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Abstract

Researchers want to generalize robustly to ‘out-of-distribution’ (OOD) data. Un-
fortunately, this term is used ambiguously causing confusion and creating risk—
people might believe they have made progress on OOD data and not realize this
progress only holds in limited cases. We critique a standard definition of OOD—
difference-in-distribution—and then disambiguate four meaningful types of OOD
data: transformed-distributions, related-distributions, complement-distributions,
and synthetic-distributions. We describe how existing OOD datasets, evaluations,
and techniques fit into this framework. We provide a template for researchers to
carefully present the scope of distribution shift considered in their work.

1 Introduction

While the idea of adapting to distribution shift is old, perhaps surprisingly, researchers have only
recently aimed to tackle ‘out-of-distribution’ (OOD) data following a call for concrete work on
technical AI safety [Amodei et al., 2016].1 Since then, over 10,000 papers are catalogued by Google
Scholar on the topic which is central in work towards safer ML systems [Hendrycks et al., 2022b].

We want models that generalize or are robust to OOD data, or which can detect it. Sometimes, in
order to achieve that, people train on OOD data. It is hard to define OOD data [D’Angelo and
Henning, 2021], and on the rare occasions when it is defined it is usually with respect to a difference
in distribution between the training data and some other data distribution [Lakshminarayanan, 2020,
Tran et al., 2020]. Specifically, the standard definition is that, with respect to some reference data
distribution pdata(x, y)

2 with x ∈ X and y ∈ Y , a target distribution q(x, y) is OOD if and only if

pdata(x, y) ̸= q(x, y). (1)

This is a natural definition from the perspective of statistical learning theory [Vapnik, 1998], whose
guarantees for model performance often assume that the target and reference distributions are equal.
But, we argue, this definition is unhelpful in practice: it is too general and too demanding.

When people talk about OOD data they are talking about at least four different things. We distinguish
four kinds of OOD data distributions which are special cases of the standard definition:

• Transformed-distributions: changed from the original by some set of transformations;
• Related-distributions: similar to the original in a way determined by use-context;
• Complement-distributions: (part of) the complement to the original distribution;
• Synthetic-distributions: distributions that are easy to sample but unrelated to the original.

These categories are orthogonal to categories like covariate shift and concept drift. We also note
that in some cases it is useful to think of data as being OOD independently of a target distribution,

1See appendix A historical usage of the term ‘OOD’.
2Our notation assumes supervised learning with input/output pairs, but all claims trivially cover, e.g.,

pdata(x) and random variables with arbitrary dimensionality and event-space.

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).



OOD category Example Causes Example Methods Example Evaluation
Transformed Sensor noise Data augmentation ImageNet/CIFAR-C [Hendrycks and Dietterich, 2019]

Adversaries Adversarial training Adversarial Examples [Goodfellow et al., 2015]

Related Deployment Multi-task training SVHN ↔ MNIST [Nalisnick et al., 2019]
Task-shift Inductive priors CIFAR-10 → CIFAR-100 (‘near-OOD’) [Winkens et al., 2020]
Adversaries ImageNet-A and -O [Hendrycks et al., 2021]

Species [Hendrycks et al., 2022a]

Complement Open-set Forwards transfer Split-MNIST/CIFAR [Kirkpatrick et al., 2017]
Adversaries Zero-shot learning

Open set recognition

Synthetic Rare Negative sampling Not typically used for evaluation.

Table 1: Transformed- and related-distributions are the most common naturally occurring kinds
of OOD data. Transformations have well-specified functional form while related-distributions are
possible for system designers to reason about. Adversaries are a common cause of many distribution
shifts. Synthetic-distributions are very rare in practice, and are usually not evaluated on, but are fairly
often used during training—e.g., by sampling uniform training data as a form of negative sampling.

but this is hard. Moreover, OOD data is emphatically not the same as outliers or anomalies—both
of which can come from the reference distribution. OOD detection is not just a synonym for outlier
or anomaly detection, despite papers often conflating these concepts (e.g., [Hendrycks et al., 2019,
Winkens et al., 2020, Schirrmeister et al., 2020, Tran et al., 2022, Hendrycks et al., 2022a]).

