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ABSTRACT

The composition of specialized tools offers a powerful approach for complex vi-
sual reasoning, particularly for tasks involving 3D spatial understanding. How-
ever, existing visual programming methods are often constrained by fixed toolsets
or offline tool induction, which leads to suboptimal solutions and poor tool reuse.
We introduce Transductive Visual Programming (TVP), a novel framework that
dynamically evolves a library of reusable tools by learning from its problem-
solving experience. TVP abstracts recurring solution patterns into new, higher-
level tools, which are then used to construct simpler and more effective programs
for new tasks. On the challenging Omni3D-Bench, TVP establishes a new state
of the art, outperforming both specialized vision-language models and prior vi-
sual programming systems. The evolved tools also exhibit strong generaliza-
tion to out-of-domain queries on 3DSRBench, SpatialSense, and VGBench. Our
work demonstrates that transductive tool evolution is a powerful and generalizable
paradigm for building robust visual reasoning systems.

1 INTRODUCTION

Figure 1: (Left) Prior methods operate in an open-loop manner—tools are created without experi-
ence from actual problem-solving. (Right) TVP maintains both an Example Library of successful
program solutions and a Tool Library of abstracted functions. Through this closed-loop system,
TVP abstracts tools from patterns in proven solutions.

Reasoning on complex visual scenes, including localization, understanding spatial relations, and
counting objects, is not a single visual skill. While pre-trained Vision-Language Model (VLM)
have made progress in processing images, spatial reasoning remains challenging for frontier models
such as GPT-4o (Lee et al., 2025; Marsili et al., 2025). This limitation motivates a compositional
approach: decomposing complex visual problems into discrete computational steps executable by
specialized tools — a paradigm known as visual programming.

An effective programming system should emulate how human programmers learn: first by solving
concrete problems, and only then by abstracting recurring patterns into reusable functions. Current
visual programming paradigms do the opposite. They either rely on fixed, predefined tool sets that
cannot learn (Gupta & Kembhavi, 2023; Surı́s et al., 2023), or they speculatively synthesize new
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tools inductively before their utility is proven. For example, VADAR (Marsili et al., 2025), a prior
system that induces tools from questions upfront without grounding to any solutions, still relies
94.2% of the time on the basic predefined APIs despite the presence of its proposed tools.

VADAR TVP (ours)
0

20

40

60

80

100 94.2%

63.7%

5.8%

36.3%

Initial Tool Usage
Created Tool Only Usage

Figure 2: Tool usage distribution:
transductive (TVP) vs. inductive
abstraction (VADAR)

We propose Transductive Visual Programming (TVP), a
framework that generates program solutions while continually
evolving a dynamic and highly-reusable tool library built from
past experience. Analogous to human programmers who iden-
tify recurring patterns and abstract them into reusable func-
tions only after solving concrete problems, TVP learns through
transductive abstraction. This approach directly leverages suc-
cessful program solutions from specific examples to form new,
higher-level tools. Rather than “inducing” potentially useful
functions before solving problems, TVP recognizes repeated
patterns after implementing multiple concrete solutions, en-
suring that learned abstractions are useful and grounded in ex-
perience.

As illustrated in Fig. 1, TVP’s architecture is centered around
a dual-library system designed to facilitate this transductive
learning loop. The Example Library serves as a memory,
accumulating a growing corpus of successful program solu-
tions. In parallel, the Tool Library maintains a dynamic set
of higher-level functions that are continuously evolved by ab-
stracting common patterns from the Example Library. When faced with a new query, TVP first
retrieves relevant demonstrations from its experience, then leverages its evolved, higher-level tools
to construct simpler and more efficient programs.

On the challenging Omni3D-Bench for 3D spatial reasoning, TVP achieves a new state-of-the-art
overall accuracy of 33.3%, outperforming both generic VLMs like GPT-4o (+22.4%) or SpaceMan-
tis (Jiang et al., 2024; Chen et al., 2024) built with spatial-specific finetuning, and previous visual
programming systems including VADAR (+11.3%). The superior performance of TVP is a direct
result of its effective tool discovery and reuse. Our analysis shows that tools learned through TVP are
used far more frequently than those of baseline methods; 36.3% of our learned tools are employed
as the only functions in final program solutions, compared to just 5.8% for VADAR’s speculatively
induced APIs.

Moreover, the tool set evolved by TVP generalizes to unseen tasks with strong performance. After
the TVP agent evolves its dual libraries on Omni3D-Bench §3.1, it is directly applied to handle
novel spatial reasoning queries sampled from SpatialScore-Hard collection §3.2 (including 3DSR-
Bench (Ma et al., 2024), SpatialSense (Yang et al., 2019), and VG-Bench (Wu et al., 2025)), where it
also delivers superior performance with zero-shot generation across task categories, demonstrating
that its learned skills are highly transferable. Taken together, this paper demonstrates that program-
ming with transductive tool creation from experience is a powerful paradigm for tackling complex
spatial reasoning tasks.

2 TRANSDUCTIVE VISUAL PROGRAMMING

Transductive Visual Programming (TVP) is a framework that learns to create and refine a library
of reusable tools from its own problem-solving experience. It operates via a closed-loop process
centered on a dual-library architecture (Fig. 3): an Example Library E accumulates successful
program solutions, while a Tool Library T maintains an evolving set of functions abstracted from
the experience. This design allows TVP to emulate human learning: first solve concrete problems,
then generalize successful patterns into reusable skills. The entire workflow is formalized in Alg. 1.

2.1 PROGRAM GENERATION AND EXECUTION

Initialization. TVP begins with an empty Example Library E ← ∅ and a Tool Library T ini-
tialized with predefined basic vision tools. These predefined tools, inherited from Marsili et al.
(2025), include: object localization (loc) and bounding box detection (get 2d object size)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 3: TVP’s dual-library architecture and pipeline. (Top) Query workflow: For each visual
reasoning question, TVP retrieves similar examples from the Example Library, generates candidate
programs using available tools and high-quality solutions join the Example Library. (Middle) Tool
abstraction: As examples accumulate, TVP clusters similar queries and abstracts common solution
patterns into parameterized tools. (Bottom ) Tool maintenance: When functionally similar tools
emerge from different clusters, TVP identifies and merges them into unified tools that generalize
both functionalities.

with GroundingDINO (Liu et al., 2024), depth estimation (depth) via UniDepth (Piccinelli et al.,
2024), object property queries with GPT-4o (vqa), and overlapping bounding box verification with
same object. These basic spatial computations serve as building blocks for more complex rea-
soning.

Example retrieval. Given a question qi, TVP first retrieves k most similar queries from the current
Example Library E . Retrieval is based on the embedding similarity of question texts. Since question
texts are straightforward, similar embeddings indicate similar query semantics.

Program generation and execution. We provide the question qi, the retrieved k examples with their
solutions as in-context demonstrations, and the current Tool Library T (in the form of tool signatures
and docstrings) to the Program Generator, which is an LLM that explores m different candidate
program solutions for qi, as visual reasoning problems often admit multiple valid approaches. TVP
executes each program candidate with access to the full Tool Library T implementations, producing
execution traces as namespaces and a final calculated answer to qi.

2.2 EXAMPLE LIBRARY: ADDING HIGH-QUALITY PROGRAMS

Quality judge. TVP employs a VLM judge to assess each candidate program’s quality. The judge
has access to the program implementation, full execution trace and the produced answer, evaluating

3
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them against the question and image as visual evidence. The best candidate represents the final
solution to the question. More details on the judge criteria are provided in §C.3.

Joining Example Library. We maintain a quality threshold τq that gates entry to the Example
Library. This ensures E contains only high-quality program solutions, forming the foundation for
both effective in-context examples (§2.1) and high-quality tool abstractions (§2.3).

