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ABSTRACT

We present a computationally efficient framework to model a wide range of popu-
lation structures with high order correlations and a large number of neurons. Our
method is based on a special type of Bayesian network that has linear inference time
and is founded upon the concept of contextual independence. Our framework is
both fast and accurate in approximating neural population structures. Furthermore,
our approach enables us to reliably quantify higher order neural correlations. We
test our method on simulated neural populations commonly used to generate higher
order correlations, as well as on publicly available large-scale neural recordings
from the Allen Brain Observatory. Our approach significantly outperforms other
models both in terms of statistical measures and alignment with experimental
evidence.

1 INTRODUCTION

With the rise and fast growth of simultaneous neural population recording, modeling population
structures and measuring correlations has become a focus of computational neuroscience (Abbott
& Dayan, 1999; Averbeck et al., 2006; Azeredo da Silveira & Rieke, 2021; Urai et al., 2022).
Theoretical and Experimental works have demonstrated the necessity of measuring population
correlations to investigate information coding (Moreno-Bote et al., 2014; Averbeck et al., 2006),
functional connectivity (Dunn et al., 2015), learning (Ganmor et al., 2011), and arousal (Vinck et al.,
2015; Doiron et al., 2016). Despite significant progress in recent years, research on measurement and
analysis of population correlations still faces significant challenges (Kohn et al., 2016).

Exact measurement of population correlations is an NP-hard problem in the general case since it
requires computing every form of dependency among spiking neurons. As a result, researchers have
tried to come up with computationally efficient ways of approximation or indirect measurement of
neural correlations. Existing approaches are energy-based models rooted in statistical mechanics
where the energy function incorporates couplings between subsets of variables (here neurons) (Roudi
et al., 2009c; Tkačik et al., 2006; Sohl-Dickstein et al., 2011; Aurell & Ekeberg, 2012). However,
these methods often carry auxiliary (and even unrealistic) assumptions about the neural dynamics
and do not scale up for large populations (Roudi et al., 2009b).

Notably, generative models commonly used in other domains such as latent variable methods are
often not applicable to neural populations as spiking neural data is discrete and sparse (Zhao et al.,
2020). Furthermore, various parameters such as behavioural and emotional state of the animal affect
firing patterns of neurons even in sensory cortex (Urai et al., 2022). As a result, a recording long
enough to train these models contains many external variable changes and confounding factors that
make drawing scientific conclusions difficult.
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It is important to distinguish whether modeling population correlations is important for predicting
joint activity (called encoding) vs whether they are a channel for down-stream information flow (call
decoding) (Pillow et al., 2008). In the encoding paradigm, one needs to know whether it is important
to include certain correlations in a generative model of the spiking activity. In the decoding paradigm,
one can, e.g., compare a classifier’s stimulus prediction accuracy on original and shuffled neural data
to assess population correlations (Averbeck et al., 2006; Pillow et al., 2008; Christensen & Pillow,
2022; Runyan et al., 2017). Importantly, the type of used classifier significantly affects the result with
no confirmation that the brain utilizes a similar strategy Averbeck et al. (2006).

Here we work in the encoding paradigm and take a probabilistic approach by modeling the joint
probability distribution of neural activity with Bayesian networks. Inference is NP-hard in general
Bayesian networks (Cooper, 1990), making them impractical to model the population structure.
Therefore, we utilize a special family of Bayesian networks with linear inference time, first introduced
as “Arithmetic circuits” (Darwiche, 2003; Shen et al., 2016). This family of networks has been
designed to take advantage of “context-specific independence” of variables mainly for the purpose of
computational efficacy, which also makes it suitable to extract local structures in the data (Boutilier
et al., 1996; Shen et al., 2020). We use a modification (and equivalent (Rooshenas & Lowd, 2014))
of arithmetic circuits, Sum-Product Networks (SPNs). SPNs are more known and used by the
community (Poon & Domingos, 2011; Sanchez-Cauce et al., 2021).

