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Abstract001

Recent studies on contrastive learning have empha-002

sized carefully sampling and mixing negative sam-003

ples. This study introduces a novel and improved004

approach for generating synthetic negatives. We pro-005

pose a new method using One-Class Support Vector006

Machine (OCSVM) to guide in the selection process007

before mixing named as Mixing OCSVM nega-008

tives (MiOC). Our results show that our approach009

creates more meaningful embeddings, which lead010

to better classification performance. We implement011

our method using publicly available datasets (Ima-012

genet100, Cifar10, Cifar100, Cinic10, and STL10).013

We observed that MiOC exhibit favorable perfor-014

mance compared to state-of-the-art methods across015

these datasets. By presenting a novel approach,016

this study emphasizes the exploration of alternative017

mixing techniques that expand the sampling space018

beyond the conventional confines of hard negatives019

produced by the ranking of the dot product.020

The code will be available upon request/acceptation021

022

1 Introduction023

Empirical evidence has demonstrated that unsuper-024

vised contrastive learning is a highly effective tech-025

nique for acquiring high-quality features, making op-026

timal use of a vast unlabeled dataset. It has gained027

considerable popularity as a pre-training strategy for028

a range of tasks such as classification, segmentation,029

and generative modeling like in [1–3]. Recent studies030

indicate that contrastive learning yields better per-031

formance than supervised learning [4, 5]. The core032

concept of contrastive learning is to bring similar fea-033

tures closer together in the feature space while high-034

lighting the differences between dissimilar features.035

In this context, an “anchor or query” image embed-036

ding is intended to share similarities with a “positive037

or key” image embedding, while it is designed to038

be distinct from the “negative” image embedding039

ensuring a clear separation. The selection process040

for positive and negative samples plays a crucial role041

in this domain, prompting continuous investigation042

into diverse methodologies. Momentum Contrast, or043

MoCo [6], is presented as a state-of-the-art baseline044

method in this paper utilizing two encoders: one for045

query and one for key.046

encoder
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X
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Figure 1. Visual illustration of the contrastive learning
pipeline. In MoCov2 [5] the embeddings in the memory
buffer/queue are used as negatives.

Instead of backpropagation, the key encoder’s pa- 047

rameters are updated using a momentum-based 048

method from the query encoder as shown in Fig- 049

ure 1. This causes the key encoder’s parameters to 050

change slowly, ensuring more consistent and stable 051

representations of the negative samples. A dynamic 052

dictionary of encoded data samples is constructed, 053

functioning as a queue of negatives for contrastive 054

learning. Typically, the positive pairs consist of dif- 055

ferent augmentations of the same image, whereas 056

the negatives are sourced from distinct images. This 057

paper investigates approaches to identify optimal 058

negatives that could be interpolated and added to 059

the existing queue to enhance the contrastive perfor- 060

mance. There have been considerable efforts in iden- 061

tifying hard negative samples that are closely related 062

to the query and hence harder to distinguish [7–9], 063

however, there has been a lack of research dedicated 064

to exploring different types of negative samples that 065

are preferable for mixing. Focusing only on using 066

hard negative samples for mixing can have a few 067

issues: 068

• Hard negatives might not encapsulate the 069

broader patterns inherent in the data [10]. The 070

synthetic negatives should possess the capacity 071

to be non-redundant, in order to construct a 072

more resilient representation. 073

• When engaging in the process of mixing, it is 074

essential to construct harder negatives that are 075

in proximity to the query [9]. Additionally, 076
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Figure 2. Samples of hard negatives by sorting dot-product (between query and negative sample) vs inliers
identified by One-Class SVM (OCSVM). A set of 30 Query embeddings are selected for fitting the OCSVM and
performing the dot-product on the Imagenet-10 dataset.