2.3 TOOL LIBRARY: TOOL ABSTRACTION FROM EXPERIENCE

At intervals of na processed questions, TVP mines its Example Library for recurring patterns that
merit abstraction into reusable tools for the Tool Library (see Alg. 2 2 for the complete abstraction
process).

Example clustering. First, all queries in E are clustered by embedding similarity of question texts
(similar to example retrieval). This creates initial groups of related questions with high potential for
similar program solutions. For clusters with similarity surpassing threshold τsim and size exceeding
τcluster, we query an LLM for abstraction analysis to evaluate the cluster’s abstraction potential.
High-potential patterns (score ≥ τpotential) trigger tool abstraction from these examples’ solutions.
More details on the criteria for abstraction potential are provided in §C.3.

Tool abstraction. We provide the Tool Abstractor with all cluster examples’ questions, program
solutions, execution results, and the current Tool Library. The Tool Abstractor creates a parameter-
ized function capturing the cluster’s shared program logic. For instance, as shown in Fig. 3, clusters
calculating 3D size ratios yield compute 3d ratio, while clusters finding nearest objects pro-
duce find closest obj. The new function replaces step-by-step programming in the cluster
examples.

Validating new tool. Each new abstract function is rigorously vetted (Alg. 3). TVP rewrites each
cluster example using the new tool; with no ground truth, a rewrite is accepted if it yields identical
results or—common for floating-point cases—is judged by a VLM to be equally valid or better given
the visual evidence. This safeguards or improves visual-program quality while enabling generaliza-
tion. Unlike prior speculative induction, TVP is transductive: it lifts concrete solutions built from
low-level tools directly into abstractions, ensuring every new tool is grounded in experience from
the Example Library.

Example status update. When cluster examples are abstracted into a common function, we rewrite
these examples in the Example Library to use the new tool. This better guides future similar ques-
tions to employ abstract tools in their solutions. Once successfully abstracted, we mark these cluster
examples as closed for future clustering and abstractions.

2.4 DUAL-LIBRARY MAINTENANCE

As more datapoints are processed and both libraries grow, TVP performs periodic maintenance for
both libraries.

Periodic Tool Library update with tool merging. Tool abstractions performed with accumulative
cluster examples may lead to functionally similar abstract tools created at different intervals. We
periodically merge functionally similar tools in T (see Alg. 4). As illustrated in Fig. 3, tools like
compute 3d ratio and compute 3d group size ratio serving similar purposes merge
into a more general compute objects size ratio. Merged tools undergo the same rigorous
validation against all examples using the original tools. This periodic merging reduces redundancy
while preserving all abstracted functionalities.

Example Library update across iterations. TVP runs through multiple iterations T over the entire
datasetD (as shown in Alg. 1). Examples in the Example Library can be updated across iterations by
comparing quality ratings—better program solutions replace existing ones, as later iterations with
access to more abstract tools produce more efficient and cleaner programs.
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a) program complexity b) improvement by switching to new tools c) performance with/without new tools

Figure 4: Tool abstraction improves both program efficiency and accuracy. (a) Program cyclomatic
complexity steadily decreases across TVP iterations. (b) Programs gain +3.4% accuracy when
switching from basic to abstracted tools. (c) Performance with new APIs improves 38% across
iterations as TVP gradually masters its learned abstractions

3 EXPERIMENTS

3.1 3D SPATIAL REASONING PERFORMANCE

TVP is a general visual programming system applicable to various tasks given appropriate initializa-
tion (particularly the initial toolkit, §2.1). 3D spatial reasoning is a representative challenge where
mere visual perception in the form of VQA fails short of the precise geometric calculations required
by the 3D spatial inference.

Setup. We evaluate our approach on Omni3D-Bench (Marsili et al., 2025), a challenging test
set containing 501 non-templated spatial queries on diverse real-world scenes, requiring 3D object
grounding and reasoning about distances and dimensions. Among the four question types, we eval-
uate: (1-3) Yes/No, Multiple Choice, and Counting via exact-match accuracy (with possible fuzzy
string normalization); (4) Float-point calculations via Mean Relative Accuracy (Yang et al., 2025):
MRA = 1

|C|
∑

θ∈C ⊮
(

|ŷ−y|
y < 1− θ

)
with C = {0.5, 0.55, ..., 0.95}, and Float(±10%) accu-

racy for predictions within 10% error tolerance. We run TVP for T = 3 iterations with quality
threshold τq = 8.5 for example library entry, similarity threshold τsim = 0.8, and minimum cluster
size τcluster = 4 for clustering. Tool abstraction and deduplication occur at every step (na = nd = 1).
We use GPT-4o for program generation and image-based quality judge, and 4o-mini for abstraction
and auxiliary tasks.

For baselines, we compare against generic VLMs (GPT-4o, LLaVA-OneVision-7B-Chat Li et al.,
2024, Qwen2-VL-7B-Inst Wang et al., 2024a, Molmo-7B-D Deitke et al., 2025), spatial-finetuned
VLMs (SpaceMantis Jiang et al., 20241 and SpatialBot-3B Cai et al., 2025), and prior visual pro-
gramming systems (VisProg Gupta & Kembhavi, 2023, ViperGPT Surı́s et al., 2023, VADAR Mar-
sili et al., 2025). Refer to §C for additional implementation details.

TVP achieves state-of-the-art through experience-grounded tool creation. As shown in Tab. 1,
TVP achieves new state-of-the-art performance on Omni3D-Bench with 33.3% overall accu-
racy, outperforming all baselines including the previous best visual programming system VADAR
(29.9%) by 11.4% relative improvement. The advantage is most pronounced on precise floating-
point spatial calculations: TVP reaches 19.3% accuracy within ±10% tolerance, vs. VADAR’s
15.9% and GPT-4o’s 8.2%. Monolithic VLMs handle perception-heavy yes/no and multiple-choice
tasks reasonally well, but falter on exact 3D measurements—where compositional programming
excels. Even spatial-finetuned models (e.g., SpaceMantis) show no meaningful gains over generic
VLMs on these calculations, again underscoring the necessity for stronger compositional program-
ming approach like TVP.

TVP enables effective program compression. As TVP creates more higher-level tools, repetitive
low-level operations are gradually eliminated. Fig. 4 (panel a) illustrates how our TVP steadily re-

1Finetuned following SpatialVLM (Chen et al., 2024)
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Table 1: Performance comparison on Omni3D-Bench. Best scores bolded, second best underlined.
∗Results from VADAR paper.

Method Accuracy by Question Type (%) Overall (%)
Yes/No Multiple Choice Counting Float MRA Float (±10%)

Generic VLMs

GPT-4o 65.3 60.5 18.6 26.7 8.2 27.2
Qwen2-VL-7B-Inst 58.7 33.7 12.9 21.5 10.0 21.8
LLaVA-OV-7B-Chat 60.0 27.9 22.9 26.8 11.1 23.0
Molmo-7B-D 46.7 41.9 18.6 28.4 8.9 21.6

Spatial-Finetuned VLMs

SpaceMantis 53.3 30.2 4.3 21.4 8.2 18.2
SpatialBot-3B 60.0 30.2 0.0 17.7 8.5 18.8

Visual Programming

VisProg∗ 54.7 25.9 2.9 0.9 − −
ViperGPT∗ 56.0 42.4 20.0 15.4 − −
VADAR 56.0∗ 57.6∗ 21.7∗ 35.5∗ 15.9 29.9
TVP (ours)-iter1 50.7 62.8 21.4 34.7 18.5 31.3
TVP (ours)-iter2 60.0 59.3 24.3 34.7 17.4 31.9
TVP (ours)-iter3 60.0 61.6 24.3 36.5 19.3 33.3

w/o Tool Lib 60.0 61.6 21.4 35.5 17.0 31.7

duce program complexity across iterations. The average McCabe’s Cyclomatic Complexity Number
(CCN) (McCabe, 1976) (§C.2) decreases from 3.5 to 2.88 (-17.7%), with the median CCN drop-
ping from 3.0 to 1.0. The program compression leads to two key benefits: (1) improved efficiency
and reduced potential errors in reimplementation of branching logic; (2) improved interpretability
of generated programs, as a single function call replace otherwise whole paragraphs of code (see
qualitative examples in Fig. 10).

