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ABSTRACT

Multi-objective reinforcement learning (MORL) addresses sequential decision-
making problems with multiple objectives by learning policies optimized for diverse
preferences. While traditional methods necessitate costly online interaction with
the environment, recent approaches leverage static datasets containing pre-collected
trajectories, making offline MORL the preferred choice for real-world applications.
However, existing offline MORL techniques suffer from limited expressiveness and
poor generalization on out-of-distribution (OOD) preferences. To overcome these
limitations, we propose Diffusion-based Multi-Objective Reinforcement Learning
(DIFFMORL), a generalizable diffusion-based planning framework for MORL.
Leveraging the strong expressiveness and generation capability of diffusion models,
DIFFMORL further boosts its generalization through offline data mixup, which
mitigates the memorization phenomenon and facilitates feature learning by data
augmentation. By training on the augmented data, DIFFMORL is able to condition
on a given preference, whether in-distribution or OOD, to plan the desired trajectory
and extract the corresponding action. Experiments conducted on the D4MORL
benchmark demonstrate that DIFFMORL achieves state-of-the-art results across
nearly all tasks. Notably, it surpasses the best baseline on most tasks, underscoring
its remarkable generalization ability in offline MORL scenarios.

1 INTRODUCTION

Reinforcement learning (RL) (Wang et al., 2024) empowers an agent to learn to achieve a specific
objective through interactions with the environment, and has made exciting progress in various
real-world problems like autonomous driving (Kiran et al., 2022), robotic control (Singh et al., 2022),
and healthcare (Yu et al., 2023), etc. While the classic RL framework focuses on optimizing a
single objective through the maximization of a scalar return, multi-objective RL (MORL) (Roijers
et al., 2013; Liu et al., 2014) endeavors to optimize multiple competing objectives associated with a
vector-valued reward. The majority of MORL approaches (Abels et al., 2019; Xu et al., 2020; Yang
et al., 2019; Basaklar et al., 2023; Hung et al., 2023; Lin et al., 2024a) learn a set of policies optimized
for diverse preferences over the objectives, allowing for the selection of the most suitable policy based
on user preferences during deployment. For instance, a MORL healthcare agent can recommend
an appropriate treatment plan based on different patient preferences and medical requirements.
However, these approaches adopt an online learning paradigm, entailing extensive interactions with
the environment to effectively learn a wide range of preferences. It poses practical challenges in
real-world problems where data collection is costly and potentially hazardous.

Learning from static datasets with pre-collected trajectories corresponding to different preferences,
offline MORL methods emerge as the preferred choice to solve this issue. For instance, PEDI (Wu
et al., 2021) transforms the original offline multi-objective problem into a primal-dual formulation
and solves it via dual gradient ascent. Another method, PEDA (Zhu et al., 2023a), extends return-
conditioned methods including Decision Transformer (DT) (Chen et al., 2021a), RvS (Emmons et al.,
2022), and primitive diffusion (Yuan et al., 2024) with two return normalizations to the multi-objective
setting. Some works recently develop policy-regularized methods to improve the learning efficiency
of offline MORL (Lin et al., 2024b). Meanwhile, researchers also develop offline MORL benchmarks,
including D4MORL (Zhu et al., 2023a), which evaluates the Pareto-efficiency of the agents via a
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wide range of tasks, and MOSB (Lin et al., 2024b), which focuses on assessing the feasibility of
utilizing single objective datasets such as D4RL (Fu et al., 2020). These advancements have propelled
offline MORL to take a significant step forward in addressing multi-objective real-world problems.

However, current offline MORL methods suffer from limited expressiveness and struggle to accurately
model the diverse optimal policies that correspond to a wide range of preferences, leading to the
suboptimality of the approximated Pareto front. Additionally, these methods do not explicitly consider
the limited preference coverage of offline datasets, but rather learn from the limited datasets directly.
Consequently, these methods perform well only on the preferences covered within the dataset but
generalize poorly on out-of-distribution (OOD) preferences. Thus, a question arises: can we develop
an offline multi-object reinforcement learning approach that strengthens the agent’s generalization
ability using only limited offline data?

For the mentioned issue, we propose Diffusion-based Multi-Objective Reinforcement Learning
(DIFFMORL), a strong and generalizable diffusion-based planning framework for offline MORL. It
leverages the well-established expressiveness and generation capability of diffusion models (Yang
et al., 2023) to model the policies. Furthermore, to enhance generalization to OOD preferences,
instead of conservatively selecting in-distribution policies with the closest preference, i.e., the
memorization phenomenon, DIFFMORL applies the widely used mixup technique (Zhang et al., 2018;
Cao et al., 2022; Jin et al., 2024) to synthesize pseudo-trajectories and augment the learning process.
Experiments conducted on the D4MORL (Zhu et al., 2023a) benchmark demonstrate that DIFFMORL
achieves state-of-the-art results across nearly all multi-objective MuJoCo-based (Todorov et al., 2012)
continuous control tasks. Notably, DIFFMORL surpasses the best baseline on most of tasks in terms
of Return Mismatch, a metric to measure the performance on OOD preferences, underscoring its
remarkable generalization ability in offline MORL scenarios.

2 RELATED WORK

Offline Multi-Objective Reinforcement Learning (MORL) MORL extends the classic RL frame-
work from a single optimization objective to multi-objective settings (Hayes et al., 2022), making
it well-suited for real-world problems such as transportation (Ren et al., 2021) and hyperparameter
tuning (Chen et al., 2021b). The majority of MORL approaches aim to learn a set of policies that
approximates the Pareto front in an online paradigm. For instance, PG-MORL (Xu et al., 2020)
updates a policy population using an evolutionary algorithm, while approaches like Envelope (Yang
et al., 2019), PD-MORL (Basaklar et al., 2023), and Q-Pensieve (Hung et al., 2023) train a single
preference-conditioned network with different Bellman update strategies, which may be impractical
in critical domains such as healthcare and autonomous driving, accelerating the focus on the offline
MORL setting. Offline MORL adopts an offline learning paradigm, deriving policies from static
datasets. PEDI (Wu et al., 2021) transforms the offline multi-objective problem into a primal-dual for-
mulation solved via dual gradient ascent, while PEDA (Zhu et al., 2023a) extends return-conditioned
sequential modeling methods to the multi-objective setting. Policy-regularized methods have also
been applied to address preference-inconsistent demonstrations (Lin et al., 2024b). Very recently,
MODULI (Yuan et al., 2024), using a preference-conditioned diffusion model as a planner to generate
trajectories aligned with various preferences, shows potential for improving offline MORL efficiency
in ideal settings and exhibits generalization ability in out-of-distribution scenarios. Researchers have
developed offline MORL benchmarks, such as D4MORL (Zhu et al., 2023a), which evaluates agents’
Pareto-efficiency across a wide range of tasks, and MOSB (Lin et al., 2024b), which assesses the
feasibility of using single-objective datasets like D4RL (Fu et al., 2020).

Diffusion Models in RL Diffusion models have emerged as a powerful generative modeling
framework in machine learning. These models employ a Markov chain to gradually add noise
to the data, followed by a learned denoising process to generate new samples (Yang et al., 2023).
Their effectiveness has been demonstrated across a wide range of domains, including computer
vision (Croitoru et al., 2023), video generation (Ho et al., 2022), and text-to-image synthesis (Qin
et al., 2024), among others. In reinforcement learning (RL), diffusion models have initially been
applied to planning tasks, exemplified by methods such as Diffuser (Janner et al., 2022) and Decision
Diffuser (Ajay et al., 2023). More recent work has explored the use of diffusion models for policy
parameterization, where they generate action sequences (Lin et al., 2024b; Wang et al., 2022), and
for data augmentation, where they synthesize new data (Lu et al., 2024; Yang & Xu, 2024). While
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diffusion models have shown success in single-agent settings, approaches like MADiff (Zhu et al.,
2023b) and EAQ (Oh et al., 2024) have extended their application to multi-agent environments,
significantly improving multi-agent coordination and learning efficiency. Diffusion models have also
been applied in robotics and large language models (LLMs) (Zhu et al., 2023c), showcasing their
high expressive power and problem-solving capabilities across various problem settings.

Mixup Augmentations Mixup is a data augmentation with the core idea being to generate new
synthetic training samples by linearly interpolating between two images and their corresponding
labels (Zhang et al., 2018; Jin et al., 2024). By encouraging the model to make smooth predictions
over these interpolated data points, mixup has been proven highly effective in reducing overfitting
and improving generalization, particularly when dealing with limited or noisy datasets. It has shown
great potential in areas such as computer vision (Xu et al., 2023), point cloud processing (Chen et al.,
2020), and natural language processing (NLP) (Sun et al., 2020). In reinforcement learning, mixup
has also been applied to improve generalization. For instance, Mixreg (Wang et al., 2020) trains
agents by mixing observations from different training environments and enforces linearity constraints
on both the interpolated observations and associated rewards, while MixRL (Hwang & Whang,
2021), a data augmentation meta-learning framework for regression, identifies the optimal number of
nearest neighbors to mix for each sample to improve model performance using a small validation
set. Additionally, K-mixup incorporates mixup into reinforcement learning by learning a Koopman
invariant subspace, a method commonly used for classification tasks (Jang et al., 2023). Other works,
such as (Ajay et al., 2023), employ mixup to train classifiers that validate the generalization of
diffusion models.

3 PRELIMINARIES

Multi-Objective Markov Decision Process (MOMDP) We formulate the multi-objective sequen-
tial decision making problem as a Multi-Objective Markov Decision Process (MOMDP) with linear
preferences (Wakuta, 1995), defined by the tuple ⟨S,A,P,R,Ω, f, γ⟩, where S and A denote the
state space and the action space. P : S ×A → Pr(S) is the transition function,R : S ×A → Rn

is the vector-valued reward function and n is the number of objectives. We also assume that there
exists a preference space Ω ∈ Pr(Rn) and a linear utility function f : Ω× Rn → R that scalarize
the reward vector rt = R(st,at) as rt = f(ω, rt) = ω⊤rt, given preference ω ∈ Ω. At timestep t,
an agent with state st ∈ S executes an action at ∈ A, and then transition to the next state st+1 with
probability P(st+1|st,at), and receive a vector-valued reward rt. The vector-valued return is given
by the discounted sum of reward vectors as R =

∑
t γ

trt. The expected vector-valued return for a
policy π(a|s,ω) is Gπ = Es0,at∼π(·|st,ω)[R], and the goal is to train a multi-objective policy π that
maximize the expected scalarized return ω⊤Gπ,∀ω ∈ Ω.