there should be a focus on accentuating the077

diversity among all negative samples to have a078

diverse and robust set of negatives.079

Drawing inspiration from the aforementioned issues080

associated with negative mixing in contrastive learn-081

ing, we present our approach :082

• Mixing OCSVM Negatives [MiOC]: This083

method uses OCSVM to create new sets of syn-084

thetic negatives, assisting in the sampling of085

hard negatives. Figure 2 displays some exam-086

ples of hard negatives found in the inlier region087

of the hypersphere produced by the OCSVM088

trained on 30 randomly chosen images of a cer-089

tain class. It can be observed that the hard090

negatives given by OCSVM tend to be more091

similar to the query.092

2 Related Works093

2.1 Contrastive Learning094

Contrastive Learning has emerged as one of the095

most effective strategies for self-supervised learning096

to acquire high-quality features before any down-097

stream task. Here is a concise overview of the key098

improvements in contrastive learning. PIRL [11] was099

first introduced which was based on the notion that100

augmented images should have comparable features.101

Their findings demonstrated that their method could102

learn features from a discriminative task like solving103

a jigsaw. Another widely adopted approach Sim-104

CLR [12] generated positive samples by using two105

distinct encoders for different augmentations and106

creates negative samples from the remaining batch107

samples. This method required a large batch size to108

ensure a diverse set of negative samples for effective109

training. Contrastive Multiview Coding [13] was pro-110

posed that leverages the natural variations in data111

captured from different perspectives or modalities to 112

learn more robust and generalizable representations. 113

Momentum Contrast (MoCo) [6] was another ap- 114

proach that was proposed, which utilized a memory 115

buffer as a queue to store negative samples and up- 116

dated the weights of one of the encoders through mo- 117

mentum averaging, ensuring that the feature space 118

does not exhibit significant disparities. Enhance- 119

ment has been made to MoCo by several methods 120

like MoCov2 [5], Relational Self Supervised Learning 121

(ReSSL) [14] and Similarity Contrastive Estimation 122

(SCE) [15]. A method described in [16] emphasized 123

the importance of focusing on only the top 5% of the 124

hardest negative samples to achieve optimal models. 125

Additionally, the authors found that the most chal- 126

lenging 0.1% of negative samples are unnecessary 127

and can hinder the training process in some cases, 128

as they often consisted of pseudo-negative samples. 129

There are some works like Student-t distribution 130

with a neighbor consistency constraint(TNCC) and 131

contrastive learning loss based on the Student-t dis- 132

tribution (CLT) [17] who introduced a novel loss 133

that emphasizes prioritizing weak negatives over 134

hard negatives. Alternative techniques have also 135

been explored, such as [18, 19] which do not rely on 136

negative samples. 137

2.2 Mixup 138

Several mixing approaches have enhanced the ro- 139

bustness of the learning process. MixCo [20] is 140

based on the principle of understanding the relative 141

similarity between representations, indicated how 142

much the mixed images retain the characteristics of 143

the original samples. Another method, iMix [21], 144

involved mixing images in a controlled manner, chal- 145

lenging the learning model to disentangle and iden- 146

tify the individual components of the mixed images. 147

MoCHI [11] is another approach that generates two 148

groups of synthetic negative samples. The first group 149
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Figure 3. Illustration of our approach to create the synthetic set So: With every incoming batch, Step 1, OCSVM
is trained on query zq and key zk belonging to a batch of embeddings to build the surrounding hypersphere. In
Step 2, the inlier negative embeddings z− are randomly chosen and interpolated with a randomly chosen zq. Here,
P represents the set containing all zq in a batch, and O is the set of z− located within the OCSVM hypersphere
(i.e., zq ∈ P and z− ∈ O).β is a hyperparameter which is randomly chosen between [0, 0.5]. (Recommended to
view in color)