Tool abstraction facilitates progressive self-improvement, especially on hard problems. To iso-
late the contribution of our tool abstraction from in-context learning with examples, we run TVP
with only the Example Library active (w/o Tool Lib in Tab. 1). This configuration still benefits
from retrieved similar examples as few-shot demonstrations but relies solely on basic initial tools.
Notably, the Example-Library-Only variant already achieves a competitive 31.5% accuracy over-
all, outperforming all prior baselines. This strong performance demonstrates the quality of our
accumulated experience, enabled by our example library admission design (§2.2).

While the Example Library provides strong foundation, our full TVP system with active tool creation
shows more significant improvement across iterations (31.3% → 31.9% → 33.3%), while the
Example-Library-Only variant maintains static (31.7% → 31.5% → 31.5%). This progressive
improvement stems from the closed-loop design as illustrated in Fig. 1: abstracted tools encapsulate
past experience and enable better future programs, which become better examples, from which better
tools can be abstracted. Fig. 4 (panel b) also indicates this effect: when programs switch from
basic tools to newly created abstractions, they achieve +3.4% accuracy improvement. Without
tool creation in the loop, this self-improving cycle is weakened.

Furthermore, we find that the tool abstraction contributes most value on hard problems. We use
GPT-5 with high reasoning effort to rate the difficulty of the spatial reasoning questions on a 1.0–
10.0 scale (details in §C.4), then divide questions into three groups: Easy (1–3), Medium (4–6), and
Hard (7–10). Fig. 5 shows accuracy across methods for different complexity levels. TVP (Full)
delivers the best performance on both Easy and Hard batches. For easy questions, thoroughly
validated created tools avoid potential reimplementation errors, leading to more stable performance.
For harder questions, created tools provide simpler solution steps that eliminate complicated logic,
thus easing the program reasoning. Fig. 6 reveals the evolution of the benefits brought by our
active tool abstraction across iterations, as we compare the the performance delta between TVP
(Full) and TVP (Example-Lib-Only) for each complexity level. On the hardest batch, TVP (Full)
shows the most significant improvement trajectory, starting at −4.5% relative to Example-Lib-
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Figure 5: Performance comparison across
question complexity levels on Omni3D-
Bench. The complexity scores are rated
with criteria defined in §C.4

Iter1 Iter2 Iter3
Iteration

6

4

2

0

2

4

6

8

+0.4% +0.4% +0.8%

Easy (1-3)

Iter1 Iter2 Iter3
Iteration

-0.5%

+1.0%
+2.0%

Medium (4-6)

 = TVP(Full) - TVP(Example Lib. Only)

Iter1 Iter2 Iter3
Iteration

-4.5%

-2.3%

+6.7%
Hard (7-10)

Pe
rf

or
m

an
ce

 D
el

ta
 (

%
)

Figure 6: Performance delta between TVP (Full) and
TVP (Example-Lib-Only) across iterations for each
question complexity level. TVP full system (with ac-
tive tool creation) shows most significant gains on the
hardest batch of questions.

Only in iteration 1, but ultimately surpassing it by +6.7% in iteration 3. This demonstrates that
our created tools – beyond just in-context examples – effectively reduce the reasoning workload
for most challenging questions, as they encapsulate past experience of complicated code logic into
simple function calls. An example is illustrated in Fig. 10(panel b), where a newly created tool
serves as a convenient step in solving a spatial reasoning problem.
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Figure 7: TVP performance scales con-
sistently on Omni3D-Bench with back-
bone model capacity (Qwen2.5-Coder-
7/14/32B & GPT-4o).

Both libraries evolve steadily through transductive
learning. Fig. 9 visualizes TVP’s evolution through three
iterations on Omni3D-Bench. The system exhibits steady
growth in both libraries: the Example Library accumu-
lates from 0 to 304 high-quality solutions while the Tool
Library expands from 5 initial tools to 11 active ab-
stractions (after creating 61 total and merging redundant
ones). This controlled growth—creating many abstract
functions but keeping only the most general through pe-
riodic merging (§2.4)—ensures the tool library remains
manageable while capturing diverse functionalities. The
impact of this evolution is evident in Fig. 4(panel c).
Programs using only basic APIs maintain stable perfor-
mance across iterations, confirming that TVP preserves
its ability to leverage fundamental tools. Meanwhile, pro-
grams utilizing new APIs show dramatic accuracy im-
provement—from 22.4% in iteration 1 to 31.0% in it-
eration 3—as the system masters applying its learned
abstractions. This +38% relative improvement demon-
strates that TVP doesn’t just create tools but learns to use
them more effectively over time.

TVP is robust to backbone LLM choice, showing a
clear scaling trend with model sizes. We further investigate TVP’s robustness to open-source
smaller LLMs, represented by the Qwen2.5-Coder-Instruct (Hui et al., 2024) family as the back-
bone program generator, spanning from 7B to 32B parameters. Specific configurations are given in
§C.2. Fig. 7 presents the scaling behavior, where TVP exhibits a clear performance improvement
with increasing model capacity. Notably, using an open-source 32B model, TVP achieves perfor-
mance close to our GPT-4o-backed variant (30.7% vs. 31.3%), and surpasses the previous best
baseline VADAR (29.9%) despite its more capable GPT-4o backbone. This result underscores that
our TVP does not rely on proprietary-specific optimal LLMs but can achieve strong perfor-
mance with more accessible open-source alternatives. The consistent scaling trend also validates
TVP’s architecture as model-agnostic, and suggests significant future potential of our transductive
tool creation, as foundation models with enhanced capabilities become available.
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3.2 GENERALIZING ACROSS UNSEEN SPATIAL REASONING QUERIES

As TVP builds its dual libraries through one test set (Omni3D-Bench), we evaluate whether the
learned capabilities transfer to unseen spatial reasoning queries in the wild. We take the agent built
from §3.1 and directly apply it to new benchmarks without any additional example or tool creation.

Setup. We sample from the SpatialScore-Hard collection (Wu et al., 2025) that contains the most
challenging spatial understanding queries. In total, we collected 256 test datapoints from 3DSR-
Bench (Ma et al., 2024), SpatialSense (Yang et al., 2019), and VG-Bench (Wu et al., 2025) respec-
tively, keeping single-image, visual-bounding-box-free samples (aligning with the structural setup
on Omni3D-Bench). These encompass 4 categories of spatial reasoning capabilities (Fig. 8), cov-
ering Yes/No, Multiple-Choice, and Open-Ended (numeric calculation) questions types. Same as in
§3.1, we evaluate the former two question types with accuracy, and the last type with Float(±10%)
accuracy within 10% error range tolerance. We compare our TVP agent’s zero-shot transfer perfor-
mance against various VLMs and VADAR as representative visual programming system. Notably,
we run VADAR on these test sets, meaning that it has new tools created specifically for these test
sets while our TVP directly applies its Omni3D-Bench libraries without any modification.

Table 2: Results on benchmarks from sampled
SpatialScore-Hard collection; TVP (built on Omni3D-
Bench) evaluated zero-shot. Best scores bolded,
second underlined.