In particular, we adapt sum-product networks to fit spiking neural data in order to capture a wide range
of population correlation/structure from local to global in polynomial time. Due to the efficiency
of architecture learning and inference in SPNs, population structure estimation is polynomial in the
size of the population. In addition, we suggest a measure of high order population correlations based
on our framework. Our results include fitting on neural population simulations constructed with
higher order correlations, as well as large-scale neural recording in different brain regions on more
than 20 mice. Our framework outperforms both energy-based and latent variable models for neural
population structure estimation.

2 PROBLEM DEFINITION AND RELATED WORK

One of the critical problems in computational neuroscience is providing an accurate statistical
description of spike trains in a population of neurons. As the full representation of the data, i.e. raw
spike times, is high dimensional, spike trains are binned into small time windows. The time bin should
be short enough so each neuron spikes at most once in each bin (with some amount of tolerance in
potentially losing some spikes). In addition, this time bin should be large enough that the assumption
of temporal independence of spikes holds. With this time binning strategy, each neuron’s activity is a
binary variable (Si for neuron i is equal to 1 if there is a spike in the corresponding bin, otherwise 0)
and each time bin represents an i.i.d sample/instance. Therefore, spike trains of N neurons for the
duration of T would be represented as a binary matrix DK×N where K = T/∆t in which ∆t is the
bin length (Figure 1, left plot). Consequently, the population activity has a probabilistic representation
P (S1, . . . , SN ), and the problem turns into modelling this joint distribution, given the data. More
specifically, the problem is to find a model m∗ from a family of models M , and optimize its free
parameters Θm so as to satisfy the following:

m∗, θ∗m = argmax
m∈M,θ∈Θm

1

K

K∑
k=1

log
(
P (dk1×N |m, θ)

)
(1)

In the existing approaches, M is set to maximum entropy (Ising) models, which are energy-based
methods rooted in statistical mechanics (Roudi et al., 2009c; Schneidman et al., 2006). Since learning
maximum entropy models is computationally very expensive, these models are restricted to estimate
the statistical properties of the population up to a constant order. However, going beyond second
order is not computationally feasible. In fact, building the exact generative model is an intractable
problem in the general case even for the second order (pairwise) correlations.

Therefore, even a Pairwise Maximum Entropy (PME) model requires further estimation where
more accurate approximation algorithms requires thousands of samples for each pair, making them
impossible to be used for large populations of neurons (Roudi et al., 2009c; Tkačik et al., 2006;
Sohl-Dickstein et al., 2011; Aurell & Ekeberg, 2012). Moreover, there exist plausible scenarios, such
as a dichotomized common input to loosely coupled neurons, in which pairwise correlations are

2



Published as a conference paper at ICLR 2023

negligible compared to higher order correlations (Macke et al., 2011b; Amari et al., 2003). In fact,
low order correlations do not necessarily capture the population structure even when the structure can
be explained by “simple” models (Beretta et al., 2018; de Mulatier et al., 2021). Overall, PME is
neither computationally efficient nor accurate in population structure estimation.

To improve the structure estimation, some methods modelled higher order correlations through the
energy based approaches, e.g. “k-pairwise” correlations(Tkačik et al., 2014), Restricted Boltzmann
Machines (RBMs) on top of pair-wised correlations (semi RBMS (sRBMs)) (Köster et al., 2014),
and sparse low-order correlations (Ganmor et al., 2011). Founded upon energy based models, these
methods also needs computationally expensive sampling strategies to estimate the partition function.
Moreover, to approximate the partition function, these methods often rely on pseudo-likelihoods
which needs extensive amount of data points to be a accurate.

Here we use a special type of Bayesian network with linear inference, and consequently fast learning
time, to estimate distributions of joint neural activity. Our network approximates these distributions
by ignoring correlations based on their effect size, rather than statistical order. Moreover, the
normalization process to obtain real probability values is also linear in the size of the network. Thus,
it is significantly more successful than energy-based models both in terms of efficiency and accuracy.

