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Abstract

Retrieval-augmented generation (RAG) enhances large language models (LLMs)1

by retrieving documents from an external dataset at inference time. When the2

external dataset contains sensitive and private information, prior work shows that3

without any protection, the RAG system has the risk to leak this information, which4

might hurt the data owner’s privacy. The existing work has studied protect the5

information not leaked from a single-query from RAG under differential privacy6

(DP). In this paper, we focus on the more practical setting where the DP is extended7

to multiple queries from RAG. We propose two new algorithms that ensure DP8

in multi-query RAG. Our first method, MURAG, applies an individual privacy9

accounting framework, allowing the privacy cost to depend on how often each10

document is retrieved rather than the total number of queries given. Our second11

method, MURAG-ADA, further improves efficiency in the individual privacy12

accounting framework by adaptively releasing private query-specific thresholds13

for more precisely relevant document selection. Experiments across four question14

datasets and three LLMs show that our methods answer 100 queries under ε = 10,15

while baseline methods require ε = 1000 for comparable utility. We also highlight16

scenarios where our approach outperforms fixed-threshold baselines and discuss17

when individual accounting is preferable to subsampling-based techniques.18

1 Introduction19

Retrieval-augmented generation (RAG) has become a popular approach for deploying large language20

models (LLMs) in real-world applications. A core feature of RAG is its reliance on an external21

dataset as the primary knowledge source at inference time. For example, a medical RAG system22

may retrieve historical patient records to answer clinical questions more accurately. However, such23

external datasets often contain sensitive or confidential information. In domains like healthcare or24

law, the retrieved content may expose private records, raising serious privacy concerns. Prior work25

has shown that RAG systems without proper safeguards are vulnerable to information leakage [Naseh26

et al., 2025, Liu et al., 2025, Anderson et al., 2024, Li et al., 2025, Zhang et al., 2025, Zeng et al.,27

2024a, Jiang et al., 2024, Peng et al., 2024], compromising data owner privacy and user trust.28

Differential privacy (DP) is a widely adopted framework for providing rigorous guarantees on29

individual data protection. Recent work [Koga et al., 2024] has proposed DPSparseVoteRAG, a RAG30

system that ensures the generated answer satisfies DP with respect to the external dataset, for a single31

user query. Empirical results demonstrate that this approach outperforms a strong baseline using a32

public LLM without RAG, while achieving an ε-pure DP guarantee with ε ≈ 10.33

In realistic deployments, users may issue a sequence of queries, allowing an adversary to aggregate34

responses and potentially infer sensitive information about the external dataset. A naïve approach35

that applies DPSparseVoteRAG to each query and relies on standard differential privacy composition36
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quickly exhausts the privacy budget. As shown by our experimental results (Figure 2), to achieve37

reasonable utility this approach achieving may require a privacy budget as large as ε = 1000, which38

is generally considered meaningless. This raises a key question:39

Can we design a differentially private RAG algorithm that handles hundreds of online queries while40

ensuring both strong utility and meaningful privacy?41

We answer this question affirmatively and summarize our contributions below.42

• Novel DP Multi-RAG Framework. We present a novel framework for multi-query differen-43

tially private RAG. Our contributions include: (1) bypassing composition across queries using44

individual Rényi filters [Feldman and Zrnic, 2021], which significantly reduces the ex-ante privacy45

budget. To the best of our knowledge, this is the first use of privacy filters in the RAG literature;46

(2) enhancing both privacy and utility through threshold-based screening of relevant documents.47

Notably, the framework also adopts a modular design, allowing integration of any private single-48

query RAG algorithm as a subroutine. Additionally, the framework adopts a modular design,49

allowing the integration of any private single-query RAG algorithm as a subroutine.50

• Two DP Multi-RAG Algorithms for Varying Test Query Dependencies. We propose two51

differentially private RAG algorithms for the multi-query setting, tailored to the degree of52

relevance among test-time queries. MURAG (Algorithm 1) uses a fixed relevance threshold53

across all queries and is sufficient to work well for settings where queries are independent and do54

not share relevant private documents. MURAG-ADA (Algorithm 2) allocates a small portion of55

the privacy budget to release a query-specific relevance threshold, enabling more efficient use of56

the budget when queries are related and share overlapping relevant documents.57

• Practical Multi-Query RAG with Non-Trivial Privacy Guarantees. We evaluate our al-58

gorithms through extensive experiments on four question datasets (Natural Questions, Trivia59

Questions, ChatDoctor Questions, and MQuAKE Questions) and three LLMs (OPT-1.3B, Pythia-60

