; Kim et al., 2018a; Jiang et al., 2019b). Recently, (Choukroun
& Wolfl 2024a) provided a new differentiable way of designing binary linear block codes (i.e.,
parity-check matrices) for a given neural decoder also showing improved performance with classical
decoders.

Belief-propagation decoding has multiple advantages for LDPC codes (Gallager, 1962} Richardson
& Urbanke, |2001; |[Richardson et al.| [2001). A large number of LDPC code (parity check matrix)
design techniques exist in the literature, depending on the design criterion. Among them, Gallager
(Gallager, [1962) developed the first regular LDPC codes as the concatenations of permuted sub-
matrices. MacKay (MacKay & Neal, [1995) demonstrated the ability of sparse codes to reach near-

Under review as a conference paper at ICLR 2025

capacity limits via semi-randomly generated matrices. Irregular LDPC codes have been developed
by (Richardson et al., [2001}; [Luby et al., 2001} (Chung et al.l [2001) where the decoding threshold
can be optimized via density-evolution. Progressive Edge Growth (Hu et al.l 2001} |2005) has been
proposed to design large girth codes. Certain classes of LDPC array codes have been presented
in (Eleftheriou & Olcer, [2002) and LDPC codes with combinatorial design constraints have been
developed in (Vasic & Milenkovicl |2004). Finite geometry codes have been developed in (Lucas
et al.,[2000; |[Kou et al., 2001) and repeat-accumulate codes have been proposed by (Yang et al.| [2004;
Jin et al.| [2000; Narayanaswamil [2001). However, the classical methods are not data-driven and
are difficult to adapt to the design of codes under constrained settings of interest (e.g., short codes,
modern channels, structure constraints, etc.). Most related to our work are methods for structure
learning (Koller & Friedman, [2009) for Bayesian networks such as the Chow-Liu Algorithm (Chow &
Liul [1968) or search-based methods (Tian, 2013). Related to greedy search-based methods, Elkelesh
et al.|(2019) recently suggested the application of classical genetic algorithms for the discovery of
better IRA codes.

3 BACKGROUND

We assume a standard transmission protocol using a linear block code C. The code is defined by a
generator matrix G € {0, 1}"** and the parity check matrix H € {0, 1}(»~¥)*" is defined such that
HGT = 0 over the order 2 Galois field GF(2). The parity check matrix H entails what is known as
a Tanner graph (Tanner} 1981)), which consists of n variable nodes and (n — k) check nodes. The
edges of this bipartite graph correspond to the on-bits of the matrix H.

The input message m € {0, 1}* (column vector) is encoded by G to a codeword ¢ € C C {0, 1}"
satisfying He = H(Gm) = 0 and transmitted via a Binary-Input Symmetric-Output channel, e.g.,
an AWGN channel. Let y denote the channel output represented as y = c5 + €, where ¢4 denotes
the transmission modulation of c (e.g., Binary Phase Shift Keying (BPSK)), and ¢ is random noise
independent of the transmitted c. The main goal of the decoder fy : R™ — R™ conditioned on the
code (i.e., H) is to provide a soft approximation & = fx(y) of the codeword.

The Belief Propagation algorithm allows the iterative transmission (propagation) of a current code-
word estimate (belief) via a Trellis graph determined according to a factor graph defined by the code
(i.e., the Tanner graph). The factor graph is unrolled into a Trellis graph, initiated with n variable
nodes, and composed of two types of interleaved layers defined by the check/factor nodes and variable
nodes. An illustration of the Tanner graph unrolled to the Trellis graph is given in Figure

As a message-passing algorithm, Belief Propagation operates on the Trellis graph by propagating
the messages from variable nodes to check nodes and from check nodes to variable nodes, in an
alternative and iterative fashion. The input layer generally corresponds to the vector of log-likelihood
ratios (LLR) L € R™ of the channel output y defined as

p v = 1Yy
Ly = log { Pxleo = 1)),
Pr (¢, = 0]yy)
Here, we describe ECC’s classical notation of BP with, v € {1,...,n} denotes the index cor-

responding to the v*" element of the channel output ¥, for the corresponding bit ¢, we wish to
recover.

Let 2° be the vector of messages that a column/layer in the Trellis graph propagates to the next one.
At the first round of message passing, a variable node type of computation is performed such that

2l = x?f‘;)l =L, + Z z2F. (1)
e'eN()\{(c,v)}
Here, each message indexed by the edge ¢ = (c¢,v) on the Tanner graph and N(v)

{(c,v)|H(c,v) = 1}, i.e, the set of all edges in which v participates. By definition 2° = 0
such that the messages are directly determined by the vector L for k = 0.

For even layers, the check layer performs the following

2k—1
xik — x%f;v) = 2arctanh H tanh <x6/2) (2)
e’e€N(c)\{(c,v)}

Under review as a conference paper at ICLR 2025

. | YYYYYYS
._.1 “Sid
‘ W

T

(2) (b

Figure 1: For the Hamming(7,4) Code: (a) parity check matrix, the induced (b) Tanner graph, and (c)
the corresponding unrolled Trellis graph with two iterations, with odd layers in blue and even layers
in red. In (d) we present our approach for structure learning via the learned binary weighting of the
edges of the complete bipartite factor graph unlike the conventional sparse representation.

where N(c) = {(¢,v)|H(c,v) = 1} is the set of edges in the Tanner graph in which row c of the
parity check matrix H participates.

The final v*" output layer of the BP algorithm, which corresponds to the soft-decision output of the
codeword, is given by
0p = Ly + Z a2t 3)

e/ €EN(v)

4 METHOD

The performance of BP is strongly tied to the underlying Tanner graph induced by the code. BP
and its variants are generally implemented over a fixed sparse graph, such that the only degree of
freedom resides in the number of decoding iterations. While several recent contributions (Nachmani
et al.|[2016; Nachmani & Wolf}|2019) aim to enhance the BP algorithm by augmenting the Trellis
graph with neural networks, these approaches assume and maintain fixed codes. Here, we propose
optimizing the code for the BP algorithm on a decoding setting of interest. Given a trainable binary
parity check matrix H, we wish to obtain BP-optimized codes by solving the following parameterized
optimization problem

H* = arg min EmNBernk(l/z),5~Z,T€N+’D<fH,T (QS(G(H)m) + 6)7m> + R(H) 4)

He{0,1}(n—k)xn
Here, G(H) denotes a generator matrix defined by H (i.e., H GT =0), ¢ denotes the modulation
function such that ¢, = ¢(c), and Z is the channel noise distribution. fg ;- denotes the BP decoder
built upon H with T discrete iterations (sampled uniformly from a given set), D denotes the distance
metric of interest, and R denotes the potential hard/soft regularization of interest, e.g., sparsity or
constraints on the code structure.

Several challenges arise from this optimization problem: (i) the optimization is highly non-
differentiable and results in an NP-hard binary non-linear integer programming problem, (ii) the
computation of the codewords ¢ = G'm is both highly non-differentiable (matrix-vector multiplication
over GF'(2) in case symmetry is not maintained during the optimization(Richardson & Urbanke,
2001))) and computationally expensive (inverse via Gaussian elimination of H), (iii) the modulation
¢(+) can be non-differentiable, and last but most important, (iv) BP assumes a fixed code (i.e., the
factor graph edges) upon which the decoder is implemented.

Learning the Factor graph via Tensor Belief Backpropagation To obtain BP codes, we propose
a structure/Tanner graph learning approach, where the bipartite graph is assumed as complete with
learnable binary-weighted edges. This way, the tensor reformulation of BP weighted by H allows a
differentiable optimization of the Tanner graph itself. The two alternating stages of BP can now be
represented in a differentiable matrix form rather than its static graph formulation, where the variable
layers can be rewritten as

Qij =L;+ Z Rj’i =L; + Z Rj/l'Hj/i — Rji, (5)

J'€Ci\j J’

1

N e WN

Under review as a conference paper at ICLR 2025

Algorithm 1: Tensor Belief Propagation

functionBP (11lr, H, iters, eps=le-7)

// 1llr is the batched LLR matrix, (B, n)

// H is the binary parity-check matrix, (n-k,n)

// iters is the number of BP iterations

H H.unsqueeze (dim=0) .T

C llr.unsqueeze (dim=-1)

fort in range(iters) do

L Q =C if t == 0 else C + sum(R*H,dim=-1) .unsqueeze (dim=-1) - R

tmp = tanh(0.5%Q)
R = 2*atanh(prod (tmp*H+ (1-H),dim=1) /tmp)

return C.squeeze () +sum (R+H, dim=-1)

where R;; are the check layers, which are now represented as

Qi
Rj; =2 I | :
;i = 2arctanh | _tanh(5
i’ eVj\i (©6)

= 2arctanh (H <tanh <QJ2HJ> +(1— Hﬂ,)> / tanh (Q;)) ,

il

where C; and V; correspond to the non-zero elements in column ¢ and row j of H, respectively,
while the ones elements in (1 — H) € {0, 1}("~*)*" satisfy the identity element of multiplication.
Potential zero denominators have not been observed but can be handled via regularization or omission.
As we can observe, BP remains differentiable with respect to H as a composition of differentiable
functions.