3 MODEL

Our framework is based on Sum-Product Networks (SPNs). An SPN is a rooted directed acyclic
graph representing a joint probability distribution of given variables. This distribution is the result of
a hierarchical combination of alternating mixtures (sum nodes) and factorizations (product nodes),
with given variables as the leaf nodes of the network (Poon & Domingos, 2011; Sanchez-Cauce et al.,
2021). Specifically, each leaf node (a node with no children) represents a univariate probability
distribution. When the variable is categorical, the leaf node is a variable indicator (I(x)). The scope
of each leaf node is a singleton where its element is the variable that the leaf represents. Other nodes
are either sum or product. A product node represents the product of its children (connected by a link).
A sum node represents the (normalized) weighted sum of its children. The weight of each child is
shown as the label of the link from the sum node to that child. The scope of sum and product nodes is
the union of scopes of their children. Starting from a leaf as a one-node SPN, sum product networks
can be built bottom-up by combining smaller SPNs through sum or product nodes. The root of the
SPN represents a valid joint probability distribution if the SPN is complete and decomposable. An
SPN is complete iff all children of each sum node have the same scope. A sum-product network is
decomposable iff all children of each product node have disjoint scopes.

To model the joint probability distribution of the given variables, the weights on the links of sum nodes
should be learned with a learning algorithm such as gradient descent or Expectation-Maximization
(EM), given the data (Sanchez-Cauce et al., 2021). Similar to other Bayesian networks, the structure
of the graph needs to be determined beforehand. One approach is to use a random dense graph and
rely on the parameter learning algorithm to select important components. This strategy requires data
sets orders of magnitudes larger than that gathered in neural experiments. Network structure can
also be learned from the data directly based on the general computational properties of sum and
product nodes (Gens & Pedro, 2013). Sum nodes represent the sum of probability distributions over
the same set of variables (see completeness above). Therefore, they explain the data best if their child
distributions represent disjoint states, or in other words different “contexts” in the data. A Product
node computes the joint distribution of its children with a product, explicitly carrying an assumption
of independence among the factors contributing to the product. Children of a product node can be
determined by using a dependence/correlation measure such as mutual information as a link/edge
between each pair of features, subjected to a threshold. In other words, to make a tree/sub-tree with
a product node as the root, a graph (totally different from the main SPN tree) is built where two
feature nodes are connected if and only if they are considered dependent according to a criterion.
Each connected component of this graph is a sub-tree in the sum-product architecture where its root
is linked to the root product node.

Picturing the data in matrix form where each row is an instance (or sample) and each column
represents a feature (or variable), one can think of the action of a sum node as splitting the rows
(samples) and that of a product node as splitting the columns (features). This means that recursive
splittings of data rows (e.g. by a common clustering method) producing a sum node, and based on
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Figure 1: Modelling Spiking activity with Sum Product Network(SPN) Left: Neural population
activity is often represented by a binary matrix, obtained from binning each neuron’s spike train (here
10 ms). Here, the firing rates of neurons 1 to 3 are 10, 20, and 40 Hz. Due to the high correlation of
these neurons, bins with all 1, or all 0 are more frequent compared to the activity of 3 independent
neurons with the same firing rates. Right: An spn tree (here nSPN1) fit to the population in the
left plot. Since it assumes independence, its weights reflect the mean probability of a spike in each
time bin after training (shown in blue). Given a data instance (here 001), each node represents the
probability of its children, meaning that the root represents the probability (likelihood) of the instance.

variables (e.g. via performing independence tests) resulting in a product node would give us a suitable
SPN structure for the given data (Gens & Pedro, 2013; Vergari et al., 2015).

3.1 NEURAL POPULATION ANALYSIS WITH nSPNS

We construct a family of SPNs that we call Neural SPNs (nSPN) to model the joint probability
distribution of spiking in populations of neurons. These models are represented by directed graphs
where leaves of an nSPN representing spiking activity of N neurons correspond to Isi and Is̄i
(1 ≤ i ≤ N) indicating whether neuron i fired or not in a given time bin (see section 2).

Shallow architecture of nSPNs: The simplest structure of an nSPN consists of a product node
as a root, linked to N sum nodes. Each sum node represents the spike probability of a neuron i,
linked to Isi and Is̄i leaf nodes. This model, shown as nSPN1 is basically a Naive Bayes model,
assuming complete independence among neurons. The right plot in figure 1 shows an example
nSPN1 trained on the joint activity of three neurons in the left plot. As mentioned before, each node
of an SPN represents the probability of the leaves of the (sub-)tree of which it is the root. As a result,
(normalized) link weights of each sum node are aligned with the mean spike probability of the related
neuron (note the assumption of independence). Furthermore, given an assignment of probabilities
to the leaf nodes and a configuration of spiking activity, the root represents the probability of that
configuration’s occurrence according to the model (shown by the red number near the root node).