1.4B, and Mistral-7B). The external datasets include Wikipedia (commonly used in standard RAG61

setups) and ChatDoctor with QA pairs between patients and doctors, reflecting privacy-sensitive62

applications. Empirical results show that both methods can answer hundreds of queries under a63

towtal privacy budget of ε ≈ 10 while achieving a reasonable utility, reducing privacy budget64

consumption by up to 100× compared to the baseline DP RAG method that achieves the com-65

parable utility. To the best of our knowledge, these are the first DP algorithms to achieve both66

non-trivial privacy guarantees and practical utility in the multi-query RAG setting.67

2 Preliminaries68

Notation. Let V denote a finite vocabulary set, and let x ∈ V∗ represent a prompt of arbitrary69

length. The document set with arbitrary size is denoted by D = {z1, z2, . . .}, where each document70

zi ∈ V∗. For convenience, we define the document space as Z .71

Differential Privacy. Given dataspace X , two datasets D,D′ ∈ X ∗ are said to be neighboring if72

they differ by at most one element. In this work, we focus on document-level privacy, where the data73

universe is given by V∗.74

Definition 1 (Differential Privacy [Dwork et al., 2006b]). A randomized algorithmM : X ∗ → Ω75

is said to satisfy (ε, δ)-differential privacy if for all neighboring datasets X,X ′ ∈ X ∗ and for all76

measurable subsets O ⊆ Ω, we have77

P(M(X) ∈ O) ≤ eεP(M(X ′) ∈ O) + δ.

Definition 2 (Rényi Differential Privacy [Mironov, 2017]). A randomized algorithmM : X ∗ → Ω78

is said to satisfy (α, ε)-Rényi Differential Privacy (RDP) if for all neighboring datasets X,X ′ ∈ X ∗,79

the Rényi divergence of order α > 0 betweenM(X) andM(X ′) is at most ε, i.e.,80

Dα(M(X)∥M(X ′)) ≤ ε.

We may also consider individual-level RDP, where the Rényi divergence is evaluated for neighboring81

datasets that differ on a particular data point zi. We use S(zi, n) to denote the set of neighboring82

dataset pairs (S, S̃) such that |S|, |S̃| < n, and zi ∈ S△S̃—i.e., exactly one of the datasets contains83

zi.84
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Definition 3 (Individual Rényi Differential Privacy). A randomized algorithmM : X ∗ → Ω satisfies85

(α, ε)-individual RDP at point zi if for all datasets X,X ′ ∈ S(zi, n), we have86

Dα(M(X)∥M(X ′)) ≤ ε.

A privacy filter is a stopping time that monitors the cumulative privacy loss and terminates the87

algorithm once the total privacy budget is exhausted, thereby ensuring that the prescribed privacy88

guarantees are not violated. We now introduce the definitions of (individual) privacy filters in the89

context of Rényi Differential Privacy.90

Definition 4 ((Individual) Rényi Differential Privacy Filters [Feldman and Zrnic, 2021]). We say that91

a random variable Fα,B : Ω∗ → {CONT,HALT} is a privacy filter for (α,B)-RDP if it halts the92

execution of an algorithm before its accumulated (individual) privacy loss exceeds B (measured in93

α-Rényi divergence).94

3 Problem Setting95

We study retrieval-augmented generation (RAG) over a sensitive external dataset D. Given a user96

prompt x ∈ V∗, a retrieval function R selects the top-k relevant documents Dx = R(x,D; k) from97

D, and a decoder-only LLM then generates a response conditioned on both x and Dx using greedy98

decoding. The dataset D contains individual records, each corresponding to a single person’s private99

information. We adopt a realistic threat model where the adversary cannot directly access D but may100

issue arbitrary prompts x and observe the system’s outputs. The underlying LLM is assumed to be101

public; the privacy risk arises solely from the retrieval over D.102

Our objective is to design a differentially private RAG algorithm that answers a sequence of online103

queries {q1, . . . , qT } while protecting the privacy of D. Specifically, given the private dataset D, a104

public LLM, and a total privacy budget ε, we seek an algorithm A(D, {q1, . . . , qT },LLM, ε) that105

generates high-utility responses while guaranteeing ε-differential privacy with respect to the external106

document dataset D.107

4 Methodology108

4.1 Technical Overview109

Document-level Privacy Accounting through Individual Privacy Filters. In retrieval-augmented110

generation, each query typically accesses only a small (relative to the whole external dataset D),111

query-specific subset of relevant documents. This “sparsity” means most documents are retrieved112

infrequently. We exploit this by applying an individual-level privacy filter that tracks the cumulative113

privacy loss per document and halts access once its budget is exhausted. Since a document incurs114

privacy loss only when retrieved, this approach ensures privacy accounting scales with retrieval115

frequency rather than the total number of queries.116

Screening Relevant Documents via Adaptive Thresholding. Applying RAG directly over the117

entire dataset negates individual privacy filters, as all documents contribute to privacy loss. To mitigate118

this, MURAG uses a global threshold τ : only documents with relevance scores above τ are retrieved119

and charged privacy cost. Once a document’s budget is exhausted, it is excluded from future responses.120