Diffusion Probabilistic Models Diffusion models have two process, the forward process grad-
ually adds noises to the clean samples x via a pre-scheduled diffusion function q(xk+1|xk) :=
N (xk+1|

√
αkxk, (1− αk)I). On the contrary, the reverse process gradually removes noises from

the noisy samples xk via a learnable function pθ(xk−1|xk) = N (xk−1|µθ(xk, k),Σk), where
N (x|µ,Σ) is a Gaussian distribution with mean vector µ and covariance matrix Σ, x0 = x is a
sample, x1, . . . ,xK are noisy latent variables, αk ∈ R are coefficients that determine the variance
schedule, and K is the predefined maximal diffusion timestep. A sample x can be generated by
running the reverse process to iteratively denoise a prior xK ∼ N (0, I) for K steps. To efficiently
train diffusion models to derive pθ, DDPM (Ho et al., 2020) runs the forward process and employs a
neural network ϵθ to predict the noises, i.e., minimizing the loss:

L(θ) = Ek,x0,ϵ

[
∥ϵ− ϵθ(xk, k)∥2

]
, (1)

where k is uniformly sampled from {1, . . . ,K}, x0 is a sample, ϵ ∼ N (0, I) is noise, xk =√
ᾱkx0 +

√
1− ᾱkϵ is the noisy sample, and ᾱk :=

∏k
s=1 αs. The reverse process pθ is equivalent

to noise prediction using ϵθ, as denoising is exactly removing predicted noises from noisy samples.

Conditional diffusion models are developed with posterior pθ(xk−1|xk,y) that denoise with addi-
tional information y, and the noises are predicted by the conditional network ϵθ(xk,y, k). These
models are able to generate samples according to some attributes, flexibly synthesizing novel
behaviors. Essentially, there is an equivalence between diffusion models and score matching,
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which shows ϵθ(xk, k) ∝ ∇xk
log p(xk), i.e., the noise is proportional to gradient (score) of the

data distribution. This relationship leads to a score-based conditioning trick of diffusion models.
Classifier-free guidance is one implementation that learn a conditional ϵθ(xk,y, k) and an uncon-
ditional ϵθ(xk,∅, k) at the same time, where ∅ is a fixed dummy value. Then, the perturbed noise
ϵ̂ = ϵθ(xk,∅, k) + w[ϵθ(xk,y, k)− ϵθ(xk,∅, k)] is used for generation (Song et al., 2021).

4 METHOD

In this section, we present the detailed design of the proposed framework, DIFFMORL, for gen-
eralizable offline MORL. First, we formulate the problem of OOD preferences, and the trajectory
generation process for task planning in Section 4.1. Next, in Section 4.2, we describe the training
methodology for DIFFMORL, where we utilize the mixup technique to enhance generalization.
Finally, we explain how to plan and execute MORL tasks using DIFFMORL in Section 4.3.

4.1 PROBLEM SETUP
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Figure 1: An example of the
OOD preference problem.

The Problem of OOD Preferences In real-world offline MORL
tasks, the pre-collected dataset D may suffer from incomplete pref-
erence coverage, due to the property of tasks and behavior policies.
For example, preferences that treat all objectives almost equally or
unilaterally may be lacking in some scenarios (Figure 1). To capture
this issue, we define the preference-lacking region as the union of sets
B(ωood, ϵ) = {ω ∈ Ω | ∥ω − ωood∥1 ≤ ϵ}, for a series of ϵ ≥ ϵmin
and ωood, where ϵmin is a positive constant for ensuring the inevitability
of the region. These preferences are termed out-of-distribution (OOD)
preferences due to their absence from the dataset. Offline MORL al-
gorithms that learn directly from such incomplete datasets may derive
suboptimal policies when evaluated on OOD preferences, i.e., poor
generalization. The following sections will provide an detailed approach to addressing this problem.

Trajectory Generation via Diffusion To capture the complex distribution of trajectories across a
wide range of preferences and returns, we formulate the MORL planning problem as a conditional
generation problem using a diffusion model:

max
θ

Eτ∼D[log pθ(x(τ)|y(τ))], (2)

where D is a pre-collected offline MORL dataset containing trajectories of the form τ =
⟨ω, s1,a1, r1, . . . , sT ,aT , rT ⟩. Slightly abuse of notations, we also use ω ∈ D to represent ω
is in some trajectories of D. To simplify the conditional generation process, we construct the target
trajectory fragment x(τ), which is a consecutive sub-sequence of trajectory τ , along with the essential
conditional information y(τ) as

x(τ) =

[
st st+1 · · · st+H−1

at at+1 · · · at+H−1

]
, y(τ) = [ω,ω ⊙R(τ)], (3)

where⊙ denotes the element-wise product, ω⊙R(τ) =
∑

t γ
tω⊙R(st,at) is the weighted vector-

valued return, and H is the predefined horizon. For notation simplicity, we use x,y,R to denote
x(τ),y(τ),R(τ). By optimizing Equation 2, we obtain a conditional distribution estimator pθ to
generate trajectory fragments x according to the given preference ω and maximize the vector-valued
return ω⊤R = 1⊤(ω ⊙R). Specifically, trajectory fragments are generated through the reverse
denoising process of the diffusion model:

pθ(x0|y) =
∫

p(xK)

K∏
k=1

pθ(xk−1|xk,y)dx1:K , (4)

which is implemented as an iterative denoising process via a noise prediction network ϵθ(xk,y, k)
trained by minimizing the simplified objective in Equation 1.
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4.2 TRAINING WITH MIXUP-SYNTHESIZED TRAJECTORIES

Diffusion models are highly expressive and can accurately generate in-distribution trajectories after
training on the original dataset. To ensure these models learn the underlying trajectory distribution
rather than simply memorizing the trajectories, DIFFMORL employs the mixup (Zhang et al., 2018)
technique to mitigate the memorization phenomenon and facilitate feature learning with a modified
optimization objective, thereby improving the generalization on OOD preferences.

Mixup-based Augmented Learning Process DIFFMORL applies the mixup technique to linearly
interpolate the original trajectories and synthesize additional pseudo-trajectories. Specifically, before
updating the diffusion model, a training batch {(ωi,xi,Ri)}bi=1 is randomly drawn from the dataset
D, where b is the batch size. Then, two sub-batches are drawn from this batch as {(ω1

j ,x
1
j ,R

1
j )}b

′

j=1

and {(ω2
j ,x

2
j ,R

2
j )}b

′

j=1. A random coefficient λ ∼ U(−λ0, 1 + λ0), where λ0 > 0, is used to
linearly combine the two sub-batches to produce new samples:

ω̃j = λω1
j + (1− λ)ω2

j

x̃j = λx1
j + (1− λ)x2

j for j = 1, . . . , b′ (5)

R̃j = λR1
j + (1− λ)R2

j

These new samples are inserted into the original batch for training the diffusion model:

New batch = {(ωi,xi,Ri)}bi=1 ∪ {(ω̃j , x̃j , R̃j}b
′

j=1. (6)

Note that we allow the coefficient λ to be negative or exceed 1 to enable extrapolation. Additionally,
to prevent the excessive influence of the pseudo-trajectories, employing appropriate early stopping
for mixup-based training at the N ′-th step of the total N training steps is advantageous. A detailed
study of of the corresponding hyperparameters is provided in Appendix A.2.

Overall Training Objective The DIFFMORL framework is trained in a self-supervised manner,
where samples are drawn from the dataset, augmented with mixup, and diffused with Gaussian noises,
i.e., the forward process. The goal is to predict the noises based on target information, i.e., the reverse
denoising process. We modify the original loss function in Equation 1 for training as follows:

L(θ) = Eϵ,k,τ∼mixup(D),β∼Bern(p)

[
∥ϵ− ϵθ(xk;ω, (1− β)ω ⊙R+ β∅, k)∥2

]
, (7)

where ϵ ∼ N (0, I) is the target noise, k is the diffusion timestep uniformly sampled from {1, . . . ,K},
τ ∼ mixup(D) represents trajectories sampled from the dataset D and then augmented with mixup as
Equation 6, and β ∼ Bern(p) is a Bernoulli random variable used for blocking the condition ω ⊙R
with probability p. We parameterize the noise prediction network as a conditional U-Net (Ronneberger
et al., 2015), with extended modules for conditioning. The architecture design and more details are
provided in Appendix A. After training on the pre-collected dataset with Equation 7, DIFFMORL
is capable of accurately generating desired trajectories corresponding to diverse in-distribution and
OOD preferences, which are utilized for planning and online task execution in the next section.

4.3 PLANNING AND EXECUTION WITH CONDITIONAL GENERATION

Here, we introduce how DIFFMORL realizes planning and online execution given a preference
during deployment. Specifically, DIFFMORL must control the trajectory generation process to
produce a plan x that aligns with the preference ω, maximizes the scalarized return ω⊤R, and
remains consistent with the real states. We design the following techniques to achieve these goals.

Independent Preference Encoding Unlike previous works (Zhu et al., 2023a) on offline MORL
that make decisions on x′ = [x,ω] by concatenating trajectory fragments with preferences and
encoding them with a single encoder, DIFFMORL processes them separately, utilizing an independent
MLP encoder to encode preferences. The reason is that these two elements possess very different
modalities. Trajectory fragments are more varied and of high frequency, even within a single
trajectory, while preferences remain stationary throughout each episode. By using separate encoders,
DIFFMORL can more effectively capture the distinct features of each element, leading to a better
matching between the generated trajectories and the given preferences.
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Weighted Vector-valued Return Guidance To further improve the quality of the generated trajec-
tory fragments, DIFFMORL must properly set the return-vector conditions to guide the generation
process. To this end, we calculate the maximal value ever achieved by the behavior policies for
each objective from the dataset, denoted as Rmax

i , which serves as an estimation of the maximum
value for the i-th objective. We then construct a pseudo-return Rmax = [Rmax

1 , . . . , Rmax
n ] to guide

the generation process of DIFFMORL. To emphasize the varying importance of different objectives
according to a given preference ω, we re-weight the pseudo-return with the preference as ω ⊙Rmax.
Finally, classifier-free diffusion guidance is applied with the following noise estimation:

ϵ̂ = ϵθ(xk;ω,∅, k) + w [ϵθ(xk;ω,ω ⊙Rmax, k)− ϵθ(xk;ω,∅, k)] , (8)

where w is the guidance scale to balance the diversity and quality of the generated trajectory fragments.

Consistent Planning and Execution After setting the condition mechanism based on the given
preference and return vector, DiffMORL can generate a trajectory fragment through the iterative
denoising process from xK ∼ N (0, I) for K steps. To ensure the generated trajectory fragment
begins at the agent’s current state st, i.e., consistent planning, DIFFMORL replaces the first noisy
state in xk(k = 1, . . . ,K) with the ground-truth state st, then denoises the remaining portion
of the trajectory fragment. Upon finishing the denoising process, DIFFMORL extracts the first
generated action at for online execution, transitioning the environment to the next state, receiving a
vector-valued reward, and advancing the MORL task.

