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ABSTRACT

Preference-based finetuning of vision–language models (VLMs) is brittle: trivially wrong
negatives inject uninformative gradients that destabilize training. We recast alignment as
learning-dynamics–aware optimization and introduce Cooling-Weighted DPO (CW-
DPO), a two-stage recipe that explicitly models and exploits the training trajectory. Stage
1 performs supervised finetuning with gentle negatives: low-weight smoothed super-
vision that regularizes the base policy and curbs overconfidence without explicit penal-
ties. Stage 2 applies a DPO objective in which the negative term is scaled by a cooling
weight computed from the model’s average token log-probability on each negative, sup-
pressing uninformative gradients from easy or off-distribution samples while preserving
signal from hard negatives. In practice, we emphasize on-policy negatives and allow
mixed negatives by blending a controllable fraction of dataset negatives to maintain con-
trast freshness. Throughout, we instrument training with ∆log p probes on positives and
negatives as first-class signals for early stopping, curriculum design, and failure diagnosis.
Across diverse VLM tasks, CW-DPO yields more stable optimization, better calibra-
tion, and higher pairwise win-rates than SFT-only and vanilla DPO, while converging
in fewer steps. Ablations isolate the cooling-weight mechanism as the primary driver
of these gains and show complementary benefits from mixing on-policy and dataset nega-
tives. Taken together, our results show that smoothing learning dynamics before cooling
preferences is a simple, general principle for robust VLM alignment.

1 INTRODUCTION

The finetuning of vision-language models (VLMs) involves intricate learning dynamics that pose significant
challenges for stable optimization (Liu et al., 2023; Huang & Zhang, 2024). VLMs process multimodal in-
puts, encoding textual and visual components as high-dimensional sequences, where the visual stream intro-
duces complex state dependencies—such as pixel embeddings and spatial metadata—that tightly couple gra-
dient updates across tokens (Radford et al., 2021; Li et al., 2023). Prominent finetuning methods, including
supervised finetuning (SFT) (Ouyang et al., 2022) and direct preference optimization (DPO) (Rafailov et al.,
2023), employ diverse loss geometries and supervision signals, necessitating a unified analytical frame-
work to unravel their behavioral foundations, especially in preference-based alignment aimed at prioritizing
human-preferred outputs (Ren & Sutherland, 2025). Preference-based finetuning is essential for aligning
VLMs with human intent (Liu et al., 2024a; Radford et al., 2021; Chen et al., 2023; Zhang et al., 2024),
yet it suffers from notorious instability in practice. Alignment datasets often contain static or mis-specified
negative examples—trivially incorrect or off-distribution—that inject uninformative gradients (Casper et al.,
2023; Kaufmann et al., 2024; Song et al., 2025). These gradients disrupt optimization, degrade calibration,
and produce overconfident, peaky posteriors. Off-policy methods exacerbate this by penalizing unlikely
responses, while even naı̈ve on-policy approaches struggle with gradient spikes from dominant “easy neg-
atives” (Christiano et al., 2017; Kaufmann et al., 2024). This points to a common flaw: alignment is often
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treated as a static optimization task, ignoring the dynamic evolution of the model’s learning trajectory (Ren
& Sutherland, 2025; Gao et al., 2023; Kaufmann et al., 2024).

In this work, we adopt a learning-dynamics perspective, reframing alignment to explicitly model and
harness how the model’s beliefs evolve during finetuning (Sagawa et al., 2020). We introduce Cooling-
Weighted Direct Preference Optimization (CW-DPO), a two-stage strategy that aligns with this evolution.
The first stage smooths the loss landscape to enhance stability, while the second applies a competence-
aware preference optimization to refine training, as depicted in Figure 2. Specifically, Stage 1 enhances
SFT by incorporating “gentle negatives,” introducing low-weight smoothed supervision to reduce over-
confidence around negative responses without harsh penalties. We define the per-token average log-
probability as ℓ̄θ(y | χ) = 1

L

∑L
l=1 log πθ(yl | χ≤l), measuring the model’s average confidence per

token on any response y given sample χ (elaborated in §2.2), with yl (loser) and yw (winner) spec-
ifying roles in Stage 2. The objective, formalized as a constrained optimization (detailed in §3), is:
minθ E(x,y+)∼D[− log πθ(y

+ | x)] + ηRsmooth(θ;x, y
−), 0 < η ≪ 1, where Rsmooth (e.g., entropy

smoothing or a ReLU-based soft constraint) regularizes the negative trajectory y−. This “smooth-before-
optimize” approach de-peaks distributions and flattens sharp loss regions, reducing noise in subsequent
contrastive learning, as motivated by the peaking pitfalls in §2.1. In Stage 2, we transition to preference
pairs yw (winner) and yl (loser), as detailed in §3. Stage 2 advances with a novel DPO-style objective featur-
ing competence-aware reweighting (Rafailov et al., 2023). Vanilla DPO minimizes − log σ(β(∆w −∆l)),
where ∆w = log πθ(yw | x) − log πref(yw | x) and ∆l = log πθ(yl | x) − log πref(yl | x). We enhance
it with a cooling weight: wc(θ; yl, χ) = σ

(
ℓ̄θ(yl|χ)−ℓfloor

τ

)
, which down-weights yl with low probabilities

(indicating “easy” negatives), steering optimization toward hard negatives where uncertainty lingers. The re-
sulting loss is: LCW-DPO = −E

[
log σ(β(∆w−wc(θ; yl, χ) ·∆l))

]
, where ℓfloor sets an easiness baseline and

τ adjusts the cooling schedule’s sharpness. Negatives are primarily on-policy, with optional dataset-negative
mixing to keep contrast fresh. Across both stages, ∆ log p probes on a held-out set monitor learning dy-
namics, providing a low-cost signal for early stopping and curriculum design. This endogenous curriculum
adapts to model competence. Extensive and comprehensive experimental evaluations in §4 demonstrate that
our CW-DPO surpasses SFT-only and vanilla DPO in stability, efficiency, calibration, and win-rates across
visual QA, binary judgments, and open-ended tasks.

2 PROBLEM FORMULATION: THE UNSTABLE DYNAMICS OF VLM FINETUNING

We systematically dissect the core instabilities afflicting VLM alignment, i.e., a fundamental dilemma
in preference-based learning, manifesting as the “squeezing effect,” in §2.1. This effect underscores a
perilous decoupling between a sample’s loss-based informativeness and its gradient-based influence
during training. Subsequently, in §2.2, we develop a formal analytical lens rooted in learning dynamics
to diagnose this issue. This framework not only elucidates the root causes of instability but also yields a
principled blueprint for our dynamics-aware solution.

2.1 A CORE DILEMMA: THE “SQUEEZING EFFECT”

The fundamental dilemma of preference finetuning is that aligning with human intent requires penalizing
a vast space of undesirable responses (y−) (Kaufmann et al., 2024). As learning progresses, most undesir-
able responses are gradually converted into “easy negatives”, i.e., sequences assigned near-zero probability
by the model. This engenders a destructive feedback loop, wherein optimization expends disproportion-
ate gradient bandwidth on these uninformative samples. As shown in Figure 1, the consequence is the
squeezing effect, i.e., a decoupling where a sample’s low loss (indicating minimal informativeness) belies
its potentially large, misdirected gradient (Ren & Sutherland, 2025). Although the loss from an easy negative
πθ(y

−|x) → 0 is negligible, its gradient can remain substantial and poorly aligned. This misalignment in-
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Figure 1: Two-stage optimization process of CW-DPO. Stage 1 (y+ Training) leverages positive supervision
for stability but yields overly uniform language styles (e.g., “A . . . on the . . . ”). Stage 2 (y− Training)
introduces negative contrast for variation but risks errors (e.g., a running kitten as “flying”). CW-DPO’s
cooling-weighted mechanism dynamically attenuates uninformative negatives while amplifying hard ones,
mitigating error propagation, and enhancing stylistic diversity.

duces an undesirable redistribution of probability mass: instead of fostering a calibrated spread across viable
alternatives, updates “squeeze” mass toward the dominant mode, typically y∗ = argmaxy πθ(y|x), which
may correspond to a preferred response yw in later optimization stages. This engenders a “rich-get-richer”
dynamic, amplifying overconfidence, curtailing linguistic diversity, and impairing calibration.

Remark 1 (Insufficiency of DPO’s Implicit Regularization). DPO implicitly counters this via regulariza-
tion: the negative-term gradient is modulated by β(1 − a), where a = σ(β(∆w − ∆l)) is the sigmoid-
transformed margin. For extremely easy negatives, ∆l drives a → 1, attenuating the gradient. Theoretically
elegant, this falters in practice due to a wide “vulnerable region” for moderately easy negatives, where
log πθ(y

−) is low but a (e.g., ∈ [0.8, 0.99]) insufficiently suppresses the residual gradient β(1 − a), es-
pecially at high β (Ren & Sutherland, 2025). This perpetuates instability and the squeezing effect. (See
Appendix I for a formal analysis).