We provide in Algorithm [I|the pseudo-code for the tensor formulation of the BP algorithm, imple-
menting Eq. [and[5]

Belief Propagation Codes Optimization The tensor reformulation solves the major challenge of
graph learning (challenge (iv)). Challenges (ii) and (iii) are also eliminated in our formulation. First,
since for any given H the conditional independence of error probability under symmetry (Richardson
& Urbankel [2001)) is satisfied for message passing algorithms, it is enough to optimize the zero
codeword only, i.e., c = Gm = 0, removing then any dependency on G in the objective (challenge
(i1)). As a byproduct, we obtain that the optimization problem is invariant to the choice of modulation,
whether differentiable or not (challenge (iii)).

To optimize H (challenge (i)) we relax the NP-hard binary programming problems to an unconstrained
objective where, given a parameter matrix Q € R("=¥)*" we have H := H(Q) = bin(Q2). Here

bin(-) refers to the element-wise binarization operator implemented via the shifted straight-through-
estimator (STE) (Bengio et al.||2013) defined such that

bin(u) = (1 —sign(u))/2, 9dbin(u)/0u = —0.51,<; 7
Finally, opting for the binary cross-entropy loss (BCE) as the Bit Error rate (BER) discrepancy
measure D = BCE, we obtain the following empirical risk objective

n

T
L(Q)=> > BCE < foin(e).¢ (cs + €1, c) + R(bin(f)) ®)

t=1 i=1

where ¢, = ¢(c) denotes the modulated zero codeword and ¢; denotes the i noise sample drawn
from the channel noise distribution. This objective aims to provide optimal decoding on different
numbers of (variable) decoding iterations ¢ (Nachmani et al.,[2016).

While highly non-convex, the objective is (sub)differentiable when considering the STE definition
of the gradient (Bengio et al., 2013} |Yin et al.,|2019) and thus optimizable via classical first-order

1

RN - N I

11

12

Under review as a conference paper at ICLR 2025

Algorithm 2: Belief Propagation Codes Optimization

functionloss(H, x, y, BPiters=5)
// H is the initial binary parity-check matrix, (n-k,n)
// BPiters is the number of BP iterations
return BCE (BP (computeLLR(y), H, BPiters), x)

function BPCodesOptimization (H, iters)
// H is the initial binary parity-check matrix, (n-k,n)
// iters 1is the number of optimization iterations
Q = 1-2xH
fort in range(iters) do
x,y = getDatal()
Loss (bin (), x,y) .backward ()
lambdas = /Q.grad
lambdas = sorted(lambdas|[lambdas>0].view(=1)) [:50]
Q= Q - Q.grad+lambdas[argmin ([Loss (bin (2 -lambda=*{).grad), x,y)
for lambda in lambdas]]
if converged: Dbreak

return bin (£2)

methods. Since H is binary, only changes in the sign of {2 are relevant for the optimization, so most
gradient descent iterations remain ineffective in reducing the objective using conventional small
learning-rate regimes. Thus, given the gradient Vo £ computed on sufficiently representative batch,
we propose a line-search procedure capable of finding the optimal step size.

Binary Line-Search Conventional first-order optimization methods with small learning rate
regimes have two major drawbacks with binarization (Rastegari et al.l 2016} |Courbariaux et al.,
2016). First, they are generally slow since only gradient steps modifying the sign of the binarized
tensor induce a modification of the loss. Second, they have difficulties in converging to local minima
because of oscillating behavior around zero.

In general, efficient line search methods (Nocedal & Wright| 2006) assume local convexity or a smooth
objective (Wolfl |1978)) or, alternatively, apply exhaustive search on a given interval. Since this is not
our case, we propose a novel efficient grid-search approach optimized to our binary programming
setting. While classical grid search methods look for the optimal step size on handcrafted predefined
sample points, in our binary setting we can search only for the step sizes inducing a flip of the sign in
2, provably limiting the maximum number of relevant grid samples to n(n — k). Thus, the line-search
problem is now given by

Q)4
A =argmin L — AVL), ZIg={s; = (#L@z > 0}, 9)
AETq (VaLl)ij
which corresponds to the (parallelizable) objective evaluation on the obtained grid. The same

formulation can support other more practical line-search objectives instead of the cross-entropy loss
L, such as the non-differentiable BER or Frame Error Rate (FER) instead of the Bayesian BCE loss.

Training The optimization parameters are the following: the initial H (i.e., initial {2), the maximum
number of optimization steps (if convergence is not reached), the number and quality of the data
samples, the grid search length, and the number of BP iterations.

We assume that an initial H is given by the user as the code to be improved. The number of
optimization steps is set to 20 iterations. The training noise is sampled randomly per batch in the
{3,...,7} normalized SNR (i.e. E,/Ny) range but can be modified according to the noise setting
of interest. The number of data samples per optimization iteration is set to 4.9M for every code as
sufficient gradient estimation, and the data samples are required to have non-zero syndrome. Because
of computational constraints, the number of BP iterations during training is fixed and set to 5, while
other ranges or values of interest can be used instead. For faster optimization, the grid search is
heuristically restricted to the first 50 smallest step sizes as the optimal step size is generally in the
vicinity of the working point (Appendix [C)) . Training and experiments are performed on 8 x 12GB
GeForce RTX 2080 Ti GPUs and require 2.96 minutes on average per optimization step.

Under review as a conference paper at ICLR 2025

Table 1: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. PEGX means
the degree of each node is of X% under the Progressive Edge Growth construction.

Channel AWGN Fading Bursting
Method BP Our BP Our BP Our
Ey /Ny 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6 4 5 6

4.06 491 6.04 5.44 6.93 8.60 3.093.46 390 3.96 4.58 5.27 3.604.32 519 4.05 5.07 6.27
421 524 659 5.70 7.35 9.16 3.133.55 404 4.10 4.80 5.56 3.674.52 559 4.21 540 6.85

6.46 9.61 13.99 7.3410.4814.37 572742 947 6.73 845 1045 5297811125 6.23 8.80 11.90
7.3210.83 1543 8.6112.2616.00 6.438.2910.28 8.0510.07 12.37 5.988.8512.53 7.3910.43 13.28

481 7.17 10.75 7.7010.87 14.25 4.105.23 6.68 6.68 8.47 10.50 3.975.75 8.40 6.23 8.89 11.98
5.31 796 11.85 8.8611.9114.41 442561 7.04 7.71 9.67 11.76 4.316.37 9.25 7.26 10.03 12.88

6.59 9.68 13.43 7.7711.2115.06 4.605.80 7.22 5.55 6.90 8.36 5.307.60 10.66 6.23 8.87 12.19
7351094 1546 8.7512.4515.67 4976.29 7.82 6.25 7.80 9.47 5.818.5012.15 6.9910.09 13.74

3.66 4.65 580 5.54 7.37 9.44 3.223.80 444 4.86 5.94 7.15 3.234.08 5.09 3.72 5.00 6.54
4.00 5.16 6.42 6.56 8.70 10.81 3.514.18 484 5.64 6.85 8.14 348451 566 4.13 5.72 7.66

436 559 7.18 5.48 7.02 8.92 4.034.70 547 526 6.02 6.82 3.884.89 6.18 4.77 6.02 7.52
4.64 6.07 794 576 7.44 941 4295.06 590 543 6.23 6.97 4.095.26 6.76 5.01 6.35 7.96

6.73 9.48 1298 7.22 9.96 13.37 3.834.57 535 537 6.51 7.71 5.687.941090 5.90 8.19 1091

BCH(63,45)

CCSDS(128,64)

LDPC(121,60)

LDPC(121,80)

LDPC(128,64)

LDPC(32,16)

LDPC(96.48) 750 10.61 1426 82911.12 1406 4.174.94 573 6.14 7.38 8.65 6338911199 6.71 9.28 11.75
(13240 204 332 357 325 371 404 3.17345 3.67 449 499 547 275317 347 299 344 3.78

(132,40) 337 379 409 393 449 489 360382 401 532 581 631 317362 396 3.53 4.03 4.41
MACKAY(96.45) 675 9.45 12.85 7.03 9.63 1278 6287.86 955 6.53 8.06 9.77 5727.97 1081 595 8.23 10.91

7.5910.5214.09 7.9910.97 1405 7.048.76 10.64 7.47 9.32 11.19 6398901191 6.82 9.41 12.71

3.76 4.17 458 4.83 5.87 6.58 3.153.53 391 3.64 4.28 4.94 3.483.96 437 3.69 451 5.18
4.02 467 538 5.37 6.88 8.10 3.283.73 418 3.92 4.70 5.52 3.654.31 497 3.87 491 591

441 532 641 5.02 6.38 7.99 3.11341 377 3.37 3.73 412 3.854.58 544 4.17 518 6.40

POLAR(128,86)

RS(60,52) 454 552 6.64 507 647 8.12 3.13343 381 338 375 4.15 391472 567 421 527 656
o D1 GH SEED SR il pmusem eesn smem
LDPCPEGS643D) o6: o6 1239 713 948 1230 419739 502 656 834 985 3685751010 612 5,06 10.13
LDPCPEGIO(Gas2) 398 317 670 556722 903 352418 495 502 600 711 348447575 426 550 7.1

427 577 7.67 6.25 828 10.59 3.714.47 530 5.60 6.72 7.90 3.674.90 6.46 4.73 6.22 8.01

The full training algorithm (pseudocode) is given in Algorithm[2] Given an initial parity check matrix,
the algorithm optimizes H iteratively upon convergence. At each iteration, after computing the
gradient on sufficiently large statistics (line 7), the line search procedure (line 10) searches for the
optimal step size among those that flip the values of H (line 9).