With the well-designed model architecture, training objective, and conditioning mechanism, DIFF-
MORL can effectively learn from the offline dataset and complete MORL tasks in an online manner.

5 EXPERIMENTS

In this section, we conduct extensive experiments on D4MORL (Zhu et al., 2023a) to answer
the following questions: (1) How will DIFFMORL benefit generalization? (Section 5.2) (2) Can
DIFFMORL outperforms baselines on both complete and incomplete datasets? (Section 5.3) (3) Can
DIFFMORL generalize well on different levels of incompleteness? (Section 5.4) (4) How different
components affect the performance of DIFFMORL? (Section 5.5)

5.1 D4MORL BENCHMARK AND METRICS

Setup and Baselines In our experiment, we consider offline MORL tasks of the Datasets for Multi-
Objective Reinforcement Learning (D4MORL) benchmark (Zhu et al., 2023a). D4MORL is based on
six multi-objective MuJoCo (Todorov et al., 2012) environments, including five environments with
two objectives each (MO-Ant, MO-HalfCheetah, MO-Hopper, MO-Swimmer, MO-Walker2d) and
one with three objectives (MO-Hopper-3obj). It features a variety of datasets that differ in tasks, data
quality (Expert or Amateur), and preference ranges (High-H, Med-H, or Low-H). To better
evaluate generalization, we additionally collect incomplete datasets containing preference-lacking
regions as illustrated in Section 4.1 by reject sampling using behavior policies. These regions can
be described by centers and radii. After training on these datasets, all methods are tested on 324
(MO-Hopper-3obj) or 500 (other environments) equally spaced preference points in Ω.

We include various categories of offline MORL algorithms as baselines, including imitation learning
by behavior cloning BC(P), conservative offline RL method CQL(P) (Kumar et al., 2020), sequential
modeling methods MODT(P) and MORvS(P)(Zhu et al., 2023a)1) and diffusion based method
MODULI (Yuan et al., 2024). Note that all of the baselines except MODULI, concatenate preferences
with trajectory fragments as x′(τ) = [x(τ),ω] for the MORL setting. For more details of the
environments, datasets and baselines, please refer to Appendix B.

Metrics To evaluate the performances of different multi-objective algorithms on competing ob-
jectives, we must introduce the notion of Pareto Optimality. We refer to the solution Gπp to be
dominated by Gπq , denoted as Gπp ≺ Gπq , if Gπp

i ≤ G
πq

i ,∀i ∈ {1, . . . , n} and Gπp ̸= Gπq .
All optimal (in the sense of dominance) solutions form the Pareto Front, denoted as P . In MORL,

1 In this work, we focus on the preference-conditioned version of the baselines, which performs better than the
non-conditioned version, and omit the “(P)” symbols in the following for notation simplicity.
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Figure 2: A case study in a grid navigation task. (a) The overview of the navigation task. (b)
The probability distribution heatmap of achieved goals versus given goals of DIFFMORL (c) The
probability distribution heatmap of achieved goals versus given goals of MORvS (d) The distances
between in-distribution and OOD outputs distributions and optimal probability distributions.

the goal is to derive a policy such that its empirical Pareto front is a good approximation of the
Pareto front. Since the true Pareto front for many problems is unknown, two metrics (Hayes et al.,
2022) for relative comparisons on empirical Pareto front P among different algorithms will be used:
Hypervolume (HV) :=

∫
Rn 1H(P )(z)dz, where H(P ) = {z ∈ Rn | ∃p ∈ P,p0 ≺ z ≺ p}, p0 is a

predefined reference point, and 1H(P )(z) is the indicator function. Larger HV means larger volume
of space that is enclosed by the Pareto front and coordinate planes, and the better. Sparsity (SP)
:= 1

|P |−1

∑n
i=1

∑|P |−1
k=1 [P̃i(k) − P̃i(k + 1)]2, where P̃i(k) is the k-th value in the sorted list for

the i-th objective values of P . Smaller SP means denser approximation of the Pareto front, and the
better when given close HV. To evaluate the generalization ability of different algorithms on OOD
preferences, we design a new metric termed Return Mismatch (RM) :=

∑
p∈P ∥G∗(ω(p))− p∥1,

where ω(p) is the preference of the solution p, G∗(ω) is the optimal solution for preference ω,
approximated by one expert solution R(ω̂) with the closest preference approximation ω̂ and maximal
vectorized return ω̂⊤R(ω̂). Smaller RM represents better approximation of the Pareto front at the
preference-lacking regions, i.e., better generalization. We run each method for three distinct seeds to
calculate the mean ± standard error of the metrics.

5.2 CASE STUDY

To gain deeper insight into how diffusion models facilitate generalization, we conduct experiments
on a simple yet illustrative task shown in Figure 2(a). In this task, an agent is located at the lower
left corner of a grid world, and is requested to navigate to one of the five goals g1, . . . , g5 by moving
upward(U ) or rightward(R). We first train the agent with trajectories end at g2 and g4 generated with
random policy, and then we request it to reach g3 (which needs interpolation generalization) or g1, g5
(which need extrapolation generalization). The results of the achieved goals versus given goals tested
on DIFFMORL and MORvS are shown in Figure 2(b) and 2(c) in the form of probability distribution
matrcies as well as heatmaps, revealing that DIFFMORL with deeper main diagonal achieves better
in-distribution performance and OOD generalization compared with MORvS with shallower color.
To further assess the ability of different methods’ performance and different types of generalization,
we calculated three metrics based on the results of the matrices of achieved goals versus given goals
by defining distances for in-distribution performance: 1

2

∑
i∈{2,4} DTV (G:,i∥I:,i), interpolation

generalization: DTV (G:,3∥I:,3) and extrapolation generalization: 1
2

∑
i∈{1,5} DTV (G:,i∥I:,i), where

G is the probability matrices, I is the identity matrix that stands for the optimal matrix and DTV is
the total variance distance. Note that the sum of the two generalization distance metrics is analogous
to the Return Mismatch metric we introduced in Section 5.1, both measuring the generalization gap.
The results are listed in Figure 2(d), where DIFFMORL achieves the best in-distribution performance
and OOD generalization among others.

Essentially, we argue that diffusion process and mixup facilitate generalization by mixing and learning
the distributions of trajectory fragments. For example, agents may reach g2 by acting RU + UU .
Through the learning process of DIFFMORL, trajectory fragments RU and UU are effectively
extracted by applying mixup, learned and composed by the diffusion model. Agent thus can perform
RU +RU to reach g3, or perform UU + UU to reach g1, achieving both types of generalization.
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Table 1: Mean ± standard error of HV and SP on High-H-Expert datasets. ↑ means the higher
is the better, and ↓ means the lower is the better. Entries with zero sparsity are omitted. (Dataset:
performance of the behavioral policies estimated based on the dataset. “Best Count” in the tables
means the times one algorithm outperforms the others in terms of mean metric value.)

Environments Metrics Dataset DIFFMORL MODULI MORvS MODT BC CQL

MO-Ant HV (×106) ↑ 6.39 6.37 ± 0.03 6.39 ± 0.02 6.37 ± 0.03 6.07 ± 0.33 4.85 ± 0.34 5.98 ± 0.13
SP (×104) ↓ \ 0.71 ± 0.31 0.79 ± 0.12 0.81 ± 0.29 1.80 ± 0.89 5.06 ± 2.12 4.32 ± 1.92

MO-HalfCheetah HV (×106) ↑ 5.79 5.79 ± 0.00 5.79 ± 0.00 5.78 ± 0.00 5.74 ± 0.03 5.65 ± 0.02 5.64 ± 0.05
SP (×104) ↓ \ 0.06 ± 0.01 0.07 ± 0.00 0.07 ± 0.03 0.10 ± 0.02 0.16 ± 0.06 0.20 ± 0.13

MO-Hopper HV (×107) ↑ 2.09 2.07 ± 0.01 2.09 ± 0.01 1.98 ± 0.05 1.96 ± 0.03 1.50 ± 0.18 1.66 ± 0.01
SP (×105) ↓ \ 0.08 ± 0.02 0.09 ± 0.01 0.35 ± 0.17 0.31 ± 0.07 6.39 ± 5.08 4.17 ± 0.34

MO-Hopper-3obj HV (×1010) ↑ 3.82 3.62 ± 0.10 3.57 ± 0.02 3.39 ± 0.13 3.05 ± 0.23 2.18 ± 0.37 0.75 ± 0.21
SP (×105) ↓ \ 0.19 ± 0.05 0.07 ± 0.00 0.32 ± 0.03 0.26 ± 0.01 0.39 ± 0.41 0.19 ± 0.10

MO-Swimmer HV (×104) ↑ 3.26 3.25 ± 0.00 3.24 ± 0.00 3.22 ± 0.00 3.24 ± 0.00 3.19 ± 0.01 3.20 ± 0.10
SP (×100) ↓ \ 4.17 ± 1.27 4.43 ± 0.38 6.76 ± 2.14 6.43 ± 3.98 13.36 ± 8.69 1.28 ± 0.26

MO-Walker2d HV (×106) ↑ 5.22 5.20 ± 0.00 5.20 ± 0.00 5.10 ± 0.03 5.10 ± 0.02 3.57 ± 0.30 2.92 ± 0.41
SP (×104) ↓ \ 0.10 ± 0.01 0.11 ± 0.01 0.46 ± 0.14 0.43 ± 0.10 18.93 ± 16.19 1.42 ± 0.23

Best Count (total=12) \ 8 5 0 0 0 1

Table 2: Mean ± standard error of HV, SP and RM on incomplete High-H-Expert datasets.