Within the SPN framework, a simple extension of the Naive Bayes model involves the introduction of
multiple contexts, with population spiking being described by a Naive Bayes assumption conditioned
on the context. If there are two such contexts with associated probability, the model consists of a
sum node as the root linked to two product nodes, each of which a root of an nSPN1 (sub)-tree.
Similarly, a model can include an arbitrary number of contexts by increasing the number of product
nodes under the root, e.g. nSPN b for b product nodes/contexts.

In principle, one can construct a shallow graph sufficient to model any data set by adding enough
product nodes. One problem with this approach is that there exist simple networks with deeper
structure for which a 3-layer model like we have described will require an exponential number of
nodes (Delalleau & Bengio, 2011), which in addition to tractability also raises the issue of data
limitations. Moreover, all existing parameter learning algorithms for SPNs find local optima and
shallow networks get stuck in local optima more frequently. Most importantly, when the data is limited
deeper architectures of our framework avoid over-fitting as their structure implements regularization.

Deep architecture of nSPNs: As computing all correlations is intractable, we seek an approach
for constructing graphs that trades some fidelity for efficiency. SPN structure learning algorithms
naturally achieve that by separating low correlation variables (according to an independence test
and threshold on its p-value) at a product node. Importantly, in deep layers of an SPN, variables are
considered independent in a given context. We utilized learnSPN (Vergari et al., 2015; Molina et al.,
2019), shown by SPN l, due to its more conservative approach for splitting. This method has two
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hyper-parameters, an independence threshold and a minimum number of data instances to continue
splitting. These hyper parameters can be tuned either by a cross validation procedure or based on the
data size. Notably, due to our small data size, we applied a Laplace-like regularization to the method
to prevent pair-weights of [0, 1] (absolute zero makes the log-likelihood -inf, so we regularized it to
[10−5, 1− 10−5].)

Measure of Neural Correlation: The simplest architecture, nSPN1, assumes independence be-
tween all neurons. On the other hand, the more complicated structures in our framework only assume
independence within each context where the number of contexts are always more than 1. This means
that in stationary periods where the firing patterns of neurons do not change significantly, nSPN1 fits
to the data as well as more complex structures if and only if all neurons are independent of each other.
Any improvement in goodness of fit for more complicated structures is due to the existence of neural
correlations. As a result, we can use the difference between the average log-likelihood (equation 1)
of the best fitting nSPN and nSPN1 as a measure for neural correlations. For example, if our best
model is nSPN∗, our measure for population neural correlation is ∆llSPN = llnSPN∗ − llnSPN1 .

4 RESULTS

We start with a simulation of population activity in which we can control the presence of fluctuations.
We use a network of homogeneous exponential integrate-and-fire (EIF) neurons with common
fluctuating input where each neuron’s membrane voltage, Vi(1 ≤ i ≤ N) evolves as follows:

τmV ′
i = −Vi +∆T e

Vi−VS
∆T + Ii(t), Ii(t) =

√
σ2τm

[√
1− λξi(t) +

√
λξc(t)

]
. (2)

Notably, it has been shown that pairwise maximum entropy (PME) models are incapable of estimating
this network very well especially when the firing rate of neurons is low, neural correlations are high,
or the population size is large Amari et al. (2003); Macke et al. (2011b); Leen & Shea-Brown
(2015). Moreover, experimental studies show the existence of higher order correlations in the brain
Binder & Powers (2001); Khuc-Trong & Rieke (2008). Therefore, the network above has been used
as a tool to assess the performance of methods for capturing beyond pairwise correlations Macke
et al. (2011b); Leen & Shea-Brown (2015). Similarly, we generate multiple data sets using varying
parameters to get different values for the mean activity µ and (pairwise) correlation ρ and compare the
goodness of fit between nSPNN/2 and PME models for population size of N (all parameter values
in Supplementary Material). Note that nSPNN/2 is chosen to have the same number number of
parameters as the PME, N(N +1)/2 (nSPNN/2 has N2/2− 1 free parameters to be more precise).