However, a fixed τ can be suboptimal due to varying relevance distributions across queries, leading121

to inefficient budget use. For example, a poorly calibrated τ may retrieve low-value documents122

early or omit high-value ones later, leading to inefficient budget use and degraded utility over time.123

To address this, we propose MURAG-ADA, which privately releases a query-specific threshold τt124

tailored to each query’s relevance distribution. By combining individual privacy accounting with125

private release of cumulative statistics, MURAG-ADAselectively retrieves high-relevance documents,126

reducing unnecessary budget consumption on irrelevant documents and potentially preserving utility127

across other queries.128

After screening relevant documents, we apply a single-query DP-RAG algorithm to generate the129

response. As shown in Algorithms 1 and 2, our multi-query framework is modular and supports any130

private single-query RAG method – that is, an algorithm that ensures DP with respect to the retrieved131

document set. In this paper, we instantiate it with a pure DP variant of the single-query DP-RAG132

algorithm from Koga et al. [2024], detailed in Algorithm 5.133
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Figure 1: Histogram of how many questions each document appears in among the top-K retrieved
results (K = 50). The x-axis indicates the number of questions, and the y-axis shows the number of
such documents. We show the histogram for four datasets.

4.2 DP RAG with fixed threshold134

In MURAG, we set a fixed threshold τ on the relevance score, which can be either public or privately135

estimated using a minimal portion of the privacy budget. This approach performs well when relevance136

score distributions are consistent across queries, as is the case for datasets such as Natural Questions137

and Trivia Questions. Implementation details are provided in Algorithm 1.

Algorithm 1: MURAG: Differentially Private Multi-Query Retrieval-Augmented Generation
Input: Private external dataset D, a sequence of online queries {q1, q2, · · · , qT }, per query

privacy budget εq , per query retrieved number of documents k, maximum retrieval
times per document M , relevance score threshold τ

Set: Individual privacy budget for each document z ∈ D: E(z) = M · εq ,
1 for t = 1, ..., T do
2 At = {z ∈ D | εi ≥ εq} ▷ Update active document set
3 Dqt = {z ∈ At | r(z, qt) > τ} ▷ Find relevant documents
4 for z ∈ Dqt do
5 E(z) = E(z)− εq ▷ Update remaining privacy budget

6 Dk
qt = TOP-K(Dqt , k, r(·, qt))

7 at = DP-RAG(x,Dk
qt ,LLM, εq) ▷ Answer for question qt using Algo. 5

8 return (a1, a2, . . . , aT )

138

Lemma 1 (Privacy guarantee of Algorithm 1). MURAG satisfies ε-differential privacy if, for every139

document z ∈ D, the ex-ante individual privacy budget is at most ε.140

4.3 DP RAG with Adaptive Threshold141

To address the limitations of using a static threshold, we propose releasing a query-specific threshold142

corresponding to the top-K relevance scores for each query. Specifically, we first discretize the143

similarity scores into bins and then iteratively release noisy prefix sums until the cumulative count144

exceeds K. Additional implementation details are provided in Algorithm 2. As we demonstrate in145

the experimental section, this approach yields improved utility on the ChatDoctor and MQuAKE146

datasets.147

Lemma 2 (Privacy guarantee of Algorithm 2). MURAG-ADA satisfies ε-differential privacy if, for148

every document z ∈ D, the ex-ante individual privacy budget is at most ε.149

5 Experiment150

5.1 Dataset and Model set-up151

Question datasets in two categories. We evaluate our methods on four question datasets: Nat-152

ural Questions, Trivia Questions, ChatDoctor Questions, and MQuAKE Questions. Natural Ques-153

tions [Kwiatkowski et al., 2019] and Trivia Questions [Joshi et al., 2017] are standard benchmarks154

for evaluating RAG systems and have been used in prior work on per-query DP for RAG [Koga155

et al., 2024]. Following their setup, we randomly subsample 100 questions from each dataset to156
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Algorithm 2: MURAG-ADA: DP Multi-Query RAG with adaptive threshold
Input: Private external dataset D, a sequence of online queries {q1, q2, · · · , qT }, per query

budget εq , per query retrieved number of documents k, maximum retrieval times per
document M , initial relevance threshold τ

Set: Individual privacy budget for each document z ∈ D: E(z) = M · εq , privacy budget
allocation: εq = εthr + εRAG