Method 3DSR-B. SpatialSense VG-B. Overall

Generic VLMs

GPT-4o 52.1 46.5 20.3 42.6
LLaVA-OV-7B-Chat 12.4 9.9 9.4 10.9
Qwen2-VL-Inst 49.6 32.4 7.8 34.4
Molmo-7B-D 41.3 54.9 12.5 37.9

Spatial-Finetuned VLMs

SpaceMantis 37.2 19.7 7.8 25.0
SpatialBot-3B 20.7 62.0 6.2 28.5

Visual Programming

VADAR 24.8 40.8 39.1 32.8
TVPGeneralizing 52.9 59.2 43.8 52.3
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Figure 8: TVP’s libraries transfer well on
SpatialScore-Hard, particularly for 3D
spatial and depth/distance reasoning.

Transductively learned tools generalize with superior performance. As shown in Tab. 2, TVP
achieves 52.3% overall accuracy on SpatialScore-Hard, outperforming even VADAR (32.8%) which
inductively creates tools specifically for these test sets. The performance breakdown in Fig. 8 shows
TVP excels particularly on challenging spatial reasoning categories. For 3D positional relations,
TVP achieves 59.2% vs VADAR’s 40.8% and GPT-4o’s 46.5%. On depth and distance estimation
(from VG-Bench), TVP reaches 43.8% while VADAR manages 39.1% and GPT-4o only 20.3%. The
consistent superior performance across spatial tasks validates that our transductive learning builds
up genuinely reusable libraries rather than overfitted solutions. Fig. 10 (panel b) provides qualitative
evidence of this generalization. Tools like find largest by 3d metric, originally abstracted
from Omni3D-Bench solutions, now handles the a new 3D comparison queries from 3DSR-Bench
without any modification, demonstrating that transductive abstraction captures fundamental reason-
ing patterns rather than dataset-specific tricks.

3.3 QUALITATIVE ANALYSIS ON TOOL UTILIZATION AND EVOLUTION

Transductively abstracted tools are easily applicable to diverse tasks. Fig. 10 illustrates how
TVP’s tool creation achieves high utilization. Panel (a) shows estimate 3d instance count
handling diverse ratio calculations within Omni3D-Bench—from computing how many cabinet
tables would match a sofa-TV height to determining television stacking requirements. Panel
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Figure 9: Evolution of TVP’s dual libraries through iterations on Omni3D-Bench. The Example
Library grows steadily to 304 solutions while the Tool Library expands strategically—creating 61
tools total but maintaining 11 active abstractions with periodic merging.

(b) reveals even stronger evidence: find largest by 3d metric seamlessly transfers from
Omni3D-Bench (comparing armchair and fireplace heights) to completely unseen 3DSR-Bench
queries (comparing train and street light elevations). These tools succeed because they encode
proven solution patterns validated through actual problem-solving, not hypothetical utilities.

Tool hierarchies emerge naturally through iterative refinement. Fig. 11 traces the evolu-
tion of a representative tool hierarchy. Starting from basic step-by-step solutions using primitive
operations (Level-0), TVP first abstracts estimate 3d height from reference to handle
height estimation tasks (Level-1). As more examples accumulate, the tool maintenance mecha-
nism identifies similarity with a width-estimation function, merging them into the more general
estimate object dimension by reference (Level-2). Later iterations add filtering capa-
bilities, creating an even more powerful abstraction. This hierarchical evolution mirrors how human
programmers refactor code—starting with specific solutions, recognizing patterns, and progressively
generalizing. The Tool Library maintenance mechanism (Fig. 3) ensures this evolution produces in-
creasingly powerful tools while avoiding redundancy. Through periodic merging, functionally simi-
lar tools like compute 3d ratio and compute 3d group size ratio combine into unified
abstractions that handle broader use cases. The quantitative impact is clear: programs using these
evolved tools achieve both higher accuracy (+3.4% when switching to new tools, Fig. 4-panel b) and
lower complexity (median cyclomatic complexity drops 66% from 3.0 to 1.0, Fig. 4-panel a). This
demonstrates that transductive visual programming doesn’t just solve problems—it continuously
improves its problem-solving capabilities through experience.

4 RELATED WORK

4.1 SPATIAL REASONING

Spatial reasoning requires understanding of precise real-world spatial relationships between 3D ob-
jects beyond the pixel space of images, which is challenging for monolithic VLMs (Kamath et al.,
2023; Majumdar et al., 2024; Fu et al., 2024; Tong et al., 2024; Cai et al., 2025; Zhang et al., 2024).
Even for recent VLMs built with specialized spatial finetuning (e.g., SpatialVLM Chen et al., 2024,
SpatialRGPT Cheng et al., 2024, SpatialBot Cai et al., 2025), these models still struggle with more
diverse 3D reasoning queries (Lee et al., 2025; Marsili et al., 2025) – similar to our findings revealed
from experimenting on SpatialVLM and SpatialBot (§3.1). These limitations motivated visual pro-
gramming approaches that decompose complex visual tasks into executable steps, where each step
leverages specialized vision tools. VisProg (Gupta & Kembhavi, 2023) introduced a domain-specific
language (DSL) for composing vision specialists. ViperGPT (Surı́s et al., 2023) directly generates
Python code for calling APIs. Both systems rely on predefined static APIs, limiting their ability to
handle queries beyond their initial toolkit. VADAR (Marsili et al., 2025) attempts a dynamic tool
set by proposing potentially useful functions as new APIs, which are created through pure “induc-
tion”—based solely on question texts before solving any problems. This speculative approach leads
to low utilization of the generated APIs in actual solutions (see Fig. 2). Our TVP belongs to the
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Consider the real-world 3D locations of the objects. 

Which object has a higher location? (A) train (B) street lights in the back

Which object has the largest 3D height: the leftmost black armchair or the fireplace?

Omni3D-Bench

3DSR-Bench

How many objects of the same height as the rightmost cabinet table 
would I need to make a structure as tall as the sofa and tv combined?

If multiple of the televisions were stacked upright on top of each 
other, how many televisions would need to be stacked to equal the 
3D height of the brown cabinet?

Omni3D-Bench

Omni3D-Bench

a) resue across diverse tasks b) resue across test sets

Figure 10: Tool reuse across diverse tasks and benchmarks. (a) Transductively learned tools handle
diverse problems within Omni3D-Bench. (b) The tool learned from Omni3D-Bench transfers to
unseen benchmarks.

visual programming family but takes a fundamentally different approach: rather than inductively
proposing tools, it learns them “transductively” through experience—solving problems with basic
tools first, then abstracting recurring solution patterns into new functions.

4.2 TOOL USE AND ABSTRACTION

Agentic systems calling various specialist tools have shown superior performance across a wide
range of domains, including web navigation (Zheng et al., 2025; Wang et al., 2025), robotic con-
trols (Liang et al., 2022), graphics generation (Hu et al., 2024; Sun et al., 2025) and game explo-
ration (Wang et al., 2023). In 3D visual tasks, Yuan et al. (2024) proposes view-dependent and
-independent modules in visual programs for zero-shot open-vocabulary grounding. Mi et al. (2025)
introduces “code as spatial relation encoders” optimized through test suites before deployment. Be-
yond applying specialized tools, recent works have studied the automatic creation of new tools that
enable self-evolving agents with a dynamic toolbox (Cai et al., 2023; Wang et al., 2024b; Yuan
et al., 2023; Qian et al., 2023). LILO (Grand et al., 2023) compresses programs into symbolic
λ-expressions for abstracting tools. Alita (Qiu et al., 2025) produces specialized model context pro-
tocols (MCP) connecting web-search with tool generation and execution. Skillweaver (Zheng et al.,
2025) identifies novel skills from web tasks following a simple-to-complex curriculum. ASI (Wang
et al., 2025) shares our insight that tool abstractions come from experience in concrete solutions, and
proposes novel functions from concrete action trajectories in web environments. Our TVP evolves its
toolbox through a unique dual-library architecture that simultaneously gathers experience and cre-
ates tools. By grounding tool abstraction in actual problem-solving experience, TVP demonstrates
how transductive library learning produces effective self-evolving visual programming agent. §B
provides an extended comparison between TVP and prior work on tool discovery.