Environments Metrics Dataset DIFFMORL MODULI MORvS MODT BC CQL

MO-Ant
HV (×106) ↑ 6.26 6.32 ± 0.06 6.38 ± 0.02 6.41 ± 0.01 6.13 ± 0.11 4.87 ± 0.61 5.79 ± 0.38
SP (×104) ↓ \ 0.79 ± 0.13 0.86 ± 0.08 1.08 ± 0.42 1.03 ± 0.52 3.29 ± 2.92 3.68 ± 0.28
RM (×102) ↓ \ 2.10 ± 0.14 2.20 ± 0.20 2.27 ± 0.50 5.62 ± 3.42 5.83 ± 0.50 8.73 ± 0.37

MO-HalfCheetah
HV (×106) ↑ 5.63 5.69 ± 0.00 5.68 ± 0.01 5.64 ± 0.01 5.61 ± 0.02 5.51 ± 0.03 5.46 ± 0.21
SP (×104) ↓ \ 0.16 ± 0.06 0.18 ± 0.07 0.29 ± 0.03 0.39 ± 0.04 1.30 ± 0.39 0.24 ± 0.04
RM (×102) ↓ \ 1.92 ± 0.31 2.32 ± 0.20 3.27 ± 0.11 3.28 ± 0.08 5.01 ± 0.04 6.12 ± 0.17

MO-Hopper
HV (×107) ↑ 2.07 2.05 ± 0.01 2.01 ± 0.00 2.00 ± 0.03 1.77 ± 0.06 0.97 ± 0.57 1.37 ± 0.18
SP (×105) ↓ \ 0.39 ± 0.08 0.18 ± 0.02 0.90 ± 0.38 2.08 ± 2.42 5.37 ± 5.85 1.87 ± 0.25
RM (×103) ↓ \ 2.46 ± 0.80 2.52 ± 0.36 2.73 ± 0.31 3.88 ± 0.04 5.87 ± 2.65 3.67 ± 0.91

MO-Hopper-3obj
HV (×1010) ↑ 3.73 3.46 ± 0.18 3.40 ± 0.15 2.97 ± 0.36 2.47 ± 0.17 2.31 ± 0.25 0.72 ± 0.18
SP (×105) ↓ \ 0.17 ± 0.01 0.13 ± 0.01 0.22 ± 0.11 0.26 ± 0.02 0.24 ± 0.04 0.30 ± 0.09
RM (×103) ↓ \ 2.99 ± 0.12 2.46 ± 0.19 1.93 ± 0.28 2.86 ± 0.13 1.26 ± 0.40 3.73 ± 0.84

MO-Swimmer
HV (×104) ↑ 3.21 3.24 ± 0.01 3.24 ± 0.01 3.22 ± 0.00 3.24 ± 0.00 2.99 ± 0.33 3.02 ± 0.03
SP (×100) ↓ \ 5.68 ± 0.70 5.76 ± 0.45 6.51 ± 3.21 5.09 ± 1.11 110 ± 157 1.59 ± 0.17
RM (×100) ↓ \ 5.92 ± 2.28 6.01 ± 1.74 11.21 ± 4.27 39.46 ± 19.44 48.56 ± 54.26 56.06 ± 4.38

MO-Walker2d
HV (×106) ↑ 5.07 5.12 ± 0.02 5.10 ± 0.00 5.05 ± 0.01 4.99 ± 0.03 3.69 ± 0.05 2.90 ± 0.34
SP (×104) ↓ \ 0.21 ± 0.04 0.29 ± 0.02 0.47 ± 0.08 0.63 ± 0.25 8.67 ± 2.17 1.17 ± 0.31
RM (×102) ↓ \ 7.62 ± 1.17 8.33 ± 1.36 13.45 ± 3.35 15.19 ± 5.32 26.07 ± 0.83 25.93 ± 5.28

Best Count (total=18) \ 12 2 1 1 1 1

5.3 COMPETITIVE RESULTS

We first compare DIFFMORL with baseline methods on the High-H-Expert datasets, which have
complete and uniform preference coverage, in all six environments. The results are shown in Table 1.
We observe that the widely used CQL method and the simple method BC produce sub-optimal
policies on most tasks due to their over-conservatism and less expressive MLP backbone when facing
multi-objective tasks. On the other hand, both sequential modeling methods MORvS and MODT
exhibit similar performances, achieving near-optimal results in most environments. Similar to our
method, MODULI applys expressive diffusion models and explicitly handles OOD preferences,
which performs relatively well. Whilst our approach, DIFFMORL, performs comparably well or
exceeds MODULI, and also outperforms other baselines due to its more accurate generation, which
is demonstrated by its lower SP on most tasks. Furthermore, DIFFMORL achieves HV very close
to the behavioral policies with relatively low variance, indicating its effectiveness and stability on
learning offline MORL datasets with complete preference coverage.

To evaluate the generalization ability of different algorithms, we extend the above experiment with
the RM metric to incomplete datasets. In Table 2, we find that although these baselines perform well
on a few tasks, they still struggle for performance due to over-conservatism, limited expressiveness
or relatively inaccurate preference understanding. However, DIFFMORL enhances its generalization
and generation accuracy by the mixup training and conditioned generation respectively, and performs
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Figure 4: Performance on different levels of incomplete High-H-Expert datasets of the
MO-Walker2d environment. Scales: HV ×106, SP ×103, RM ×102.

the best among baselines. Remarkably, DIFFMORL surpasses other baseline on 8 of the 12 metrics
on complete datasets, and on 12 of the 18 metrics on incomplete datasets, underscoring its remarkable
generalization ability. The full results are deferred to Appendix D.3.

MORvS’s in-dist / OOD solutions

Complete dataset

Incomplete dataset

DIFFMORL’s in-dist / OOD solutions

Objective 1

O
bj

ec
tiv

e 
2

Figure 3: An example of the Pareto fronts.

As an illustrative example, we visualize the Pareto
fronts of the High-H-Expert and incomplete
High-H-Expert datasets of MO-HalfCheetah, along-
side the empirical Pareto fronts of DIFFMORL and the
best baseline MORvS in Figure 3. Note that the positions
of the four Pareto fronts almost overlap, and we slightly
shift them for visual clarity. Also, we allow a small toler-
ance for displaying the dominated solutions. Compared
to the dataset ( ) with even coverage, the incomplete
dataset ( ) lacks trajectories in the upper right region of
the Pareto front, which corresponds to the OOD prefer-
ences. When learning from the incomplete dataset, both
methods perform well for in-distribution preferences ( and ). However, MORvS fails to generalize,
as evidenced by its inability to cover the preference-lacking region ( ). In contrast, DIFFMORL
successfully produces correct and near-optimal trajectories for the OOD preferences ( ), effectively
completing the preference-lacking region. More visualization are given in Appendix D.4.

5.4 GENERALIZATION AND PERFORMANCE ON DIFFERENT LEVELS OF INCOMPLETENESS

To investigate DIFFMORL’s performance on various levels of incompleteness, we control the sizes,
i.e., the radii, of the preference-lacking regions in incomplete High-H-Expert datasets of
the MO-Walker2d environment. This approach generates several new generalization tasks, with
increasing incompleteness corresponding to larger radii. As shown in Figure 4, the task becomes
more challenging as the dataset becomes more incomplete, indicated by the performance decrease
of all methods with increasing radius. Notably, DIFFMORL consistently outperforms MORvS and
MODT across all three metrics. Furthermore, as the radius increases, the advantages of DIFFMORL
over other methods gradually increases. This demonstrates DIFFMORL’s robust performance across
different levels of dataset incompleteness. Additionally, we examine the impact of varying the
positions of the preference-lacking regions and list the numerical results in Appendix D.2.

5.5 ABLATION STUDY

The two main components designed for promoting the generalization of DIFFMORL are mixup-based
training (MT, in contrast to conventional training without mixup, CT) and independent preference en-
coding (IPE, in contrast to preference concatenation with trajectory fragments, PC). In this section, we
conduct an ablation study on the incomplete High-H-Expert dataset of the MO-HalfCheetah
environment to study how these two components affect the generalization ability of DIFFMORL
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Metrics MT DIFFMORL MORvS MODT BC

HV (×106) ↑
% 5.67 ± 0.00 5.64 ± 0.01 5.61 ± 0.02 5.51 ± 0.03

" 5.69 ± 0.00 5.65 ± 0.00 5.61 ± 0.03 5.49 ± 0.02

Improvement 0.4% 0.2% 0.0% -0.4%

SP (×104) ↓
% 0.27 ± 0.03 0.29 ± 0.03 0.39 ± 0.04 1.30 ± 0.39

" 0.16 ± 0.06 0.30 ± 0.03 0.37 ± 0.04 0.92 ± 0.65

Improvement 40.7% -3.4% 5.1% 29.2%

RM (×102) ↓
% 2.39 ± 0.11 3.26 ± 0.10 3.28 ± 0.08 5.01 ± 0.04

" 1.92 ± 0.31 3.11 ± 0.38 3.19 ± 0.42 5.42 ± 0.41

Improvement 19.7% 4.6% 3.7% -8.2% MT+IPE (Ours) CT+IPE MT+PC CT+PC
0.0
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5.0
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Figure 5: Left: Mean ± standard error of HV, SP and RM on incomplete High-H-Expert
datasets of the MO-HalfCheetah environment. Right: Performance of DIFFMORL equipped with
different components. MT: Mixup-based Training, CT: Conventional Training, IPE: Independent
Preference Encoding, PC: Preference Concatenation. Scales: HV ×106, SP ×103, RM ×102.

and other baselines. As listed in the left table of Figure 5, regardless of whether MT is utilized,
DIFFMORL consistently achieves the best performance. Furthermore, when equipped with MT,
DIFFMORL demonstrates the most significant performance improvement among all methods. In
contrast, other baselines show very limited performance improvement from MT, such as MORvS and
MODT, or even suffer performance degradation, as seen with BC. We hypothesize that this is due to
the relatively lower expressiveness and generalization ability of the backbones in these methods. This
validates that the mixup technique needs to be paired with models with strong expressiveness, like
diffusion models, to maximize its effectiveness.

To analyse the joint effect of MT and IPE on promoting the generalization of DIFFMORL, we control
their use in the training and evaluation pipeline, obtaining results shown in the right part of Figure 5.
We find that without either of these techniques, DIFFMORL suffers from performance degradation.
Additionally, the RM metric indicates that DIFFMORL equipped with IPE benefits more from MT in
terms of generalization. On the other hand, without the accurate preference understanding provided
by IPE, MT leads to higher variance and degradation in performance and generalization, as evidenced
by the HV and SP metrics.

We further show the necessity of applying mixup data augmentation for extracing trajectory fragments
and preventing memorization instead of other simpler data augmentation like injecting noise to the
trajectories. Recall that in Equation 6 we augment incomplete datasets by synthesize new trajectories
with mixup. Here, we instead add or multiply trajectory data with truncated Gaussian noise to produce
new trajectories. The results is shown in Table 7 in Appendix D.1, revealing that mixup is necessary
for the generalization of DIFFMORL, while other data augmentation methods provide limited
promotion in generalization. In summary, we conclude that mixup-based training and independent
preference encoding, essentially work holistically for promoting the generalization of DIFFMORL.