is created by mixing hard negatives, while the second150

group is created by mixing hard negatives with the151

anchor. Another approach, called SynCo [22], intro-152

duced six strategies for generating diverse synthetic153

hard negatives in real-time.154

3 Method155

3.1 Principles of One Class SVM156

(OCSVM)157

OCSVM can be considered as a class density esti-158

mation problem. These algorithms are widely em-159

ployed in anomaly detection and outlier detection.160

OCSVM detects the smallest possible hyper-sphere161

that encompasses all the points belonging to a spe-162

cific class [23, 24]. It can alternatively be viewed as a163

margin separator from the origin. The hypersphere164

is characterized by its center, c, and radius, r. The165

optimization problem can be expressed as follows:166

min
r,c,ζ

r2 +
1

νn

n∑
i=1

ζi, (1)167

subject to ∥Φ (xi)− c∥2 ≤ r2 + ζi for all i =168

1, 2, . . . , n,169

where Φ(.) is a non-linear transformation performed170

by the kernel function, ν is the tradeoff coefficient171

between the sphere volume and the outliers, and172

ζi are non-negative slack variables. After fitting173

the hypersphere to the data, any sample si can be174

categorized into one of three groups: inner-sphere,175

outer-sphere, or boundary points. A functional form176

for the decision function, denoted as f(si), is shown177

in Equation 2 to provide us with information about 178

the orientation of si. 179

f(si) = ⟨w, si⟩ − b− ρ, (2) 180

where w is a normal vector to the hyperplane, b 181

is the bias term, and ρ is the threshold. Here f(si) 182

can have one of the three ranges of values: 183

• f(si) > 0: si is inside the decision boundary. 184

• f(si) < 0: si is outside the decision boundary. 185

• f(si) = 0: si is on the decision boundary. 186

The function f(si) will be used to sample hard neg- 187

atives, which are instances located near the query. 188

3.2 Our Proposition: MiOC 189

We propose to construct additional synthetic nega- 190

tives (inspired by MoCHI [11]) by the linear interpo- 191

lation of a randomly chosen query and a randomly 192

chosen negative as shown in Equation 3. 193

xk =
x̃k

∥x̃k∥2
, where x̃k = βkz

q
i + (1− βk) z

−
j , (3) 194

Here, β ranges from 0 to 0.5, interpolating a nega- 195

tive embedding z−j with a query zqi . Two synthetic 196

groups of negatives Sn and So are created as shown 197

in Figure 4. Each group consist of a number of 198

synthetic negatives of type xk from Equation 3. In 199

the case of Sn, the negative is randomly chosen 200

from the queue as described in Equation 4 and then 201

interpolated with a randomly chosen query, 202

queue = {si,∀i ∈ [0...K]}, (4) 203
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where queue comprises of K samples in the nega-204

tive memory buffer. si is the ith negative sample.205

The second group of synthetic negatives, So, moves206

the hard-negatives closer to the query within the207

embedding space.208

Algorithm 1 Pseudocode for MiOC

Require:
img: image from the loader,
f q and f k: encoder networks for query and key,
C: embedding dimension,
queue: dictionary as a queue of K keys (C ×K),
t: temperature,
O: set of inlier ocsvm negatives,
f(si, hypersphere): returns orientation of si
OCSVM: One-Class SVM

1: for each image in loader do
2: img1 ← aug(img) #augmented img

3: img2 ← aug(img) # another augmented image

4: zq = f q(img1) #queries: N × C

5: zk = f k(img2)#keys: N × C

#Compute positive logits: N×1

6: lpos ← bmm(zq .view(N, 1, C), zk.view(N,C, 1))
#Obtaining the hypersphere parameters

7: hypersphere = OCSVM(cat(zq , zk))
# Finding samples inside the hypersphere

8: O ← {si,∀i ∈ queue|f(si, hypersphere) > 0}
#First set of synthetic negatives

9: Sn ← {x̃k = βkz
q
i + (1− βk)z

−
j | z

−
j ∈ queue}

#Second set of synthetic negatives

10: So ← {x̃k = βkz
q
i + (1− βk)z

−
j | z

−
j ∈ O}

#Concatenate the queue with the synthetic negatives

11: neg ← cat(queue, Sn, So)
#Compute negative logits: N×K

12: lneg ← mm(zq .view(N,C),
neg.view(C,K + len(Sn) + len(So))
#Concatenate to calculate infonce loss

13: logits← cat([lpos, lneg ], dim = 1)
14: labels← 0N #Initialize labels as zeros

#Compute the loss

15: loss← CrossEntropyLoss(logits/t, labels)
16: loss.backward() #backpropagate the loss

17: end for

Notations:
bmm: batch matrix multiplication;
mm: matrix multiplication;
cat: concatenation.

Sampling and Mixing

+

(Sn, So)

Memory Buffer

Contrastive Loss

zq zk

Negatives

Figure 4. Illustration of the information flow in the
sampling and mixing process for MiOC. The synthetic
negatives are appended to the negative memory buffer
and subsequently used for the contrastive loss.