2.2 AN ANALYTICAL LENS: PER-STEP INFLUENCE DECOMPOSITION

To transcend empirical observations and rigorously diagnose the squeezing effect, we adopt a learning-
dynamics perspective (Koh & Liang, 2017; Jacot et al., 2018) to enable precise tracing of how a sin-
gle gradient update impacts global model behavior. Define y = (y1, . . . , yL) as a sequence of length
L, with logits z = (z1, . . . , zL), each zl ∈ R|V | (|V | denotes the vocabulary size). Gradients are
w.r.t. the concatenated z, denoted ∇z . A pivotal query: How does an update on “updating” sample
χu = (xu, yw, yl) alter confidence on “observing” sample χo? Confidence is quantified via average per-
token log-probability: ℓ̄θ(y | χ) = 1

L

∑L
l=1 log πθ(yl | χ≤l). A first-order Taylor expansion of ℓ̄θ post-

update θt+1 = θt − η∇θL(θt;χu) yields:

∆ℓ̄t(y|χo) = −η(∇θ ℓ̄θt)
⊤(∇θL(θt)) +O(η2). (1)

Linearizing logits z(θ;χ) around θt decomposes this into interpretable factors.

3
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Proposition 1 (Sequence-Aware One-Step Influence). The log-likelihood change on χo post-update on χu
(rate η) approximates:

∆ℓ̄t(y | χo) ≈ −η
〈
∇z ℓ̄θt(y | χo)︸ ︷︷ ︸
At: Belief Geometry

, Kt(χo, χu)︸ ︷︷ ︸
eNTK Kernel

∇zL(θt;χu)︸ ︷︷ ︸
Gt: Loss Residual

〉
. (2)

Key Elements: Belief Geometry (At) encodes predictive sensitivity to logit perturbations, capturing belief-
landscape curvature. eNTK Kernel (Kt = JoJ

⊤
u ) (J = ∇θz(θt;χ): Jacobian) propagates updates para-

metrically. Loss Residual (Gt) directs logit adjustments via ∇zL.

Decomposing the DPO Gradient. The power of this decomposition becomes evident when we specify
the Loss Residual Gt for the DPO objective. For DPO, Gt = ∇zLDPO (derived in Appendix I), whose
full form is given in Eq. 5 and can be broken down into components related to the winner yw and the loser
yl: Gt = β(1 − a)(Gw

t − Gl
t), where Gw

t and Gl
t are the gradient components for the winning and losing

responses, respectively. As discussed in Remark 1, the squeezing effect occurs precisely when yl is an
“easy negative.” In this scenario, while the loss itself is small, DPO’s implicit regularization (1− a) is often
insufficient to fully suppress the gradient, leaving the loser component Gl

t disproportionately large and noisy.
This oversized residual from uninformative samples is the direct source of instability.

Implication for Algorithm Design. This analysis transcends explanation: it isolates the instability’s
source to the oversized, destabilizing ”loser” component (Gl

t) of the loss residual from negative ex-
amples yl. The squeezing effect, therefore, emerges not from an inherent flaw in preference optimization
but from an unregulated Gl

t. This mandates a surgical solution: instead of heuristically regularizing the
entire loss, a principled algorithm must directly temper this specific residual component. This diagnosis is
the analytical foundation for our method, detailed in the next section 3.

3 DYNAMICS-AWARE COOLING-WEIGHTED DPO

Grounded in the principled insights of our diagnostic analysis (§2), our CW-DPO in Figure 2 provides a
dynamics-aware manner to align VLMs.

3.1 STAGE 1: TRAJECTORY PRIMING VIA CONSTRAINED SFT

This stage prepares the learning trajectory of the model πθ (θ denotes the model parameters) by curbing over-
confidence, laying a smoother foundation for subsequent preference learning. Unlike standard SFT, which
focuses solely on positive responses (y+) and risks entrenching peaky distributions, we adopt a constrained
optimization strategy. To mitigate overconfidence, we impose a constraint on the model’s response to nega-
tives, minimizing the negative log-likelihood (NLL) on positives while ensuring the NLL on negatives (y−)
remains above a threshold C to prevent their premature dismissal as:

min
θ

E(x,y+)∼D[− log πθ(y
+|x)] s.t. E(x,y−)∼D[− log πθ(y

−|x)] ≥ C. (3)

Here, the objective E(x,y+)∼D[− log πθ(y
+|x)] seeks to maximize the likelihood of positive responses y+

drawn from dataset D, while the constraint E(x,y−)∼D[− log πθ(y
−|x)] ≥ C ensures that the model assigns

sufficient probability to negative examples y−, preventing them from being overly suppressed. This dual fo-
cus promotes a more uniform allocation of probability mass, countering the peaking pitfalls outlined in §2.1,
where overconfidence on easy negatives distorts the loss landscape. To solve this constrained problem prac-
tically, we apply a Lagrangian relaxation, introducing a penalty term to softly approximate the constraint.
This leads to the Smoothed SFT loss:

LSFT-C = Ebatch[− log πθ(y
+|x)] + λ · ReLU(C − Ebatch[− log πθ(y

−|x)]). (4)

The first term, Ebatch[− log πθ(y
+|x)], remains the standard NLL for positive examples, computed over mini-

batches for efficiency. The second term, λ · ReLU(C − Ebatch[− log πθ(y
−|x)]), acts as a regularization: if

4
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Figure 2: our CW-DPO is designed to balance generalization and precision through a two-stage optimiza-
tion strategy. In Stage 1, Smooth SFT leverages positive samples together with negative samples containing
minor errors to construct a smoothed supervision signal. This broadens the model’s output probability dis-
tribution, thereby enhancing its generalization ability and robustness. In Stage 2, our CW-DPO employs
preference pairs with fine-grained errors for DPO. By sharpening the probability distribution, this stage
strengthens the model’s capacity for precise discrimination of critical details.
the expected NLL of negatives falls below C, the ReLU activates, penalizing the model with a strength
proportional to λ. This soft enforcement encourages the model to maintain a balanced response to negatives
without rigid enforcement, approximating the original constraint stochastically. Here, mini-batch expecta-
tions provide practical approximations, and the ReLU term gently nudges the model toward a well-calibrated
initialization. This process stabilizes the Belief Geometry (At in Prop. 1), setting the stage for the targeted
adjustments in Stage 2 by smoothing the initial loss landscape.

3.2 STAGE 2: COMPETENCE-AWARE PREFERENCE OPTIMIZATION

§2.2 reveals that instability stems from gradient updates for the negative (loser) sample yl, particularly the
loser component of the Loss Residual (Gt), which generates oversized and uninformative updates for easy
negatives. By asymmetrically applying a cooling weight wc to the loser’s log-probability difference ∆l,
we achieve precise control over gradient influence. Vanilla DPO Gradient. Consider the DPO loss for a
preference pair (yw, yl): LDPO = − log σ

(
β(∆w −∆l)

)
, where ∆w/l = log πθ(yw/l|x)− log πref(yw/l|x).

The gradient with respect to the logits (the Loss Residual) is:

GDPO
t = ∇zLDPO = β(1− a)

(
(gw − gwref)− (gl − glref)

)
, (5)

where a = σ(β(∆w − ∆l)) and gw/l = ∇z log πθ(yw/l|x). Our decomposition pinpoints the squeezing
effect to the loser term (gl − glref), which drives instability for easy negatives (Ren & Sutherland, 2025).

Cooling Weight: Principled Modulator. To address this, we introduce the cooling weight wc, which
adjusts the negative-sample gradient based on real-time model confidence:

wc(θ; yl, χ) = σ

(
ℓ̄θ(yl | χ)− ℓfloor

τ

)
, (6)

5
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Algorithm 1 The Two-Stage CW-DPO Finetuning Protocol
Input: Pretrained VLM θ0, dataset D, hyperparameters λ,C, β, τ, ℓfloor, learning rate α.
Output: Finetuned VLM parameters θ.

1: Initialize: Policy model θ ← θ0.

Stage 1: Trajectory Priming
2: for t = 1, . . . , T1 do
3: Sample a mini-batch (x, y+, y−) from D.
4: Compute Smoothed SFT loss LSFT-C using Eq. 4.
5: Update parameters: θ ← θ − α∇θLSFT-C.
6: end for
7: Set reference model: πref ← πθ .

Stage 2: Cooled Preference Optimization
8: for t = 1, . . . , T2 do
9: Sample a mini-batch of preferences (x, yw, yl) from D.

10: Compute cooling weight wc for each sample using Eq. 6.
11: Compute CW-DPO loss LCW-DPO using Eq. 7.
12: Update parameters: θ ← θ − α∇θLCW-DPO.
13: end for
14: return Finetuned parameters θ.

Figure 3: Validation of Stage 1 Constrained SFT (SFT-C) vs. standard SFT on: (1) loss; (2) entropy; (3)
CIDEr; and (4) SPICE for Top-5 generations. SFT-C sustains higher entropy (less squeezing) and quality.

where ℓ̄θ(yl | χ) is the average per-token log-probability (as defined in §2.2), ℓfloor establishes an “easiness”
baseline, and τ controls the transition sharpness, with higher values yielding a smoother weighting. For
confidently rejected responses (ℓ̄θ ≪ ℓfloor), wc → 0, nullifying the gradient; for uncertain hard negatives
(ℓ̄θ ≥ ℓfloor), wc → 1, preserving the learning signal.