6 FINAL REMARKS

In this work, we propose DIFFMORL, a diffusion-based framework, equipped with mixup-based
training and independent preference encoding, for generalizable offline MORL. Leveraging the strong
generation and generalization capability of diffusion models, DIFFMORL can generate near-optimal
plans and generalize well on out-of-distribution preferences. We conduct extensive experiments on
the D4MORL benchmark and intuitively demonstrate the performance and generalization capabilities
of DIFFMORL. Further ablation study reveals that diffusion-based model, mixup-based training and
independent preference encoding are the keys for generalizable planning in offline MORL tasks. In
future research, we will delve into deeper aspects of generalization properties of diffusion models,
and further improve generalization on broader tasks such as multi-agent reinforcement learning. We
further discuss the limitations and potential improvements of DIFFMORL in Appendix C.
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A DETAILS OF DIFFMORL

A.1 ARCHITECTURE

We implement DIFFMORL based on the widely adopted diffuser framework (Janner et al., 2022;
Ajay et al., 2023), where the noise prediction network is parameterized with U-Net (Ronneberger
et al., 2015), and several MLPs are used for encoding conditions. As depicted in Figure 6, before
the entire procedure begins, an agent interacts with the environment and obtains multi-objective data
labeled with preferences and returns. DIFFMORL first loads the data and augments it using mixup to
extend the data range. The augmented trajectory fragments are then noised and fed into the diffusion
model along with the corresponding preferences and returns. The diffusion model predicts the noises
added to the samples.
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Figure 6: The architecture of DIFFMORL

After training, DIFFMORL can be leveraged for multi-objective planning, where a user specifies
a target preference while aiming to maximize the scalarized return. At first, a trajectory fragment
is initialized as Gaussian noise, with the first state fixed to the ground truth state. This trajectory
fragment and the target are fed into the diffusion model for K iterations of denoising.

𝑘 𝝎 𝝎⊙𝑹

𝒙

Sin-Emb Encoder Encoder

Conv1d

Blocking

MLP

GN, Mish Conv1d GN, Mish

𝛽

Figure 7: Residual temporal block in the U-Net

Once the denoising process is done, the diffu-
sion model produces a trajectory plan, and the
first action is extracted for execution. Follow-
ing reward and state transitioning may arrive,
and DIFFMORL continues to generate trajec-
tory plan based on new current state and extract
the next action to execute. Besides, we modi-
fied the structure of the residual temporal block
in the U-Net, as shown in Figure 7. Specifi-
cally, we utilize two additional MLP encoders
to encode the preference and vector-valued re-
turn conditions. The embeddings of diffusion
timestep and both conditions are concatenated
and fed into an MLP, and then added to the embeddings of trajectory fragments. “Blocking” is
for blocking the condition with some probability to train the classifier-free diffusion guidance. In
evaluation, the “Blocking” operation is disabled.

Our code implementation is based on PEDA(Zhu et al., 2023a) (https://github.com/
baitingzbt/PEDA/) and Decision-Diffuser(Ajay et al., 2023) (https://github.com/
anuragajay/decision-diffuser/).
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A.2 HYPERPARAMETERS

Table 3: Generic hyperparameters of DIFFMORL.

Hyperparameter Value

Condition Encoder FC(64, 256, 64) with Mish activations
Learning Rate 2× 10−4

Weight Decay 1× 10−4

Optimizer AdamW
Batch Size b 32
Diffusion Step K 8
Maximum Trajectory Length T 500
Horizon H 8
λ0 0.5
p (Bernoulli parameter in Equation. 7) 0.1

Table 4: Hyperparameters of DIFFMORL for different datasets.

Environment Quality Guidance Scale w mixup Number b′ mixup Step N ′(×104) Training Step N(×104)

MO-Ant
Expert 0.1 8 10 10
Amateur 0.1 6 10 10

MO-HalfCheetah
Expert 0.1 6 40 40
Amateur 1 6 20 20

MO-Hopper
Expert 0.1 6 5 40
Amateur 0.1 6 20 30

MO-Hopper-3obj
Expert 0.1 5 10 20
Amateur 0.1 5 10 10

MO-Swimmer
Expert 0.1 5 10 20
Amateur 0.1 5 5 5

MO-Walker2d
Expert 0.1 6 15 40
Amateur 1 6 10 10

We use the generic hyperparameters shown in Table 3 for all experiments, and we finetune the
guidance scale w, mixup number b′, mixup early stopping step N ′ and total training step N on every
environment in D4MORL benchmark, and choose that with the highest hypervolume, as shown in
Figure 4. Note that it is still possible to apply more careful finetuning on the guidance scale and total
training step, to obtain even higher performance and generalization on Amateur quality datasets.
Furthermore, we analyse the sensitivity to the hyperparameters of mixup-base training: b′, N ′ and

(a) (b) (c)

Figure 8: Sensitivity to (a) mixup number b′, (b) mixup early stopping step N ′ and (c) parameter λ0

in mixup-based training. The error bars are the standard errors across 3 different seeds. Scales: HV
×106, SP ×103, RM ×102.

λ0, as shown in Figure 8. The experiments are carried out on the incomplete High-H dataset
of the MO-HalfCheetah environment. The results show that DIFFMORL is stable to b′, N ′, as the
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standard errors are small, and there is no significant deviation in means. While for λ0, a smaller value
(0.1 ∼ 0.5) is preferred as it leads to more stable and higher performance and generalization. We
additionally test the case where λ0 = 0, which performs slightly worse than 0.1 ∼ 0.5, due to the
limited extrapolation. To summarize Figure 8, we argue that DIFFMORL is stable to these three
hyperparameters, indicating a stable performance and generalization ability of DIFFMORL.

A.3 PSEUDO CODES

In this section, we outline the training and planning procedure of DIFFMORL in Algorithm 1 and
Algorithm 2. In the training pipeline, our goal is to train the noise prediction network of the diffusion
model using the dataset. We first sample a batch of data from the dataset, and augment it through the
mixup technique. Then, we sample a noise, a random diffusion step and a blocking variable to train
the noise prediction network by minimizing the loss function in Equation 7 till converge.

After training, we can utilize DIFFMORL for planning: First, the agent observe current
state st, and DIFFMORL samples the initial noisy trajectory fragment. Then DIFFMORL
starts the denoising process and denoise the noisy trajectory fragment for K steps, using
the state information st, target information y and classifier-free guidance (Ho & Salimans,
2021). Upon finishing the denoising process, the action at is extracted from the gener-
ated trajectory plan x0 and executed, producing reward rt and transitioning the environment
to next state st+1. This procedure continues until the decision making process is done.

Algorithm 1: Train DIFFMORL
Input: Dataset D, diffusion timestep K, horizon H , history length h, λ0, Bernoulli parameter p
Result: Noise predictor ϵθ
Initialize ϵθ and its optimizer
while not converge do

Get a batch of trajectories τ with horizon H from D
// Augment the dataset with mixup
Sample λ ∼ U(−λ0, 1 + λ0)
Produce new synthetic samples τ̃ as Equation 5 and combine: τ ′ = τ ∪ τ̃
// Train the diffusion model
Sample noise ϵ ∼ N (0, I), diffusion timestep k ∼ U({1, . . . ,K}), β ∼ Bern(p)
Optimize ϵθ by minimizing L(θ) in Equation 7, with ϵ, k, τ ′, β

end

Algorithm 2: Plan with DIFFMORL
Input: Noise predictor ϵθ, diffusion timestep K, horizon H , guidance scale w, condition y,

precomputed Rmax

Initialize time step t = 0, set the generation length of ϵθ to H
while not done do

Observe current state st , initialize xK ∼ N (0, I)
// Denoise for K steps
for k = K, . . . , 1 do

// Construct necessary conditions
Replace the first state of xk to be consistent with current state st
Construct ω,ω ⊙Rmax from y
// Classifier-free guidance
Obtain ϵ̂ = ϵθ(xk;ω,∅, k) + w [ϵθ(xk;ω,ω ⊙Rmax, k)− ϵθ(xk;ω,∅, k)]
Denoise xk with ϵ̂ and obtain xk−1

end
// Extract the first action for execution
Extract at from x0

Execute at, obtain reward rt and transition to st+1

t← t+ 1
end
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A.4 COMPUTE RESOURCES

We run our experiments on GeForce RTX 2080 Ti. A typical training of 4× 105 steps takes about
12 hours, and planning with 8 diffusion timesteps, for 500 different trajectories each with maximal
length of 500 takes about 10 hours. Besides, there should be at least 32GB memory and 32GB
storage space to run any single experiment successfully. At least 360GB storage space is needed for
maintaining all datasets at the same time.

B DETAILS OF ENVIRONMENTS, DATA COLLECTION AND BASELINES

B.1 ENVIRONMENTAL SETTINGS

Here we list some important information of each environment, including the main objectives that
are specialized in each environment, and the state and action dimension in Table 5. For more details
and implementations of these environment, please refer to the literatures (Zhu et al., 2023a; Xu et al.,
2020).

Table 5: Main information of D4MORL environments.

Environment Objectives Dimensions

MO-Ant x-axis speed, y-axis speed S ⊆ R27, A ⊆ R8

MO-HalfCheetah forward speed, energy efficiency S ⊆ R17, A ⊆ R6

MO-Hopper forward speed, jumping height S ⊆ R11, A ⊆ R3

MO-Hopper-3obj forward speed, jumping height, energy efficiency S ⊆ R11, A ⊆ R3

MO-Swimmer forward speed, energy efficiency S ⊆ R8 , A ⊆ R2

MO-Walker2d forward speed, energy efficiency S ⊆ R17, A ⊆ R6

B.2 INCOMPLETE DATA COLLECTION

Datasets in D4MORL benchmark vary in environment, data quality and preference range. However,
D4MORL considers only the width of the preference coverage, which implies a contiguous Pareto
front, and that is why we call this kind of preference coverage as “preference range”. We argue
that preference range provided in D4MORL are either too wide (High-H, Med-H) or too narrow
(Low-H) so that the generalization of different methods cannot differentiate from each other upon
evaluations.

In our setting, we further consider preference coverage that implies a Pareto front with gaps. We
implement a new module that enables creating gaps by reject sampling based on the preference range
that D4MORL provides, and thus add a new attribute incomplete to each dataset in D4MORL,
allowing for more nuanced comparison in generalization ability. For example, rejecting all samples
with ω ∈ {ω′ | ∥ω′ − [0.5, 0.5]∥1 ≤ 0.1× 2)} based on High-H datasets produces incomplete
High-H datasets that are lacking in demonstrations of preferences around [0.5, 0.5], or specifically,
preferences between [0.4, 0.6] and [0.6, 0.4] are lacking. In this example, the center is ω = [0.5, 0.5]
and the radius is 0.1. Note that the approach for reject sampling here is consistent with the formulation
in Section 4.1, hence the incomplete datasets are exactly the cases we focus on. Considering of
the space, time and the problem of the width of preference range in D4MORL, we only collect
incomplete datasets for High-H ones and evaluate on them. Details of incomplete datasets for each
environment in our experiments are shown in Table 6. Preference-lacking regions with more centers
and distinct radii are also supported in our code.
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Table 6: The parameters of preference-lacking regions of incomplete High-H-Expert
datasets used in our experiments.