5 CONCLUSION

We introduce Transductive Visual Programming (TVP), a novel paradigm where agents learn to
build tools from problem-solving experience, moving beyond static or speculatively-created tool
sets. By abstracting reusable functions from successful solutions, TVP mirrors human tool learning
process. Our approach sets a new state-of-the-art on challenging 3D spatial reasoning benchmark
Omni3D-Bench. The learned tools also demonstrate strong zero-shot generalization to unseen spa-
tial queries from other test sets (3DSRBench, SpatialSense, and VGBench), proving that TVP builds
robust, reusable knowledge. Our work opens exciting directions: TVP’s dual-library architecture is
task-agnostic, and demonstrates a viable path toward continually self-learning agents that build hi-
erachical, compositional skills.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we used LLMs only for grammar checking and light editing of the manuscript to polish
the writing.

B FURTHER COMPARISON WITH RELATED TOOL-USE WORK

Complementing §4.2, here we discuss in more depth how TVP’s transductive approach fundamen-
tally differs from representative methods in tool use and discovery.

TVP vs. Skillweaver. Skillweaver (Zheng et al., 2025) follows a purely inductive approach similar
to VADAR: it speculatively proposes potentially useful functions before attempting any problem-
solving experience, then synthesizes artificial test cases to validate these speculated functions. In
contrast, TVP’s tool creation is grounded in actual problem-solving experience, as TVP first accu-
mulates experience solving problems, then parameterizes this experience into new tools, guaran-
teeing usefulness because each new tool encapsulates concrete, tested program solution patterns.
Moreover, while Skillweaver relies on a human-defined curriculum with a predefined task order
(procedural → navigational → information-seeking) tailored to the WebArena (Zhou et al., 2023)
evaluation environment, TVP is prior-free and allows random ordering of datapoints, making it
more generally applicable (see §D.1 for analysis of TVP’s resilience to randomness).
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TVP vs. ASI. While ASI (Wang et al., 2025) shares our key insight of creating tools from con-
crete program solutions, TVP differs in three critical aspects. First, ASI abstracts every episode
individually, so each new tool simply represents one single episode. TVP abstracts a cluster of
similar queries’ solutions together, ensuring each new tool generalizes over multiple example so-
lutions for better reusability. Second, ASI lacks library maintenance and cannot handle overlapping
skills, leading to redundancy. TVP includes explicit library maintenance that merges similar skills,
keeping the tool library clean and concise. Third, ASI extracts multiple tools from a single action
trajectory, proposing multiple useful functions from one solution rather than abstracting the whole
solution itself. TVP directly lifts an entire cluster of program solutions into a single abstract tool
through transductive parameterization.

TVP and NePTune. NePTune (Kamali & Kordjamshidi, 2025) focuses on combining program-
matic control flow with symbolic logic operators to enhance program expressiveness and execu-
tion. TVP’s contribution is orthogonal, focusing on novel tool creation to enable more expressive
programs through abstraction.

C IMPLEMENTATION DETAILS

C.1 VADAR REPRODUCING CONFIGURATIONS

compute_3d_height_ratio(image, 
           numerator_prompts, 
         denominator_prompts):
"""compute the ratio of summed 3D heights of one set of 
objects (\"numerator\") to another set (\"denominator\") in 
an image"""

_compute_group_3d_dimension_ratio(image, 
             numerator_prompts, 
       numerator_dimension, 
             denominator_prompts,

denominator_dimension):
"""compute the ratio of combined real-world 3D dimensions 
between two sets of objects in a single image"""

_compute_objects_size_ratio(image, 
           numerator_prompts, 
           denominator_prompts, 
           numerator_axis, 
           denominator_axis,
         numerator_filter_questions,
         denominator_filter_questions):
"""Compute the ratio of combined 3D sizes between two 
groups of objects in an image with conditional filtering"""

+ dimension

+ filter

Figure 11: Hierarchical evolution of tool abstrac-
tions through transductive learning. From con-
crete step-by-step solutions (Level-0), TVP pro-
gressively abstracts more general and powerful
tools through clustering (Level-1) and merging
(Level-2), mirroring how human programmers
build reusable function

We directly utilized VADAR’s official code-
base and adhered to the official hyperparameter
settings throughout, including: random
batches of 15 questions for API proposal,
GroundingDINO-SwinT-OGC (Liu et al.,
2024) for object detection and UniDepth-
v2-ViTS14 (Piccinelli et al., 2024) for depth
estimation – the exact same tools used in our
TVP implementation.

C.2 TVP CONFIGURATIONS

We run the TVP pipeline on the Omni3D-
Bench (§3.1) with the following configurations:

For the main pipeline (Alg. 1), we process all
N = 501 questions from the entire dataset
over T = 3 iterations. During each iteration,
we generate m = 4 program candidates per
question and retrieve k = 3 similar examples
from the example library E using BGE-Large-
En-v1.5 embeddings (Xiao et al., 2023) with
a embedding similarity threshold τsim = 0.8.
Programs are accepted into the example library
only if their quality score exceeds τq = 8.5
on a 10-point scale. The tool abstraction pro-
cess (Alg. 2) is triggered continuously after ev-
ery na = 1 step (effectively at every step). We
cluster examples using a similarity threshold of
τsim = 0.8 and require a minimum cluster size
of τcluster = 4 examples. Clusters with an abstraction potential score above τpotential = 9.0 are con-
sidered for tool creation. The validation process (Alg. 3) requires a minimum execution success rate
of 100% and a correctness rate of at least 85% for divergent results. Both abstraction and program
rewriting allow up to Rmax = 2 and Rrewrite = 2 retry attempts respectively. Tool deduplication
(Alg. 4) is also performed after every nd = 1 step. Tools are considered duplicates when their sim-
ilarity exceeds 0.95. The merge process allows up to Rmerge = 2 retry attempts to create a unified
tool that passes validation.

Throughout our experiments, we maintain a uniform random seed of 42 across all pipeline com-
ponents, governing aspects such as datapoint order (discussed more in §D.1).

14

https://github.com/IDEA-Research/GroundingDINO?tab=readme-ov-file#luggage-checkpoints
https://huggingface.co/lpiccinelli/unidepth-v2-vits14
https://huggingface.co/lpiccinelli/unidepth-v2-vits14
https://huggingface.co/BAAI/bge-large-en-v1.5
https://huggingface.co/BAAI/bge-large-en-v1.5
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In our main experiments (Tab. 1), we employ GPT-4o as the backbone program generator (LLMprog),
and as the VLM-based quality judge (LLMjudge) & correctness validator (LLMcorrect). We use
the reasoning model o4-mini for clustering (LLMcluster), abstraction (LLMabstract), deduplication
(LLMdedup), merging (LLMmerge), and program rewriting tasks. In our ablations on the scaling be-
havior (Fig. 7), we switch to Qwen2.5-Coder-Instruct-7/14/32B (Hui et al., 2024) for the backbone
program generation, and run TVP for T = 1 iteration. Results discussed in §3.1 demonstrate TVP’s
robustness to the backbone LLM, as well as the clear scaling trend with model capacity.

Unless required by specific reasoning models like o4-mini (temperature = 1.0), LLM temperatures
are set to 0.0 for deterministic tasks (quality judgment and correctness validation), ensuring rigor-
ous assessment; and 1.0 for more creative tasks (program generation, abstraction, and rewriting),
increasing the likelihood of finding better solutions.