5 EXPERIMENTS

We evaluate our framework on five classes of linear codes: various Low-Density Parity Check (LDPC)
codes (Gallager, |1962; |/Abu-Surra et al., [2010), Polar codes (Arikan, |2008), Reed Solomon codes
(Reed & Solomonl 1960), Bose—Chaudhuri—-Hocquenghem (BCH) codes (Bose & Ray-Chaudhuri,
1960) and random codes. All the parity check matrices are taken from (Helmling et al.|2019) except
the LDPC codes created using the popular Progressive Edge Growth framework (Hu et al.l 2005}
MacKay)).

We consider three types of channel noise under BPSK modulation. We first test our framework
with the canonical AWGN channel given as y = ¢, + € with e ~ N (0,0 1,,). We also consider the
Rayleigh fading channel, where y = h © c¢s + €, with h the iid Rayleigh distributed fading vector
with coefficient 1 and ¢ the regular AWGN noise, where we assume ideal channel state information.
Finally, we consider the AWGN channel with Gaussian mixture channel (also referred to as bursty
noise (Kurmukova & Gunduz, 2024)) simulating wireless channel interference as y = c¢s + € + ¢
with £ the AWGN and ¢; ~ N(0,v/20) with probability p = 0.1 and ¢; = 0 with probability 1 — p.

The results are reported as negative natural logarithm bit error rates (BER) for three different
normalized SNR values (Ej,/Ny), following the conventional testing benchmark, e.g., (Nachmani &
Wolf], 2019} |Choukroun & Wolf, 2022a). BP-based results are obtained after ¢ = 5 BP iterations in
the first row and £ = 15 in the second row of the results tables. During testing, at least 10° random

Under review as a conference paper at ICLR 2025

Improvement in BP(L=5) decoding (AWGN) Improvement in BP(L=>5) decoding (Fading_1.0) Improvement in BP(L=>5) decoding (Bursting)

20 | == Std 16 == Std
—E Min,Max] —£ Min,Max]

15.0 { =¥ Std
—F- [Min,Max]

125

10.0

-
Iy]

75

=
)

5.0

25

10log; o (Code/Our)
10l0g10 (Code/Our)
10log; o (Code/Our)

0.0

N s O

=25

30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65

7.0

Eb/No Eb/No Eb/No
Improvement in BP(L=15) decoding (AWGN) Improvement in BP(L=15) decoding (Fading_1.0) Improvement in BP(L=15) decoding (Bursting)
== Std == Std 15 =+ Std
201 £ MinMax] —E [Min,Max] £ Min,Max]
20
S5 S S 10
S 3 g
) o 15 [}
g 10 3 2
< < A
s 5 & 10 =
3 3 3
3 S g °
2 2 2
0
5
-5
=5
30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70 30 35 40 45 50 55 60 65 70
Eb/No Eb/No Eb/No
(a) (b) (c)

Figure 2: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel
on the sparse codes only. We provide the mean and standard deviation as well as the minimum and
maximum improvements.

codewords are decoded, to obtain at least 50 frames with errors at each SNR value. For this section,
we performed a small hyperparameter search as reported in Appendix [A] where the final code is
selected to have the lowest average BER on the SNR test range.

The results are provided in Table [T} where our method means BP applied on the learned code
initialized by the given classical code. We also provide in Appendix [Bthe same table with a broader
SNR range (Ey/No € {3,...,7}). We provide in Appendix [J] the standard visualization of the BER
and BLER vs Ej, /Ny curves on several codes. We further show the performance of the proposed
method on the state-of-the-art 5G NR LDPC short blocklenght codes (Richardson & Kudekar, 2018
3GPP, |2018) We provide the overall improvement statistics (i.e., mean, std, min, max) in dB on
all the sparse codes in Figure [2] and we extend the analysis to all the codes in Appendix [F] For
completeness, we provide in Appendix [H|a comparison with the genetic algorithm of [Elkelesh et al.
(2019)) where our method demonstrates much better performance while being faster by orders of
magnitude. We also show in Appendix [[|that our method can outperform the performance of the SCL
algorithm (Tal & Vardy, [2015) even on very short codes where the performances are close to ML
decoding.

Evidently, our method improves by large margins all code families on the three different channel
noise scenarios and with both numbers of decoding iterations, demonstrating the capacity of the
framework to provide improved codes on multiple settings of interest.

6 ANALYSIS

Initialization and Random Codes We provide in Figure[3]the performance of the proposed method
on random codes initialized with different sparsity rates. The parity check matrix is initialized in
a systematic form H = [I,,_y, P] for full rank initialization, where P ~ Bern" "R >k (p). We
can observe that the framework can greatly improve the performance of the original random code.
Most importantly, we can observe that different initializations provide convergence to different local
optima and that better initialization generally induces convergence to a better minimum. Performance
on other code lengths is provided in Appendix [G Finally, good initialization (i.e., (large) well-
performing sparse codes under BP decoding) requires perturbation at initialization or during training
(c.f., Appendix [A)) in order to get extracted from local minima.

Under review as a conference paper at ICLR 2025

random(64,32) p=0.75 random(64,32) p=0.5 random(64,32) p=0.25 random(64,32) p=0.1

m -1
— OurgpiL=15)

/o /o /o 5/

Figure 3: Performance of the method on random codes under different sparsity rate initialization p.

30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0

random(64,32) p=0.75 random(64,32) p=0.5 random(64,32) p=0.25 random(64,32) p=0.1

— our8p(L=15)

30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0

Ev/No Ev/No EviNo EviNo

Figure 4: Performance of the method on constrained systematic random codes under different sparsity
rate initialization p on the AWGN channel.

Constrained Codes In Figure] we provide the performance of the method on constrained system-
atic random codes as described in the previous paragraph, while here, we constrain them to maintain
their systematic form during the optimization, i.e., only the parity matrix elements of P are optimized
(via 2). The optimization is performed by backpropagating over the P tensor only, similarly to having
a hard structure constraint on the identity part of . While maintaining a structure of interest, we can
observe this regularization can further improve the convergence quality (e.g., p = 0.1) compared to
the unconstrained setting of Figure 3] Performance on other code lengths is provided in Appendix [G]
Any constraint (e.g., dual diagonal) can be similarly added to the code.

In Figure [5] we present the sparsification of the codes created by the framework. Here, A =
100(Sy — S,)/ Sy represents the sparsity ratio, with S, and S, being the sparsity of the baseline
code and our code, respectively. We can observe that optimization always provides sparser codes.
Nevertheless, we also observed that the optimization does not modify the girth of the code. We
provide in Appendix [F]the column weights distribution of the initial and learned parity check matrices.

In Figure [6] we present the performance of the method on random codes with sparsity constraint,
ie., R(H) = M|H||1, with A € R;. We can observe that adding a sparsity constraint is generally
not profitable since the optimization over BP already induces sparse codes, suggesting that gradient
descent’s inductive bias and BP have similar sparsity enforcement effects.

Learned Codes Visualization We depict in Figure[7]the learned codes via the visualization of the
parity-check matrices. We can observe that for low-density codes the modifications remain small,

random(64,32) BP (L=5) random(64,32) BP (L=15)

— Baseline
— =0

Sparsity Reduction

— Baseline

mm AWGN W fading EEE Bursting

ul

—2=0
— 2=01
—2=03
— 1=05

3 8 &

Sparsity A (%)

5

"hhhh

30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0
Eb/No Eb/No

BCH(63,45)
LDPC(121,80)
LDPC(128,64)

MACKAY(96,48)
POLAR(128,86)

g 8
.) . . Figure 6: Performance of the method with L; regularization for
Figure 5: Sparsity reduction of gifferent values of the regularization factor A for random codes
the proposed codes. with p = 0.25 on the AWGN channel.