Pairwise Maximum Entropy models have minimal assumptions about the spiking pattern of the
population beyond the firing rate of each neuron and the relationship between each two neurons. In
full generality, a PME model is complex with many parameters, and is computationally expensive in
general. In fact, as mentioned before, an exact fit of PME is NP-hard. Therefore, we instead fit to the
probability that the a population of N neurons will generate k spikes overall in a single time bin, i.e.:

PPME(k) ∝
(
N

k

)
exp

(
αk + βk2

)
(3)

where α and β are free parameters, obtained from fitting the model to population activity. Importantly,
instead of fitting the PME to the whole joint distribution we obtained α and β by directly optimizing
the above equation. This measure reflects the maximum possible power of any PME model without
any need to actually obtain all variables (it essentially provides a bound on the performance of the
full model). Note that, the distribution of average population activity fully reflects the goodness of fit
in fully homogeneous populations Roudi et al. (2009a). However, there is no guarantee that existing
approximation methods for PMEs achieve such fit.

As opposed to the PME, we fitted an nSPN to the whole joint distribution (200 iterations of
Expectation Maximization (EM) implemented in SPFlow library Molina et al. (2019)), giving
the PME a huge advantage. Specifically, the difference between the model’s prediction and the
EIF (total) population spike distribution is quantified with the Jenson-Shannon (JS)-divergence of
1
2D

(
Pmodel(k)∥M(k)

)
+ 1

2D
(
PEIF (k)∥M(k)

)
where M is the averaged distribution, i.e. M(k) =

1
2Pmodel(k) +

1
2PEIF (k) and D(.||.) is the Kullback–Leibler (KL)-divergence. Since JS-div scales

with log(N), we report the normalized value, i.e. JS-div/log(N). We set λ = .30 and .59 to make
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the pairwise-correlation ρ equal to .1 and .25 respectively, keeping other parameters the same as
above. In both cases, the mean activity rate µ is .1. The number of neurons in the network is
N ∈ [8, 16, 32, 64, 128], and each data point is obtained from training on 100000 and testing on
another 100000 samples. As shown in the left panel of figure 2, nSPN models the EIF network
significantly better than PME (the JS-divergence is orders of magnitude lower) especially when the
number of neurons and correlation (λ) are high (dotted lines λ = .59, solid lines λ = .3).

We also compared our method to other approaches for capturing joint probability distributions of
spiking activity. We trained a Bernoulli Restricted Boltzmann Machine (RBM) with N visible and
N/2 hidden units (N2/2 free parameters). The JS-div of the RBM was an order of magnitude higher
than the SPN (figure 2, left plot). Moreover, the SPN scales better with the increase of N (Note that
the y-axis is in log-scale). Importantly, the RBM is one of the best known latent-variable model in
capturing population correlations (Köster et al., 2014).

One of the goals of these benchmarks is to assess model performance as a function of population
size (N ). Hence in some simulations we include a single, global input to all neurons (governed by
parameter λ in the equation below). In addition, we introduce correlated subpopulations by adding a
common input to specific subpopulation both pairwise (via λ2) and in quadruples (via λ4).

Ii(t) = γ +
√
σ2τm

[√
1− λξi(t) +

√
λ− (λ2 + λ4)ξc(t) +

√
λ2ξi,2(t) +

√
λ4ξi,4(t)

]
. (4)

For simplicity, we assumed these common inputs are among adjacent nodes: ∀1 ≤ k ≤ N/2 :
ξ2k−1,2(t) = ξ2k,2(t), and ∀1 ≤ k ≤ N/4 : ξ4k−3,2(t) = · · · = ξ4k,2(t). We repeated the previous
set of fits (λ = .59, .3), this time with λ2 = λ4 = .05. As demonstrated in figure 2 middle left plot,
SPN outperformed the other models by orders of magnitude again.