Require: Discretization on similarity scores [ai, bi]Bi=1
1 for t = 1, ..., T do

/* Release prefix sum */
2 s̃ = 0, At = ϕ
3 for i = 1, . . . , B do
4 A

(i)
t = {z ∈ D | r(z, qt) ∈ [ai, bi] and E(z) ≥ εthr}

5 s̃ = s̃+ |A(i)
t |+ Lap(1/εthr)

6 At = At ∪A
(t)
t

7 for z ∈ A
(i)
t do

8 E(z) = E(z)− εthr

9 if s̃ ≥ K then
10 Halt

/* RAG */
11 A′

t = {z ∈ At | E(z) ≥ εRAG}
12 Dk

qt = TOP-K(A′
t, k, r(·, qt))

13 at = DP-RAG(x,Dk
qt ,LLM, τt, εRAG) ▷ Answer qt using Algo. 5

14 for z ∈ A′
t do

15 E(z) = E(z)− εRAG ▷ Update remaining budget

16 return (a1, a2, . . . , aT )

reduce computational overhead. Chatdoctor Questions [Li et al., 2023] consist of QA interactions157

between patients and doctors in the healthcare domain. We sample 100 patient questions from the158

original dataset as our test set. MQuAKE Questions [Zhong et al.] contain sequences of semantically159

related single-hop questions that collectively form multi-hop reasoning chains. We select 100 such160

sequences, resulting in a test set of 400 individual questions.161

To better analyze the performance differences between MURAG and MURAG-ADA, we categorize162

the four datasets into two types: independent question sets and dependent question sets. As discussed163

in Section 4.3, we expect MURAG-ADA to be particularly effective in datasets where questions164

are semantically related and share overlapping relevant documents, while offering limited benefit in165

datasets where questions are unrelated and retrieve disjoint sets of documents.166

To support this categorization, we plot histograms showing how frequently each document appears167

in the top-K retrieved results (K = 50) across questions. As shown in Figure 1, we observe168

that in Natural Questions and Trivia Questions, most documents are retrieved for only one or two169

questions. This indicates minimal overlap in relevant documents, and we therefore categorize them170

as independent question sets. In contrast, in ChatDoctor Questions and MQuAKE Questions, many171

documents are shared across multiple questions, suggesting substantial overlap in relevance. We172

categorize these as dependent question sets.173

External datasets reflecting both standard and privacy-sensitive settings. For Natural Questions,174

Trivia Questions, and MQuAKE Questions, we use Wikipedia as the external knowledge source175

following the standard RAG setup [Chen et al., 2017, Lewis et al., 2020]. For ChatDoctor Questions,176

the external dataset consists of the remaining QA pairs from the original ChatDoctor dataset, excluding177

the 100 patient questions used for testing. This setup reflects a realistic privacy-sensitive application,178

where the external corpus contains inherently private information.179
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QA evaluation metric. For Natural Questions, Trivia Questions and MQuAKE Questions, the180

datasets provide a list of all acceptable correct answers for each question. Following the evaluation181

protocol of Koga et al. [2024], we use the Match Accuracy metric: a prediction is scored as 1 if it182

contains any correct answer, and 0 otherwise. For Chatdoctor Questions, we adopt the evaluation183

metric from the original dataset paper, using the F1 score of BERTScore [Zhang et al., 2020] to184

measure semantic similarity between the predicted response and the ground-truth answer.185

Model set-up. Our RAG pipeline integrates three pre-trained LLMs: OPT-1.3B [Zhang et al., 2022],186

Pythia-1.4B [Biderman et al., 2023], and Mistral-7B [Jiang et al., 2023]. For document retrieval, we187

use the Dense Passage Retriever (DPR) [Karpukhin et al., 2020] to compute dense query-document188

relevance scores.189

5.2 Method Set-up190

Baseline methods. We compare our two proposed methods with three baselines. The first is DP-191

MULTI-RAG (Algorithm 4), which applies the per-question DP RAG method, DPSparseVoteRAG,192

independently to each query and uses the standard sequential composition theorem [Dwork et al.,193

2006a] to compute the overall privacy guarantee. The other two are non-private baselines: Non-RAG,194

which generates answers using the pretrained LLM without retrieval, and Non-Private-RAG, which195

performs retrieval-augmented generation without any privacy mechanism.196

Privacy budget setup for DP algorithms. Following the setup in Koga et al. [2024], we vary197

the per-query RAG privacy budget εq ∈ 2, 5, 10, 15, 20, 30, 40 to explore the privacy-utility trade-198

off. For DP-MULTI-RAG, the total privacy budget is T · εq, where T is the number of questions.199