In Fig. 4 (panel a), we use McCabe’s Cyclomatic Complexity Number (CCN) (McCabe, 1976) as
the program complexity measure, computed via the Lizard library 2, following the practice in Yuan
et al. (2023).

C.3 CRITERIA IN TVP’S JUDGE COMPONENTS

The program quality judge (§2.2) gates the admission to TVP’s Example Library through evalua-
tion across five comprehensive dimensions (as shown in Prompt 1): (1) 3D spatial understanding,
following Marsili et al. (2025)’s official implementation for 3D concepts and definitions; (2) answer
correctness with visual verification against the provided image; (3) appropriate program tool usage;
(4) code quality including readability and efficiency; and (5) robustness to edge cases. These dimen-
sions align with the critical requirements of both spatial reasoning and programming. The reliability
of our quality judge is empirically validated in Tab. 1, where enabling only the Example-Library
in TVP already outperforms all baselines. This demonstrates accurate admission of high-quality
solutions in our Example Library that provide strong in-context examples.

The criteria for tool abstraction potential can be found in Prompt 2, which analyzes a group of
program solutions clustered via question embeddings (embedding similarity is the first step of clus-
tering, refer to §2.3). The abstraction potential focuses on general code abstraction requirements:
(1) common computational patterns; (2) logical flow; (3) generalization capability; and (4) parame-
terization potential. We allow this flexibility in tool abstraction to enable more diverse exploration
of higher-level tools, while still ensuring new tools’ quality through the rigorous validation against
all examples in the cluster before Tool Library admission (refer to §2.3).

C.4 COMPLEXITY RATING OF 3D SPATIAL REASONING QUESTIONS

In both our complexity-grouped evaluation illustrated in Figs. 5 and 6), and the curriculum-ordered
TVP run discussed in §D.1, we use the question complexity scores rated via GPT-5 (high reason-
ing effort) with the prompt given in Prompt 3. The complexity rating evaluates questions along five
axes, considering e.g., 3D understanding; single-/multi-object relationships and multi-step reason-
ing; cognitive and computational load. Based on these scores on the scale of 1.0–10.0, we partition
questions into three complexity buckets: Easy (1–3), Medium (4–6), and Hard (7–10).

D ADDITIONAL EMPIRICAL ANALYSES AND DISCUSSION

D.1 TVP’S RESILIENCE TO RANDOM DATAPOINT ORDERING

TVP is designed to operate on the fly without any dataset-specific priors, unlike previous methods
such as Skillweaver (Zheng et al., 2025) that depends on human-defined curriculum for structured
progression (see also discussion in §B). To validate our prior-free design choice, we compare the

2https://github.com/terryyin/lizard
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Figure 12: Pipeline evolution comparison between curriculum-ordered (as defined in §D.1) and
random-ordered (as in our main experiments §3.1) datapoint processing. While curriculum ordering
enables faster initial accumulation of examples and tools, random ordering ultimately creates more
diverse tools through broader exploration of the problem space.

original TVP with random ordering (as used in our main experiments, §3.1) to curriculum order-
ing based on easy-to-hard progression through question complexity scores (details in §C.4).

Despite the intuition that starting experience with simpler problems, then gradually attempting
harder problems seems a natural fit, we show in Fig. 13 that the overall performance is mostly on-
par (both outperforming baselines), with the randomly-ordered TVP gradually getting better than
the curriculum-ordered variant.

To understand this result, Fig. 12 reveals the evolution dynamics under both ordering strategies. The
curriculum prior introduces two notable early-stage effects. First, it enables earlier example accu-
mulation: datapoints with similar complexity clustered together facilitate more frequent example
retrieval, resulting in 355 accumulated examples versus 200 with random ordering at the end of it-
eration 1. Second, it promotes earlier tool creation, as similar and simpler examples form eligible
clusters sooner, yielding 11 active tools compared to 8 with random ordering after the first iteration.
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Figure 13: Performance compari-
son between TVP runs with ran-
dom vs. curriculum-based data-
point ordering.

However, random ordering proves more beneficial for sus-
tained library growth. By encountering datapoints of vary-
ing complexities and patterns throughout processing, TVP ex-
plores a more diverse solution space. Although initial accumu-
lation may be slower, this diversity enables continued progres-
sion as both libraries capture richer patterns. By completion,
random ordering generates 61 total tools compared to 51 with
curriculum ordering, demonstrating the value of diverse explo-
ration over structured progression.

The above analysis speaks for TVP’s design choice of re-
silience to random datapoint ordering. First, it enables truly
on-the-fly operation without requiring any dataset-specific pri-
ors. Second, the diverse exploration inherent to random order-
ing fosters greater variety in accumulated experiences, lead-
ing to more comprehensive tool creation that better covers
the problem space. This mirrors human learning that benefits
from exposure to varied challenges rather than strictly struc-
tured curricula.

D.2 COMPUTATIONAL COST AND EFFICIENCY

We detail computational requirements for running TVP, as our transductive system should be highly
accessible for research and deployment.

Cost structure and runtime. TVP operates in two distinct stages with different cost profiles:
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(1) Building TVP’s dual libraries from scratch involves processing the test set on the fly (Omni3D-
Bench in §3.1), analogous to training a model. This stage requires approximately $80 per iteration
with our GPT-4o + GPT-4o-mini configuration, equivalent to about $0.16 per question per iteration.

(2) Applying TVP’s built libraries to solve questions (SpatialScore-Hard collection in §3.2) has
minimal cost, usually equivalent to a single GPT-4o call per query.

GPUs are strictly optional in both stages. When used, the system requires under 4GB VRAM only
to store the basic vision tools (GroundingDINO (Liu et al., 2024) and UniDepth (Piccinelli et al.,
2024)), which can also run on CPUs.

The runtime for building TVP’s dual libraries (analogous to training) stands at approximately 7
hours per iteration with our current implementation that executes programs sequentially.

Efficiency optimizations. We implement several strategies to improve TVP’s cost-efficiency when
building its dual libraries:

(1) Early exit in tool validation: Abstracted tools must achieve 100% execution success and 85%
correctness on their validation cluster as per our current configurations (§C.2). For instance, for a
cluster of 7 examples, validation exits early – thus avoiding unnecessary computation – when any
one example fails execution (100% requirement not met); or when two fail the correctness check
(5/7 = 71%, drops below 85% pass rate)

(2) Easy resumability: We maintain comprehensive state checkpoints, supporting TVP’s pause and
resume at any point.

(3) Embedding bank: Since question embeddings remain unchanged, we keep a persistent storage of
embedding vectors that enables simple lookup when retrieving (§2.1) or clustering examples (§2.3).

(4) Parallel program generation and quality judge: We generate program candidates in parallel and
batch the quality judging for all valid candidates to reduce run-time.

E PROMPT TEMPLATES

Prompt 1: Quality Judge� �
You are an expert judge evaluating the quality of a program that solves a 3D spatial reasoning

problem with tools (functions). Your task is to assess the program based on specific
criteria and assign a quality rating from 1.0 to 10.0.