We also performed simulations with heterogeneous inputs, resulting in heterogeneous population
activity. Neurons are divided into four groups with different voltage reset values and different values
of λ (values can be found in the supplementary material). This network was simluated with both
λ2 = λ4 = 0 (Figure 2 middle-right: dotted lines) and λ2 = λ4 = .05 (Figure 2 middle-right: solid
lines). Our SPN significantly outperformed the other models. Note that due to the heterogeneous
network activity, the PME direct fitting results are not a valid lower-bound for JS-div of a pairwise
model anymore.

We also tested recurrent networks with heterogeneous connectivity. We analyzed a well-known
connected “balanced" network of excitatory and inhibitory spiking neurons Brunel (2000). The
dynamics of the membrane voltage of each neuron in this network is:

τmV ′
i = −Vi +RIi(t), RIi(t) = τm

∑
j

Jij
∑
k

δ(t− tkj −D), (5)

where Ii(t) are the synaptic currents caused by spikes arriving at synapses of neuron i (more details
in the supplementary material). We specifically fit the models to two stable setups (figure 8, c and d)
of the original paper with “stationary” and “slow oscillation” global activity Brunel (2000). As shown
in the right plot of figure 2, JS-div of the SPN was orders of magnitude smaller than other methods.
Importantly, here the size of the networks were always 1000, and each fitting was on the first N
excitatory neurons. Moreover, similar to our previous network, JS-div from fitting PME directly to
the population activity is no longer a valid lower-bound for pairwise models.

EXPERIMENTAL NEURAL RECORDINGS

To assess our method on experimental neural recordings we modelled the neural data from the
Neuropixels Visual Coding data set of the Allen Brain Observatory (https://observatory.brain-map.org)
(Siegle et al., 2021). In this data set, different stimuli (Gabors, flashes, drifting gratings, etc) were
shown to 26 mice while the neural activity of their visual cortical and sub-cortical regions were
recorded simultaneously with multiple Neuropixels probes. We modelled the neural population
structure during the viewing of drifting gratings in 4 directions ([0◦, 45◦, 90◦, 135◦]) with the contrast
level of .9. Each of these 4 stimuli was shown to 26 mice 75 times. We analyzed the neural activity
(spikes) of six regions in the visual cortex: VISp, VISl, VISal, VISpm, VISrl, VISam. Following
other studies analyzing neural correlations Köster et al. (2014); Tkačik et al. (2014), the time bin was
set to ∆t = 20ms, balancing for minimizing spike loss due to binning, and accounting for activity
delays between neurons.
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Figure 2: Simulation of neural population activity confirms the practicality of our SPN-based
framework to measure correlations among neurons. Left: Normalized JS-divergence versus
population size for two conditions with similar mean activity rate (µ = .10) but different correlations
(dotted lines: λ = .59, solid lines: λ = .30). nSPN outperformed both RBM, as well as the best
possible PME. Middle left: Similar to the left plot, but with additional common inputs to pairs and
quadruples (λ2 = λ4 = 0.05; dotted lines: λ = .59, solid lines: λ = .30). Middle right: Same
comparison on a heterogeneous network with or without local inputs (dotted lines: λ2 = λ4 = 0,
solid lines: λ2 = λ4 = 0.05). Right: Same analysis on N excitatory neurons of a well-known
sparsely connected network with total population size of 1000 in two regimes, stationary global
activity with irregularly firing neurons (dotted lines), and slow oscillation of global activity with very
rare irregular firing (solid lines).

Each stimulus duration was 2 seconds. We analyze the response from 400ms after stimulus onset
to 800ms after stimulus onset. The delay is to make sure the corresponding signal has reached the
neurons in all areas. Moreover, individual neurons’ change upon exposure to the same sensory stimuli
(via adaptation), hence the short period. For each grating direction, we concatenated data from 5
presentations of 400ms to get 100 data points. The order of presentation of grating directions is
random. In order to minimize the effects of state changes in the animal, we concatenate trials from
subsequent presentations of the same grating direction. This data processing results in 15 blocks
of population activity per each tuple (mouse, direction, area), each of which we modelled with a
nSPN l. Notably, we used the same set of hyper parameters for all fits. Hyper parameter tuning
of nSPN l for each fit via cross validation improved the overall fit only slightly, demonstrating the
robustness of our method.

