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ABSTRACT

We propose artificial intelligent life (AILife) as a new perspective to approach ar-
tificial general intelligence, similar to a living organism in reality. Unlike machine
learning approaches that focus on reward functions and mathematical optimiza-
tions, AILife seeks to develop an artificial organism that learns by the mechanism
of biological neurons. AILife is composed of a biological-like neuron system to
learn from interactions with the world, a sensory system to feel the world, and
actuators to perform activities. We show a toy example to explain AILife.

1 INTRODUCTION

Artificial General Intelligence (AGI) Goertzel & Wang (2007) refers to intelligent systems that rea-
son, learn, and adapt to new scenarios in a way comparable to human intelligence. In the last
decade, machine learning paradigms, especially deep learning, have been widely regarded as the
most promising pathways to AGI, because they have been successful in various tasks. AlphaGo
Silver et al. (2016) beats the best human Go players, and ResNet Szegedy et al. (2017) surpasses
human vision for image recognition. But they still face many critical problems to reach AGI, such as
lacking generalization for multi-tasks Ruder (2017) and rare/unseen scenarios Ribeiro et al. (2016).

To date, human intelligence still is the only general intelligence. It is developed during interactions
with the real world. Infants perceive space and time by instinctively exploring the world through
watching, touching, and crawling Casasanto et al. (2010), and gradually develop more complicated
capabilities. Many attempts at machine learning have been proposed to mimic such a learning
process, e.g, reinforcement learning Matsuo et al. (2022) and autonomous intelligent agent LeCun
(2022). However, they cannot perceive space and time as humans do, and are fundamentally differ-
ent from human intelligence. Specifically, to solve a task, machine learning methods design mathe-
matical models for optimization, while living organisms (including human) learn through complex
communications among biological neurons, which are triggered by interacting with the world Shine
et al. (2019). Thanks to the advances in neuroscience, the basic mechanism of neuron commu-
nication within living organisms has been revealed Hawk et al. (2018), and that provides another
pathway (without mathematical reward functions and optimizations) to approach intelligence.

Inspired by that, we propose a new perspective to approach AGI, artificial intelligent life (AILife),
aiming at developing intelligence similar to living organisms. To achieve that, AILife involves two
key elements: 1) the interaction, AILife lives in a virtual/physical world and interacts with the world
following pre-defined activities (instincts), and 2) the learning mechanism, AILife learns by neuron
communications triggered by interactions, with biological-like artificial neuron systems.

2 ARTIFICIAL INTELLIGENT LIFE

AILife aims at developing intelligence by mimicking a living organism in reality. That is, an AIL-
ife instance interacts with the virtual/real world based on pre-defined activities, and such interac-
tions trigger neuron communications within biological-like neuron systems of AILife to develop
intelligence. To do that, an AILife instance includes an artificial neuron system to learn from in-
teractions by the mechanism of neuron communication, a sensory system to perceive the world,
and actuators to perform activities. The sensory signals and actuator actions form the input-to-
output circle for the neuron system to learn, similar to the conditioned stimulus in living organisms.
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Figure 1: The neuron system of P .

We provide a toy example (smart pinball) to explain AIL-
ife (code is available on Github1). We define a virtual one-
dimensional world, which has two barriers. A pinball lives
between barriers, and its pre-defined activity (instinct) is to
constantly move with an invariant speed. The physical rule
of this world is that barriers cannot be crossed, and thus the
pinball has to change direction when hits them. We expect the
pinball to be smart to realize this rule by interacting with the
barriers, so that it changes direction before hitting them.

To do that, we design smart pinball (P) based on the princi-
ple of AILife. Specifically, P contains: 1) a neuron system
implemented by spiking neural networks (SNN) Nunes et al.
(2022), which is capable of mimicking the biological learning

process Taherkhani et al. (2020); 2) a sensory system that includes an “eye” to see a short distance
in the front and a tactile “skin” to feel the hit; and 3) an actuator (“rudder”) to change direction. By
convention, we assume the neuron system with fixed neurons and adjustable connections Wang et al.
(2020). A neuron in SNN has inputs to receive signals from other neurons and outputs to fire signals.
The signals are transmitted as discrete spikes. When a neuron receives a spike from another neuron,
its membrane potential increases, based on the weight of the connection. The neuron fires when the
membrane potential reaches a threshold. After firing, the membrane potential returns to the initial
value. The learning of SNN is based on Spike-Timing Dependent Plasticity (STDP) Shouval et al.
(2010), which mimics the strengthen/weaken mechanism of connections among biological neurons.