These hard-negatives are identified from the inlier209

negatives located inside the hypersphere that encom-210

passes a batch of query zq and key zk embeddings211

as shown in Figure 3. We denote the set O for these212

hard-negatives as in Equation 5.213

O = {si,∀i ∈ [0...K]|f(si) > 0}. (5) 214

To summarize a batch of (query (zq) + key (zk)) 215

embeddings are used to train a high dimensional 216

OCSVM hypersphere. Subsequently, we search for 217

the negative embeddings that fall within the bounds 218

of the hypersphere to create the set O by utilizing 219

the decision function outlined in Equation 2. We 220

use the InfoNCE loss as mentioned in MoCo [6] with 221

our modification of the synthetic negatives as shown 222

in Algorithm 1. 223

4 Experiments 224

We conducted reproducible experiments on Ima- 225

genet100, a subset of Imagenet1k [25]. Moreover, we 226

conducted supplementary experiments to evaluate 227

the overall performance of pre-training models under 228

standard conditions, utilizing smaller datasets for 229

linear evaluation. 230

4.1 Imagenet100 231

4.1.1 Experimental Setup 232

The training was conducted using a single Tesla 233

A100. The images were resized to 224×224 and 234

subjected to MoCov2 [5] augmentations. The pre- 235

training and linear classification was done on the 236

training set, while the results were reported on the 237

validation set. The linear evaluation stage was con- 238

ducted three times to show the standard deviation. 239

We employed a MoCov2 [5] setup with a pre-training 240

learning rate of 0.03 and a linear warm-up scheduler 241

spanning ten epochs during which only Sn negatives 242

were generated. This allowed MiOC to include a cer- 243

tain number of samples within the hypersphere. Sub- 244

sequently, a cosine scheduler was employed, and the 245

pre-training process was conducted for 200 epochs 246

using a ResNet50, which was trained from scratch. 247

The embedding dimension and batch size were kept 248

at 128. During the linear evaluation phase, we fixed 249

the encoder, appended a linear layer on top, and 250

conducted training for 60 epochs with a learning rate 251

of 10 (as in [11]), employing a multistep scheduler 252

with a factor of 0.1 at [30, 40, 50] epochs. 253

4.1.2 Result Analysis 254

The results for the linear evaluation on the Ima- 255

genet100 dataset are presented in Table 1. The 256

Top1 % Accuracy and the k-NN scores have been 257

compared for each model. k-Nearest Neighbour clas- 258

sifier predicts the data by considering the nearest 259

neighbors based on features alone, without employ- 260

ing a linear layer. No training was necessary for this 261

approach. We discovered that a value of 10 for “k” 262

consistently performed the best across all models. 263
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Models

Imagenet100

Acc Top1 % k-NN
Effective
Memory
Buffer

Pretrain
Time (Hrs)

CLT [17] 68.17

-
16K

-

TNCC [17] 68.66
MoCo [6] 73.4

MoCo + iMix[21] 74.2
CMC [13] 75.7

CMC + iMix [21] 75.9
SCE* [15] 77.75 65.40

MoCov2*[5]
77.14±0.24 65.10 30
77.32±0.20 65.29

17K

31
MoCov2

+ MoCHI [1024, 512, 128]*[11]
77.17±0.06 63.73 40

MoCov2
+ SynCo*[22]

77.15±0.17 64.82 27

MoCov2
+MiOC[1024, 512]*

78.07±0.15 65.89 35

Table 1. Top1 % Accuracy on Imagenet100 for vari-
ous models, with the effective memory buffer size (i.e.,
Queue-size + Synthetic Negatives). MiOC is represented
with [Sn, So] synthetic negatives respectively. * are im-
plemented by us. Additional details about MoCHI [11]
implementation and the hyperparameters can be found
in the appendix.

MiOC demonstrated the best k-NN score and264

Top1 % Accuracy , while SCE [15] outperformed265

MoCoV2 [6] and MoCHI [11] in both metrics.266

SynCo [22] with a shorter pretraining time had lower267

k-NN and no significant improvement of Top1 % Ac-268

curacy than in MoCov2 [5]. We incorporated an269

expanded queue of 17K in MoCov2 [5]. Our findings270

demonstrated that the augmented queue length was271

not the primary factor contributing to the enhanced272

performance in MiOC. The computational load in273

MiOC mainly involved fitting the OCSVM and clas-274

sifying points (inside or outside the hypersphere).275

This process is moderately resource-intensive when276

handling a small number of points, such as a batch277

of (zq + zk). Despite the increased computation, it278

remains faster than MoCHI [11].279

4.2 Linear Evaluation on Smaller280

Datasets281

Assessing performance on smaller datasets provides282

insights into the model’s capacity to generalize to283

new data. A strong performance on a small dataset284

implies that the model has acquired useful represen-285

tations applicable across various tasks and datasets.286

We employed the pre-trained models trained on Ima-287

genet100 for linear evaluation on four datasets- (Ci-288

far10 [26], Cifar100 [26], STN10 [27], Cinic10 [28]).289

The initial three datasets are widely recognized as290

benchmark datasets, whereas Cinic10 [28] is a newly291

introduced dataset designed to serve as an interme-292

diary between Cifar10 [26] and Imagenet [25]. The293

images were resized to 224×224 for Cifar10 [26], Ci-294

far100 [26], Cinic10 [28], and 96×96 for STL10 [27].295

We used a learning rate of 3 with a batch size of 128296

and trained for 100 epochs with a multistep scheduler297

with a factor of 0.1 at [50, 70, 90] epochs. The output298

of the linear layer was adjusted according to the num-299

ber of classes in each dataset. We can compare the300

Models
Datasts(Top1 % Acc)

Cifar10 Cifar100 STL10 Cinic10
MoCov2 [5] 80.24±0.07 55.52±0.18 73.58±0.10 68.56±0.05

SCE [15] 80.29±0.05 55.50±0.01 73.31±0.01 68.59±0.04

MoCov2
+MoCHI[1024, 512, 128] [11]