We also fit our simplest structure nSPN1 (Naive Bayes) in order to have a correlation-free baseline
and compute the difference, ∆llSPN . We fit both models on a modified version of data in which we
shuffle the spikes of each neuron in the 400ms of single stimulus showing for the primary visual
cortical population (as the most sensitive area to events). We observed a large difference between
∆llSPN in the original and shuffled data. This difference confirmed our assumption about ∆SPN in
the original data is mostly the product of neural correlations (Figure 3 left).

Since the population is not homogeneous, this time we used Minimum Flow Probability (MFP)
(Sohl-Dickstein et al., 2011) that approximates pairwise maximum entropy variables through a direct
fit to the data (implementation of (Lee & Daniels, 2019)). To the best of our knowledge this is the
most accurate methods of pairwise approximation. We also fitted an RBM to the data. The number of
hidden units in the RBM was determined through 10-fold cross-validation within the 100 samples.

The (total) population activity is not an ideal measure for performing model comparison. However,
given the number of samples, i.e. 100, more desirable measures are prohibitive. Compared to other
models, nSPN produced significantly lower normalized JS-div for all of the 6 regions (Figure 3,
middle plot). In fact, J-div of nSPN was lower than other methods for nearly every single (animal,
area, direction). The right plot in figure 3 shows this comparison v.s. RBM.

We also tested our model on four short (340 ms) movie clips, cut from the “natural movie one” stimuli
of the same data set, which is a one-shot 30 second video repeated 60 times. The frame rate is 30
Hz, making each of our clip consists of 10 frames, starting from frame number 240, 390, 490 and
890. Similar to the previous stimulus, we grouped 5 consequent clips together, which resulted in
12 blocks of population activity. The time bin was set to 17 ms, meaning that each block included
100 data points. We repeated the analysis described above for this stimulus type and got consistent
results (Figure 4). Notably, ∆llSPN was higher in general in this stimulus, probably because of
longer time difference (at least 30 seconds) among the 5 trials of each group. Because of this, very
high computational cost, and poor results on a simpler stimulus type, we did not include MPF in

7



Published as a conference paper at ICLR 2023

Figure 3: Modeling high order correlations in neural recordings during drifting grating stimulus.
Tested on large-scale Neuropixel recordings from mouse visual cortex upon exposure to during
drifting grating stimulus, nSPNs explains neural population structure and correlations in different
regions of mouse brain significantly better than pairwise entropy model estimation (MPF) and RBM.
Left: Distributions of ∆llSPN by experiment for the unshuffled (orange) vs shuffled (blue) spike
distributions. Middle: Box plots of the distribution of normalized JS-divergence over experimental
sessions by visual cortical area. Right: Comparison of JS-divergence of SPN with RBM for every
single (animal, area, direction) (each dot).

Figure 4: Modeling high order correlations in neural recordings during natural movies. Same
analysis discussed in figure 3 but on four different natural movie clips. Left: Distributions of ∆llSPN

by experiment for the unshuffled (orange) vs shuffled (blue) spike distributions. Middle: Box plots
of the distribution of normalized JS-div over experimental sessions by visual cortical area. Right:
Comparison of JS-div of SPN with RBM for every single (animal, area, movie clip) (each dot).

our analysis for this stimulus. Moreover, as observed in the right plot of figure 4, superiority of our
model is bolder compared to the simpler stimulus of drifting gratings (right plot of figure 3).

FURTHER ANALYSIS ON THE ROLE OF NEURAL CORRELATIONS

Without knowledge of the ground truth, data interpretation is much harder especially when the data
is limited and high dimensional. To further investigate the role of (spatial) neural correlations in
population activity we extended our analysis to dynamic latent models that look at each trial as
a whole (Macke et al., 2011a; Pfau et al., 2013; Gao et al., 2015). Therefore, these models take
long temporal correlations into account. While these models are usually applied to motor tasks
with longer trial duration, temporal correlations could affect the population structure in our tasks
as well, especially during the natural movie stimulus. We fit a Poisson Linear Dynamical System
(PLDS) with nuclear norm penalized rate estimation (Pfau et al., 2013) 1 to the population activity of
primary visual cortex (VISp) as example extensions of our analysis during both natural movie clips
and drifting gratings similar to our previous fits. The number of latent factors were determined by
leave-one-out-cross validation over trials (which were 5). As shown in the left plot of figure 5, JS-
divergence of nSPN were lower for every single stimulus and mouse except one (animal, stimulus)
pair, especially in the more complex stimuli, i.e. movie clips. Notably, latent dynamical systems have
demonstrated the ability to capture pairwise correlations, in addition to temporal dynamics of the

