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Abstract

Metal artifacts impair the diagnostic value of medical CT images. These artifacts occur
from the projection values associated with the metal objects inside the scanned anatomy.
In this work, we replace the corrupted projection values by using a deep convolutional
neural network consisting of so-called partial convolution layers. We show that the network
trained on simulated data enhances newly presented projection data and therefore the
corresponding reconstructed image.

Keywords: Metal artifact reduction, CT preprocessing, projection domain, CNN, partial
convolution.

1. Introduction

The aim of this paper is to reduce metal artifacts in cone-beam computed tomography using
a deep convolutional neural network (CNN). The network operates on CT projection data
by replacing impaired projection values using the information of the spatially surrounding
data. This task is also known as inpainting. In the field of CT preprocessing, meaning
the enhancement of CT projection data exclusively before reconstruction, three different
approaches by (Park et al., 2017), (Gjesteby et al., 2017), and (Liao et al., 2019) exist to
our knowledge. Outside the field of CT preprocessing, one particularly interesting approach
to image inpainting is presented by (Liu et al., 2018). Here, the convolution results are
adapted using additional binary masks in every layer of the network. In the following, this
idea is adapted to CT preprocessing.

2. Methods

We generate training data by performing a cone-beam forward projection of 90 human
phantom datasets with different anatomies. Multiple small metal objects are randomly
added to the anatomies before projecting. Afterwards, the metal trace is deleted based
on a forward-projected segmentation of the metal object. The corresponding ground-truth
data consists of the projection values of the same anatomy without metal insertion. The
3D projection data is standardized and randomly sampled into 2D sinogram patches of size
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Table 1: Properties of encoding and decoding PC (EPC/DPC) layers.

Module Name ‘ Input Size ‘ Kernel Size ‘ # Channels ‘ Stride Factor ‘ Activation
EPC(S, K, C) S xS Kx K C 2 ReLLU
DPC(S, K, C) S xS Kx K C 1 LeakyReLU(0.2)

128 x 128. As second input to the network, an equally-sized binary mask of the metal trace
is used. For inpainting enhancement, (Liu et al., 2018) introduced the so-called partial
convolutional (PC) layer. In a PC layer the value 2’ resulting from a convolution of the
previous feature map X windowed by kernel W is defined as

xr =

, {WT(XQM)T(M), if | M)y >0

0, otherwise

where r(M) = Sﬁ/}ﬂ{) is a correction factor depending on the windowed binary mask M. ©®
denotes a element-wise multiplication. At the positions for which z’ is non-zero, the mask
M is updated by setting its value to one. Thus, the number of invalid values is reduced
layer by layer. The implementation of the PC layer and network are adapted from (Gruber,
2019). The network has a U-net structure which layer properties are shown in Table 1. The
encoding consists of the layers EPC1(128, 3, 64) without batch normalization followed by
EPC2(64, 3, 128), EPC3(32, 3, 256), EPC4(16, 3, 512), EPC5(8, 3, 512) and EPC6(4, 3,
512) with batch normalization. The decoding is performed by nearest-neighor upsampling,
concatenation with the same-sized encoding result, and PC. The PC layers are DPC1(8, 3,
512), DPC2(16, 3, 256), DPC3(32, 3, 128) and DPC4(64, 3, 64). The last layer DPC5(128,
3, 1) has no activation function. As suggested by (Liu et al., 2018), the training of the
network is performed with the ADAM optimizer of learning rate 0.0002 with a batch size
of six. The loss function consists of the sum of the mean absolute error (MAE) evaluated
on the masked region and a discrete total variation term on the masked region’s border.

3. Results and Discussion

Table 2: Mean values of MSE, MAE and SSIM computed on 15 test anatomies. The first
value in each cell corresponds to evaluation in the projection domain, the second
value to evaluation on the reconstructed image.

Method | MSE | MAE |  SSIM

BLI |44E-3/ 461 |3.8E-2/123][0.993/0.997
CNN | 1.1E-2 / 137.13 | 6.4E-2 / 6.13 | 0.987 / 0.986
PCNN | 9.8E-3 / 81.50 | 6.6E-2 / 5.22 | 0.987 / 0.990

In the projection domain, the inpainting results are evaluated by computing mean squared
error (MSE), mean absolute error (MAE) and structural similarity (SSIM). In the image
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domain, a single value is calculated for one complete 3D volume outside the metal object.
The results for all metrics can be found in Table 2. For comparison, bilinear interpolation
(BLI) is performed in the projection domain. Additionally, the performance of a CNN with
regular convolution layers and the same architecture as the PCNN is evaluated. For all
metrics, we obtain similar results which indicate that the PCNN prediction improves the
image quality of the reconstructed image. However, it does not show superiority to bilinear
interpolation. Figure 1 shows a visual comparison between the three correction methods.
Our results suggest that the PC layer alone is not the reason for the excellent network per-
formance presented by (Liu et al., 2018). A different loss function and more diverse training
data might be needed for further improvement. As for the network design, the results could
be improved by using the full 2D sinogram as input to reduce inconsistencies. However, the
differences of errors in projection and image domain of PCNN and CNN already indicate
higher consistency of the PCNN method. Additionally, a different correction term and mask
update for the PC layer could enhance the accuracy of the corrupted convolution results.

BLI CNN PCNN Ground-truth

Figure 1: Examplary reconstruction results after correction in the projection domain. The
images are displayed in HU (level: 300, window: 500).
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