79.98±0.03 54.79±0.01 73.93±0.03 69.12±0.03

MoCov2
+MiOC[1024, 512]

81.01±0.04 56.27±0.02 74.36±0.02 69.40±0.03

Table 2. Comparison of linear evaluation perfor-
mance on smaller datasets. Pretrained models from
Imagenet100 (200 Epochs) were employed for the fine-
tuning.

results for linear evaluation on the smaller datasets 301

in Table 2. MoCHI [11] outperformed MoCov2 [5] in 302

both STL10 [27] and Cinic10 [28], whereas SCE [15] 303

showed a slight improvement over MoCov2 [5] in 304

Cifar10 [26], and Cinic10 [28], although the differ- 305

ence was not significant. MiOC demonstrated supe- 306

rior performance relative to all other models which 307

clearly shows the benefit of our sampling and mixing 308

strategy of negative embeddings. This insight sheds 309

light on the importance of negative sample diversity 310

and suggests that future research could explore more 311

nuanced approaches to refine model performance fur- 312

ther. Figure 5 exhibits the visualization of the ten

(a) MoCov2 [5] (b) MoCHI [11]

(c) MiOC

Figure 5. Visualizing the linear evaluation by t-
SNE and showcase ten classes of the Cifar10 [26] test
set, revealing distinct clusters accompanied by Davies
Bouldin Score (↓) and Calinski Harabasz Score (↑)

313

classes of the test set of Cifar10 [26] after performing 314

linear evaluation on it, reduced to two dimensions 315

using t-SNE. Additionally, it presents the Davies 316

Bouldin Score and the Calinski Harabasz Score, both 317

metrics used to identify the optimal clustering for 318

each model based on the features and labels. MiOC 319

displays the lowest Davies Bouldin Score, and the 320

highest Calinski Harabasz Score. Upon closer inspec- 321

tion, the t-SNE figure reveals that the distribution 322

of the points in MiOC is better separated than in 323

MoCov2 [6]. 324
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5 Future Work325