Core Loss Function. We integrate wc asymmetrically, dampening only ∆l, to define our core loss:

LCW-DPO = − log σ (β (∆w − wc(θ; yl, χ) ·∆l)) , (7)

Differentiating (treating wc as locally constant) yields the cooled residual GCW
t = ∇zLCW-DPO as:

∇zLCW-DPO = β(1− a′) (∇z∆w − wc∇z∆l) = β(1− a′) ((πθ(·|x)− yw)− wc · (πθ(·|x)− yl)) ,

where a′ = σ(β(∆w−wc∆l)). This GCW
t ensures gradients from easy negatives are minimized, preserving

positive updates, and resolves the squeezing effect for stable, superior alignment. See Algorithm 1 for the
full protocol. In essence, CW-DPO stabilizes training by smoothing initial losses and refining preferences
with competence-aware weights, as validated empirically in §4.

6
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Table 1: Performance comparison on vision-language benchmarks. For COCO, Flickr30k, and NoCaps, we
report BLEU-4 (B@4), METEOR (M), CIDEr (C), and SPICE (S), with NoCaps split into In, Near, Out,
and Entire. We also report accuracy on MMMU and MMBench1.1. Best results are in bold.

Method COCO Test Flickr30k Test NoCaps Val MMMU MMBench
B@4 M C S C S In Near Out Entire

Qwen2.5-VL (Base) 31.2 26.2 128.8 23.8 78.9 17.2 115.6 113.7 117.6 116.2 70.2 84.9
SFT 35.2 28.4 136.5 24.3 83.2 17.5 121.2 118.5 120.1 120.4 71.8 86.2
DPO 33.5 28.0 136.9 24.0 86.5 18.0 119.5 117.2 119.8 118.9 71.1 84.9
PPO 34.9 28.7 139.2 24.7 82.1 17.7 120.2 118.9 120.0 119.7 71.4 85.8
V-DPO 36.6 28.7 138.3 24.8 86.3 18.2 122.5 119.0 121.6 121.0 72.9 86.8
GRPO 36.5 28.8 138.2 24.9 86.4 18.1 122.3 119.1 121.5 120.9 72.8 86.9
OPA-DPO 36.8 29.0 138.5 25.1 86.7 18.2 122.6 119.4 121.8 121.3 73.1 87.2
CW-DPO (Ours) 39.6 30.4 142.6 25.8 89.2 18.6 125.6 121.3 123.7 123.6 74.6 89.6

4 EXPERIMENTS

4.1 MAIN RESULTS ON STANDARD BENCHMARKS

We evaluate our CW-DPO on three standard image captioning benchmarks: COCO (Lin et al., 2015),
Flickr30k (Young et al., 2014), and NoCaps (Agrawal et al., 2019) for generalization assessment, as well as
two comprehensive multi-task evaluation benchmarks: MMMU (Yue et al., 2024) and MMBench (Liu et al.,
2024c). For COCO and Flickr30k, we adopt the widely used Karpathy split. The backbone for our CW-DPO
in all the experiments is Qwen2.5-VL-72B (Bai et al., 2025), and we compare it against a series of strong
fine-tuning baselines, including SFT (Ouyang et al., 2022), vanilla DPO (Rafailov et al., 2023), PPO (Schul-
man et al., 2017), and GRPO (Shao et al., 2024). To ensure robustness, all reported results are averaged over
five independent runs. As for training protocol, our CW-DPO follows a two-stage paradigm, i.e., Con-
strained SFT on 75% of the data and Preference Alignment on the remaining 25%. In Stage 2, preference
pairs are built by synthesizing minimally perturbed alternatives yl for each winning caption yw via GPT-4o.

In Table 1, our CW-DPO consistently outperforms all compared methods, including recent DPO variants like
V-DPO (Xie et al., 2024b), GRPO, and OPA-DPO (Yang et al., 2025), across 5 mainstream vision-language
benchmarks. On COCO Test, our CW-DPO achieves a new SOTA CIDEr score of 142.6, surpassing the
strongest baseline PPO by 3.4 points (+2.4%). It also yields a high BLEU-4 score of 39.6, marking a sub-
stantial improvement of 2.8 points (+7.6%) over OPA-DPO, reflecting enhanced overall generation quality.
On Flickr30k Test that evaluates cross-domain generalization, our CW-DPO continues to lead all baselines
with a CIDEr score of 89.2, 2.5 points higher than the next-best method, OPA-DPO. This suggests that the
training stability introduced by our CW-DPO translates effectively into stronger generalization across dis-
tribution shifts. On the more challenging NoCaps, our CW-DPO achieves leading performance across all
subsets with an overall score of 123.6. Notably, the gain on the out-of-domain split (+1.9) does not come
at the expense of in-domain performance (+3.0) when compared to the strongest baselines, indicating a fa-
vorable trade-off between generalization and retention of core knowledge. Furthermore, CW-DPO achieves
strong adaptability on two multi-task evaluation suites by obtaining an accuracy of 74.6% on MMMU,
outperforming the strongest baseline OPA-DPO (73.1%) and attaining the highest accuracy of 89.6% on
MMBench. This confirms our CW-DPO extends beyond captioning to broader multimodal reasoning tasks.
Note that, vanilla DPO underperforms SFT on lexical metrics such as BLEU-4. This justifies our core
hypothesis that naive preference optimization over easy negatives may induce over-penalization, thereby
degrading generation quality.

4.2 PHASE-ONE SMOOTHING VALIDATION EXPERIMENT

To isolate and verify the effectiveness of our Constrained SFT (SFT-C) in mitigating the squeezing effect,
we conduct a targeted validation experiment. We train two models on 75% of the COCO training data (∼85k

7
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Figure 4: CW-DPO alleviates the squeezing effect of vanilla DPO, yielding smaller distribution shifts (left),
smoother posteriors (middle), and improved generation quality with better calibration (right).
samples): one with standard SFT and the other with SFT-C. During training, both models are periodically
evaluated on a fixed probe set of 1,000 examples from the COCO validation split. To quantify the squeezing
effect, we measure the average entropy of the model’s predictive distribution over the probe set. Lower
entropy signifies a sharper, less diverse (“squeezed”) distribution. To ensure the increased smoothness does
not degrade generation quality, we also compute the CIDEr and SPICE scores for the Top-5 predictions
of each model at every evaluation step. Figure 3 validates the advantage of our SFT-C. The standard SFT
exhibits a rapid decrease in training loss, but this is coupled with a precipitous drop in predictive en-
tropy. This confirms that standard SFT quickly develops an overconfident, peaky distribution, i.e., a clear
indicator of the squeezing effect, when overfit to the training data’s dominant patterns. In contrast, SFT-C
successfully maintains a significantly higher entropy throughout training, preserving predictive diversity.
The slightly higher training loss observed for SFT-C is not a sign of inferior learning but rather an indication
that the model is actively avoiding collapse into a narrow mode, resulting in a smoother, more generalized
distribution. Crucially, this enhanced smoothness directly translates to superior generation quality. The sus-
tained higher CIDEr and SPICE scores for SFT-C (Figure 3, right panels) demonstrate that by preventing
the distribution from becoming overly sharp, our CW-DPO explores a richer semantic space, consistently
producing more accurate and diverse top-k candidates.

4.3 PHASE-TWP: QUANTITATIVE ANALYSIS OF SQUEEZING EFFECT SUPPRESSION

To evaluate the effectiveness of our CW-DPO in mitigating the “squeezing effect”, we construct an experi-
ment based on the COCO Caption dataset. Specifically, we sample 10,000 simple examples as the training
set and an additional 1,000 examples as a fixed probe set to analyze distributional changes. Starting from
a unified base model pretrained with Smoothed SFT, we apply standard DPO and CW-DPO on the same
training split and compare their effects on the output distributions over the probe set. We compute the Total
Variation (TV) and Jensen-Shannon (JS) distances between the pre- and post-finetuning output probabili-
ties, and visualize changes in the Top-5 token distributions for representative samples to provide qualitative
insights. To further assess whether CW-DPO alleviates overconfidence and calibration degradation caused
by unstable gradients, we include the Expected Calibration Error (ECE) as an evaluation metric. We also
report CIDEr and SPICE scores on the full COCO test set to comprehensively assess generation quality.

Figure 4 reveals substantial differences in optimization dynamics between standard DPO and CW-DPO.
From a global standpoint, the first plot shows that standard DPO exhibits significantly higher TV and JS
divergence, typically around 0.45 for TV and 0.30 for JS, indicating that its learning process is overly
influenced by simple samples. This leads to drastic shifts in the output distribution relative to the initial
SFT model, as the model aggressively reallocates probability mass in response to uninformative gradients
from easy negatives. In contrast, CW-DPO achieves much smaller divergences (e.g., approximately 0.15 for
TV and 0.10 for JS), suggesting that it performs more stable and conservative updates. By down-weighting
easy negatives, CW-DPO preserves the model’s distributional structure while aligning with preferences,
mitigating squeezing, and reducing risks of forgetting or collapse. These differences are more pronounced at
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the micro level. As illustrated in the middle plot of Figure 4 (cross-referenced with Figures 2 and 3), vanilla
DPO drives most probability mass onto the top token, often surpassing 80%, creating a peaked distribution
that suppresses alternatives. This overconfidence raises ECE (e.g., 0.12 → 0.25), degrading calibration. By
contrast, CW-DPO updates more smoothly, keeping the top-1 token around 50–60%, preserving entropy, and
stabilizing ECE at 0.08–0.10. Such dynamic improvements also yield higher generation quality, as shown
in the right plot: on the full COCO test set, CW-DPO achieves superior CIDEr (142.6 vs. 137.2) and SPICE
(25.8 vs. 24.2), reflecting not only greater accuracy but also richer linguistic diversity and semantics.