For MURAG and MURAG-ADA, the total budget is M · εq, where M is the number of retrieved200

documents with nonzero privacy loss. In our main results, we conservatively set M = 1 for a realistic201

privacy region. Moreover, εthr is fixed as 1.0.202

Other hyperparameter settings. All three DP algorithms rely on shared hyperparameters from203

DPSparseVoteRAG, including the number of retrieved documents k, the per-token privacy budget204

εtoken, and the SVT threshold τsvt. Following Koga et al. [2024], we evaluate each method under a grid205

of settings with k ∈ 30, 40, 50, εtoken ∈ 0.5, 1.0, 2.0, and τsvt = k/2. We report the best performance206

for each method over these configurations.207

5.3 Results208

Figure 2 presents the performance of our two proposed methods alongside three baselines across209

four datasets and three pretrained LLMs. To focus the analysis, we truncate the figure to show only210

the utility region above the Non-RAG baseline, i.e. where using a DP-protected RAG system offers211

a utility gain over simply using the pretrained LLM alone. This region is of primary interest, as it212

justifies the use of a private external dataset under differential privacy. Within this utility range, we213

compare different DP algorithms based on the amount of privacy budget they consume to achieve a214

given performance level.215

Comparing our methods with baselines. Across all four datasets and three LLMs, both of216

our proposed methods consistently outperform the Non-RAG baseline at a total privacy budget of217

ε = 10. In contrast, the baseline method NAIVE-MULTI-RAG requires a significantly larger budget,218

exceeding ε = 103, to achieve comparable utility. These results demonstrate that our methods make219

differential privacy practical in the multi-query RAG setting, enabling strong performance while220

staying within a realistic privacy budget.221

Comparison between our two methods. We observe a clear performance pattern between our two222

methods based on the dataset type. On the two independent question sets (Natural Questions and223

Trivia Questions) MURAG consistently outperforms MURAG-ADA. In contrast, on the dependent224

question sets (ChatDoctor Questions and MQuAKE Questions) MURAG-ADA shows superior225

performance. The improvement is especially pronounced on MQuAKE Questions, where MURAG226

performs only marginally better than the Non-RAG baseline, while MURAG-ADA yields a significant227

utility gain.228
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Figure 2: Utility-privacy tradeoffs of our two proposed methods (MURAG and MURAG-ADA)
compared to three baselines across four question datasets and three pretrained LLMs. The plots are
truncated to show only the region where the utility exceeds the Non-RAG baseline (i.e., the pretrained
LLM without access to the external dataset), which is the regime of practical interest.

Table 1: Precision of retrieved documents under MURAG and MURAG-ADA, measured as the
percentage of truly top-50 relevant documents among the retrieved. Results are reported for each
dataset. MURAG-ADA achieves significantly higher precision on the dependent question sets
(ChatDoctor and MQuAKE), demonstrating its more efficient use of the privacy budget to save
documents for later questions.

Independent Question Set Dependent Question Set
Natural Questions Trivia Questions Chatdoctor Questions MQuAKE Questions

MURAG 78.8% 72.2% 13.3% 17.6%
MURAG-ADA 92.6% 94.6% 67.2% 40.7%

MURAG-ADA (non-private top-K-release) 99.4% 99.6% 71.2% 43.5%

This discrepancy arises from the limitations of using a fixed retrieval threshold τ in MURAG. Since229

different queries induce different distributions over relevance scores, a single global threshold can lead230

to imbalanced behavior: a threshold that retrieves sufficient relevant documents for one query may231

result in many low-relevance documents for another. These low-relevance documents still consume232

privacy budget without meaningfully improving the response, and may become unavailable for future233

queries where they are actually useful. This inefficiency is especially problematic in dependent234

question sets, where documents are frequently shared across queries.235

To quantify this effect Table 1 reports the precision under both MURAG and MURAG-ADA, where236

the precision is defined as the percentage of truly top-50 documents among the retrieved documents for237

each question. We observe that precision under MURAG is particularly low for ChatDoctor Questions238

and MQuAKE Questions, whereas MURAG-ADA significantly improves retrieval precision on these239

datasets through its adaptive thresholds. This improvement in retrieval quality directly contributes to240

the superior performance of MURAG-ADA in the setting of dependent question set.241
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Figure 3: Comparison of M = 1 and M = 5 in the individual privacy accounting framework. Left
plot shows the retrieval precisions of two methods with M = 1, 5. The right three plots show the
trade-off between the QA performance and the εtotal in DP. Increasing M improves retrieval precision
and RAG utility, but incurs a higher total privacy cost. M = 1 remains preferable for a stronger
privacy-utility trade-off.