In this paper, we introduced a technique for mixing326

negatives and proposed a novel approach to identi-327

fying hard negatives using One-Class SVM. Limited328

research has been conducted in this area, which329

opens up possibilities for exploring alternative sam-330

pling methods. The paper highlights the potential331

of OCSVM for a single application (image classi-332

fication), although it may inspire other tasks. A333

potential area for future research could involve iden-334

tifying and comparing the hard negatives selected335

by our method and ranking them based on the simi-336

larity of the dot product between the negatives and337

the query. Innovative ideas could be implemented338

on models like DINO [29], which does not utilize339

any negatives. Furthermore, it would be interest-340

ing to experiment with various anomaly detection341

methods to create synthetic negatives, such as those342

in [30] and [31], and compare their performance with343

MiOC.344

6 Conclusion345

In this article, we proposed a novel approach for mix-346

ing negatives that focuses on capturing the overall347

negative distribution rather than solely prioritizing348

hard negatives. Our method demonstrated a refined349

strategy for enhancing contrastive learning by inte-350

grating a broader spectrum of negative examples.351

Through testing on various datasets, our technique352

shows promise in outperforming some existing meth-353

ods in multiple settings, highlighting the potential354

benefits of a negative sampling strategy. As the355

field progresses, we hope our work will contribute356

to the ongoing development of more sophisticated357

and effective learning algorithms.358

References359

[1] X. Zhao, R. Vemulapalli, P. A. Mansfield,360

B. Gong, B. Green, L. Shapira, and Y. Wu.361

Contrastive Learning for Label Efficient Se-362

mantic Segmentation. Available at: https://363

shorturl.at/lP5OZ. 2021.364

[2] M. Kang and J. Park. ContraGAN: Con-365

trastive Learning for Conditional Image Gen-366

eration. 2020. url: https://github.com/367

POSTECH-CVLab/PyTorch-StudioGAN..368

[3] T. Chen, S. Kornblith, M. Norouzi, and G.369

Hinton. A Simple Framework for Contrastive370

Learning of Visual Representations. 2020. url:371

https://github.com/google- research/372

simclr..373

[4] N. Zhao, Z. Wu, R. W. H. Lau, and S. Lin. 374

What makes instance discrimination good for 375

transfer learning? June 2020. url: https:// 376

openreview.net/pdf?id=tC6iW2UUbJf. 377

[5] X. Chen, H. Fan, R. Girshick, and K. He. Im- 378

proved Baselines with Momentum Contrastive 379

Learning. Mar. 2020. arXiv: 2003.04297 [cs]. 380

(Visited on 04/03/2024). 381

[6] K. He, H. Fan, Y. Wu, S. Xie, and R. Gir- 382

shick. “Momentum Contrast for Unsupervised 383

Visual Representation Learning”. In: (Nov. 384

2019). url: https://openaccess.thecvf. 385

com / content _ CVPR _ 2020 / papers / He _ 386

Momentum _ Contrast _ for _ Unsupervised _ 387

Visual_Representation_Learning_CVPR_ 388

2020_paper.pdf. 389

[7] A. Tabassum, M. Wahed, H. Eldardiry, and I. 390

Lourentzou. “Hard Negative Sampling Strate- 391

gies for Contrastive Representation Learning”. 392

In: (June 2022). url: http://arxiv.org/ 393

abs/2206.01197. 394

[8] B. Du, X. Gao, W. Hu, and X. Li. “Self- 395

Contrastive Learning with Hard Negative Sam- 396

pling for Self-supervised Point Cloud Learn- 397

ing”. In: Association for Computing Machin- 398

ery, Inc, Oct. 2021, pp. 3133–3142. isbn: 399

9781450386517. doi: 10 . 1145 / 3474085 . 400

3475458. url: https://arxiv.org/pdf/ 401

2107.01886.pdf. 402

[9] J. Robinson, C.-Y. Chuang, S. Sra, and S. 403

Jegelka. “Contrastive Learning with Hard Neg- 404

ative Samples”. In: (Oct. 2020). url: https: 405

//openreview.net/pdf?id=CR1XOQ0UTh-. 406

[10] Y. Duan, W. Zheng, X. Lin, J. Lu, and J. Zhou. 407

“Deep Adversarial Metric Learning”. In: (2018). 408

url: https : / / duanyueqi . github . io / 409

CVPR18 _ Deep % 20Adversarial % 20Metric % 410

20Learning.pdf. 411

[11] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. 412

Weinzaepfel, and D. Larlus. “Hard Negative 413

Mixing for Contrastive Learning”. In: (Oct. 414

2020). url: https : / / proceedings . 415

neurips . cc / paper / 2020 / file / 416

f7cade80b7cc92b991cf4d2806d6bd78 - 417

Paper.pdf. 418

[12] T. Chen, S. Kornblith, M. Norouzi, and G. 419

Hinton. “A Simple Framework for Contrastive 420

Learning of Visual Representations”. In: (Feb. 421

2020). url: http : / / proceedings . mlr . 422

press/v119/chen20j/chen20j.pdf. 423

[13] Y. Tian, D. Krishnan, and P. Isola. Contrastive 424

Multiview Coding. Dec. 2020. 425

6

https://shorturl.at/lP5OZ
https://shorturl.at/lP5OZ
https://shorturl.at/lP5OZ
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
https://github.com/google-research/simclr.
https://github.com/google-research/simclr.
https://github.com/google-research/simclr.
https://openreview.net/pdf?id=tC6iW2UUbJf
https://openreview.net/pdf?id=tC6iW2UUbJf
https://openreview.net/pdf?id=tC6iW2UUbJf
https://arxiv.org/abs/2003.04297
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/He_Momentum_Contrast_for_Unsupervised_Visual_Representation_Learning_CVPR_2020_paper.pdf
http://arxiv.org/abs/2206.01197
http://arxiv.org/abs/2206.01197
http://arxiv.org/abs/2206.01197
https://doi.org/10.1145/3474085.3475458
https://doi.org/10.1145/3474085.3475458
https://doi.org/10.1145/3474085.3475458
https://arxiv.org/pdf/2107.01886.pdf
https://arxiv.org/pdf/2107.01886.pdf
https://arxiv.org/pdf/2107.01886.pdf
https://openreview.net/pdf?id=CR1XOQ0UTh-
https://openreview.net/pdf?id=CR1XOQ0UTh-
https://openreview.net/pdf?id=CR1XOQ0UTh-
https://duanyueqi.github.io/CVPR18_Deep%20Adversarial%20Metric%20Learning.pdf
https://duanyueqi.github.io/CVPR18_Deep%20Adversarial%20Metric%20Learning.pdf
https://duanyueqi.github.io/CVPR18_Deep%20Adversarial%20Metric%20Learning.pdf
https://duanyueqi.github.io/CVPR18_Deep%20Adversarial%20Metric%20Learning.pdf
https://duanyueqi.github.io/CVPR18_Deep%20Adversarial%20Metric%20Learning.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7cade80b7cc92b991cf4d2806d6bd78-Paper.pdf
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf


NLDL
#33

NLDL
#33

NLDL 2025 Full Paper Submission #33. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[14] M. Zheng, S. You, F. Wang, C. Qian, C.426