4.4 ABLATION STUDY

Table 2: Ablation study of CW-DPO on COCO Test,
MMMU, and MMBench1.1.

Method COCO Test MMMU MMBench1.1
B@4 M C S ACC ACC

CW-DPO 39.6 30.4 142.6 25.8 74.6 89.6
Phase-One Ablation
w/o Smooth SFT 34.6 28.4 137.6 24.4 71.8 86.3
w/o Negative Sampling 35.8 29.4 138.9 24.6 72.8 88.4
w/o Soft Penalty 36.2 29.7 139.2 24.8 73.2 88.7

Phase-Two Ablation
w/o CW-DPO 36.7 28.8 140.7 24.7 72.9 86.7
w/o Cooling Weight 39.2 30.1 141.5 25.1 73.6 88.3
w/o Negative Filtering 36.1 27.9 137.4 24.3 73.4 87.4

To evaluate the contributions of each component
in our CW-DPO, we conduct a comprehensive ab-
lation study covering both training stages under
identical data splits and hyperparameters. Besides
ablating the core algorithmic modules, we pro-
vide a further study in Appendix D to ana-
lyze the model’s robustness to different nega-
tive sampling strategies, thereby decoupling al-
gorithmic gains from the data generation pro-
cess. In Stage 1 (SFT), we evaluate w/o Smooth
SFT, directly applying CW-DPO on the pretrained

model to assess the need for smoothed initialization; w/o Negative Sampling, removing negative-sample
constraints and reducing to standard SFT; and w/o Soft Penalty (→ Hard Constraint), replacing the ReLU
penalty with a hard constraint. In Stage 2 (DPO), we examine w/o CW-DPO (omitting the second-stage
preference alignment), w/o Cooling Weight (fixing wc to a constant (e.g., 0.7 or 1.0) instead of adaptive
scaling), and w/o Negative Filtering (updating on all negatives with extremely easy ones, i.e., ℓ̄θ ≪ ℓfloor).

Table 2 validates the independent contributions of each key component in CW-DPO. In Stage 1, removing
Smooth SFT (w/o Smooth SFT) reduces CIDEr by about 5 points on COCO and also degrades performance
on MMMU and MMBench1.1, indicating the importance of smoothed initialization for stable alignment.
Further removing negative-sample constraints (w/o Negative Sampling) or replacing the soft ReLU penalty
with a hard constraint (w/o Soft Penalty) also leads to consistent drops, showing that both negative-sample
regularization and soft penalization are effective in alleviating overconfidence and improving generation
quality. In Stage 2, omitting preference optimization (w/o CW-DPO) markedly reduces cross-task perfor-
mance, confirming the need for competence-aware alignment. Using a fixed cooling weight (w/o Cooling
Weight) achieves near CW-DPO CIDEr but lower MMMU and MMBench1.1 scores, underscoring the im-
portance of adaptive scaling for generalization.

5 CONCLUSION

In this paper, we uncovered core instability issues in VLM preference-based finetuning via a fine-grained
learning-dynamics perspective, focusing on the “squeezing effect” that causes uninformative gradients and
unstable optimization. Our CW-DPO provides a principled two-stage solution, i.e., constrained SFT for loss
landscape smoothing and competence-aware cooling weights to suppress easy negatives asymmetrically and
adaptively. Extensive empirical results consistently and clearly demonstrate the strong superiority of our
CW-DPO with faster convergence, stronger stability, and enhanced generalization. Our CW-DPO can be
readily extended to broader finetuning scenarios and diverse real-world multimodal tasks.
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APPENDIX: SUPPLEMENTARY MATERIAL FOR ”LEARNING DYNAMICS OF VLM
FINETUNING: COOLING-WEIGHTED DPO WITH MIXED NEGATIVES”

This supplementary material expands upon the main paper by providing deeper analyses and additional
experimental validation for our proposed Cooling-Weighted Direct Preference Optimization (CW-DPO)
framework. The sections are organized as follows: Related Work (Section A): We begin by reviewing
prior work in three key areas: preference optimization techniques such as DPO and its variants; finetun-
ing paradigms for vision-language models; and the theoretical analysis of learning dynamics and influence
functions. Ablation and Comparative Studies (Section B): We first present a unified ablation and compar-
ative study that systematically dissects the contributions of our two core components, i.e., Constrained SFT
and the asymmetric cooling weight, against strong, conceptually-aligned baselines like Label Smoothing
and Focal-DPO. Hyperparameter Sensitivity (Section C): We then analyze the robustness of CW-DPO to
its key hyperparameters, demonstrating that its superior performance is not contingent on extensive tuning.
Negative Sampling Strategies (Section D): To decouple algorithmic gains from data quality, we conduct an
ablation study comparing the performance of CW-DPO when using negatives synthesized by GPT-4 versus
those generated via a standard beam search, confirming that the method’s advantages are algorithm-driven.
Analysis of Methodological Complexity and Overhead (Section F): We provide a detailed analysis of the
methodological and computational overhead introduced by CW-DPO, arguing that its modest costs represent
a favorable trade-off for the significant gains in performance and stability. Analysis of Influence Dynam-
ics (Section G): We offer a deep dive into the learning dynamics by empirically validating our theoretical
decomposition from Proposition 1. This analysis visualizes how each component term evolves during train-
ing, revealing the underlying drivers of the influence dynamics. Generality of the Emergent Curriculum
(Section H): Finally, we demonstrate the generality of our competence-aware mechanism by showing that
the emergent curriculum, where the model adaptively focuses on harder negatives over time, is consistently
observed across multiple, semantically diverse probe samples. Proofs for Propositions and Theorems
(Section I): We provide detailed, formal proofs for all propositions and derivations of key equations pre-
sented in the main paper.

A RELATED WORK

Preference optimization. Preference optimization methods have recently emerged as efficient alternatives
to reinforcement learning from human feedback (RLHF) for aligning large language models (Kaufmann
et al., 2024; Liu et al., 2025; Wirth et al., 2017). Direct Preference Optimization (DPO) (Rafailov et al.,
2023) reformulates the alignment objective by directly maximizing the likelihood of preferred responses
over dispreferred ones, thereby eliminating the need for a separate reward model. While effective, these ap-
proaches view optimization as a static objective, neglecting the evolving confidence dynamics of the model
during training. This limitation makes them vulnerable to instabilities, a key source of which is the recently
diagnosed squeezing effect (Ren & Sutherland, 2025), where uninformative “easy negatives” exert a dispro-
portionately large gradient influence (Casper et al., 2023). Our work adopts this learning-dynamics-aware
perspective, applying it for the first time to diagnose and resolve this issue in VLM finetuning. Building
directly on this diagnosis, our proposed CW-DPO introduces a cooling weight that adaptively down-weights
such easy negatives based on real-time model probabilities, thereby aligning gradient contributions with
their informativeness.

Vision–language model finetuning. The standard finetuning paradigm for VLMs typically combines su-
pervised finetuning (SFT) with preference-based alignment (Zhu et al., 2024; Liang et al., 2024; OpenAI
et al., 2024). LLaVA (Liu et al., 2024a), for example, first applies SFT on large-scale visual instruction
datasets before adopting DPO for alignment, while V-DPO (Xie et al., 2024a) introduces vision-guided pref-
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erence pairs to mitigate hallucinations through stronger grounding in the visual modality. These methods
primarily focus on dataset construction or modality-specific guidance, but they do not address the instabil-
ity caused by over-penalizing easy negatives (Wang et al., 2023; Liu et al., 2024b). As a result, they risk
collapsing linguistic diversity and amplifying mode-seeking tendencies in multimodal models (Peng et al.,
2023). In contrast, our approach introduces a two-stage protocol: (i) constrained SFT with gentle negative
smoothing to prime the trajectory and avoid premature peaking, and (ii) competence-aware DPO with mixed
on-policy and dataset negatives to preserve contrast freshness. This dynamics-aware design strikes a novel
balance between stability and generalization, offering improvements unattainable by prior VLM finetuning
methods.