1code from: https://bitbucket.org/mackelab/pop_spike_dyn
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Figure 5: Further analysis on neural population correlation. (left) Poisson Linear Dynamical
systems which model temporal evolution and correlations of neural activity explain VISp population
structure worse than nSPN in almost all mice and stimulus conditions. (middle) The Pearson
correlation between ∆llspn and pupil diameter over experiments is significantly negative in visual
cortical areas. (right) Same approach applied on MPF, ∆llmpf can not fully capture this phenomenon.

system (e.g. temporal cross correlations in (Macke et al., 2011a). Therefore, this result suggests that
higher order short-term/spatial correlations (20 ms) plays a more crucial role here. Using mixtures,
nSPN can capture (discretized) temporal dynamics but (probably) not as good as methods with
explicit components of modelling dynamics.

Our second attempt on checking the validity of our conclusions involved previous neuroscience
literature. Many experiments have suggested that task engagement in the form of attention and arousal
has the effect of reducing neural correlations, decreasing the level of synchrony (Gandal et al., 2012;
Uhlhaas et al., 2009), and even measurable behavioral changes (Cohen & Maunsell, 2009). These
experiments are mostly based on very noisy data such as the Local Field Potential (LFP) and rough
estimates of signal frequency (Gandal et al., 2012; Pfeffer et al., 2022; Vinck et al., 2015). Having a
quantitatively reliable measure based on spiking data, i.e. ∆llSPN , we examined the effect of arousal
during drifting grating viewing. Specifically, in each animal we looked at the (ratio to minimum)
pupil diameter (a common measure of arousal in mice) changes at each of the chunks described
above for all directions. To alleviate the effect of trail-to-trial variability (e.g. caused by behavioral
state change) on neural correlations we removed (mouse, direction) pairs with ∆llSPN of more than
.25 in the primary visual area for the shuffled data. The mean distribution of Pearson correlation
coefficient between pupil diameter and ∆llSPN across all animals was significantly below zero for
all regions as shown in Fig. 5 (left). To the best of our knowledge, even with LFP data, there is no
work demonstrating the effect of arousal on higher visual areas during an experiment (See (Vinck
et al., 2015) for VISp).

We repeated the same process for MPF by using the difference between log-likelihood of the full
(first and second order) model with the first-order only version (second order variables set to zero).
The result was significantly different (Fig. 5, right). Importantly and as mentioned, previous literature
results (especially on VISp) are strongly in favour of the SPN results. Importantly, the stimulus in
the previous VISp study was also drifting gratings (Vinck et al., 2015). Moreover, this result further
demonstrates the inability of the PME in modelling the full joint population activity (as opposed to
the total population activity).

5 DISCUSSION

Correlations are an important channel of information in neural activity, with strong consequences
for coding properties. Using SPNs, we have constructed a computationally efficient approach to
modeling structure and correlations in populations of spiking neurons. Tested on simulated and
experimental data, our approach outperformed both energy-based and latent variable methods. Due
to the nature of our scientific question in this paper, i.e. population correlations, we focused on short
time spans in which the external variables and animal state remain constant. Our framework, however,
has the capacity to be applied more broadly in computational neuroscience, for example to capture
population dynamics in different time scales or as a de-mixing tool for coded features in individual or
population of neurons.
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Reproducibility: The data set used in this paper, Allen Brain Observatory, is publicly available
online. All parameters of the simulated data has been specified in the result section and/or the
supplementary material. Similarly, all parameters related to the methods are mentioned in the
results section and/or the supplementary material. In addition, all the code is based on open-
source repositories, cited in the results section. Finally, the code for data is available in https:
//github.com/koosha66/NeuralSPN.
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