Zhang, X. Wang, and C. Xu. “ReSSL: Re-427

lational Self-Supervised Learning with Weak428

Augmentation”. In: (July 2021). url: https:429

//openreview.net/pdf?id=ErivP29kYnx.430

[15] J. Denize, J. Rabarisoa, A. Orcesi, R. Hérault,431
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A Appendix535

A.1 Modified MoCHI536

MoCHI [11] which is based on creating new sets537

of negative embeddings, i.e., sk and s′k, by linear538

interpolation. (Equations using the same naming539

convention as in [11])540

sk =
s̃k

∥s̃k∥2
, where s̃k = αkni + (1− αk)nj (6)541

Here, α represents a random variable ranging from542

0 to 1. The variables ni and nj denote randomly543

selected hard negatives from the set N, which com-544

prises hard negatives obtained by ranking the neg-545

ative sample’s dot product with a query. An addi-546

tional set of more challenging negatives, denoted as547

s′k, is generated using a similar method.548

s′k =
s̃′k∥∥s̃′k∥∥2 , where s̃′k = βkqi + (1− βk)nj (7)549

Here, β ranges from 0 to 0.5, interpolating the550

hard negative embedding nj with query qi. The551

authors represent each model as [N, s, s′], where552

N represents the number of hard negatives from553

which s synthetic hard negatives and s′ synthetic554

harder negatives are derived. Although it was no-555

ticed that a higher value of N could lead to improved556

outcomes, the sorting of negatives was found to in-557

crease processing time. For each query they created558

the synthetic negatives which inturn increased the559

pretraining time and the effective queue-size. As the560

pretraining time increased to upto greater than 100561

hours, we modified MoCHI [11] to perform interpola-562

tion on randomly chosen query and generate a total563

of (s+ s′) synthetic negatives. Though this method564

is not comparable with the original MoCHI [11]565

method, it is closer to our method and shows the566

importance of sampling with OCSVM, hence we567

used it in our experiments.568

A.2 HyperParameter Selection for569

MiOC570

We experimented with various settings for the dif-571

ferent hyperparameter configurations for the Ima-572

genet100 dataset. First, we conducted experiments573

with the OCSVM hyperparameters, including nu,574

gamma, and kernel, which significantly affect the575

hypersphere. We conducted the pre-training using a576

larger queue size of 65K to compare the pre-training577

time more efficiently. Table A.1 presents the Top578

1% Accuracy associated with various selected hy-579

perparameter combinations. We determined that580

the configuration with nu=0.1, gamma=0.1, and581

kernel=rbf yielded the best-performing optimized582

hypersphere. Interestingly, when employing iden-583

tical values for nu and gamma, the linear kernel584

exhibits slower performance than the RBF kernel 585

with [nu=0.01, gamma=0.01]. Since we do not im- 586

pose a maximum iteration constraint, in cases where 587

the data lacks linear separability, the RBF kernel 588

might demonstrate greater computational efficiency 589

and converge more rapidly. 590

Models
OCSVM Hyperparameters

Top1 % Acc
Pretrain

Time (Hrs)nu gamma kernel

MoCov2
+MiOC[1024, 512]

0.1 0.1

rbf

78.35 76
0.01 0.1 77.52 52
0.1 0.01 77.87 42
0.01 0.01 77.66 34
0.01 0.01 linear 77.81 38

Table A.1. OCSVM hyperparameters, including nu,
gamma, kernel, and their corresponding effects on
Top1 % Accuracy.

We use the fastest ocsvm hyperparameters for 591

all of the experiments, i.e., [nu=0.01, gamma=0.01, 592

kernel=rbf]. Additionally, we carried out a study to 593

explore the impact of various queue sizes during 100 594

and 200 pre-training epochs and present the linear 595

evaluation results in Table A.2. For these experi- 596

ments, we conducted all the pre-training anew while 597

maintaining the Tmax of the cosine scheduler at the 598

corresponding number of epochs. Using the 100- 599

epoch pre-training model, MoCov2 [6] demonstrates 600

reasonable performance and even surpasses MiOC 601

with a 16K queue size. However, we believe that 602

100 epochs are insufficient to leverage the benefits 603

of MiOC. However, at the 200-epoch mark, MiOC

[1024, 1024] [1024, 512] [1024, 128] [512, 512] [512, 128]
Configurations

77.0

77.2

77.4

77.6

77.8

78.0

78.2

To
p 

1 
Ac

c

Mean MoCov2

MiOC

Figure A.1. Comparative Analysis of MiOC-[Sn, So]
hyperparameter optimization, showcasing Top1 % ac-
curacy for each of the configuration pre-trained for 200
Epochs on Imagenet-100.