Learning dynamics and influence analysis. Understanding the dynamics of training instabilities has a
rich history in machine learning (Ruder, 2017; Sutskever et al., 2013; Jain & Kar, 2017). Foundational
tools like Influence functions (Koh & Liang, 2017) trace how individual samples affect predictions, while
Neural Tangent Kernel (NTK) theory (Jacot et al., 2018) models gradient propagation in wide networks.
While these tools have been applied broadly, recent work by Ren & Sutherland (2025) pioneered the use of
a dynamics-aware perspective to analyze the finetuning of large language models. Our contribution extends
this line of inquiry; we adapt and tailor this analytical lens specifically to the context of VLM preference
optimization. This yields a per-step influence decomposition that isolates the destabilizing role of easy neg-
atives and directly motivates our asymmetric cooling mechanism, resulting in a dynamics-aware framework
that enhances calibration, convergence speed, and robustness.

B ABLATION AND COMPARATIVE STUDIES

To disentangle the contributions of each component and rigorously position our work against related tech-
niques, we conduct a unified analysis presented in Table 3. This investigation is designed to answer two
critical questions: (1) Is our targeted Smooth SFT superior to generic regularization for policy initializa-
tion? (2) Does CW-DPO’s asymmetric gradient modulation offer advantages over conventional global loss
reweighting schemes?

Table 3: Unified ablation and comparative analysis on the COCO Test dataset. This table dissects
our framework’s performance by systematically comparing each component against strong, conceptually-
aligned baselines. Stage 1 compares our targeted constraint (Smooth SFT) against generic regularization
(LS). Stage 2 contrasts our asymmetric modulation (CW-DPO) with global loss reweighting (Focal-DPO).
Stability metrics (TV/JS Div.) are measured on a fixed probe set.

Category Method Dissection (Stage 1 → Stage 2) B@4 M C S TV Div. ↓ JS Div. ↓
Baseline Vanilla SFT → Vanilla DPO 33.8 28.2 137.2 24.2 0.45 0.30

Component Ablations
vs. Stage 1 Generic Regularization (LS) → Vanilla DPO 34.5 28.4 138.0 24.4 – –
vs. Stage 2 Our SFT → Global Reweighting (Focal-DPO) 37.0 29.3 140.5 25.1 0.28 0.19

Ours (Full Method) Our SFT → Our Asymmetric Modulation (CW-DPO) 39.6 30.4 142.6 25.8 0.15 0.10

Analysis of Results. Our analysis of Table 3 proceeds in two steps. First, we isolate the contribution of
Stage 1. Substituting our Smooth SFT with standard Label Smoothing (‘LS-SFT → DPO‘) yields only a
marginal performance increase over the baseline (+0.8 CIDEr). This suggests that while generic regulariza-
tion is beneficial, it is insufficient to address the core instabilities targeted by our method. Smooth SFT, by
directly constraining the model’s beliefs about negative samples, provides a far more effective foundation for
the subsequent alignment phase. Next, we evaluate the efficacy of our Stage 2 mechanism. We compare our
CW-DPO against a strong Focal-DPO baseline, which applies a global reweighting to the entire preference
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loss. While Focal-DPO achieves a strong result (140.5 CIDEr), confirming the value of down-weighting
easy examples, our full method significantly surpasses it (+2.1 CIDEr). The reason for this superiority is
revealed in the stability metrics: CW-DPO’s asymmetric modulation, which surgically targets only the neg-
ative term’s gradient, cuts the distributional shift (TV/JS divergence) by nearly half compared to Focal-DPO
(e.g., 0.15 vs. 0.28 TV Div.). This demonstrates that how easy samples are managed is as critical as the
principle itself, with our method facilitating a much healthier and more stable learning dynamic.

C HYPERPARAMETER SENSITIVITY AND DISCUSSION ON COMPLEXITY

To further validate the practicality and effectiveness of our proposed CW-DPO framework, this section
provides a deeper analysis of its robustness to key hyperparameters. This analysis also serves to address
potential concerns regarding the methodological complexity introduced by these new parameters.

Hyperparameter Setup. Our method introduces four key hyperparameters: the constraint threshold C
and penalty coefficient λ for Stage 1 (Smooth SFT), and the cooling threshold lfloor and temperature τ for
Stage 2 (CW-DPO). Among these, C and lfloor are the core control knobs for the mechanisms in each stage.
For this study, we fixed the less sensitive parameters λ = 0.1 and τ = 1.0 and conducted a series of
experiments for the core parameters C and lfloor on the COCO Test dataset. Specifically: Analysis of C: We
fixed the Stage-2 hyperparameter at its default lfloor = −3.0 and trained the model with varying values of
C ∈ {2.0, 4.0, 5.0, 6.0}. Analysis of lfloor: Conversely, we fixed the Stage-1 hyperparameter at its default
C = 4.0 and trained the model with varying values of lfloor ∈ {−5.0,−4.0,−3.0,−2.0}. For both analyses,
we report results in comparison with the standard SFT → DPO baseline.

Table 4: Sensitivity analysis of key CW-DPO hyperparameters on the COCO test set. Performance remains
consistently high and superior to the baseline across a wide range of values, demonstrating the method’s
strong robustness.

Hyperparameter Value B@4 CIDEr SPICE
Baseline (SFT → DPO) 33.8 137.2 24.2

C (fixed lfloor = −3.0) 2.0 38.9 141.5 25.5
4.0 (Default) 39.6 142.6 25.8
5.0 39.4 142.2 25.7
6.0 39.1 141.9 25.6

lfloor (fixed C = 4.0) -5.0 39.2 142.0 25.6
-4.0 39.5 142.4 25.7
-3.0 (Default) 39.6 142.6 25.8
-2.0 39.0 141.8 25.5

Analysis and Discussion on Complexity. As summarized in Table 6, our method consistently maintains
strong performance across a wide range of settings for both C and lfloor. This high degree of robustness
is crucial, as it indicates that extensive, fine-grained hyperparameter tuning is not required to achieve the
benefits of our approach. While the introduction of these parameters adds formal complexity, they are
not arbitrary; rather, they serve as principled and intuitive control knobs for the core training dynamics. The
threshold C directly governs the smoothing intensity in Stage 1 to prevent overconfidence, while lfloor defines
the easiness threshold for negatives in Stage 2 to filter uninformative gradients. The stability of our results
suggests that using the default values or a simple search within these wide, effective ranges is sufficient.
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Given the significant gains in performance and training stability, we argue that this modest increase in tun-
able, yet highly robust, parameters represents a favorable trade-off. This is particularly evident when com-
pared to the notoriously high implementation and tuning complexity of alternative online RLHF paradigms,
highlighting the practicality and efficiency of our proposed framework.

D ABLATION STUDY ON NEGATIVE SAMPLING STRATEGIES

To address the valid concern that the quality of negative samples generated by a powerful external model
(i.e., GPT-4) could be a confounding variable, we conduct a rigorous ablation study to isolate the algorithmic
contributions of our proposed Cooling-Weighted DPO (CW-DPO). The objective of this experiment is to
verify that the performance gains of CW-DPO are attributable to its core gradient modulation mechanism
rather than the high quality of the preference data itself.

D.1 EXPERIMENTAL SETUP

We introduce a more standard, model-intrinsic negative sampling method based on beam search, which does
not rely on any external proprietary models. The setup is as follows: Preference Pair Construction: For
each image-caption pair in the training set, we use the ground-truth caption as the winning response (yw).
To generate the losing response (yl), we use the base model (pre-trained with Smoothed SFT from Stage 1)
to generate 5 candidate captions using beam search (beam width = 5). We then randomly select one of the
generated candidates that is not identical to the ground-truth caption to serve as the loser. Models Com-
pared: We train two models using this new set of preference pairs derived from beam search: (1) the vanilla
DPO baseline, and (2) our proposed CW-DPO. Evaluation: We evaluate both models on the COCO Test
split and compare their performance against the original results obtained using GPT-4 synthesized negatives.
All other hyperparameters and training configurations are kept identical to ensure a fair comparison. This
setup allows us to directly assess the robustness of CW-DPO and determine if its advantages over vanilla
DPO persist when using a simpler, more accessible source of negative samples.

D.2 RESULTS AND ANALYSIS

Table 5: Performance comparison on the COCO Test set under two different negative sampling strategies:
(1) using negatives synthesized by GPT-4, and (2) using negatives generated via beam search from the base
model. The results demonstrate that CW-DPO maintains a significant performance advantage over vanilla
DPO regardless of the negative sampling strategy, confirming its robustness. Best results in each setting are
highlighted in bold.