Effect of different M in the individual privacy accounting framework. Both of our proposed242

methods include a hyperparameter M , which controls the maximum number of queries for which an243

individual document’s privacy budget can be consumed. In our main results (Figure 2), we set M = 1244

to ensure strict per-document privacy usage. However, this setting may limit utility: once a document245

is used for one query, it becomes unavailable for future queries, even if it would have been highly246

relevant. This limitation is evident in Table 1, where both methods exhibit low retrieval precision247

on the MQuAKE Questions dataset and this suggests that relevant documents were prematurely248

deactivated.249

To better understand the impact of M , we evaluate our two methods with a larger value of M = 5.250

Figure 3 compares performance with M = 1 and M = 5. The left plot shows a substantial increase251

in Top-50 retrieval precision when using M = 5, indicating better access to relevant documents. This252

improvement translates into higher end-to-end RAG utility, as shown in the three plots on the right.253

However, increasing M also leads to a higher total privacy cost (εtotal = M · εq). Overall, while254

M = 5 enhances utility, we find that M = 1 still achieves the best privacy-utility trade-off under a255

practical privacy regime.256

6 Discussion257

Why Privacy Filter rather than Amplification by Subsampling? As surveyed in Section A.2,258

privacy amplification by subsampling [Balle et al., 2018, Wang et al., 2019, Zhu and Wang, 2019]259

is widely used in DP LLM applications, such as DP prompt tuning and DP in-context learning, to260

enhance generation quality. However, this technique is not well-suited for DP RAG:261

• In prompt tuning, the goal is to learn a single task-specific prompt that can generalize to all262

future queries. In DP in-context learning, a small number of example inputs are selected under263

DP constraints and reused across queries. In contrast, our RAG setting does not allow for such264

"unified" prompts or examples: each test-time query requires retrieving and using query-specific265

documents, which must be handled privately, which makes individual privacy filter a more suitable266

choice.267

• Moreover, in prompt tuning and in-context learning, all data points in the private dataset can268

meaningfully contribute to the learned prompt or selected example set. This property enables the269

use of subsampling-based amplification techniques in algorithm design. In RAG, however, only a270

sparse subset of documents in the large external corpus are relevant to any given query—most271

documents provide no utility.272

These two key differences, the lack of reusable prompts and the sparsity of useful data, motivate the273

development of our new DP RAG algorithms using Rènyi filter rather than amplification by sampling.274

Leveraging Historical QA. As shown in Table 1 and Figure 1, when the relevant documents for275

different questions exhibit significant overlap, the quality of answers to later questions degrades. This276

occurs because the documents required to answer the queries may exhaust their privacy budgets and277

are subsequently filtered out from the active set passed to the RAG algorithm. In the extreme case278

where a user repeatedly submits the same query, only the first response may retain high quality, while279

subsequent answers degrade due to the unavailability of relevant documents.280
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A potential remedy is to reuse historical answers as auxiliary documents in future queries. This281

can be done without incurring any additional privacy cost, owing to the post-processing property of282

differential privacy.283

7 Conclusion284

We proposed the first differentially private (DP) framework for retrieval-augmented generation (RAG)285

that supports answering multiple queries while protecting a sensitive external dataset. Our methods286

build on individual privacy accounting to overcome the limitations of the prior single-query DP-287

RAG system with the basic sequential composition. We introduced two algorithms—MURAG and288

MURAG-ADAdiffer in how they select documents for each query under DP guarantees. MURAG289

uses a fixed threshold for document retrieval, while MURAG-ADA adaptively adjusts the threshold290

per query to improve the efficiency of individual privacy accounting. Through comprehensive experi-291

ments on four question datasets and three LLMs, we demonstrated that both methods significantly292

reduce the privacy cost needed to outperform a Non-RAG baseline, achieving strong utility for293

answering 100 questions under a realistic budget of ε = 10. We also showed that MURAG-ADA294

performs particularly well on datasets with overlapping document relevance across queries. This295

work highlights the importance of tailoring differential privacy mechanisms to the characteristics of296

the RAG setting. We hope our contributions provide a foundation for more practical and principled297

privacy-preserving RAG systems.298
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A Related Work432

A.1 Privacy-Preserving Retrieval Augmented Generation433

Recent studies have revealed two main categories of privacy risks in retrieval-augmented generation434

(RAG) systems. The first is membership inference attacks (MIA)[Shokri et al., 2017], which aim435

to determine whether a specific document was included in the private external dataset. Research436

on MIA in RAG has explored adversarial prompt construction[Naseh et al., 2025, Liu et al., 2025,437