Environment Center Radius

MO-Ant [0.5, 0.5] 0.06

MO-HalfCheetah [0.5, 0.5] 0.06

MO-Hopper [0.45, 0.55] 0.04

MO-Hopper-3obj [1/3, 1/3, 1/3] 0.04

MO-Swimmer [0.5, 0.5] 0.06

MO-Walker2d [0.5, 0.5] 0.06

B.3 DETAILS OF BASELINES

In this section, we describe the details of the baselines:

• MODT is a direct extension of the widely used Decision Transformer (DT) (Chen et al., 2021a),
which encodes states st, actions at and return-to-go (RTG) gt =

∑T
t′=t rt′ as tokens. These tokens

represents a trajectory τ = ⟨s1,a1, g1, . . . , sT ,aT , gT ⟩ that can be processed by causally masked
transformer architecture such as GPT (Radford et al., 2019). MODT additionally concatenate
preference vectors with states, actions and RTG as s∗ = [s,ω],a∗ = [a,ω], g∗ = [g,ω] and form
new trajectory τ∗ for decision making. Besides, MODT also inputs the preference-weighted RTG
gt ⊙ ω for stable training.

• MORvS can be seen as a variant of MODT, which conditions on carefully selected conditions to
further promote its performance (Emmons et al., 2022). In contrast to MODT, MORvS concatenate
the preference with the states and the average RTGs, and encode everything as one single input.

• MODULI is a diffusion-based planning framework similar to our method which also applies
diffusion models for generalizable MORL. Different from our work, MODULI proposes a sliding
guidance mechanism to facilitate generalization, where a plug-and-play slider adapter is trained
to encode preference variation. It also parameterizes the backbones of diffusion models with
DiT (Peebles & Xie, 2023) instead of Unet(Ronneberger et al., 2015).

• BC(P) simply uses supervised loss to train the policy network that directly maps the states (con-
catenated with preferences) to actions. The policy network of BC(P) is parameterized with MLP
and runs very fast compared to MODT. Note that BC(P) do not use reward information.

• CQL(P) is the multi-objective version of the state-of-the-art single objective offline RL method
Conservative Q-Learning (Kumar et al., 2020), which learns a conservative Q-function f : S×A →
R to lower-bounds the true value and is suitable for tasks with complex and multi-modal data
distributions. Based on CQL, CQL(P) modifies the network architecture and takes preference
vectors as inputs to learn a preference-conditioned Q-function f∗ : S ×A× Ω→ R.

We train these baselines for 4× 105 steps each. We use the MODT, MORvS and multi-objective ver-
sion BC implemented in https://github.com/baitingzbt/PEDA/, and we implemented
multi-objective CQL according to the instructions in D4MORL literature (Zhu et al., 2023a) based
on the CQL implementations in https://github.com/zhyang2226/DMBP/. We follow
the instructions in Yuan et al. (2024) to implement MODULI. The policies of BC and CQL are
parameterized with MLPs. All hyperparameters are consistent with the default settings in D4MORL.

C DISCUSSIONS

C.1 LIMITATIONS

Diffusion models are mainly hindered by their slow sampling originated from their iterative denoising
process, which limits the application of DIFFMORL for control and planning tasks that require
high-frequency response in real world. For instance, despite our best efforts to reduce sampling time,
the decision process of DIFFMORL in MO-HalfCheetah environment takes about 0.18s wall-clock
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Table 7: Mean ± standard error of HV, SP and RM of different data augmentation methods on
incomplete High-H-Expert datasets of the MO-HalfCheetah environment.

MT (Ours) Add Multiply No augmentation

HV (×106) ↑ 5.69±0.00 5.66± 0.01 5.67± 0.01 5.67± 0.00
SP (×104) ↓ 0.16±0.06 0.25± 0.06 0.24± 0.03 0.23± 0.03
RM (×102) ↓ 1.92±0.31 2.36± 0.15 2.36± 0.07 2.39± 0.11

time to generate one trajectory plan and extract the first action to execute. To further accelerate
sampling without loss of performance, more advanced models such as consistency models (Song
et al., 2023; Chen et al., 2024) could be utilized.

C.2 POTENTIAL IMPROVEMENTS

There is possibility that DIFFMORL can be applied to a broader range of utility functions, as we do
not put much assumption on the form of it. Specifically, for the linear utility function f(ω, r) = ω⊤r
we considered, it can be expressed in a more informative vector form ω ⊙ r rather than the less
informative scalar form ω⊤r = 1⊤(ω ⊙ r). We argue that the more informative “weighted vector-
valued return” further enhances the ability of DIFFMORL to accurately understand preferences and
expected returns, ultimately leading to near-optimal trajectory plans. This insight may be helpful for
other multi-objective tasks with different forms of utility functions.

D EXTENSIVE RESULTS

D.1 RESULTS OF DIFFERENT DATA AUGMENTATION METHODS

We conduct an experiment on incomplete High-H-Expert datasets of MO-HalfCheetah envi-
ronments by replacing the data augmentation methods of DIFFMORL with additive or multiplicative
noise, instead of the original mixup. In practice, we generate new trajectories by add or multiply
the real trajectories from the dataset with truncated Gaussian noise of mean 0 (for adding) or 1 (for
multiplying) and variance 0.01, truncated to [−0.1, 0.1]. The results in Table 7 shows that mixup in
DIFFMORL is necessary for the generalization and cannot be replaced by noise injection.

D.2 RESULTS ON DIFFERENT LEVELS OF INCOMPLETENESS

To further investigate the generalization of different methods on different levels of incompleteness,
we control the Center ans Radius of the incomplete High-H-Expert dataset of the MO-
Walker2d environment to produce several tasks, and sort the tasks from the hardest to the easiest
according to the corresponding HV of the datasets. According to Table 8, DIFFMORL consistently
outperforms all baselines in all tasks and all metrics. For MODULI, despite its near optimal HV, it is
inferior compared with DIFFMORL in terms of RM, due to the lack of mixup training. Importantly,
the HV’s of DIFFMORL are even higher than that of the datasets, while baselines can hardly or
never do. From the results of the SP and RM metrics, we can see that DIFFMORL significantly
outperforms baselines, indicating the best ability among baselines to approximate the Pareto front
and to generalize to OOD preferences. To summarize Table 8 we conclude that DIFFMORL exhibits
remarkable performance and generalization ability, both agnostic to the incompleteness level.

D.3 RESULTS ON D4MORL DATASETS

This section presents the full results of DIFFMORL and all baselines evaluated on all D4MORL
datasets and the extended incomplete datasets, containing different environments, data quality and
preference coverage. The results are shown in Table 9, Table 10 and Table 11 for hypervolume, sparsity
and return mismatch metrics respectively. All results are reported as mean ± standard error across
three different seeds. “Best Count” in the tables means the times one algorithm outperforms the others
in terms of mean metric value. Here incomplete stands for incomplete High-H dataset of
each environment. Since sometimes more than one methods achieves the same best performance,

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 8: Mean ± standard error of HV, SP and RM on different levels of incompleteness.

Center Radius Metrics Dataset DIFFMORL MODULI MORvS MODT BC MOCQL

[0.5, 0.5] 0.09
HV (×106) ↑ 4.914 5.06 ± 0.02 5.01 ± 0.01 4.96 ± 0.05 4.95 ± 0.04 3.38 ± 0.42 2.73 ± 0.02
SP (×104) ↓ \ 0.27 ± 0.06 0.32 ± 0.05 0.71 ± 0.13 0.75 ± 0.20 14.33 ± 21.22 1.07 ± 0.58
RM (×102) ↓ \ 6.47 ± 0.59 9.17 ± 0.68 13.16 ± 1.97 18.26 ± 5.56 21.37 ± 1.65 26.32 ± 1.38

[0.5, 0.5] 0.06
HV (×106) ↑ 5.04 5.12 ± 0.02 5.10 ± 0.00 5.05 ± 0.01 4.99 ± 0.03 3.69 ± 0.05 2.90 ± 0.34
SP (×104) ↓ \ 0.21 ± 0.04 0.29 ± 0.02 0.47 ± 0.08 0.63 ± 0.25 8.68 ± 2.18 1.17 ± 0.31
RM (×102) ↓ \ 7.62 ± 1.17 8.33 ± 1.36 13.45 ± 3.36 15.19 ± 5.32 26.07 ± 0.83 26.93 ± 5.28

[0.6, 0.4] 0.06
HV (×106) ↑ 5.14 5.18 ± 0.01 5.15 ± 0.02 5.01 ± 0.09 5.14 ± 0.03 2.48 ± 0.86 3.05 ± 0.32
SP (×104) ↓ \ 0.13 ± 0.01 0.10 ± 0.01 0.78 ± 0.38 0.31 ± 0.15 23.25 ± 24.96 1.56 ± 0.20
RM (×102) ↓ \ 2.98 ± 0.72 3.56 ± 0.51 12.29 ± 4.35 8.88 ± 1.41 22.32 ± 1.86 21.37 ± 4.13

[0.4, 0.6] 0.06
HV (×106) ↑ 5.149 5.17 ± 0.00 5.13 ± 0.01 5.10 ± 0.03 5.09 ± 0.03 3.16 ± 0.49 3.34 ± 0.10
SP (×104) ↓ \ 0.27 ± 0.03 0.32 ± 0.02 0.37 ± 0.17 0.27 ± 0.01 3.12 ± 2.88 0.45 ± 0.20
RM (×102) ↓ \ 8.35 ± 1.27 6.44 ± 0.68 13.77 ± 4.23 14.05 ± 4.61 17.98 ± 4.30 15.62 ± 2.23

[0.5, 0.5] 0.03
HV (×106) ↑ 5.182 5.19 ± 0.01 5.19 ± 0.01 5.11 ± 0.03 5.14 ± 0.00 2.86 ± 0.27 3.67 ± 0.87
SP (×104) ↓ \ 0.12 ± 0.02 0.14 ± 0.02 0.36 ± 0.09 0.28 ± 0.03 2.32 ± 2.73 0.50 ± 0.23
RM (×102) ↓ \ 3.86 ± 1.73 4.28 ± 1.20 10.60 ± 5.79 16.48 ± 10.94 27.11 ± 2.88 20.31 ± 3.42

Best Count (total=15) \ 12 3 0 1 0 0

the sum of Best Count across all methods may exceed the number of metrics on different tasks. The
same conclusion can be obtained from the full results, that DIFFMORL outperforms all baselines
significantly, in terms of performance and generalization ability.