Negative Sampling Strategy Model B@4 M C S

GPT-4 Synthesized (Original)
SFT (Base for DPO) 35.6 28.6 136.8 24.5
Vanilla DPO 33.8 28.2 137.2 24.2
CW-DPO (Ours) 39.6 30.4 142.6 25.8
Performance Gain (∆) +5.8 +2.2 +5.4 +1.6

Beam Search Sampled (New Ablation)
SFT (Base for DPO) 35.6 28.6 136.8 24.5
Vanilla DPO 32.5 27.8 135.5 23.9
CW-DPO (Ours) 38.1 29.8 140.8 25.2
Performance Gain (∆) +5.6 +2.0 +5.3 +1.3
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The results of this ablation study are presented in Table 5. CW-DPO’s advantage is robust and algorithm-
driven. As anticipated, the absolute performance scores for both vanilla DPO and CW-DPO decrease when
using the lower-quality beam-sampled negatives. This confirms that high-quality preference data is benefi-
cial for all DPO-based methods. However, the crucial finding is that CW-DPO maintains a very significant
performance lead over vanilla DPO across all metrics. For instance, the CIDEr score gain remains substan-
tial at +5.3 points. This strongly indicates that the superiority of CW-DPO is not an artifact of the data source
but stems from its core algorithmic design, i.e., the competence-aware cooling mechanism. he ”squeezing
effect” is mitigated irrespective of data source. The beam search process often generates negatives that
are syntactically plausible but semantically simple or repetitive, leading to a higher proportion of ”easy neg-
atives.” This is precisely the scenario where vanilla DPO is most vulnerable to the ”squeezing effect,” as it
expends gradient bandwidth on these uninformative samples, sometimes even degrading performance below
the SFT baseline (e.g., B@4 drops from 35.6 to 32.5). In contrast, CW-DPO’s cooling weight mechanism
is specifically designed to suppress these trivial gradients, allowing the model to focus on more informative
preference pairs. The persistent and large performance gap in the beam search setting powerfully validates
that our method effectively mitigates this core instability.

In summary, this ablation study successfully decouples the effect of the learning algorithm from the data
generation strategy, providing strong evidence that CW-DPO is a robust and generally effective method for
improving VLM alignment.

E HYPERPARAMETER SENSITIVITY ANALYSIS FOR STAGE 2

To further validate the practicality of our framework and address the concern that the exploration of Stage
2 is brief, this section provides a deeper analysis of CW-DPO’s robustness to its key hyperparameters:
the cooling threshold ℓfloor and the temperature τ . This analysis demonstrates that the method’s superior
performance is not contingent on extensive, fine-grained hyperparameter tuning.

E.1 EXPERIMENTAL SETUP

We conduct a sensitivity analysis on the COCO Test dataset using GPT-4 synthesized negatives. We vary
one hyperparameter while keeping the other at its default value (ℓfloor = −3.0, τ = 1.0) to isolate its ef-
fect. Analysis of Cooling Threshold (ℓfloor): This parameter defines the ”easiness” baseline for a negative
sample. We fixed τ = 1.0 and trained the model with varying values of ℓfloor ∈ {−5.0,−4.0,−3.0,−2.0}.
Analysis of Temperature (τ ): This parameter controls the sharpness of the cooling weight’s sigmoid func-
tion. We fixed ℓfloor = −3.0 and trained the model with varying values of τ ∈ {0.5, 1.0, 2.0, 5.0}. For both
analyses, we report results in comparison with the Vanilla DPO baseline to contextualize the performance.

E.2 RESULTS AND ANALYSIS

The results of the sensitivity analysis are presented in Table 6, which shows that our method exhibits a
high degree of robustness to the main hyperparameters of Stage 2. Robustness to Cooling Threshold
(ℓfloor). The results show that performance is stable for ℓfloor in the wide range of [-4.0, -2.0], with the
peak performance at the default value of -3.0. Even at the more extreme value of -5.0, the CIDEr score
(142.0) remains significantly above the vanilla DPO baseline (137.2). This indicates that the model is not
overly sensitive to the precise definition of an ”easy” negative, and a reasonable setting within a wide range
provides substantial gains.

Robustness to Temperature (τ ). Similarly, the performance remains high across the tested range of τ from
0.5 to 5.0. A smaller τ creates a sharper, more switch-like transition, while a larger τ results in a smoother
one. While the default of τ = 1.0 yields the best results, the performance variations are minor. This
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Table 6: Sensitivity analysis of key Stage 2 hyperparameters (ℓfloor and τ ) on the COCO test set. Performance
remains consistently high and superior to the baseline across a wide range of values, demonstrating the
method’s strong robustness.

Hyperparameter Value B@4 M C S
Baseline Vanilla DPO 33.8 28.2 137.2 24.2

ℓfloor (fixed τ = 1.0)

-5.0 39.2 30.1 142.0 25.6
-4.0 39.5 30.3 142.4 25.7
-3.0 (Default) 39.6 30.4 142.6 25.8
-2.0 39.0 30.0 141.8 25.5

τ (fixed ℓfloor = −3.0)

0.5 39.3 30.2 142.1 25.6
1.0 (Default) 39.6 30.4 142.6 25.8
2.0 39.4 30.3 142.3 25.7
5.0 39.1 30.1 141.9 25.5

demonstrates that the benefits of the cooling mechanism are not contingent on a specific gating sharpness
and are broadly applicable.

In summary, this analysis confirms that the core parameters of CW-DPO’s second stage are highly robust.
The significant performance gains do not rely on a difficult and sensitive tuning process, which strengthens
the practical value and ease of adoption of our proposed framework.

F ANALYSIS OF METHODOLOGICAL COMPLEXITY AND COMPUTATIONAL
OVERHEAD

The introduction of any method that builds upon an established baseline must be scrutinized for its added
complexity. Our proposed Cooling-Weighted Direct Preference Optimization (CW-DPO) framework is a
two-stage process that extends the standard Supervised Fine-Tuning (SFT) → Direct Preference Optimiza-
tion (DPO) pipeline. In this section, we provide a detailed analysis of the methodological and computational
complexity introduced by CW-DPO. We argue that this added complexity is a principled and well-justified
investment that yields significant returns in performance, stability, and calibration, representing a favorable
trade-off.

F.1 HYPERPARAMETER COMPLEXITY AND INTUITION

CW-DPO introduces four primary hyperparameters that govern its two stages. While this increases the total
number of tunable parameters, they are not arbitrary additions but rather intuitive control knobs that map
directly to the core mechanisms designed to mitigate the squeezing effect.

F.1.1 STAGE 1: CONSTRAINED SFT (SFT-C)

The goal of this stage is to prime the model’s trajectory by smoothing the loss landscape. This is controlled
by: Constraint Threshold (C): This parameter, used in Eq. (4), defines the ”tolerance” for negative exam-
ples. It sets a lower bound on the negative log-likelihood (NLL) for dispreferred responses (y−), effectively
preventing the model from becoming overconfident and assigning near-zero probability to plausible (but in-
correct) alternatives too early in training. Penalty Coefficient (λ): This coefficient weights the soft ‘ReLU‘
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penalty in Eq. (4). It determines the ”stiffness” of the constraint, controlling how aggressively the model is
penalized for violating the NLL threshold C.

F.1.2 STAGE 2: COOLING-WEIGHTED DPO (CW-DPO)

This stage performs competence-aware preference optimization. Its behavior is governed by: Cooling
Threshold (lfloor): As defined in Eq. (5), lfloor serves as the ”competence threshold.” It is the baseline
for the average log-probability of a negative sample, below which the model is considered to have ”mas-
tered” or easily dismissed the sample. This parameter is central to identifying uninformative gradients from
easy negatives that need to be suppressed. Temperature (τ ): This parameter, also in Eq. (5), controls the
”gating sharpness” of the cooling weight’s sigmoid function. A smaller τ creates a steeper, more switch-like
transition from full gradient suppression (for easy negatives) to full signal retention (for hard negatives),
while a larger τ results in a smoother, more gradual transition.

Crucially, our hyperparameter sensitivity analysis in Appendix B (Table 4) demonstrates that CW-DPO’s
performance is robust across a wide range of values for the core parameters C and lfloor. This robustness
alleviates concerns about a burdensome and sensitive tuning process, reducing the practical complexity of
applying our method.

F.2 QUANTITATIVE ANALYSIS OF COMPUTATIONAL OVERHEAD

We now analyze the additional computational cost per training step compared to a standard SFT → DPO
pipeline. Let Tfwd(θ,B) denote the computational cost of a single forward pass of the model πθ on a mini-
batch of data B.

F.2.1 STAGE 1: SFT-C VS. STANDARD SFT

A standard SFT update step on a batch of positive examples B+ = {(xi, y
+
i )}Ni=1 involves minimizing:

LSFT = E(x,y+)∈B+

[
− log πθ(y

+|x)
]

(8)

The computational cost for this step is O(Tfwd(θ,B+)).

Our SFT-C loss, as shown in Eq. (4), requires an additional batch of negative examples B− = {(xi, y
−
i )}Ni=1:

LSFT-C = E(x,y+)∈B+ [− log πθ(y
+|x)] + λ · ReLU

(
C − E(x,y−)∈B− [− log πθ(y

−|x)]
)

(9)

To compute the penalty term, an additional forward pass on the batch of negative samples B− is required.
Therefore, the total computational cost is O(Tfwd(θ,B+) + Tfwd(θ,B−)). Assuming equal batch sizes, the
per-step cost during this initial stage is approximately doubled. This represents the most significant source
of computational overhead in our framework.

F.2.2 STAGE 2: CW-DPO VS. VANILLA DPO

A vanilla DPO update relies on the loss:

LDPO = − log σ (β(∆w −∆l)) where ∆l = log πθ(yl|x)− log πref(yl|x) (10)

Calculating ∆l requires a forward pass through the policy model πθ to compute log πθ(yl|x).
Our CW-DPO loss introduces the cooling weight wc:

LCW-DPO = − log σ (β(∆w − wc ·∆l)) (11)
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The additional computation is for the cooling weight itself:

wc(θ; yl, x) = σ

(
lθ(yl|x)− lfloor

τ

)
(12)

The key component here is the average log-probability lθ(yl|x), which is directly derived from the total
log-probability: lθ(yl|x) = 1

L log πθ(yl|x), where L is the sequence length. Since the value log πθ(yl|x) is
already required for the vanilla DPO loss to compute ∆l, no additional expensive forward pass is needed.
The calculation of wc only adds a handful of scalar floating-point operations (a subtraction, a division, and
a sigmoid function) per sample.