Under review as a conference paper at ICLR 2025

Original PCN

Pl N o .
Foobw W e T Y
o LT [N - P
o Iﬁ‘,_i \: L "_F"h:-a Ih-.--\.'-\.
g aRE
(a) (b) (©) (d)

Figure 7: Visualization of the original (first row) and the learned parity check matrices (second row)
for (a) LDPC(32,16), (b) LDPC(128,64), (c) BCH(63,45) and (d) Random(64,32,p = 0.5). "PCM
iter X" denotes the final iteration Parity Check Matrix of the optimization.

since the code is already near local optimum, while for denser codes the change can be substantial.
It further shows SGD’s inductive bias seems not to impact BP inductive bias assuming sparse (i.e.,
no-loop or tree) connections. Also, the optimized codes tend to be more sparse than the original.

We provide in Appendix |C|visualizations of the line search optimization, demonstrating the high
non-convexity and the proximity of the optimum to the current estimate. We provide in Appendix
statistics on convergence rates and typical convergence curves demonstrating the fast and monotonic
convergence. Finally, we provide in Appendix [E] the performance of the learned code on the efficient
Min-Sum approximation of the BP algorithm and show that the learned code outperforms the
baseline codes over the Min-Sum framework as well.

7 CONCLUSIONS

We present a novel gradient-based optimization method of binary linear block codes for the Belief
Propagation algorithm. The proposed framework enables the differentiable optimization of the factor
graph via weighted tensor representation. The optimization is efficiently carried out via a tailor-made
grid search procedure that is aware of the binary constraint of the optimization problem.

A common criticism of ML-based ECC is that the neural decoder cannot be deployed directly without
the application of massive deep-learning acceleration methods. Here, we show that the code can
be designed efficiently in a data-driven fashion on differentiable formulations of classical decoders.
The optimization of codes may open the door to the establishment of new industry standards and
the creation of new families of codes. Future work includes the development of more efficient
optimization methods, able to define better initializations and to escape bad local minima.

10

Under review as a conference paper at ICLR 2025

REFERENCES
3GPP. 5g nr multiplexing and channel coding (ts 38.212). https://portal.3gpp.org, 2018.

Shadi Abu-Surra, David DeClercq, Dariush Divsalar, and William E Ryan. Trapping set enumerators
for specific Idpc codes. In 2010 Information Theory and Applications Workshop (ITA), pp. 1-5.
IEEE, 2010.

Erdal Arikan. Channel polarization: A method for constructing capacity-achieving codes. In 2008
IEEE International Symposium on Information Theory, pp. 1173-1177. IEEE, 2008.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep learning for decoding of linear codes-a
syndrome-based approach. In 2018 IEEE International Symposium on Information Theory (ISIT),
pp- 1595-1599. IEEE, 2018.

Elwyn R Berlekamp. Key papers in the development of coding theory. (No Title), 1974.

Claude Berrou, Alain Glavieux, and Punya Thitimajshima. Near shannon limit error-correcting
coding and decoding: Turbo-codes. 1. In Proceedings of ICC’93-IEEFE International Conference
on Communications, volume 2, pp. 1064—1070. IEEE, 1993.

Federico Boccardi, Robert W Heath, Angel Lozano, Thomas L Marzetta, and Petar Popovski. Five
disruptive technology directions for 5g. IEEE communications magazine, 52(2):74-80, 2014.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error correcting binary group
codes. Information and control, 3(1):68-79, 1960.

Andreas Buchberger, Christian Hédger, Henry D Pfister, Laurent Schmalen, et al. Learned decimation
for neural belief propagation decoders. arXiv preprint arXiv:2011.02161, 2020.

Sebastian Cammerer, Tobias Gruber, Jakob Hoydis, and Stephan ten Brink. Scaling deep learning-
based decoding of polar codes via partitioning. In GLOBECOM 2017-2017 IEEE Global Commu-
nications Conference, pp. 1-6. IEEE, 2017.

A. Cassagne, O. Hartmann, M. Léonardon, K. He, C. Leroux, R. Tajan, O. Aumage, D. Barthou,
T. Tonnellier, V. Pignoly, B. Le Gal, and C. Jégo. Aff3ct: A fast forward error correction
toolbox! Elsevier SoftwareX, 10:100345, October 2019. ISSN 2352-7110. doi: https://doi.
org/10.1016/j.50ftx.2019.100345. URL http://www.sciencedirect.com/science/
article/pi11/S2352711019300457.

Yoni Choukroun and Lior Wolf. Error correction code transformer. Advances in Neural Information
Processing Systems (NeurlPS), 2022a.

Yoni Choukroun and Lior Wolf. Denoising diffusion error correction codes. In The Eleventh
International Conference on Learning Representations, 2022b.

Yoni Choukroun and Lior Wolf. Learning linear block error correction codes. In The Forty-first
International Conference on Machine Learning, 2024a.

Yoni Choukroun and Lior Wolf. Deep quantum error correction. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 64—72, 2024b.

Yoni Choukroun and Lior Wolf. A foundation model for error correction codes. In The Twelfth
International Conference on Learning Representations, 2024c. URL https://openreview,
net/forum?id=7KDuQPrAF 3.

CKCN Chow and Cong Liu. Approximating discrete probability distributions with dependence trees.
IEEE transactions on Information Theory, 14(3):462-467, 1968.

Sae-Young Chung, G David Forney, Thomas J Richardson, and Riidiger Urbanke. On the design of
low-density parity-check codes within 0.0045 db of the shannon limit. /[EEE Communications
letters, 5(2):58-60, 2001.

11

http://www.sciencedirect.com/science/article/pii/S2352711019300457
http://www.sciencedirect.com/science/article/pii/S2352711019300457
https://openreview.net/forum?id=7KDuQPrAF3
https://openreview.net/forum?id=7KDuQPrAF3

Under review as a conference paper at ICLR 2025

Daniel J Costello and G David Forney. Channel coding: The road to channel capacity. Proceedings
of the IEEE, 95(6):1150-1177, 2007.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Tomaso De Cola, Enrico Paolini, Gianluigi Liva, and Gian Paolo Calzolari. Reliability options
for data communications in the future deep-space missions. Proceedings of the IEEE, 99(11):
2056-2074, 2011.

Giuseppe Durisi, Tobias Koch, and Petar Popovski. Toward massive, ultrareliable, and low-latency
wireless communication with short packets. Proceedings of the IEEE, 104(9):1711-1726, 2016.

Evangelos Eleftheriou and Sedat Olcer. Low-density parity-check codes for digital subscriber lines.
In 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002
(Cat. No. 02CH37333), volume 3, pp. 1752-1757. IEEE, 2002.

Ahmed Elkelesh, Moustafa Ebada, Sebastian Cammerer, Laurent Schmalen, and Stephan Ten Brink.

Decoder-in-the-loop: Genetic optimization-based ldpc code design. IEEE access, 7:141161—
141170, 2019.

ESTI. 5g nr multiplexing and channel coding. etsi 3gpp ts 38.212. https://www,
etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_
138212v160200p.pdf, 2021.

GD Forney. Concatenated codes. cambridge. Massachusetts: Massachusetts Institute of Technology,
1966.

Robert Gallager. Low-density parity-check codes. IRE Transactions on information theory, 8(1):
21-28, 1962.

Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten Brink. On deep learning-based
channel decoding. In 2017 51st Annual Conference on Information Sciences and Systems (CISS),
pp. 1-6. IEEE, 2017.

Michael Helmling, Stefan Scholl, Florian Gensheimer, Tobias Dietz, Kira Kraft, Stefan Ruzika, and
Norbert Wehn. Database of Channel Codes and ML Simulation Results. www.uni—-k1l.de/
channel-codes, 2019.

Jakob Hoydis, Sebastian Cammerer, Faycal Ait Aoudia, Avinash Vem, Nikolaus Binder, Guillermo
Marcus, and Alexander Keller. Sionna: An open-source library for next-generation physical layer
research. arXiv preprint, Mar. 2022.

Xiao-Yu Hu, Evangelos Eleftheriou, and D-M Arnold. Progressive edge-growth tanner graphs. In
GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270), volume 2,
pp- 995-1001. IEEE, 2001.

Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter-Michael Arnold. Regular and irregular progressive
edge-growth tanner graphs. IEEE transactions on information theory, 51(1):386-398, 2005.

Yihan Jiang, Sreeram Kannan, Hyeji Kim, Sewoong Oh, Himanshu Asnani, and Pramod Viswanath.
Deepturbo: Deep turbo decoder. In 2019 IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 1-5. IEEE, 2019a.

Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Turbo autoencoder: Deep learning based channel codes for point-to-point communication channels.
Advances in neural information processing systems, 32, 2019b.

Hui Jin, Aamod Khandekar, Robert McEliece, et al. Irregular repeat-accumulate codes. In Proc. 2nd
Int. Symp. Turbo codes and related topics, pp. 1-8. Citeseer, 2000.

Hyeji Kim, Yihan Jiang, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath. Deepcode: Feedback
codes via deep learning. In Advances in Neural Information Processing Systems (NIPS), pp. 9436—
9446, 2018a.

12

https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/16.02.00_60/ts_138212v160200p.pdf
www.uni-kl.de/channel-codes
www.uni-kl.de/channel-codes

Under review as a conference paper at ICLR 2025

Hyeji Kim, Yihan Jiang, Ranvir Rana, Sreeram Kannan, Sewoong Oh, and Pramod Viswanath.
Communication algorithms via deep learning. In Sixth International Conference on Learning
Representations (ICLR), 2018b.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Yu Kou, Shu Lin, and Marc PC Fossorier. Low-density parity-check codes based on finite geometries:
a rediscovery and new results. IEEE Transactions on Information theory, 47(7):2711-2736, 2001.

Shrinivas Kudekar, Thomas J Richardson, and Riidiger L Urbanke. Threshold saturation via spatial
coupling: Why convolutional ldpc ensembles perform so well over the bec. IEEE Transactions on
Information Theory, 57(2):803-834, 2011.

Anastasiia Kurmukova and Deniz Gunduz. Friendly attacks to improve channel coding reliability. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 13292-13300, 2024.

Hee-Youl Kwak, Dae-Young Yun, Yongjune Kim, Sang-Hyo Kim, and Jong-Seon No. Boosting
learning for 1dpc codes to improve the error-floor performance. arXiv preprint arXiv:2310.07194,
2023.

Gianluigi Liva, Lorenzo Gaudio, Tudor Ninacs, and Thomas Jerkovits. Code design for short blocks:
A survey. arXiv preprint arXiv:1610.00873, 2016.

Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A Spielman.
Improved low-density parity-check codes using irregular graphs. IEEE Transactions on information
Theory, 47(2):585-598, 2001.

Rainer Lucas, Marc PC Fossorier, Yu Kou, and Shu Lin. Iterative decoding of one-step majority
logic deductible codes based on belief propagation. IEEE Transactions on Communications, 48(6):
931-937, 2000.

Loren Lugosch and Warren J Gross. Neural offset min-sum decoding. In 2017 IEEE International
Symposium on Information Theory (ISIT), pp. 1361-1365. IEEE, 2017.

David MacKay. Progressive edge growth implementation. https://inference.org.uk/
mackay/PEG_ECC.html.

David JC MacKay. Good error-correcting codes based on very sparse matrices. IEEE transactions
on Information Theory, 45(2):399—-431, 1999.

David JC MacKay and Radford M Neal. Good codes based on very sparse matrices. In IMA
International Conference on Cryptography and Coding, pp. 100-111. Springer, 1995.

Eliya Nachmani and Lior Wolf. Hyper-graph-network decoders for block codes. In Advances in
Neural Information Processing Systems, pp. 2326-2336, 2019.

Eliya Nachmani and Lior Wolf. Autoregressive belief propagation for decoding block codes. arXiv
preprint arXiv:2103.11780, 2021.

Eliya Nachmani, Yair Be’ery, and David Burshtein. Learning to decode linear codes using deep
learning. In 2016 54th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pp. 341-346. IEEE, 2016.

Eliya Nachmani, Elad Marciano, Loren Lugosch, Warren J Gross, David Burshtein, and Yair Be’ery.
Deep learning methods for improved decoding of linear codes. IEEE Journal of Selected Topics in
Signal Processing, 12(1):119-131, 2018.

Ravi Narayanaswami. Coded modulation with low density parity check codes. PhD thesis, Texas
A&M University, 2001.

Jorge Nocedal and Stephen J. Wright. Line Search Methods, pp. 30-65. Springer New York,
New York, NY, 2006. ISBN 978-0-387-40065-5. doi: 10.1007/978-0-387-40065-5_3. URL
https://doi.org/10.1007/978-0-387-40065-5_3.

13

https://inference.org.uk/mackay/PEG_ECC.html
https://inference.org.uk/mackay/PEG_ECC.html
https://doi.org/10.1007/978-0-387-40065-5_3

Under review as a conference paper at ICLR 2025

Timothy J O’Shea and Jakob Hoydis. An introduction to machine learning communications systems.
arXiv preprint arXiv:1702.00832, 2017.

Enrico Paolini, Cedomir Stefanovic, Gianluigi Liva, and Petar Popovski. Coded random access:

Applying codes on graphs to design random access protocols. I[EEE Communications Magazine,
53(6):144-150, 2015.

Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
kaufmann, 1988.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525-542. Springer, 2016.

Nir Raviv, Avi Caciularu, Tomer Raviv, Jacob Goldberger, and Yair Be’ery. perm2vec: Graph
permutation selection for decoding of error correction codes using self-attention. arXiv preprint
arXiv:2002.02315, 2020.

Tomer Raviv, Alon Goldmann, Ofek Vayner, Yair Be’ery, and Nir Shlezinger. Crc-aided learned
ensembles of belief-propagation polar decoders. arXiv preprint arXiv:2301.06060, 2023.

Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of the
society for industrial and applied mathematics, 8(2):300-304, 1960.

Thomas J Richardson and Riidiger L Urbanke. The capacity of low-density parity-check codes under
message-passing decoding. IEEE Transactions on information theory, 47(2):599-618, 2001.

Thomas J Richardson, Mohammad Amin Shokrollahi, and Riidiger L Urbanke. Design of capacity-
approaching irregular low-density parity-check codes. IEEE transactions on information theory,
47(2):619-637, 2001.

Tom Richardson and Shrinivas Kudekar. Design of low-density parity check codes for 5g new radio.
IEEE Communications Magazine, 56(3):28-34, 2018.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
Journal, 27(3):379-423, 1948.

Ido Tal and Alexander Vardy. List decoding of polar codes. IEEE Transactions on Information
Theory, 61(5):2213-2226, 2015.

R Tanner. A recursive approach to low complexity codes. IEEE Transactions on information theory,
27(5):533-547, 1981.

Stephan Ten Brink. 5g ldpc codes code construction and performance. https://webdemo.inue.uni-
stuttgart.de/webdemos/08,.esearch/5G D PCcodes/index.php?id = 0.

Jin Tian. A branch-and-bound algorithm for mdl learning bayesian networks. arXiv preprint
arXiv:1301.3897, 2013.

Bane Vasic and Olgica Milenkovic. Combinatorial constructions of low-density parity-check codes for
iterative decoding. IEEE Transactions on information theory, 50(6):1156-1176, 2004.

Jack Wolf. Efficient maximum likelihood decoding of linear block codes using a trellis. [IEEE
Transactions on Information Theory, 24(1):76-80, 1978.

Michael Yang, William E Ryan, and Yan Li. Design of efficiently encodable moderate-length high-rate
irregular 1dpc codes. IEEE Transactions on Communications, 52(4):564-571, 2004.

Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
standing straight-through estimator in training activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

14

Under review as a conference paper at ICLR 2025

A HYPER-PARAMETER TUNING

Under the problem’s stochastic optimization, we provide here the different modifications used to
obtain better performance. The first set of training/optimization hyperparameters is the E;, /Ny range
defined as (u, 7) with u € {3,4,5}. The second set of hyperparameters is the data sampling, where
we experimented with random data (i.e., classical setting) and data with non-zero syndromes only.
Finally, for better backpropagation, we also experimented with a soft approximation H of the binary
H during the optimization, defined as

7 (—1)26, ’Lf Hij =0
Hij = 1, else

where z ~ Bern(0.5) and e is a small scalar (10~7 in our experiments). We note we only used a size
15 random subset of all the possible permutations of the hyperparameters mentioned above.

B MORE SNR RESULTS

We provide results on a larger range of SNRs in Table 2]

Table 2: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold.