Being imprecise about what OOD means creates problems for research and practice. One can acci-
dentally motivate a problem with one kind of OOD data, solve it using another, and evaluate your
method on a third! Being imprecise might make some kinds of OOD robustness seem possible that
are theoretically intractable. For this reason, we propose a template in section 4 for describing OOD
data use which should help avoid errors and make it easier to understand where work applies.

2 Failures of the Standard Definition of OOD

Statistical learning theory motivates understanding OOD as when a reference and target data distri-
bution are not equal-in-distribution. Unfortunately, this is not a very helpful definition of OOD.

The definition is far too general. Suppose, for example, that the reference distribution is the proba-
bility distribution that generated the ImageNet dataset. Imagine you randomly duplicate just one of
the datapoints in that dataset. The new dataset is drawn from a target distribution that is not equal-
in-distribution to the reference dataset. This target distribution is therefore OOD with respect to the
reference distribution even though every single datapoint in the target is identical to a point in the
reference distribution. This is clearly not what we mean when we consider the problem of OOD
detection, generalization, or robustness.

The definition is also far too demanding. Consider that there are infinitely many distributions that
are not equal-in-distribution to any reference distribution (for one thing, consider the distributions
whose event-spaces are different!). Assuming that we do not have extra information about which
distributions are likely to be the target distribution, picking a robustness strategy is equivalent to
picking a decision-rule for performing well on a distribution chosen uniformly-at-random. But this
problem is well understood—it is impossible for any robustness strategy to out-perform any other
in expectation by the no-free-lunch theorems [Wolpert and Macready, 1997]. Of course, we can do
better than random when designing robustness strategies: this reveals that there is something in our
intuitive conception of OOD which is missing from this definition.

3 Defining ‘Out-of-Distribution’

In actual fact, people have a lot in mind when they think about OOD. They are interested in a set of
distributions that are either conceptually related to pdata(x, y) or are useful in some other way.

Transformed-distribution. Transformed distributions are like the reference distribution except
that they are transformed according to a well-specified function mapping. For example, it might
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represent a rotation, reflection, or translation in x; or perhaps a function producing a certain type of
adversarial example.

In simple cases, robustness and generalization methods can tackle this kind of OOD data by explic-
itly or implicitly learning the underlying symmetry, or augmenting using data generated according to
the transformation. In more complex cases, we will not have a list of the transformations that might
produce OOD data. In those cases, we may need to resort to some sort of meta-learning procedure
that uncovers transformations that are likely to occur in the real world.

Robustness evaluations like ImageNet-C [Hendrycks and Dietterich, 2019] evaluate the performance
of models against this kind of OOD data: all the images in the test set are simple transformations of
reference images. It is extremely important to recognize that being robust to one family of transfor-
mations offers no guarantees about performing well against an arbitrary alternative transformation
(similarly to the no-free-lunch argument above). Robustness for one transformation might also help
with some other transformation, but understanding this requires a careful analysis of the transforma-
tions that your system is likely to actually face.

Related-distribution. For transformed-distributions we can specify a transformation that maps our
reference distribution onto a new one. But sometimes we know that there are some distributions
we are likely to care about because as system designers we have an intuition about important data
distributions. For example, you might imagine that when you build a classifier for different models
of car someone might also accidentally try to classify models of trucks because they misunderstand
the intended use of the software. They might even try to classify dog breeds out of pure curiosity.
Similarly, the specific shift created by deploying your system is a very common related distribution.

These are best thought of as distributions, prelated, that are related to pdata, but not simple transforma-
tions of pdata. Rather, the system designer needs to reason, within the context in which the software
is most likely to be deployed, about what kinds of data might be used as inputs and how the system
ought to respond. Being robust to well-specified transformations often will not provide good results
on related distributions, and there is no theoretical reason to think they will in general.

In principle, one could automate part of that special-knowledge reasoning and learn something about
the typical distribution of prelated in our world for given contexts. That means the task becomes
learning what the related distributions are (perhaps as a generative model or by learning D) and
using this to inform the model learned using pdata. When researchers improve generalization on
related-distributions, we hypothesise that they are doing something like this.