Figure 2: The learning process of P .

The neuron system of P (Fig. 1) contains three neurons: 1) a
vision neuron (VN ) that fires when the “eye” sees a barrier; 2)
a pain neuron (PN ) that fires when the “skin” feels hitting a
barrier; and 3) an action neuron (AN ) that fires with threshold
δ to control the “rudder” to change direction. The connection
of the three neurons are VN → AN (with weight w1) and
PN → AN (with weight w2). We set the initial w1 ≪ δ
assuming there is no causal relationship between vision and
action in the beginning, and the initial w2 > δ as feeling pain
naturally drives P to change direction.

The learning process of P is shown in Fig. 2. Initially, P does
not know barriers cannot be crossed. Thus P keeps moving
in one direction (Fig. 2 1⃝) till it hits a barrier. The hit causes
PN to fire, which further causes AN to fire, due to PN → AN with large w2; and that makes
P change the moving direction (Fig. 2 2⃝ and 3⃝). The key point is that, at the same time, VN
also fires as P can see the barrier in front. According to STDP, the connection VN → AN is
strengthened (w1 increases) because VN and AN express a causal relationship. After a few rounds,
when VN → AN grows strong enough (w1 > δ), the firing of VN can cause AN to fire to change
direction (Fig. 2 n⃝). That means, P has learned to change direction when it sees a barrier.

3 DISCUSSION

In this paper, we propose AILife as a new perspective to approach AGI. As preliminary work, we
provide a toy example to explain AILife, expecting to attract interested researchers on exploring
many exciting challenges ahead. For example, can AILife develop more complicated intelligence in
more complex worlds? can an AILife instance interact with other AILife instances to evolve social
activities? can AILife learn from highly abstractive information such as languages to gain high-
level cognitive abilities? We envision solving these challenges requires the incorporation of more
sophisticated computing technologies and cutting-edge neuron sciences. Meanwhile, we believe the
development of AILife also can benefit neuroscience, because it provides a platform that allows for
the customized construction of artificial organisms and neuron systems.

1https://github.com/brcai/SmartPinball
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Torruella-Suárez, Ivy Ren, Nathan Cook, Joel Greenwood, Linjiao Luo, et al. Integration of
plasticity mechanisms within a single sensory neuron of c. elegans actuates a memory. Neuron,
97(2):356–367, 2018.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62, 2022.

Yutaka Matsuo, Yann LeCun, Maneesh Sahani, Doina Precup, David Silver, Masashi Sugiyama, Eiji
Uchibe, and Jun Morimoto. Deep learning, reinforcement learning, and world models. Neural
Networks, 2022.

Joao D Nunes, Marcelo Carvalho, Diogo Carneiro, and Jaime S Cardoso. Spiking neural networks:
A survey. IEEE Access, 10:60738–60764, 2022.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining, pp. 1135–1144, 2016.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

James M Shine, Michael Breakspear, Peter T Bell, Kaylena A Ehgoetz Martens, Richard Shine,
Oluwasanmi Koyejo, Olaf Sporns, and Russell A Poldrack. Human cognition involves the dy-
namic integration of neural activity and neuromodulatory systems. Nature neuroscience, 22(2):
289–296, 2019.

Harel Z Shouval, Samuel S-H Wang, and Gayle M Wittenberg. Spike timing dependent plasticity:
a consequence of more fundamental learning rules. Frontiers in computational neuroscience, 4:
19, 2010.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

Aboozar Taherkhani, Ammar Belatreche, Yuhua Li, Georgina Cosma, Liam P Maguire, and T Mar-
tin McGinnity. A review of learning in biologically plausible spiking neural networks. Neural
Networks, 122:253–272, 2020.

Xiangwen Wang, Xianghong Lin, and Xiaochao Dang. Supervised learning in spiking neural net-
works: A review of algorithms and evaluations. Neural Networks, 125:258–280, 2020.

3


	Introduction
	Artificial Intelligent Life
	Discussion