Channel AWGN Fading Bursting

Method BP Our BP Our BP Our

Ey/No 304 5 6 7 304 05 6 1 304 5 6 7 34 5 6 7 34 5 6 7 304 5 6 7
BCH(6345) 335406 491 6.04 747 423544 693 8.60 1027 2773.093.46 390 437 3.423.96 458 527 599 300360432 5.19 625 3.244.05 507 627 7.67

340421 524 659 835 436570 7.35 9.16 11.10 2.793.133.55 404 461 3.504.10 4.80 556 6.36 3.023.674.52 559 693 3.314.21 540 6.85 8.55

432646 9.61 13.9918.27 4.997.3410.4814.3717.38 4.375727.42 947 11.84 5226.73 845 104512.36 3.625297.8111.2515.59 4.326.23 8.80 11.90 14.76
4.827.3210.8315.4318.51 5.80 8.61 12.26 16.00 18.15 4.896.438.2910.28 12.88 6.22 8.05 10.07 12.37 14.87 3.975.988.8512.5317.10 5.057.39 10.43 13.28 15.56

333481 7.17 10.7515.69 5.297.70 10.87 14.2516.82 3.244.105.23 6.68 8.56 5.186.68 8.47 10.5012.31 2.873.975.75 8.40 12.16 4.326.23 8.89 11.98 14.91
3.535.31 7.96 11.8517.01 6.18 8.86 11.91 14.41 17.04 344442561 7.04 877 6.047.71 9.67 11.76 14.21 2.984.316.37 9.25 13.10 5.027.26 10.03 12.88 15.14

4.506.59 9.68 13.4318.51 5.28 7.77 11.21 15.06 18.40 3.674.605.80 7.22 8.95 4.425.55 6.90 8.36 10.00 3.745.30 7.60 10.66 14.88 4.32 6.23 8.87 12.19 16.31
4.857.3510.94 15.46 19.61 5.85 8.75 12.45 15.67 18.30 3.894.976.29 7.82 9.58 4.896.25 7.80 9.47 11.21 3.945818.5012.1516.45 4.73 6.99 10.09 13.74 17.55

2.883.66 4.65 5.80 7.03 4.07 5.54 7.37 9.44 11.71 2.733.223.80 444 514 3.954.86 594 7.15 8.38 2.583.234.08 5.09 6.21 2.803.72 5.00 6.54 8.30

CCSDS(128,64)

LDPC(121,60)

LDPC(121,80)

LDPCU2864) 304400 5.16 642 777 471656 870 10811292 290351418 484 554 455564 685 8.14 959 268348451 566 688 297413 572 7.66 9.86
LDPC(32.16 345436 559 7.18 9.19 4.295.48 7.02 8.92 11.23 3.444.034.70 547 631 4.535.26 6.02 6.82 7.61 3.103.884.89 6.18 7.82 3.784.77 6.02 7.52 9.22
DPC(32,16) 359464 607 794 1023 447576 744 941 1203 362429506 590 683 467543 623 697 781 321409526 676 8.58 393501 635 796 9.72
LDPC9648) 47267 948 12.98 1687 517722 996 13.371645 319383457 535 6.17 438537 651 771 894 403568794 10901427 4.235.90 8.19 10.91 13.61

5207.5010.61 14.26 17.80 5.858.29 11.1214.06 17.19 3.444.174.94 573 6.58 4.996.14 7.38 8.65 9.77 4.406.3389111.991555 4.716.71 9.28 11.75 14.06
249294 332 3.57 381 272325 371 4.04 436 2823.173.45 3.67 389 397449 499 547 596 2302753.17 347 370 2.482.99 3.44 3.78 4.05
2.853.37 379 4.09 432 326393 449 489 522 3293.603.82 401 421 478532 581 631 6.84 2633.173.62 3.96 4.19 2.923.53 4.03 441 4.70
477675 9.45 12.8516.37 5.037.03 9.63 12.78 16.11 4.986.287.86 9.55 11.30 5.186.53 8.06 9.77 11.58 4.085.727.9710.8113.92 4.285.95 8.23 10.91 14.02
5.287.5910.5214.09 1743 5.637.9910.97 14.0517.49 5.557.048.76 10.64 12.58 5.937.47 9.32 11.1913.14 4476.398.90 11.91 1523 4.79 6.82 9.41 12.71 15.81
325376 4.17 4.58 512 3.724.83 5.87 6.58 7.21 2.803.153.53 3.91 426 3.103.64 428 4.94 558 2953.483.96 437 478 2.963.69 4.51 5.18 5.73
3.364.02 4.67 5.38 6.19 3.965.37 6.88 8.10 9.00 2.873.283.73 4.18 460 3.263.92 470 552 6.30 3.023.654.31 497 5.66 3.033.87 491 591 6.88
3.654.41 532 641 7.80 3.985.02 6.38 7.99 9.73 2.863.113.41 377 416 3.053.37 3.73 4.12 4.53 3.263.854.58 544 6.43 3.424.17 5.18 640 7.75
370454 552 6.64 8.04 4.005.07 647 8.12 9.80 2873.133.43 3.81 424 3.063.38 3.75 4.15 456 327391472 567 678 3.424.21 527 6.56 8.01
3.784.38 5.12 6.04 7.17 3.844.45 5.19 6.10 7.22 3.744.084.44 481 520 3.754.10 446 4.85 5.24 3.544.074.69 543 6.29 3.544.07 470 543 6.30
3.784.38 5.13 6.04 7.16 3.844.44 519 6.10 7.23 3.744.084.44 481 520 3.754.10 447 4.85 524 3.544.064.69 543 629 3.544.06 4.69 544 6.30
4.416.02 820 10.9514.40 4.826.53 8.73 11.56 14.41 4.565.636.86 8.31 9.78 5.096.22 7.48 8.82 10.16 3.845.186.97 9.34 12.25 4.195.59 7.41 9.51 11.84
4.786.63 9.06 12.3015.75 5.267.13 9.48 12.2014.90 4.986.197.52 9.02 10.76 5.67 6.96 8.34 9.85 11.24 4.135.687.7510.1913.40 4.556.12 8.06 10.13 12.27
308398 517 6.70 849 421556 7.22 9.13 11.11 2963.524.18 495 581 4.165.02 6.00 7.11 833 275348447 575 728 3.304.26 550 7.01 8.80
320427 577 767 9.72 4.626.25 828 10.5912.84 3.083.714.47 530 624 4.605.60 6.72 7.90 9.24 2.823.674.90 6.46 826 3.574.73 6.22 8.01 10.06

LTE(132,40)

MACKAY (96,48)

POLAR(128.86)

RS(60.52)

PGE2(64,32)

PGES5(64,32)

PGE10(64,32)

C LINE SEARCH OPTIMIZATION

In Figure [8| we provide visualizations of the line search procedure. We provide BER with respect to
the step size \; indexed by ¢ (A9 = 0). We can observe the high non-convexity of the objective, with
the presence of several local minima. We can also notice the proximity of the optimum to the current
parity-check estimate (i.e., Ag).

D CONVERGENCE RATE

In Figure [0 we provide statistics on the number of optimization iterations for convergence (a). We
also provide (b,c,d) typical convergence. We can observe that the framework typically converges
within a few iterations and that the loss decreases monotonically.

15

Under review as a conference paper at ICLR 2025

Error Rate of BP(bin(Q — AVat)) Error Rate of BP(bin(Q —AVaL)) BCH(63,45) Error Rate of BP(bin(Q — AVat)) POLAR(128,86)

1c-5_ErTor Rate of BP(bin(Q — AWa£)) LDPC(96,48)

0.016

0.012 WWW-A,_W 0.0075 26
0010 0.0070 24
0.0065 oo
0.008 - 22
— BcH3.45) 0.0060
- 10PC(171,80) « & 20 0012
£ 0.006 | tonciorey & o005 g]
— poLaRa2a,86) 18
0.004] 0.0050
16 0.010
0002 0.0045
0.0040 14
0.000 L 0.008
G 2 a0 e 8 10 o 2 4 6 8 10 1 1 6 2z 4 6 8 1 12 1 Gz 4 & 8 0 1 1
Nindex Nindex Nindex Nindex

Figure 8: BER in function of the step size index ¢ on AWGN channel. (a) Averaged BER over the
optimization iterations for 4 codes. (b,c,d) BER per optimization iteration for the first 5 optimization
iterations and the first 10 indices for three different codes. Here Ay = 0 denotes the original BER.

p——— Convergence in FER for awgn channel Convergence in FER for fading channel Convergence in FER for bursting channef

035 05

Fading - — wopc21,60) - — wean.0
= pursting LDPC(121,60) LDPC(121,50)
0.30 ~—— LDPC(128,64) —— LDPC(128,64)
0.4 0.4
0.25
= = =
£ 020 gos Hos3 — pca2160)
< < < POLAR(126,86)
5 5 — LDPC(121,60)

| g
: Zo1s g,
i 010
1 01
00s 01
3 15 2 %

IS

0 20 P [20 P 00 25 50 75 100 125 150 175

10 10 15 10 15
lters to Convergence Optimization Iteration Optimization Iteration Optimization Iteration

(a) (b) (© (d)

Figure 9: (a) Histogram of the number of required iterations until convergence. (b) Convergence
rate of the Frame Error Rate for three codes on (b) AWGN, (c) fading, and (d) bursting channel. We
selected the three codes with the largest number of iterations. The FER is averaged over all the tested
Ey/No = {3,...7} range.