Complement-distribution. Sometimes we care about something like the complement of pdata:
things that are not in the reference distribution. This might mean that pcomplement covers only classes
or inputs which do not appear in pdata. For example, this is the structure of some challenges in
open-set recognition [Scheirer et al., 2013] or continual learning [Kirkpatrick et al., 2017]. Formally
speaking, two distributions that cover the same event-space cannot be complements, but often the
probability density of one distribution over the high-density regions of the other is low enough that
they are complements for practical purposes.

The ability to predict robustly on the complement of the observed data is impossible in general: if
it is a new class or region of data-space then any decision-rule is compatible with the evidence in
that region. The only thing that makes it tractable is implicit typical relationships between pdata and
pcomplement, which can be meta-learned. For this reason, papers that do open-set recognition often
actually evaluate with related-distributions (e.g., [Tran et al., 2022]). This is fair enough, one cannot
perform well on the entire complement, but places implicit limitations on the success of the method.

Synthetic-distribution: Sometimes, we are interested in distributions for reasons that have nothing
to do with their relationship to the reference distribution. For example, they may be extremely easy to
sample from, like the uniform distribution. This makes them much easier to assume access to during
training (unlike related-distributions, which are far more useful but intrinsically hard to access).

There are reasons one might want to use synthetic distributions, but one should be very careful about
confusing them and the guarantees they allow with distributions that are relevant to the actual task.
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3.1 Data vs. Distribution

Although the conceptual formulation of ‘out-of-distribution’ refers to distributions people often talk
about OOD data. What does it mean for target data to be OOD?

It could mean that the target data are not in the support of the reference distribution. For example, if
the reference distribution is over the event-space of all sequences of English words, then most French
sentences would be OOD datapoints. But usually we also think that points which are merely very
unlikely under the reference distribution are OOD. Also, points that are impossible in the reference
distribution but very similar to a point in the actual dataset are probably not OOD: consider a 1-bit
float32 perturbation of a training point that is natively float16.

“Points that are unlikely under the reference distribution” is also not a good definition of OOD data.
As Le Lan and Dinh [2021] argue, density is only well-defined up to a parameterization of the space.
Reparameterizing the input-space can change the relative order of high- or low-density points.

I do not currently believe that the important concepts behind OOD can be captured without reference
to a second target distribution and the character of the differences between the reference and target
distribution.

Outliers, anomalies, and OOD. The desire to define which points are OOD highlights a connection
between OOD detection and the related problems of anomaly or outlier detection. Anomalies and
outliers are specifically datapoints, not distributions. In fact, a crucial difference between OOD data
and outliers/anomalies is that outliers/anomalies are generated by the reference distribution. That
is, it is entirely possible for in-distribution data to be an outlier/anomaly. The common conflation of
outliers, anomalies, and OOD data is therefore a mistake and should be avoided.

4 Why It Matters to be Precise About Definitions of OOD

This is not just a curiosity. The way we talk about concepts matters, both because it guides
our research and because it guides how people use our research. Talking about OOD as some
natural concept encourages the belief among researchers and practitioners that OOD generaliza-
tion/robustness/detection is a solvable problem. But, in general, it is not! The idea that one can
handle ‘distribution shifts’ in all generality is an illusion—for any decision rule you come up with
there are data distributions which make it perform worse than chance. Indeed, in expectation over all
possible data distributions it will never perform better than chance [Wolpert and Macready, 1997].

The solution is to be precise. People actually have some clear ideas about what kinds of distribution
shifts they are likely to face. Here is what we propose: a distribution shift template for research into
OOD robustness/generalization/detection. Papers with these goals should fill in the following fields:

• Intended scope: these are the kinds of distribution shift we aim to tackle. For exam-
ple, ‘Transformed distributions: common camera artefacts, viewing angles, pose changes,
variable viewpoint distance.’

• Intervention scope: these are the kinds of distribution shift the training method, regular-
ization techniques, and algorithmic innovations can be expected to deal with. For example
‘Transformed distributions: rotations, reflections, translations, resizing, stretching, blur.’

• OOD leakage: are any kinds of OOD data assumed available during training? If so, are
these from a common source with evaluation OOD data? Are genuinely ‘OOD’ data going
to actually be available in deployment?