Table 9: The full results on Hypervolume metric

Environments Quality Range Behavior DIFFMORL MODULI MORvS MODT BC CQL

MO-Ant (×106)

Expert

High-H 6.39 6.37 ± 0.03 6.39 ± 0.02 6.37 ± 0.03 6.08 ± 0.34 4.85 ± 0.34 5.98 ± 0.13
Med-H 6.44 6.40 ± 0.01 6.38 ± 0.01 6.35 ± 0.02 6.22 ± 0.03 5.10 ± 0.26 6.05 ± 0.16
Low-H 5.26 5.61 ± 0.17 5.55 ± 0.10 5.17 ± 0.06 5.42 ± 0.08 5.07 ± 0.10 6.01 ± 0.10

incomplete 6.26 6.32 ± 0.06 6.38 ± 0.02 6.41 ± 0.01 6.13 ± 0.11 4.87 ± 0.61 5.79 ± 0.38

Amateur

High-H 5.60 5.98 ± 0.16 6.08 ± 0.03 6.10 ± 0.04 0.03 ± 0.01 4.44 ± 0.26 5.68 ± 0.21
Med-H 5.67 5.94 ± 0.10 5.90 ± 0.06 6.04 ± 0.05 3.19 ± 2.99 4.27 ± 0.30 5.72 ± 0.24
Low-H 5.26 5.15 ± 0.18 5.10 ± 0.06 5.04 ± 0.05 0.12 ± 0.08 4.65 ± 0.08 5.60 ± 0.11

incomplete 5.59 5.81 ± 0.18 5.76 ± 0.17 6.06 ± 0.02 0.37 ± 0.30 4.31 ± 0.29 5.62 ± 0.24

MO-HalfCheetah (×106)

Expert

High-H 5.79 5.79 ± 0.00 5.79 ± 0.00 5.78 ± 0.00 5.74 ± 0.03 5.66 ± 0.02 5.64 ± 0.05
Med-H 5.79 5.79 ± 0.00 5.79 ± 0.00 5.78 ± 0.00 5.76 ± 0.01 5.60 ± 0.16 5.65 ± 0.03
Low-H 4.75 4.92 ± 0.03 4.87 ± 0.04 4.91 ± 0.03 4.83 ± 0.05 4.75 ± 0.03 4.89 ± 0.08

incomplete 5.63 5.69 ± 0.00 5.68 ± 0.01 5.64 ± 0.01 5.60 ± 0.02 5.51 ± 0.03 5.46 ± 0.21

Amateur

High-H 5.70 5.74 ± 0.01 5.76 ± 0.00 5.78 ± 0.00 5.59 ± 0.01 5.66 ± 0.02 5.56 ± 0.03
Med-H 5.69 5.71 ± 0.03 5.71 ± 0.01 5.77 ± 0.00 5.59 ± 0.01 5.48 ± 0.04 5.57 ± 0.04
Low-H 4.14 4.67 ± 0.11 4.70 ± 0.02 4.76 ± 0.01 4.44 ± 0.34 4.78 ± 0.04 4.72 ± 0.06

incomplete 5.42 5.65 ± 0.02 5.64 ± 0.01 5.63 ± 0.01 5.60 ± 0.01 5.49 ± 0.11 5.48 ± 0.13

MO-Hopper (×107)

Expert

High-H 2.09 2.07 ± 0.01 2.09 ± 0.01 1.98 ± 0.05 1.96 ± 0.03 1.50 ± 0.18 1.66 ± 0.01
Med-H 2.09 2.04 ± 0.03 2.05 ± 0.01 1.92 ± 0.07 1.92 ± 0.02 1.04 ± 0.90 1.25 ± 0.12
Low-H 1.80 1.76 ± 0.00 1.73 ± 0.01 1.72 ± 0.03 1.69 ± 0.07 0.80 ± 0.70 0.98 ± 0.36

incomplete 2.07 2.05 ± 0.01 2.01 ± 0.00 2.00 ± 0.03 1.77 ± 0.06 0.97 ± 0.57 1.37 ± 0.18

Amateur

High-H 2.01 1.95 ± 0.06 2.01 ± 0.01 1.80 ± 0.08 1.64 ± 0.07 1.37 ± 0.36 1.73 ± 0.03
Med-H 1.98 1.94 ± 0.05 1.90 ± 0.02 1.79 ± 0.01 1.59 ± 0.19 0.97 ± 0.85 1.60 ± 0.05
Low-H 1.73 1.76 ± 0.04 1.73 ± 0.01 1.58 ± 0.08 1.50 ± 0.08 0.53 ± 0.56 1.02 ± 0.34

incomplete 1.99 1.92 ± 0.10 1.86 ± 0.03 1.79 ± 0.02 1.58 ± 0.04 1.25 ± 0.22 1.37 ± 0.24

MO-Hopper-3obj (×1010)

Expert

High-H 3.82 3.62 ± 0.10 3.57 ± 0.02 3.39 ± 0.13 3.05 ± 0.23 2.18 ± 0.37 0.75 ± 0.21
Med-H 3.71 3.43 ± 0.07 3.48 ± 0.03 3.23 ± 0.17 2.87 ± 0.15 1.94 ± 0.17 0.66 ± 0.18
Low-H 0.95 0.96 ± 0.05 1.03 ± 0.05 1.20 ± 0.19 1.15 ± 0.18 0.00 ± 0.00 0.60 ± 0.12

incomplete 3.73 3.46 ± 0.18 3.40 ± 0.15 2.97 ± 0.36 2.47 ± 0.17 2.31 ± 0.25 0.72 ± 0.18

Amateur

High-H 3.34 2.79 ± 0.27 3.33 ± 0.06 2.69 ± 0.18 1.38 ± 0.12 1.84 ± 0.31 0.66 ± 0.42
Med-H 3.06 2.12 ± 0.15 2.48 ± 0.08 2.51 ± 0.23 1.04 ± 0.09 1.41 ± 0.85 0.71 ± 0.31
Low-H 1.01 0.88 ± 0.38 1.06 ± 0.32 1.31 ± 0.22 0.63 ± 0.22 1.26 ± 0.20 0.56 ± 0.32

incomplete 3.23 2.47 ± 0.19 2.51 ± 0.10 2.53 ± 0.03 1.28 ± 0.23 1.88 ± 0.07 0.68 ± 0.38

MO-Swimmer (×104)

Expert

High-H 3.26 3.25 ± 0.00 3.24 ± 0.00 3.22 ± 0.00 3.24 ± 0.00 3.19 ± 0.01 3.20 ± 0.10
Med-H 3.26 3.24 ± 0.00 3.24 ± 0.00 3.22 ± 0.01 3.24 ± 0.01 3.14 ± 0.12 3.18 ± 0.08
Low-H 2.47 2.70 ± 0.02 2.56 ± 0.03 2.83 ± 0.10 2.53 ± 0.02 2.66 ± 0.06 2.73 ± 0.02

incomplete 3.21 3.24 ± 0.01 3.24 ± 0.01 3.22 ± 0.00 3.24 ± 0.00 2.99 ± 0.33 3.02 ± 0.03

Amateur

High-H 2.13 3.17 ± 0.01 3.20 ± 0.00 2.77 ± 0.05 0.64 ± 0.03 2.76 ± 0.04 1.76 ± 0.34
Med-H 2.14 3.16 ± 0.03 3.18 ± 0.01 2.73 ± 0.05 0.65 ± 0.05 2.76 ± 0.04 1.74 ± 0.25
Low-H 1.69 2.85 ± 0.09 2.76 ± 0.05 2.52 ± 0.10 0.63 ± 0.03 2.37 ± 0.06 1.21 ± 0.13

incomplete 2.17 3.17 ± 0.02 2.68 ± 0.16 2.30 ± 0.38 0.62 ± 0.03 2.75 ± 0.04 1.68 ± 0.32

MO-Walker2d (×106)

Expert

High-H 5.22 5.20 ± 0.00 5.20 ± 0.00 5.10 ± 0.03 5.10 ± 0.02 3.57 ± 0.30 2.92 ± 0.41
Med-H 5.22 5.20 ± 0.00 5.19 ± 0.00 5.11 ± 0.01 4.99 ± 0.05 2.71 ± 0.56 2.86 ± 0.26
Low-H 4.55 4.56 ± 0.04 4.56 ± 0.06 4.54 ± 0.03 3.78 ± 0.14 0.94 ± 1.63 2.65 ± 0.39

incomplete 5.07 5.12 ± 0.02 5.10 ± 0.00 5.05 ± 0.01 4.99 ± 0.03 3.69 ± 0.05 2.90 ± 0.34

Amateur

High-H 5.02 4.93 ± 0.16 5.06 ± 0.00 5.06 ± 0.01 2.97 ± 0.35 3.96 ± 0.15 3.68 ± 0.37
Med-H 5.03 5.01 ± 0.06 5.03 ± 0.03 5.02 ± 0.04 2.94 ± 1.00 3.86 ± 0.06 3.72 ± 0.76
Low-H 4.47 4.45 ± 0.03 4.44 ± 0.02 4.46 ± 0.12 2.84 ± 1.61 3.59 ± 0.16 3.64 ± 0.68

incomplete 4.87 5.07 ± 0.00 4.98 ± 0.02 4.88 ± 0.01 3.08 ± 0.25 3.55 ± 0.44 3.32 ± 0.45

Best Count (total=48) \ 22 14 12 1 1 2
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Table 10: The full results on Sparsity metric. Zero Sparsity entries are omitted.

Environments Quality Range DIFFMORL MODULI MORvS MODT BC CQL

MO-Ant (×104)

Expert

High-H 0.71 ± 0.31 0.79 ± 0.12 0.81 ± 0.29 1.80 ± 0.89 5.06 ± 2.12 4.32 ± 1.92
Med-H 0.76 ± 0.13 0.74 ± 0.10 0.73 ± 0.10 0.94 ± 0.32 3.41 ± 1.55 4.06 ± 1.39
Low-H 1.05 ± 0.31 0.85 ± 0.20 0.76 ± 0.12 0.60 ± 0.19 1.29 ± 1.35 2.18 ± 0.29

incomplete 0.79 ± 0.13 0.86 ± 0.08 1.08 ± 0.42 1.03 ± 0.52 3.29 ± 2.92 3.68 ± 0.28

Amateur

High-H 1.10 ± 0.39 0.53 ± 0.05 0.85 ± 0.11 0.00 ± 0.00 1.91 ± 1.71 4.98 ± 2.10
Med-H 1.07 ± 0.26 0.83 ± 0.12 0.72 ± 0.10 0.43 ± 0.38 3.90 ± 5.70 4.22 ± 1.69
Low-H 1.17 ± 0.79 1.21 ± 0.32 0.90 ± 0.64 0.00 ± 0.00 0.49 ± 0.14 1.56 ± 0.38

incomplete 1.18 ± 0.69 1.33 ± 0.46 0.98 ± 0.20 5.40 ± 4.88 1.32 ± 0.56 4.92 ± 0.21

MO-HalfCheetah (×104)