Conclusion on Overhead: The computational overhead of CW-DPO is almost exclusively confined to Stage
1, where the per-step cost is roughly doubled. The additional cost in the core preference alignment stage
(Stage 2) is negligible.

Table 7: Summary of Per-Step Computational Overhead.

Stage Method Relative Computational Cost per Step

Stage 1 Standard SFT Cbase (1 fwd pass on y+)
SFT-C (Ours) ≈ 2× Cbase (1 fwd pass on y+ + 1 fwd pass on y−)

Stage 2 Vanilla DPO C ′
base (fwd passes on yw, yl)

CW-DPO (Ours) C ′
base + ϵ (negligible scalar ops)

F.3 CONCLUSION: A FAVORABLE TRADE-OFF

The methodological complexity of CW-DPO is a strategic and well-justified investment. The framework’s
costs can be summarized as: (1) a finite, upfront computational cost during the trajectory priming stage, and
(2) the inclusion of four intuitive and robust hyperparameters.

In exchange for this modest overhead, CW-DPO delivers substantial gains: Superior Performance: Con-
sistent and significant improvements across all benchmarks, achieving a state-of-the-art CIDEr score of
142.6 on COCO Test. Enhanced Training Stability: A demonstrably more stable and conservative update
mechanism, which cuts the distributional shift (TV/JS divergence) by nearly half compared to baselines.
Improved Model Quality: Better calibration and mitigation of the ”squeezing effect,” leading to less over-
confident and more diverse outputs. This trade-off is particularly favorable when contrasted with alternative
alignment paradigms like online Reinforcement Learning from Human Feedback (RLHF). Methods such
as PPO introduce far greater complexity, including the need to train a separate reward model, manage the
interaction between multiple models (policy, reference, critic, reward), and navigate notoriously unstable
and hyperparameter-sensitive on-policy optimization loops. By remaining within a more stable, offline,
maximum-likelihood framework, CW-DPO offers a practical and efficient path to robust VLM alignment.

G ANALYSIS OF INFLUENCE DYNAMICS VIA COMPONENT DECOMPOSITION

To empirically validate our theoretical framework and dissect the underlying learning dynamics of the CW-
DPO training process, we conducted a component-wise analysis based on the decomposition outlined in
Proposition 1. We traced the evolution of our proxy for the empirical Neural Tangent Kernel (eNTK)
norm (Jacot et al., 2018; Arora et al., 2019), LBKuo , alongside its constituent components: the per-step
update influence (||∆ log π||2F ), the belief geometry (||Ao||2F ), and the loss residual (||Go||2F ). The exper-
iment was performed across several distinct update samples (y1, y2, y3), with their influence tracked on a
fixed set of four diverse observation samples (xo).
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The results, presented in Figure 5, reveal a non-trivial and multi-faceted training dynamic. Each column
in the figure corresponds to a fixed update sample, while each row visualizes the trajectory of a specific
theoretical component.
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Theoretical Decomposition of LBKuo Across CW-DPO Training (With Annotations)

Figure 5: Theoretical Decomposition of LBKuo
Across CW-DPO Training. Each column represents a

different fixed update sample (y1, y2, y3). Each row visualizes the trajectory of a specific component from
Proposition 1 for four observation samples (xo). The results show that the growth of the final proxy metric
(LBKuo

, bottom row) is primarily driven by the systematic increase in the Belief Geometry term (||Ao||2F ,
second row) and the decay of the Loss Residual (||Go||2F , third row), while the per-step Update Influence
(||∆ log π||2F , top row) remains stationary.

Our analysis of the figure yields the following key observations: Stationary Update Influence (Top Row):
The top row reveals that the magnitude of the per-step update influence, captured by ||∆ log π||2F , remains
relatively stable throughout the 500 training epochs. It fluctuates around a constant mean without a dis-
cernible upward or downward trend. This suggests that the raw impact of a single gradient step does not
systematically intensify as training progresses.

Increasing Belief Geometry Sharpness (Second Row): In stark contrast, the second row shows that the
Belief Geometry term, ||Ao||2F , exhibits a clear and steady increasing trend. This observation is critical, as
||Ao||2F is inversely correlated with the entropy of the predictive distribution. Its growth indicates that the
model’s beliefs are becoming progressively sharper and more confident (i.e., ”peakier”), thereby amplifying
the effect of any given logit perturbation.

Decaying Loss Residual (Third Row): Concurrently, the third row illustrates the consistent decay of the
Loss Residual term, ||Go||2F . This is the expected behavior for a loss-related component during a successful
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training run, confirming that the model is effectively learning to reduce prediction errors on the observed
samples.

Resultant Proxy Dynamics (Bottom Row): These component dynamics culminate in the trend observed
for our final proxy metric, LBKuo

, shown in the bottom row. The overall upward trend of LBKuo
is a

composite effect. It is not driven by an increase in the raw, per-step influence (which is stable), but is
instead dominated by the interplay between the decaying loss residual (whose inverse contributes to growth)
and, most significantly, the steadily increasing sharpness of the model’s belief geometry. In summary, this
decomposition provides strong empirical evidence that the evolving influence dynamics during CW-DPO
training are less about the raw power of individual gradient steps and more about the systematic tightening
of the model’s predictive confidence. The increasing sharpness of the belief landscape (||Ao||2F ) acts as a
primary amplifier for the influence that any given update exerts on the model’s overall behavior.

H GENERALITY OF THE EMERGENT CURRICULUM ACROSS DIVERSE SAMPLES

To validate the robustness and generality of the competence-aware learning dynamic induced by our
Cooling-Weighted DPO (CW-DPO), we extended our analysis across multiple, semantically distinct probe
samples. While the main paper demonstrates this emergent curriculum on a representative example, it is cru-
cial to ensure this behavior is not an artifact of a single data point but a consistent property of our method.

Experimental Setup We selected three diverse probe samples, each consisting of an image and a corre-
sponding ground-truth caption: (1) “A cat on a sofa,” (2) “People playing tennis,” and (3) “A plane taking
off.” For each probe sample, we manually authored a corresponding set of negative captions, categorized by
difficulty into “Hard,” “Medium,” and “Easy” negatives, following the same principles outlined in the main
text. During the Stage 2 training of CW-DPO, we tracked the evolution of the cooling weight wc assigned
to each of these curated negative captions over 500 training epochs.
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Generality of Emergent Curriculum Across Different Probe Samples

Figure 6: Verification of the emergent curriculum’s generality. Each panel displays the dynamic evolution
of cooling weights (wc) for a distinct probe sample. Despite the semantic diversity of the samples, all three
panels exhibit a consistent waterfall-like decay pattern: the weight for “Easy” negatives (blue) drops rapidly,
followed by “Medium” negatives (orange), while the weight for “Hard” negatives (green) remains high for
an extended period. This demonstrates the robust nature of our competence-aware mechanism.

I APPENDIX: DETAILED DERIVATIONS AND PROOFS

In this appendix, we provide detailed proofs and derivations for the key mathematical statements in the
main text to ensure their formal rigor. We reference relevant sections, equations, propositions, remarks, and
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algorithms from the main paper (e.g., §2, Eq. 1, Prop. 1). This strengthens the analytical foundation of our
learning-dynamics-aware approach to CW-DPO, drawing from literature such as (Koh & Liang, 2017; Jacot
et al., 2018; Ren & Sutherland, 2025; Rafailov et al., 2023). This appendix covers Proposition 1, the DPO
gradient (Eq. 5), the CW-DPO loss and gradient (Eqs. 7–8), the constrained SFT formulation (Eq. 3), and
the analysis of Remark 1. For completeness, we also discuss implications for Algorithm 1.

I.1 PROOF OF PROPOSITION 1: SEQUENCE-AWARE ONE-STEP INFLUENCE

Proposition 1 (Restated). The log-likelihood change on an observing sample χo after a single gradient
update on an updating sample χu (with learning rate η) can be approximated as:

∆ℓ̄t(y | χo) ≈ −η
〈
∇z ℓ̄θt(y | χo)︸ ︷︷ ︸
At: Belief Geometry

, Kt(χo, χu)︸ ︷︷ ︸
eNTK Kernel

∇zL(θt;χu)︸ ︷︷ ︸
Gt: Loss Residual

〉
,

where Belief Geometry At encodes predictive sensitivity, the eNTK Kernel Kt(χo, χu) = JoJ
⊤
u propagates

parametric updates, and the Loss Residual Gt directs logit adjustments.