E IMPACT ON OTHER BP VARIANTS

In Table 3| we provide the performance of the learned code on the more efficient Min-Sum approxi-
mation of the Sum-Product algorithm. We can observe that the codes learned with BP consistently
outperform the performance of the Min-Sum approximation as well. For some codes, the training
range may need to be adjusted. We note our method can be applied to neural BP decoders as well.
The direct optimization over BP approximations and augmentations is left for future work.

F IMPROVEMENT STATISTICS ON ALL THE CODES

We provide in Figure[I0]the statistics of improvement on all the codes presented in Table 2}

G MORE RANDOM CODES

We provide in Figure[TT]the performance of the proposed method on random codes initialized with
different sparsity rates on different lengths. We also provide in Figure [I2]the performance of the
proposed method on constrained systematic random codes initialized with different sparsity rates on
different lengths.

H COMPARISON WITH GENETIC ALGORITHM

We provide in table 4] a comparison with the genetic algorithm of [Elkelesh et al| (2019). We note
that the method requires 230 offspring/code evaluations per iteration, with 300 iterations (Fig. 7 in
(Elkelesh et al.,|2019)) or even an infinite loop (cf. the provided MATLAB code). Our algorithm is
tested on 50 line-search steps as described in in the paper on 2 to 25 iterations (cf. App. [D), which
means that |[Elkelesh et al.|(2019) requires approximately 25 to 313 times more computations than
our proposed method. The performance presented are for 75 and 150 iterations of the algorithm,
representing around 70 and 140 times slower performance than our approach, respectively, while they

16

Under review as a conference paper at ICLR 2025

Table 3: A comparison of the negative natural logarithm of Bit Error Rate (BER) for five normalized
SNR values of our method applied on the Min-Sum BP algorithm. N E = no errors spotted under the

testing limits.

BP Method Sum-Product Min-Sum

Method Baseline Our Baseline Our

Ey/Noy 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7 3 4 5 6 7

BCH(63.45) 3.354.06 492 598 7.39 348430 529 651 8.12 3.043.79 489 6.33 8.13 3.214.09 532 6.84 8.65
> 340422 524 6.60 8.33 3.574.49 5.69 7.17 9.17 3224.09 541 7.06 9.14 3.404.44 589 7.60 10.00

CCSDS(128,64)

4.326.47 9.62 13.80 18.40
4.827.3010.70 15.50 17.90

4.44 6.66 9.73 13.60 18.30
4.997.5711.00 15.60 NE

4.21 6.62 10.40 15.10 19.40
4.767.66 12.2017.70 NE

4.35 6.82 10.50 15.00 21.00
4.978.0312.301740 NE

LDPC(32,16)

3.464.39 5.60 7.20 9.23
3.614.66 6.07 7.87 10.30

3.624.59 583 7.45 9.52
3.804.91 6.36 8.16 10.70

3.364.38 5.75 7.65 10.10
3.554.69 6.21 8.21 10.90

3.534.61 6.01 7.92 10.10
3.744.93 6.50 8.44 11.10

LDPC(96,48)

4.706.73 9.52 13.20 17.30
5.207.55 10.70 14.40 18.50

5.017.11 9.92 13.50 16.90
5.70 8.13 11.30 14.70 17.40

4.716.96 9.95 14.20 18.30
5.237.8911.50 15.10 19.10

4.987.16 10.10 14.00 15.80
5.68 8.32 12.00 14.80 15.80

Improvement in BP(L=5) decoding (AWGN) Improvement in BP(L=5) decoding (Fading_1.0)

Improvement in BP(L=>5) decoding (Bursting)

201 =¥~ std 16| % sd 15.0{ %S¢
—E- [Min,Max] —F- [Min,Max] —E [Min,Max]
14 12.5
¢ < T
s s S 100
s 8" s
)))
10 75
g 10 3 3
[S S
< < 8 < 50
g > g o §
2 2 2 25
Ei B Ei
4
o 0.0
2 -25
-5
30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65
Eb/No Eb/No Ep/No
Improvement in BP(L=15) decoding (AWGN) Improvement in BP(L=15) decoding (Fading_1.0) Improvement in BP(L=15) decoding (Bursting)
= std == Std 15] % s
20 { =& [Min,Max] —F- [Min,Max] —E- [Min,Max]

10logy, (Code/Our)
=
5
10l0g10 (Code/Our)
10log;0 (Code/Our)
w

40 45 5.0

Ep/No Ep/No

() (b)

Figure 10: Statistics of improvement in dB for the (a) AWGN, (b) fading, and (c) bursting channel on
all the codes from Table 2} We provide the mean and standard deviation as well as the minimum and
maximum improvements.

5.5 40 45 50

Ep/No

©

40 45 50 55 5.5

remain below our performance. We note here, as described in the paper, that combining the methods
by allowing the perturbation of the parity-check matrix at a local minima may allow the discovery of
other better local optimum.

Table 4: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as E}, /Ny = {5}. GA denotes the genetic algorithm of [Elkelesh et al|(2019) with &
training iterations.

Channel AWGN

Method BP Our GALk=175 GA k=150
Ey/Ny 4 5 6 4 5 6 4 5 6 4 5 6
CCSDS(128.64) 6.46 9.61 1399 7.3410.4814.37 6.86 9.95 13.38 7.09 10.40 14.08

7.3210.83 1543 8.6112.26 16.00 7.87 11.3115.56 8.23 11.79 16.04

17

Under review as a conference paper at ICLR 2025

random(32,16) p=0.75

random(32,16) p=0.5

random(32,16) p=0.25

random(32,16) p=0.1

~= random BP(L=5) == rondom BP(L=5)
— ourBRL=5) — ourBRL=5)
-~ random BP(L=15) -~ random BP(L=15)
1072 — oursr-15) — oursr-15)
1072 1072
3 3 I3 &
& & & &8
10>
102 102
== random 8P(L=5) == random 8P(L=5)
— oursPL=5) | — ourspiL=s)
=~ random 8P(L=15) == random BR(L=15) .
— ourBP(L=15) — ourBP(L=15) 10 1
1074 1074 i
30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 70
/N /N /N oo
random(128,64) p=0.75 random(128,64) p=0.5 § random(128,64) p=0.25 random(128,64) p=0.1
10
ax10 102
& &
102
ax10 i
—— random BR(L-5) 1 == random BP(L-5)
— ourap(L=5) — ourBp(L=5)
== random BP(L=15) 20744 == random BP(L=15)
3x10{ — Qur BPIL=15) £ — ourtp(L-15)

30 35 40 45 50 55 60 65 7.0
o/

30 35 40 45 50 55 60 65 7.0

30 35 40 45 50 55 60 65 7.0
Ev/No

30 35 40 45 50 55 60 65 7.0
/o

Figure 11: Performance of the method on random codes under different sparsity rate initialization p.

random(32,16) p=0.75

random(32,16) p=0.5

random(32,16) p=0.25

random(32,16) p=0.1

== random BR(L=5)

— ourBR(L=5)

-~ random BPIL=15)
Our BA(L=15)

1 —— random BR(L-5)
— ourBR(L=5)

-~ random BPIL=15)

— OurBR(L-15)

10- R e e T NN T N
YAy I NS S N N\ Yo G NN B I = S S e e
3 3 &
8 & &
-3
10 102
1074 |
== random 88(L=5) | ==+ random B7(L=5)
— ourBP(L=5) £ — ourBR(L=5)
L0-a L == rondom B(L=15) £ -~ random BR(L=15)
— ourBP(L=15) 1 — ourspL=15)
1074 1075
30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 70
EviNo o/No EvfNo EvfNo
random(128,64) p=0.75 random(128,64) p=0.5 random(128,64) p=0.25 random(128,64) p=0.1
S -~ random BP(L=5) s =~ random BP(L=5) == random BR(L=5)
— OurBRL=5) s — our BRL=5) — ourBRL=5)
-~ random BP(L=15) == random BP(L=15) =~ random BP(L=15)
S R\ — ourBA(L=15) 1072 — ourBA(L=15) — ourBA(L=15)
o ax10 « @
& & 8 103
x10
== random BP(L=5)
— oursPIL=5) 1072 -
2510 { .~ random BP(L=15) 10
— oursp(L=15)

30 35 40 45 50 55 60 65 7.0
EuilNo

30 35 40 45 50 55 60 65 7.0
Es/No

30 35 40 45 50 55 60 65 7.0

Ex/No

30 35 40 45 50 55 60 65 7.0
Eu/No

Figure 12: Performance of the method on constrained systematic random codes under different
sparsity rate initialization p on the AWGN channel.