Expert

High-H 0.06 ± 0.01 0.07 ± 0.00 0.07 ± 0.03 0.10 ± 0.02 0.15 ± 0.05 0.20 ± 0.13
Med-H 0.06 ± 0.02 0.07 ± 0.00 0.07 ± 0.01 0.09 ± 0.05 0.18 ± 0.12 0.24 ± 0.07
Low-H 0.15 ± 0.07 0.19 ± 0.03 0.21 ± 0.04 0.08 ± 0.05 0.05 ± 0.01 0.06 ± 0.01

incomplete 0.16 ± 0.06 0.18 ± 0.07 0.29 ± 0.03 0.39 ± 0.05 1.31 ± 0.40 0.24 ± 0.04

Amateur

High-H 0.12 ± 0.03 0.07 ± 0.02 0.14 ± 0.18 0.08 ± 0.01 0.09 ± 0.05 0.12 ± 0.05
Med-H 0.23 ± 0.27 0.14 ± 0.03 0.05 ± 0.01 0.10 ± 0.01 0.26 ± 0.05 0.23 ± 0.06
Low-H 0.07 ± 0.05 0.04 ± 0.00 0.04 ± 0.05 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.02

incomplete 0.24 ± 0.11 0.21 ± 0.03 0.21 ± 0.04 0.09 ± 0.00 0.34 ± 0.07 0.22 ± 0.06

MO-Hopper (×105)

Expert

High-H 0.08 ± 0.02 0.09 ± 0.01 0.35 ± 0.17 0.31 ± 0.07 6.39 ± 5.08 4.17 ± 0.34
Med-H 0.17 ± 0.14 0.19 ± 0.04 0.20 ± 0.08 0.57 ± 0.18 0.61 ± 0.53 1.36 ± 0.18
Low-H 0.10 ± 0.07 0.11 ± 0.02 0.30 ± 0.16 0.10 ± 0.04 11.58 ± 20.05 2.04 ± 0.24

incomplete 0.39 ± 0.08 0.18 ± 0.02 0.90 ± 0.38 2.09 ± 2.43 5.38 ± 5.85 1.87 ± 0.25

Amateur

High-H 0.57 ± 0.43 0.10 ± 0.01 0.12 ± 0.04 2.80 ± 1.59 0.15 ± 0.13 4.69 ± 0.41
Med-H 0.26 ± 0.10 0.20 ± 0.06 0.11 ± 0.06 0.91 ± 0.65 0.30 ± 0.22 1.42 ± 0.16
Low-H 0.31 ± 0.19 0.11 ± 0.03 0.09 ± 0.03 0.33 ± 0.50 0.77 ± 1.05 3.24 ± 0.52

incomplete 0.84 ± 0.62 0.56 ± 0.09 0.34 ± 0.07 3.59 ± 1.77 2.12 ± 3.27 3.02 ± 0.21

MO-Hopper-3obj (×105)

Expert

High-H 0.19 ± 0.05 0.07 ± 0.00 0.32 ± 0.03 0.26 ± 0.01 0.39 ± 0.41 0.19 ± 0.10
Med-H 0.18 ± 0.06 0.17 ± 0.08 0.18 ± 0.03 0.23 ± 0.05 0.14 ± 0.04 0.27 ± 0.08
Low-H 0.19 ± 0.09 0.13 ± 0.05 0.31 ± 0.17 0.05 ± 0.02 0.00 ± 0.00 1.42 ± 0.37

incomplete 0.17 ± 0.01 0.13 ± 0.01 0.22 ± 0.11 0.26 ± 0.02 0.25 ± 0.04 0.30 ± 0.09

Amateur

High-H 0.32 ± 0.10 0.10 ± 0.00 0.25 ± 0.09 2.41 ± 0.87 0.61 ± 0.28 0.21 ± 0.12
Med-H 0.25 ± 0.11 0.27 ± 0.06 0.18 ± 0.04 3.74 ± 2.03 0.23 ± 0.05 0.32 ± 0.09
Low-H 0.34 ± 0.33 0.11 ± 0.02 0.07 ± 0.03 12.17 ± 11.76 0.11 ± 0.07 1.48 ± 0.47

incomplete 0.28 ± 0.10 0.30 ± 0.13 0.22 ± 0.07 0.78 ± 0.20 0.34 ± 0.15 0.37 ± 0.13

MO-Swimmer (×100)

Expert

High-H 4.17 ± 1.27 4.43 ± 0.38 6.76 ± 2.14 6.43 ± 3.98 13.36 ± 8.70 1.28 ± 0.26
Med-H 3.80 ± 1.12 4.26 ± 0.32 3.87 ± 0.62 5.58 ± 1.70 22.07 ± 22.94 1.02 ± 0.14
Low-H 31.26 ± 25.30 11.36 ± 3.12 6.20 ± 2.92 13.19 ± 14.24 4.77 ± 2.70 3.62 ± 0.32

incomplete 5.68 ± 0.70 5.76 ± 0.45 6.51 ± 3.21 5.10 ± 1.12 110.54 ± 157.85 1.59 ± 0.17

Amateur

High-H 5.69 ± 0.89 9.50 ± 0.59 1.27 ± 0.63 10.46 ± 17.93 1.50 ± 0.06 1.24 ± 0.48
Med-H 4.73 ± 1.10 3.68 ± 1.02 1.64 ± 0.61 2.47 ± 1.99 1.44 ± 0.86 1.19 ± 0.29
Low-H 10.28 ± 8.03 5.32 ± 1.42 9.09 ± 6.48 5.76 ± 6.21 11.88 ± 15.79 3.78 ± 0.59

incomplete 4.84 ± 2.09 5.36 ± 1.19 1.62 ± 0.82 4.83 ± 3.37 1.06 ± 0.31 1.51 ± 0.28

MO-Walker2d (×104)

Expert

High-H 0.10 ± 0.01 0.11 ± 0.01 0.46 ± 0.14 0.43 ± 0.10 18.93 ± 16.20 1.42 ± 0.23
Med-H 0.11 ± 0.01 0.14 ± 0.02 0.45 ± 0.17 0.91 ± 0.14 13.49 ± 9.87 0.46 ± 0.09
Low-H 0.03 ± 0.00 0.07 ± 0.01 1.66 ± 2.15 0.14 ± 0.13 1.35 ± 2.33 0.47 ± 0.08

incomplete 0.21 ± 0.04 0.29 ± 0.02 0.47 ± 0.08 0.63 ± 0.25 8.68 ± 2.18 1.17 ± 0.31

Amateur

High-H 0.74 ± 0.52 0.25 ± 0.03 0.18 ± 0.01 9.55 ± 2.09 1.64 ± 0.58 1.68 ± 0.86
Med-H 0.21 ± 0.15 0.26 ± 0.07 0.24 ± 0.12 3.44 ± 2.07 2.86 ± 0.83 0.56 ± 0.17
Low-H 0.13 ± 0.06 0.08 ± 0.01 0.09 ± 0.03 12.52 ± 19.53 7.00 ± 11.76 0.49 ± 0.31

incomplete 0.18 ± 0.02 0.20 ± 0.05 0.29 ± 0.06 0.26 ± 0.32 2.07 ± 1.60 1.32 ± 0.71

Best Count (total=48) 13 8 10 5 5 7

Table 11: The full results on Return Mismatch metric, on incomplete High-H datasets

Environment Quality DIFFMORL MODULI MORvS MODT BC CQL

MO-Ant (×102)
Expert 2.10 ± 0.14 2.20 ± 0.20 2.27 ± 0.50 5.62 ± 3.43 5.83 ± 0.50 8.73 ± 0.37
Amateur 3.44 ± 0.21 3.21 ± 0.68 2.32 ± 0.32 33.19 ± 2.76 8.53 ± 4.08 6.32 ± 0.26

MO-HalfCheetah (×102)
Expert 1.92 ± 0.31 2.32 ± 0.20 3.27 ± 0.11 3.28 ± 0.09 5.01 ± 0.05 6.12 ± 0.17
Amateur 2.67 ± 0.56 2.77 ± 0.36 2.15 ± 0.18 2.46 ± 0.04 5.05 ± 0.55 5.98 ± 0.10

MO-Hopper (×103)
Expert 2.46 ± 0.80 2.52 ± 0.36 2.73 ± 0.31 3.89 ± 0.04 5.88 ± 2.65 3.67 ± 0.91
Amateur 2.09 ± 0.72 2.36 ± 0.59 2.29 ± 0.45 2.84 ± 0.29 4.63 ± 2.87 3.49 ± 0.82

MO-Hopper-3obj (×103)
Expert 2.99 ± 0.12 2.46 ± 0.19 1.93 ± 0.28 2.86 ± 0.14 1.26 ± 0.40 3.73 ± 0.84
Amateur 2.53 ± 0.58 2.21 ± 0.17 1.55 ± 0.64 2.08 ± 0.48 1.84 ± 0.82 3.52 ± 0.14

MO-Swimmer (×100)
Expert 5.92 ± 2.28 6.01 ± 1.74 11.21 ± 4.27 39.46 ± 19.44 48.56 ± 54.26 56.06 ± 4.38
Amateur 17.91 ± 4.93 28.72 ± 5.68 39.72 ± 4.27 114.63 ± 2.11 40.75 ± 1.70 42.56 ± 18.91

MO-Walker2d (×102)
Expert 7.62 ± 1.17 8.33 ± 1.36 13.45 ± 3.35 15.19 ± 5.32 26.07 ± 0.83 25.93 ± 5.28
Amateur 4.64 ± 2.87 5.38 ± 2.31 6.72 ± 2.03 30.03 ± 0.11 24.36 ± 6.01 20.97 ± 3.74

Best Count (total=12) 8 0 3 0 1 0

D.4 VISUALIZATION OF PARETO FRONTS

To intuitively demonstrate the performance and generalization of differenct methods, we visualize
the Pareto fronts of all methods on all environments and all tasks, as shown in Figure 9 to 13. We
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Objective 1
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High-H-Expert
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Figure 9: Pareto fronts of different methods on MO-Ant

assign different color for rollouts that correspond to in-distribution, interpolation and extrapolation
preference respectively. Overall, we find that our method DIFFMORL, MODULI and MORvS
produce significantly better, wider and denser Pareto fronts than MODT, BC and CQL. However,
DIFFMORL performs at least comparably well as MODULI and MORvS, and can sometimes
outperforms them significantly in more complex tasks such as Incomplete High-H-Expert
dataset of MO-HalfCheetah, Low-H-Amateur dataset of MO-Swimmer, indicating the remarkable
performance and generalization ability of DIFFMORL. Note that some Pareto fronts are blank since
the corresponding methods cannot produce feasible policies.
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Figure 10: Pareto fronts of different methods on MO-HalfCheetah
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Figure 11: Pareto fronts of different methods on MO-Hopper
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Figure 12: Pareto fronts of different methods on MO-Swimmer
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Figure 13: Pareto fronts of different methods on MO-Walker2d
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