• Evaluation scope: these are the kinds of distribution shift which the evaluation techniques
are actually designed to test. For example, ‘Related distributions: 90 classes of 32×32 pixel
images which are not in the training distribution.’

Similarly, papers that propose OOD evaluations should explicitly state their scope.

These templates help in two main ways. First, as a researcher (and reviewer) glancing at this quickly
should reveal if there is a mismatch between the goals of the paper, its methods, and its evaluation.
A mismatch is not necessarily a problem, it just means more work must be done. Second, as a
practitioner glancing at this template should reveal if the method described in the paper actually
corresponds to your intended use case.
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Existential Risk Discussion

While out-of-distribution (OOD) generalization, robustness, and detection have been discussed in
works related to reducing existential risks from AI (e.g., [Amodei et al., 2016, Hendrycks et al.,
2022b]) the truth is that the vast majority of distribution shifts are not directly related to existential
risks. When thinking about whether or not research into OOD generalization/robustness/detection
is useful for reducing existential risks from AI it is therefore important to understand whether we
should expect ‘good’ OOD properties to generalize from one kind of distribution shift to another.

As a first step, this requires rejecting the idea that OOD is a natural category. After all, if I believe
my method is ‘better on OOD robustness’ then my belief stops me from interrogating whether it is
specifically better on the sorts of distribution shifts that are likely to be associated with existential
risks. That belief is the main target of this paper: we flatly reject the idea that OOD is a natural
category.

It is our further, though not-yet-empirically-proven, belief that OOD properties do not generalize
well from one kind of distribution shift to another. We intend to address this in future work. If this
claim is true, then it follows that (in order to be useful for mitigating existential risk) OOD research
should focus on identifying key distribution shifts associated with existential risk and targeting those
specifically rather than hoping that OOD generalization/robustness/detection is a general strategy for
mitigating existential risk. An example of this sort of shift is the specific shift that happens when a
machine learning system becomes able to reason about its own training process [Cotra, 2022]
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A History of ‘Out-of-distribution’

Researchers may be surprised to learn how recently the term ‘out-of-distribution’ has been intro-
duced to describe the problem of generalization of neural networks to data that are not from the
training distribution. For example, searching Google Scholar for the terms “out of distribution” and
“neural network” before 2016 returns only 53 results. Of these, the vast majority are either: database
errors which were actually published later; papers which merely cite a paper that uses the term in
the title; papers which are using the phrase otherwise, e.g., “y is sampled out of distribution Y ” or
“purchases usually are made out of distribution warehouses”. A manual check of all of these results
reveals only four papers which discuss OOD data in any meaningfully relevant way, of which one is
the journal version of another [Bagnell, 2005, Bengio et al., 2011, Bengio, 2012, Goodfellow et al.,
2015].

Bagnell [2005] considers specifically the distribution shift that occurs when a system interacts with
its environment (related-distribution). Bengio et al. [2011] and Bengio [2012] consider perturbed
examples (transformed-distribution) and multi-task settings (related-distributions) and shows that
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this sort of data can improve neural network learning. Goodfellow et al. [2015] asks why neural net-
works are so good at generalizing to points outside the training set given the presence of adversarial
examples.

B Contrast to Standard Dataset Shift Definitions

Research into non-stationary distributions often distinguishes shift based on which part of pdata(x, y)
is changing. The main distinctions which are usually drawn are:

• Concept drift: q(x, y) = p(x)q(y | x);
• Covariate shift: q(x, y) = p(y | x)q(x);
• Prior shift: q(x, y) = p(x | y)q(y)

In concept drift, the input distribution is fixed, but the relationship between input and output changes
in the target distribution. In covariate shift, the relationship between input and output is fixed, but
the distribution of inputs changes. In prior shift, the relationship between output and input is fixed,
but the distribution of the outputs changes.

These distinctions are unrelated to the ones we draw here. Any of these can be a transformed-,
related-, complement-, or synthetic-distribution. For example, the transformation for a transformed
distribution can easily be related to any of the conditional distributions or non-joint distributions that
compose the three types of shift in this section. It can be useful to use both framings, possible at the
same time, to characterize distribution shift.
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