Anderson et al., 2024] and scoring mechanisms [Li et al., 2025] to increase inference success. The438

second type is data reconstruction attacks, which aim to recover the raw content of documents in439

the private dataset. These attacks have been explored via adversarial prompt design [Zhang et al.,440

2025, Zeng et al., 2024a, Jiang et al., 2024] as well as through data poisoning techniques that embed441

triggers to facilitate reconstruction [Peng et al., 2024]. Together, these works highlight the growing442

need for principled privacy-preserving algorithms for RAG.443

Several approaches have been proposed to address these privacy risks. Most notably, Koga et al. [2024]444

introduced a differentially private (DP) RAG system that provides privacy guarantees for a single445

query. Other works [Yao and Li, Grislain, 2025] have studied how to release document identifiers446

under DP guarantees. However, none of these methods address the setting where multiple queries are447

issued, which is more representative of real-world usage. In addition to DP-based methods, there are448

empirical approaches that aim to enhance privacy without formal guarantees. Yao and Li propose a449

synthetic document generation technique, where retrieved documents are paraphrased before being450

passed to the generator. Zeng et al. [2024b] introduces a dataset privatization strategy that removes451

sensitive content across multiple documents prior to retrieval. While these methods offer promising452

empirical results, they lack worst-case guarantees and remain vulnerable to strong adversarial attacks.453

Finally, Cheng et al. [2024] explores a complementary privacy concern—protecting the user’s query454

when interacting with a cloud-hosted RAG system. While important, this line of work addresses a455

different threat model than ours.456

A.2 Differential Privacy in Large Language Models457

Beyond our focus on DP in RAG, DP has also been extensively studied in other LLM settings,458

including fine-tuning [Charles et al., 2024, Yu et al., 2021, Li et al., 2021], prompt tuning [Duan459

et al., 2023, Hong et al., 2024], and in-context learning [Tang et al., 2024, Wu et al., 2024]. Due to460

the differing nature of these tasks, the effective DP mechanisms vary significantly across settings.461

In pre-training and fine-tuning, the core challenge lies in optimizing the model parameters while462

maintaining stability against the noise introduced by DP algorithms. These settings are fundamentally463

different from RAG, where the goal is not to train the model but to ensure privacy during inference-464

time retrieval and generation. More closely related to our work are DP approaches for prompt tuning465

and in-context learning. However, the structural differences between these tasks and RAG result466

in distinct design considerations for differential privacy algorithms; please see Section 6 for more467

details.468

A.3 Individual Privacy Accounting and Privacy Filters469

Individual privacy accounting focuses on tracking the privacy loss incurred by a single data point,470

often yielding tighter privacy bounds than traditional worst-case analyses over all neighboring datasets471

[Dwork et al., 2006b]. This line of work was initiated by Feldman and Zrnic [2021] in the context of472

Rényi Differential Privacy and was subsequently extended to Gaussian Differential Privacy [Dong473

et al., 2022] by Koskela et al. [2022]. For a comprehensive overview, we refer the reader to Feldman474

and Zrnic [2021, Section 1.2].475

Building upon this framework, the concept of a privacy filter has been introduced as a general476

mechanism for adaptively enforcing privacy constraints. A privacy filter refers to a stopping rule477

that halts the execution of differentially private (DP) algorithms before the cumulative privacy loss478

exceeds a specified budget. Individual privacy filters, introduced by Feldman and Zrnic [2021] and479

further developed by Koskela et al. [2022], represent a specialized instantiation of this framework.480

These filters operate at the granularity of individual data points, terminating their participation once481

their respective privacy budgets are exhausted. For further details, we refer the reader to Rogers et al.482
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[2016], Feldman and Zrnic [2021], Koskela et al. [2022], Smith and Thakurta [2022], Whitehouse483

et al. [2023].484

B Algorithms485

We present additional algorithms that were omitted from the main paper for brevity.486

B.1 Top-k document selection487

Algorithm 3 returns the top-K documents from a dataset D ranked by a score function r, padding488

with empty strings if |D| < K to ensure the output always has exactly K elements.

Algorithm 3: TOP-K(D,K, r)

Input: dataset D, sample size K, score function r
1 if |D| ≥ K then
2 Dk ← top-K documents from D according to score function r ▷ assume no ties
3 else
4 Dk ← D ∪ {“”}k−|D| ▷ Add empty string "" until document set has

size k

5 return Dk

489

B.2 Naive algorithm for DP Multi-Question RAG490

Algorithm 4 serves as a baseline for handling multi-query DP RAG by composing a single-query491

DP-RAG mechanism T times.