## TASK OVERVIEW
### Question
question

### Program to Evaluate
‘‘‘python
program_code
‘‘‘

### Execution Results
- **Status:** exec_status: success/failure
- **Final Answer:** answer_text
- **Tools Used:** used_tools
- **Execution Error:** execution_error if present

### Execution Namespace (All Variables)
execution_namespace_text

## EVALUATION FRAMEWORK
### Visual Evidence Verification
You are provided with an image of the scene. Use this visual evidence throughout your

evaluation to:
- Verify the program’s approach aligns with what’s visible in the image
- Validate the answer’s reasonableness based on visual proportions
- Check if 3D spatial relationships are correctly interpreted
- Confirm intermediate results match the visual scene
- Ensure all verification considers 3D content, not just 2D positioning

### Namespace Analysis Considerations
When reviewing the execution namespace, specifically check for:
- Correct object identification (right object selected from multiple candidates)
- Proper bounding box matching
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- Expected intermediate calculations
- Appropriate object filtering
- Correct depth-based 3D conversions
- Mismatched bounding boxes or coordinates
- Unexpected intermediate calculation results
- Objects that should have been filtered but weren’t

### 3D Spatial Concepts & Definitions

**Core Definitions:**
- **Coordinate system:** (width, height, length) = (x, y, z) axis
- **Depth:** Distance from camera (smaller depth = closer to camera)
- **2D measurements:** Size/distance in pixel space (image coordinates)
- **3D measurements:** Size/distance in real world
- **3D size formula:** ‘3D size = 2D size * depth‘
- **2D distance formula:** Euclidean distance between object center coordinates: ‘((x1-x2)**2

+ (y1-y2)**2)**0.5‘
- **3D distance formula:** ‘3D_distance = (2D_distance**2 + (depth1 - depth2)**2)**0.5‘
- **Distance to camera:** Simply the object’s depth value

**Key Considerations:**
- 2D sizes are in pixel space. To convert to 3D size, multiply by depth
- Objects with same 2D dimensions but different depths have different 3D sizes
- 3D distance requires the Pythagorean formula combining 2D distance and depth difference - as

defined above
- Center coordinates should determine "leftmost"/"rightmost"
- The ‘loc()‘ function should not handle compound descriptions - must locate base objects then

filter for the desired condition
- All objects satisfying a condition must be checked, not just the first
- Multiple objects with same property values require proper tie-breaking
- Hypothetical object counts (e.g., "if a table has X legs") require counting actual objects

in image

## RATING CRITERIA (1.0 - 10.0 Scale)
### 1. **3D Spatial Understanding**
- Properly converts between 2D and 3D measurements
- Correctly handles 3D size/distance calculation
- Correctly uses center coordinates for distance calculations and leftmost/rightmost

determinations
- Interprets spatial relationships correctly (e.g., "largest" means 3D, not 2D)
- Answer is visually verifiable and reasonable

### 2. **Correctness and Visual Verification**
- Solves the problem correctly based on the actual image
- Aligns with visual evidence from the image
- Intermediate results are consistent with visible scene
- Spatial relationships match visual reality

### 3. **Tool Usage Efficiency**
- Uses appropriate tools for the task
- Leverages higher-level "learned" tools when suitable
- Avoids reimplementing existing functionality
- Note: Basic tools are acceptable when no higher-level tools fit

### 4. **Code Quality**
- Well-structured with clear variable names
- Follows tool usage patterns correctly
- Efficient without unnecessary operations
- Includes helpful comments

### 5. **Robustness and Edge Cases**
- Properly filters located objects for properties rather than using complex ‘loc()‘ queries
- Handles multiple objects with same property (proper tie-breaking)
- Manages empty lists and None values appropriately
- Manages container relationships (e.g., "in", "on") properly
- Includes appropriate error checking

## REQUIRED OUTPUT FORMAT
You MUST provide your response in exactly this format:

<rating>NUMBER</rating>
<reasoning>
[Detailed explanation covering:
- How visual evidence supports/contradicts the program’s logic
- Specific strengths and weaknesses identified
- Analysis of 3D spatial reasoning approach
- Evaluation of intermediate execution results
- Missed opportunities to use available tools
- Overall assessment based on all criteria]
</reasoning>
Where NUMBER is a decimal between 1.0 and 10.0.
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---

## APPENDIX: Available Tools Reference

The program had access to tool_counts tools total: num_basic_tools basic tools and
num_created_tools learned tools.

### Basic Tools (Level 0)
tool_signature, tool_docstring

### Learned Tools (Level 1+)
tool_signature, tool_docstring
 	

Prompt 2: Abstraction Potential Analysis� �
You are an expert at analyzing visual reasoning programs to identify common patterns that

could be abstracted into reusable functions.

## Your Task
Analyze num_cluster_examples visual reasoning examples to:
1. Identify common computational patterns across examples
2. Group them into clusters based on shared functionality
3. Rate each cluster’s abstraction potential (0-10 scale)

## Examples to Analyze
examples (question, program solution)

## Clustering Criteria
Identify clusters based on:
1. **Common computational patterns** - e.g., finding largest/smallest, counting with

conditions
2. **Similar operations sequence** - e.g., locate -> filter -> compute -> compare
3. **Shared logic structure** - e.g., iteration patterns, comparison logic
4. **Abstractable functionality** - can be parameterized into a reusable function

## Evaluation Requirements
### For Each Cluster Provide:
- **Example IDs** that belong to it
- **Common pattern** explanation
- **Parameters** that vary between examples
- **Abstraction potential rating** (0-10) based on:

* How well the pattern generalizes

* Parameter variability coverage

* Clarity of the abstraction

* Reusability across similar tasks
- **Reasoning** for the rating

### Critical Constraints
- **Each example must belong to exactly ONE cluster or be marked as unclustered**
- Focus on computational patterns, not surface similarities
- Only create clusters with strong shared patterns

## Response Format
Provide your analysis using this exact format. Include as many cluster blocks as needed,

followed by an optional unclustered block:

‘‘‘
<cluster>
<example_ids>[comma-separated list of example IDs]</example_ids>
<pattern>[Description of the common computational pattern]</pattern>
<parameters>[List of parameters that vary between examples]</parameters>
<abstraction_potential>[Rating from 0-10]</abstraction_potential>
<reasoning>[Explanation for the rating and how the pattern could be abstracted]</reasoning>
</cluster>

[Additional <cluster> blocks as needed...]

<unclustered>
<example_ids>[comma-separated list of example IDs that don’t fit clusters]</example_ids>
<reasoning>[Explanation of why these examples don’t cluster well]</reasoning>
</unclustered>
‘‘‘

**Remember:** Every example ID must appear in exactly ONE cluster or in the unclustered group.
 	
Prompt 3: Question Complexity Rating
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� �
You are an expert in evaluating the complexity of 3D spatial reasoning questions. Your task is

to assign a complexity score (1.0 - 10.0 scale) to a single question based on its
inherent spatial reasoning difficulty.

## QUESTION TO EVALUATE

**Question:** question

**Answer Type:** answer type: float/integer/multiple-choice/etc.

## EVALUATION FRAMEWORK

### 1. **3D Spatial Reasoning Requirements**
- Does the question require understanding of 2D (pixel/image space) vs 3D (real-world)

measurements?
- Does it involve depth understanding and distance-from-camera concepts?
- Does it require 3D size calculations or understanding that same 2D size at different depths

means different 3D sizes?
- Does it involve 3D distance calculations (combining 2D distance and depth differences)?
- Does it require converting between measurement spaces?

### 2. **Spatial Relationship Complexity**
- How many objects are involved in the spatial reasoning?
- Types of relationships:

- Simple property identification (color, material, count)
- Spatial relationships (distance, size comparison, relative position)
- Complex spatial relationships (e.g., "to the right of X and behind Y")

- Does it require multi-step reasoning with intermediate conclusions?
- Comparative judgments vs. absolute measurements

### 3. **Cognitive Load and Constraints**
- Number of constraints or conditions that must be simultaneously satisfied
- Need to identify and distinguish between multiple candidate objects
- Hypothetical or conditional reasoning ("if X is Y meters, then...")
- Handling of multiple objects with potentially ambiguous descriptions
- Container relationships (objects "in" or "on" other objects)

### 4. **Calculation and Quantitative Complexity**
- Simple identification or counting vs. numerical calculations
- Ratio, proportion, or percentage calculations
- Multiple measurement comparisons
- Distance or size computations requiring formulas
- Precision requirements

### 5. **Answer Type Indicators**
- **yes/no (binary):** Often simpler verification tasks but can be complex depending on what’s

being verified
- **multiple choice (str with options):** Requires discrimination among bounded options
- **numerical (float/int):** Often requires precise calculations and measurements
- **open string:** May require identification and categorization

## COMPLEXITY SCORING GUIDELINES

Consider the full spectrum of complexity:

**Lower end:** Simple, direct questions requiring minimal spatial reasoning
- Single object property identification
- Basic counting
- Simple yes/no verification with clear criteria

**Middle range:** Moderate spatial reasoning and calculation
- Size or distance comparisons between pairs of objects
- Simple ratio calculations
- Object identification with multiple constraints
- Basic 2D-to-3D conversions

**Higher end:** Complex multi-step spatial reasoning
- Multiple object comparisons with numerous constraints
- Complex calculations involving combined measurements
- Hypothetical reasoning with conditional calculations
- Spatial relationships involving many objects with interdependencies
- Ratios of combined or derived quantities

Assign a score on the scale of 1.0 - 10.0 based on the question’s position in this complexity
spectrum. Consider ALL evaluation dimensions together.