604

exhibits a clear advantage over other approaches. 605

MiOC shows a slight improvement with a queue size 606

of 65K, but adjusting the ocsvm’s hyperparameters 607

can lead to better results, as shown in the compar- 608

isons in Table A.1. We conducted a pretraining and 609

linear evaluation for five distinct configurations for 610

MiOC while maintaining the same hyperparameter 611

settings as before. 612

The results for the optimal search of the best con- 613

figuration are illustrated in Figure A.1. The green 614
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Models
Pretrained
Epochs

Memory-Buffer Size Pretrained
Epochs

Memory-Buffer Size
4096 16384 65536 4096 16384 65536

MoCov2 [5]

100

66.44 67.48 67.17

200

77.44 77.14 77.44
MoCov2

+MoCHI[1024, 512, 128] [11]
65.97 64.98 66.91 76.84 77.32 77.58

MoCov2
+MiOC[1024, 512]

66.89 66.69 67.65 77.81 78.07 77.66

Table A.2. This table displays the Top1 % accuracy achieved with different queue sizes (4096, 16384, 65536)
across varying numbers of epochs (100 and 200). For both 100 and 200 epochs of model training, the same number
of epochs was consistently used for the scheduler during pretraining.

Models
Synthetic Negatives

Acc Top1 %
1st Group 2nd Group

MiOC
Sn Sn 77.25
Mn So 77.23
Sn So 78.07

Table A.3. Summary of experimental results with
different synthetic negative types and combinations.

reference line depicts MoCov2’s [5] mean Top1 accu-615

racy, highlighting the proposed model’s performance616

improvement. We observed that [1024, 512] was the617

best configuration for MiOC. We tried more experi-618

ments with using different types of combinations of619

synthetic negatives as shown in Table A.3. Here Sn620

and So are the sets created as shown in Section 3.2.621

While we introduced a new set of synthetic nega-622

tives Mn which uses queue as in Equation 4, though623

instead of mixing it with a randomly chosen query,624

we mix 2 negatives belonging to this set as in Equa-625

tion 6. Here, we observe that the combination of Sn626

and So works the best and gives an advantage over627

MoCov2 [5].628

A.3 Linear Evaluation with Limited629

Data630

We conducted further experiments wherein we re-631

stricted the number of samples per class to ranges632

between 10-1000 images for the Cifar10 [26] and633

Cinic10 [28] datasets. This approach is particularly634

useful in real-world situations where labeled data635

can be scarce or expensive to obtain. Linear evalu-636

ation with few images enables practitioners to use637

limited labeled data resources efficiently. Figure A.2638

displays the results with limited training images.639

Our proposed techniques consistently demonstrate640

superior performance compared to other models.641

This experiment underscores MiOC’s effectiveness642

for fine-tuning scenarios with limited data and show-643

cases their adaptability. Notably, when the training644

set consists of only ten images per class, totaling 100645

images, MoCHI’s [11] performance is compromised,646

whereas MiOC consistently delivers comparatively647

stronger results. The performance of MiOC in such648

conditions presents promising opportunities for refin-649

ing machine learning models for enhanced efficiency650

1000 500 100 50 10
Number of Training Samples (per Class)

50

55

60

65

70

75

To
p1

%
 A

cc

MoCov2
MoCHi
MiOC

(a) Cifar10 [26]

1000 500 100 50 10
Number of Training Samples (per Class)

40

45

50
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60
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%
 A
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MoCov2
MoCHi
MiOC

(b) Cinic10 [28]

Figure A.2. Comparison of Linear Evaluation under
restricted training data. The X-axis depicts varying
images per class utilized for training, while the Y-axis
shows the Top-1% Accuracy.

in practical applications faced with data scarcity. 651

A.4 Scalability for MiOC 652

We recognize the importance of the runtime for 653

MiOC. We fit OCSVM to zk+zq embeddings, which, 654

with our batch size, amounts to 128 + 128 = 256. 655

Ideally, the algorithm can scale effectively up to a

Batch Size 128 256 512 1024 2048 4096 8K 16K
Time 0.0017 0.0034 0.0109 0.0427 0.1691 0.6826 2.8508 16.7219

Table A.4. Comparison of batch size and the time
required to fit OCSVM on a single batch

656

batch size of 4K. However, with larger batch sizes 657

of over 8K, delays may become noticeable. We 658

show the OCSVM fitting for different batch sizes in 659

Table A.4. Using a very large batch size (around 8K 660

or 16K) can affect the step time. However, it is still 661

feasible to use them for smaller/medium batches. 662
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