I COMPARISON WITH SUCCESSIVE CANCELATION LIST

We provide in Table 3]

decoding

a comparison with the powerful Polar codes (Arikan| 2008) under SCL
Tal & Vardyl 2015) (O(LNlog(N))) for very short-length code (32,16) in which SCL is

close to ML decoding. The SCL results are obtained using the implementation of

(2019).

We provide the performance of BP and of our method with the same Polar code initialization (BP
(Polar) and Our(Polar)) and with 5G LDPC code initialization (BP (5G LDPC), Our (5G LDPC)).
SCL performance is provided with the corresponding Polar code.

We can observe that even in the extremely short length setting where sparsity is hard to obtain our
method is able to remarkably improve the performance over existing short-length low-density codes
and get close to the ML bound even within very few number of iterations, even with bad initialization.
With good initialization (good sparse code), our method provides state-of-the-art performance.

J BER vs SNR CURVES

We provide standard visualizations of the BER and BLER performance with respect to the perfor-
mance on multiple codes and channels. Figures T3} [T4] provide performance on the AWGN and fading

channel, respectively.

18

Under review as a conference paper at ICLR 2025

Table 5: A comparison of the negative natural logarithm of Bit Error Rate (BER) for several
normalized SNR values of our method with classical codes. Higher is better. BP results are provided
for 5 iterations in the first row and 15 in the second row. The best results are in bold. The training
range is defined as E},/Ny = {5}. The first and the second row of the SCL algorithm denote
performance with a list length of 1 and 32 respectively.

Method SCL BP (Polar) Our (Polar) BP (SGLDPC) Our (5G LDPC)
E,/Ng 4 5 6 | 4 5 6 4 5 6 | 4 5 6 4 5 6

6.22 8.06 10.28 | 4.365.597.18 5487.02892 | 6.06 7.53 9.23 6.63 8.53 10.36

G216) 645 837 1060 | 464607794 576744941 | 657 817 1016 7.1 8.92 11.31
(6432 1369821208 | | 759 9751210 787 10121292
’ 8.10 10.73 14.00 8.36 10.5013.02 8.75 11.17 13.76
(128.64) 8.49 11.46 16.16 9.90 13.20 16.73 9.98 13.27 17.02
> 9.5913.12 17.48 T T 12.31 1598 18.06 12.04 16.18 18.66
BCH(63,45) AWGN POLAR(128,86) AWGN LDPC(121,80) AWGN
T 7 == BCHBP(L=5) 10723 2sas —=+ LDPC BP(L=5)
Ssssill — Our BR(L=5) FedE — OurBP(L=5)
10-2 e ~~- BCH BP(L=15) =~ ~~ LDPC BP(L=15)
“\‘:\\\ — our BR(L=15) 10-2 1072 — Our BP(L=15)
10 = 107
& & . L
104
——. POLAR BP(L=5) 10°°
—— Our BP(L=5)
o R
30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60
Ep/No Ep/No Ep/No
BCH(63,45) AWGN POLAR(128,86) AWGN LDPC(121,80) AWGN
| ——- BCH BP(L=5) 100 S5O ——+ LDPC BP(L=5)
STERaal —— Our BR(L=5) 107 — our BP(L=5)
RN ~~ BCH BP(L=15) -~ LDPC BP(L=15)
107! —— Our BP(L=15) —— Our BP(L=15)
1072
1071
& 102 & g 1072
1072 o7
10°3 == POLAR BP(L=5)
— OurBP(L=5) 10°°
~~ POLAR BP(L=15)
—— Our BP(L=15)
30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60 65 7.0 30 35 40 45 50 55 60
Ep/No Eb/No Eb/No

Figure 13: BER and BLER performance of the method on different codes on the AWGN channel.

K CoOLUMN WEIGHT DISTRIBUTION

We provide in Figure[T3]an analysis of the column weight distribution of the original and learned
parity check matrices on several codes and channel settings. While the method modifies substantially
the distribution for non-sparse codes, BP’s inductive bias seems to push the LDPC codes towards a
non-uniform distribution of the variable nodes’ degree.

L. PERFORMANCE ON 5G LDPC CODES

We provide in Figure [T6h performance analysis on short state-of-the-art 5G NR LDPC (protograph
based) codes (Richardson & Kudekar, 2018}, [Ten Brink} 3GPP, [2018)).

19

Under review as a conference paper at ICLR 2025

BCH(63,45) Fading_1.0

~— - BCH BP(L=5)
el
& 102
30 35 40 45 50 55 60 65 7.0
Ep/No
BCH(63,45) Fading_1.0
o«
i
b=
@
107t

30 35 40 45 50 55 60 65 7.0
Ep/No

POLAR(128,86) Fading_1.0
+ POLAR BP(L=5)

15)

30 35 40 45 50 55 60 65 7.0
Ep/No

POLAR(128,86) Fading_1.0

BLER

—= POLAR BP(L=5)
107 { — ourBp(L=
—= POLAR BP(L=15)
— Our BP(L=15)

30 35 40 45 50 55 60 65 7.0
Eb/No

1072

1074

1073

1071

1073

LDPC(121,80) Fading_1.0

+ LDPC BP(L=5)
=5)

—~- LDPC BP(L=15)
—— Our BP(L=15)

30 35 40 45 50 55 60 65 70
Ep/No

LDPC(121,80) Fading_1.0

LDPC BP(L=5)
Our BP(L=5)

—= LDPC BP(L=15)
—— Our BP(L=15)

Figure 14: BER and BLER performance of the method on different codes on the Fading channel.

16 { mmm Original PCM = Learned PCM 35 = Original PCM 35| == Leamed PCM 120 = Original PCM 100 == Learned PCM
14
14 320
30
12 100 80
12
25 25
10 80 60
20 20
8 60
15 15 40
6
0 40
A 10
20
2 5 5 20 I
0 o o 0
0.00 0.02 0.04 0.06 0.08 00 02 04 06 08 1.0 —0.250.00 025 0.50 0085 0090 0.095
16 { mmm Original PCM W Learned PCM 35 mmm Original PCM 40 mmm Learned PCM 120 = Original PCM = Learned PCM
20
14 80
30 35 100
12
25 30
15 80 60
0 25
II 20
8 20 60
. . i | .
6 15
0 I 40
4 5 10 zo
20
2 5 5
0 0 o
0.082986MBIDI0MINDISO

0.2 0.4 0.6 —0 029.0000.0250.0500.075

(a)

Figure 15: Column weight distribution of the parity check matrices on

000 0.25 0.50 0.75 1.00 —0.05 0.00 0.05 0.10

(b)

0
—0.4-0.2 0.0 0.2 04 06

©

the (a) BCH(63,45) (b)

POLAR(128,86) and (c) LDPC(121,80) codes. Top row and second row are for the AWGN and

Fading channel, respectively.

Under review as a conference paper at ICLR 2025

BLER

10-°

1072

107%

5G LDPC(32,16) AWGN

—=: 5G LDPC BP(L=5)
— Our BP(L=5)

5G LDPC BP(L=15)
—— Our BP(L=15)

30 35 40 45 50 55 60 65 70
Ep/No

5G LDPC(32,16) AWGN

—= 5G LDPC BP(L=5)
— Our BP(L=!
+ 5G LDPC BP(L=15)
—— Our BP(L=15)

30 35 40 45 50 55 60 65 70
Ep/No

BLER

5G LDPC(64,32) AWGN

X == 5G LDPC BP(L=5)
—— Our BP(L=5)

5G LDPC BP(L=15)
—— Our BP(L=15)

30 35 40 45 50 55 60 65 7.0
Ep/No

5G LDPC(64,32) AWGN

== 5G LDPC BP(L=5)
—— Our BP(L=5)

+ 5G LDPC BP(L=15)
—— Our BP(L=15)

30 35 40 45 50 55 60 65 7.0
Ep/No

BLER

104

10

5G LDPC(128,64) AWGN

—=— 5G LDPC BP(L=5)
—— Our BP(L=5)

=+ 5G LDPC BP(L=15)
—— Our BP(L=15)

3.0

35

4.0

4.5 5.0 5.5 6.0
Ep/No

5G LDPC(128,64) AWGN

—= 5G LDPC BP(L=5)
—— Our BP(L=5)

=+ 5G LDPC BP(L=15)
—— Our BP(L=15)

3.0

4.0

4.5 5.0 5.5 6.0
Ep/No

Figure 16: BER and BLER performance of the method on different SOTA 5G LDPC codes.

21

	Introduction
	Related Works
	Background
	Method
	Experiments
	Analysis
	Conclusions
	Hyper-Parameter Tuning
	More SNR results
	Line Search Optimization
	Convergence Rate
	Impact on other BP Variants
	Improvement Statistics on all the Codes
	More Random Codes
	Comparison with Genetic Algorithm
	Comparison with Successive Cancelation List
	BER vs SNR Curves
	Column Weight Distribution
	Performance on 5G LDPC Codes