Algorithm 4: NAIVE-MULTI-RAG
Input: Private external dataset D, a sequence of queries {q1, q2, · · · , qT }, total privacy

budget ε, per query budget εq
Require: ε ≥ T · εq

1 for t = 1, ..., T do
2 at = DP-RAG(x,D,LLM, εq) ▷ Algo. 5
3 return (a1, a2, . . . , aT )

492

B.3 DP-RAG for single question answering493

Algorithm 5 is a variant of Koga et al. [2024, Algorithm 2], in which we replace the LimitedDomain494

mechanism [Durfee and Rogers, 2019] with the exponential mechanism in the private token generation495

step. This modification yields a more stringent pure-DP guarantee and results in a cleaner privacy496

composition accounting result.497
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Algorithm 5: DP-RAG(x,D,LLM, ε)

Input: Prompt x; external data source D; next-token generator
LLM(prompt,doc | history); total budget ε;

Set: Per-token privacy budget ε0
Require: maximum length of output tokens Tmax; number of voters m; retrievals per voter k;

document retriever R(prompt,doc set,#retrieved docs); threshold for voting θ
1 εExpo ← ε0/2, εLap ← ε0/2 ▷ split privacy budget for per token generation
2 c← ⌊ε/εRAG⌋, θ̂ ← θ + Lap(2/εLap)
3 Dx ← R(x,D;mk) ▷ retrieve mk documents
4 Dx ← {D1

x, . . . , D
m
x } ▷ Partition Dx into m subsets uniformly random

5 for t← 1 to Tmax do
6 ynon−RAG

t ← LLM(x, “” | y<t)
7 for i← 1 to m do
8 y

(i)
t ← LLM(x,Di

x | y<t)

9 Histt ← Hist(y
(1)
t , . . . , y

(m)
t ) ▷ Histt ∈ N|V|

10 Countt ← Histt[index = ynon−RAG
t ]

11 if Countt + Lap(4/εLap) ≤ θ̂ then
12 yt ← expoMech(Histt; εExpo)
13 c← c− 1
14 else
15 yt ← ynon−RAG

t

16 if yt = ⟨EOS⟩ or c = 0 then
17 return (y1, . . . , yt)

18 return (y1, . . . , yTmax
)

C Proofs for Privacy Guarantee498

C.1 Privacy Guarantee for Algorithm 1499

Lemma (Restatement of Lemma 1). MURAG satisfies ε-differential privacy if, for every z ∈ D, the500

ex-ante individual privacy budget is at most ε.501

Proof. Since E(z) ≤ ε for every z ∈ D, the privacy guarantee follows directly from Feldman and502

Zrnic [2021, Corollary 3.3].503

C.2 Privacy Guarantee for Algorithm 2504

Lemma (Restatement of Lemma 2). MURAG-ADA satisfies ε-differential privacy if, for every505

z ∈ D, the ex-ante individual privacy budget is at most ε.506

Proof. We first bound the individual privacy for the t-th prefix-sum release algorithm, denoted by507

At. Consider S, S̃ ∈ S(zi, n), and without loss of generality, we assume zi ∈ S. Conditioned508

on the trajectory r(t−1) from the previous t − 1 rounds, for any possible output sequence b(q) :=509

(b1, b2, . . . , bq) with q ≤ B, the interesting regime is that there exists j ∈ [q] such that zi contributes510

to bj ; otherwise, we have At(S | r(t−1))
d
= At(S̃ | r(t−1)). In the former case, we can perform the511

decomposition using Bayes’ rule:512
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log

(
P(At(S) = b(q))

P(At(S̃) = b(q))

)
= log

(
P(At(S)[j + 1 : q] = b(j+1:q) | b(j))
P(At(S̃)[j + 1 : q] = b(j+1:q) | b(j))

)
︸ ︷︷ ︸

(a)

+ log

(
P(At(S)[j] = bj | b(j−1))

P(At(S̃)[j] = bj | b(j−1))

)
︸ ︷︷ ︸

(b)

+ log

(
P(At(S) = b(j−1))

P(At(S̃) = b(j−1))

)
︸ ︷︷ ︸

(c)

≤ εthr

Notice that every two bins are disjoint; thus, the consumption of the privacy budget is independent513

between two different data points. Therefore, (a), (c) = 0 and (b) ≤ εthr by the privacy guarantee514

for single-query release.515

Now we consider the RAG step. The interesting regime is when zi ∈ A′
t. Then, by the composition516

theorem, the privacy loss of DP-RAG ◦ TOP-K is upper bounded by εRAG.517

In addition, we note that E(zi) is a valid stopping time, since it updates the privacy budget after each518

invocation of the algorithms, and zi is only involved when its privacy budget is sufficient.519

Thus, by Feldman and Zrnic [2021, Corollary 3.3], the privacy guarantee is given by E(z), which is520

upper bounded by ε.521
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