Proof. As established in §2.2, a single gradient descent update is given by θt+1 = θt − η∇θL(θt;χu). The
change in model confidence on sample χo is defined as ∆ℓ̄t(y | χo) = ℓ̄θt+1

(y | χo) − ℓ̄θt(y | χo), where
ℓ̄θ(y | χo) =

1
L

∑L
l=1 log πθ(yl | χo,≤l) is the average per-token log-probability.

We begin by performing a first-order Taylor expansion of ℓ̄θt+1
(y | χo) around the parameters θt:

ℓ̄θt+1(y | χo) ≈ ℓ̄θt(y | χo) + (θt+1 − θt)
⊤∇θ ℓ̄θt(y | χo).

Substituting the update rule into this expansion, we obtain the expression for the confidence change:

∆ℓ̄t(y | χo) ≈ (−η∇θL(θt;χu))
⊤∇θ ℓ̄θt(y | χo) = −η(∇θ ℓ̄θt(y | χo))

⊤∇θL(θt;χu) +O(η2).

To connect the gradients in the parameter space (θ) to those in the logit space (z), we linearize via the logits
z(θ;χ) (where zl ∈ R|V |) and apply the chain rule:

∇θ ℓ̄θt(y | χo) = J⊤
o ∇z ℓ̄θt(y | χo), and ∇θL(θt;χu) = J⊤

u ∇zL(θt;χu),

where Jo = ∇θz(θt;χo) and Ju = ∇θz(θt;χu) are the Jacobians of the logits with respect to the model
parameters for the observing and updating samples, respectively.

Substituting these back into the expression for the confidence change yields:

∆ℓ̄t(y | χo) ≈ −η(∇z ℓ̄θt(y | χo))
⊤(JoJ

⊤
u )∇zL(θt;χu) +O(η2).

This final form decomposes the influence into three interpretable components:

• At = ∇z ℓ̄θt(y | χo): The **Belief Geometry**, which captures the sensitivity of the model’s
belief (log-likelihood) to perturbations in the logits, effectively representing the curvature of its
confidence landscape.

• Kt = JoJ
⊤
u : The **empirical Neural Tangent Kernel (eNTK)**, which describes how an update

on χu propagates through the parameter space to affect the logits of χo. It is sequence-aware due
to token dependencies in the logits.

• Gt = ∇zL(θt;χu): The **Loss Residual**, which is the gradient of the loss in the logit space and
dictates the direction and magnitude of the desired logit adjustment.

For a sufficiently small learning rate η, the O(η2) term is negligible. This decomposition is consistent with
the diagnosis of the squeezing effect (§2.1) presented in §2.2.
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I.2 DERIVATION OF CONSTRAINED SFT AND SMOOTHED LOSS (EQS. 3–4)

In Stage 1 (§3), we formulate the training objective as a constrained optimization problem:

min
θ

E(x,y+)∼D[− log πθ(y
+|x)] s.t. E(x,y−)∼D[− log πθ(y

−|x)] ≥ C.

Derivation. To solve this problem, we first form the Lagrangian, which incorporates the objective function
and the inequality constraint:

L(θ, λ) = E[− log πθ(y
+|x)] + λ(C − E[− log πθ(y

−|x)]),

where λ ≥ 0 is the Lagrange multiplier.

In practice, optimizing the exact Lagrangian over the full dataset expectation is intractable. We therefore
adopt a more practical approach by creating a soft penalty formulation that can be optimized stochastically
with mini-batches. We approximate the expectations with mini-batch averages and use the ReLU function to
create a penalty that activates only when the constraint is violated (i.e., when C − Ebatch[− log πθ(y

−|x)] >
0). This leads to the smoothed SFT loss:

LSFT-C = Ebatch[− log πθ(y
+|x)] + λ · ReLU

(
C − Ebatch[− log πθ(y

−|x)]
)
.

This expression matches Eq. 4. It ensures a bounded Negative Log-Likelihood (NLL) on negative samples,
thereby smoothing the loss landscape and stabilizing the Belief Geometry term At in preparation for Stage
2 (as specified in Algorithm 1, Step 5).

I.3 DERIVATION OF VANILLA DPO GRADIENT (EQ. 5)

The DPO loss function is given by:

LDPO = − log σ
(
β(∆w −∆l)

)
,

with ∆w/l = log πθ(yw/l|x)− log πref(yw/l|x).

Derivation. Let m = β(∆w −∆l) be the margin and a = σ(m). We first compute the derivative of the loss
with respect to the margin m. Using the derivative of the logarithm, d

dx (− log x) = − 1
x , and the derivative

of the sigmoid function, d
dxσ(x) = σ(x)(1− σ(x)):

∂LDPO

∂m
= − 1

σ(m)
· ∂σ(m)

∂m
= − 1

σ(m)
· σ(m)(1− σ(m)) = −(1− a).

Next, we apply the chain rule to find the gradient with respect to the logits z:

∇zLDPO =
∂LDPO

∂m
· ∇zm = −(1− a) · β(∇z∆w −∇z∆l).

Since πref is a fixed reference model, its derivative with respect to the active model’s parameters (and
thus logits z) is zero. Therefore, ∇z∆w/l = ∇z log πθ(yw/l|x). We define this term as gw/l =
∇z log πθ(yw/l|x), which for an autoregressive model simplifies to πθ(·|x) − yw/l (where yw/l is a one-
hot representation).

Substituting this back gives the final expression for the loss residual:

∇zLDPO = β(1− a)(gw − gl),

which matches Eq. 5. This form clearly highlights the role of the loser gradient term gl in the squeezing
effect, as discussed in §2.2.
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I.4 DERIVATION OF CW-DPO LOSS AND ASYMMETRIC GRADIENT (EQS. 7–8)

The CW-DPO loss function is defined as:
LCW-DPO = − log σ(β (∆w − wc ·∆l)) ,

with the cooling weight wc = σ
(

ℓ̄θ(yl|χ)−ℓfloor
τ

)
.

Derivation. Let m′ = β(∆w − wc∆l) and a′ = σ(m′). Following the same initial step as in the vanilla
DPO derivation, we have:

∂LCW-DPO

∂m′ = −(1− a′).

We then apply the chain rule. A key simplification in our derivation is to treat the cooling weight wc as a
locally constant value during the gradient computation. This means we ignore the gradient flow through wc

via its dependence on ℓ̄θ, which avoids computing complex second-order derivatives while still allowing wc

to function as an adaptive modulator of the gradient magnitude.

∇zLCW-DPO =
∂LCW-DPO

∂m′ · ∇zm
′ ≈ −(1− a′) · β(∇z∆w − wc∇z∆l).

Substituting the definition gw/l = ∇z∆w/l:

∇zLCW-DPO = β(1− a′) [(πθ(·|x)− yw)− wc(πθ(·|x)− yl)] ,

which yields Eq. 8. This result shows the core mechanism of our method: the cooling weight wc asymmet-
rically modulates only the gradient contribution from the loser sample, gl, providing precise control over
destabilizing gradients, as implemented in Algorithm 1, Step 11.

I.5 DISCUSSION AND FORMAL ANALYSIS OF REMARK 1: INSUFFICIENCY OF DPO’S IMPLICIT
REGULARIZATION

Remark 1 (Restated). DPO’s implicit regularization via the β(1 − a) term falters for moderately easy
negatives, perpetuating the squeezing effect.

Analysis. The effectiveness of DPO’s gradient regularization hinges entirely on the factor (1− a).

• For extremely easy negatives: When a loser sample yl is confidently rejected, its log-probability
log πθ(yl|x) → −∞, causing ∆l → −∞. This drives the margin (∆w − ∆l) → +∞, and
consequently, the sigmoid activation a = σ(β(∆w − ∆l)) → 1. In this asymptotic limit, the
regularization term (1− a) → 0, effectively nullifying the gradient.

• For moderately easy negatives (the ”vulnerable region”): In practice, the training set contains
numerous negatives that are easy but not infinitely so. For these samples, log πθ(yl) is low (e.g., in
the range [−10,−5]) but finite. With typical values of β (e.g., [0.1, 1.0]), the activation a will be
very close to 1 but not exactly 1 (e.g., in [0.8, 0.99]). This results in a regularization factor β(1−a)
that is small but non-zero (e.g., in [0.01β, 0.2β]).

The problem arises because the raw gradient of the loser term, gl, can be large and noisy. Multiplying this
large, noisy gradient by a small but non-zero scalar still results in a non-negligible, noisy update signal.
Formally, the variance of this gradient component, Var(Gl

t) ∝ (β(1− a))2 ·Var(gl), remains significant and
continues to introduce instability into the optimization process.

In contrast, the CW-DPO mechanism is more robust. For any negative sample where the average log-
probability falls below the threshold, ℓ̄θ(yl|χ) < ℓfloor, our cooling weight wc is driven towards 0. The
resulting variance of the cooled gradient, Var(GCW

t ) ∝ w2
c (β(1−a′))2·Var(gl), is thus effectively suppressed

to zero. This acts as a much stronger and more reliable gating mechanism than DPO’s soft, asymptotic
regularization, directly addressing the core instability identified in §2.2.
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STATEMENT ON THE USE OF AI ASSISTANCE

This manuscript was written entirely by the authors. A Large Language Model (LLM) was used only as a
language assistant to check for grammar errors and improve clarity and readability.
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