## REQUIRED OUTPUT FORMAT

Provide your response in EXACTLY this format:

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

<score>X.X</score>
<reasoning>
[Detailed explanation covering:
- Which evaluation dimensions contribute most to complexity
- Specific aspects that increase or decrease difficulty
- Why this score is appropriate
- Key spatial reasoning challenges in the question]
</reasoning>

The score should be a decimal number between 1.0 and 10.0. Use your judgment to place the
question appropriately on the complexity spectrum.
 	

F COMPLETE TVP ALGORITHM
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Algorithm 1 Transductive Visual Programming (TVP) Pipeline

Input: Dataset D = {(Ii, qi)}Ni=1 (images, questions)
1: Initialize: Example Library E ← ∅, Tool Library T ← {predefined tools}
2: Parameters: quality threshold τq , abstraction interval na, deduplication interval nd

3: for iteration t = 1 to T do
4: for each question qi ∈ D do
5: # Step 1: Retrieve similar examples
6: Esim ← RetrieveSimilar(E , qi, k = 3) ▷ Exclude qi itself
7: # Step 2: Generate program candidates
8: C ← ∅
9: for j = 1 to m do ▷ m candidates per question

10: pj ← LLMprog(qi, Esim, T ) ▷ In-context learning
11: C ← C ∪ {pj}
12: end for
13: # Step 3: Execute and filter
14: Csucc ← ∅
15: for each pj ∈ C do
16: resultj , namespacej ← Execute(pj , Ii, T )
17: if resultj ̸= None ∧ ¬error then
18: Csucc ← Csucc ∪ {(pj , resultj , namespacej)}
19: end if
20: end for
21: # Step 4: Judge quality with vision model
22: for each (pj , resultj , namespacej) ∈ Csucc do
23: qualityj ← LLMjudge(qi, pj , namespacej , Ii) ▷ 1-10 scale
24: end for
25: # Step 5: Select best and update library
26: p∗, quality∗, namespace∗ ← argmaxj qualityj
27: if quality∗ ≥ τq then
28: e← Example(qi, p∗, quality∗, namespace∗)
29: if ∃e′ ∈ E with e′.q = qi then ▷ Update existing
30: if quality∗ > e′.quality or different tools used then
31: E ← (E \ {e′}) ∪ {e}
32: end if
33: else
34: E ← E ∪ {e} ▷ Add new
35: end if
36: end if
37: # Step 6: Abstraction interval
38: if |E| mod na = 0 then
39: T ← AbstractTools(E , T ) ▷ See Algorithm 2
40: end if
41: # Step 7: Deduplication interval
42: if |E| mod nd = 0 then
43: T ← DeduplicateTools(T ) ▷ See Algorithm 4
44: end if
45: end for
46: end for
47: return E , T
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Algorithm 2 AbstractTools - Tool Abstraction from Example Clusters

Input: Example Library E , Tool Library T
1: Parameters: similarity threshold τsim = 0.8, cluster size threshold τcluster = 4, potential thresh-

old τpotential = 9.0
2: # Step 1: Filter eligible examples
3: Eeligible ← {e ∈ E : e.status ̸= ”abstracted”}
4: # Step 2: Cluster by similarity
5: G ← ClusterBySimilarity(Eeligible, τsim)
6: for each cluster G ∈ G with |G| ≥ τcluster do
7: # Step 3: Analyze cluster for patterns
8: pattern, potential← LLMcluster(G)
9: if potential ≥ τpotential then ▷ Abstraction potential threshold

10: # Step 4: Create tool with retry
11: for retry = 1 to Rmax do
12: if retry = 1 then
13: t← LLMabstract(G, pattern, T )
14: else
15: t← LLMabstract(G, pattern, T , feedback)
16: end if
17: # Step 5: Validate tool
18: val← ValidateTool(t, G, T ) ▷ See Algorithm 3
19: if val.passed then
20: T ← T ∪ {t}
21: # Update examples with new tool
22: for each e ∈ G with successful rewrite do
23: e.program← val.rewritten[e]
24: e.status← ”abstracted”
25: e.tools used← e.tools used ∪ {t}
26: end for
27: break
28: else
29: feedback← val.errors ▷ For retry
30: end if
31: end for
32: end if
33: end for
34: return T
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Algorithm 3 ValidateTool - Two-Stage Tool Validation

Input: Tool t, Examples G, Tool Library T
Output: Validation result with rewritten programs

1: # Stage 1: Execution validation
2: successes← 0, rewrites← {}
3: for each example e ∈ G do
4: for retry = 1 to Rrewrite do
5: p′ ← RewriteProgram(e.program, t)
6: result′, namespace′ ← Execute(p′, e.image, T ∪ {t})
7: if result′ ̸= None ∧ ¬error then
8: successes← successes + 1
9: rewrites[e]← (p′, result′, namespace′)

10: break
11: end if
12: end for
13: if successes/|G| < 1.0 then ▷ Early exit
14: return {passed : False, errors : execution failures}
15: end if
16: end for
17: # Stage 2: Correctness validation for divergent results
18: correct← 0, divergent← 0
19: for each e ∈ G with successful rewrite do
20: if rewrites[e].result ̸= e.result then
21: divergent← divergent + 1
22: verdict← LLMcorrect(e, rewrites[e], e.image)
23: if verdict = ”CORRECT” then
24: correct← correct + 1
25: end if
26: end if
27: end for
28: overall correct← (|G| − divergent + correct)/|G|
29: if overall correct ≥ 0.85 then
30: return {passed : True, rewrites : rewrites}
31: else
32: return {passed : False, errors : correctness failures}
33: end if
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Algorithm 4 DeduplicateTools - Merge Similar Tools

Input: Tool Library T
1: # Filter eligible tools
2: Teligible ← {t ∈ T : t.level > 0 ∧ ¬t.deprecated}
3: # Find duplicate groups
4: M← LLMdedup(Teligible) ▷ Groups with similarity ≥ 0.95
5: for each merge group M ∈M do
6: # Get examples using these tools
7: EM ← {e ∈ E : ∃t ∈M, t ∈ e.tools used}
8: for retry = 1 to Rmerge do
9: if retry = 1 then

10: tmerged ← LLMmerge(M, strategy)
11: else
12: tmerged ← LLMmerge(M, strategy, feedback)
13: end if
14: val← ValidateTool(tmerged, EM , T )
15: if val.passed then
16: T ← T ∪ {tmerged}
17: for each t ∈M do
18: t.deprecated← True
19: t.reason← ”Merged into tmerged”
20: end for
21: # Update examples
22: for each e ∈ EM with successful rewrite do
23: Update e with merged tool
24: end for
25: break
26: else
27: feedback← val.errors
28: end if
29: end for
30: end for
31: return T
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