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Abstract

Retrieval-augmented generation (RAG) enhances large language models (LLMs)
by retrieving documents from an external dataset at inference time. When the
external dataset contains sensitive and private information, prior work shows that
without any protection, the RAG system has the risk to leak this information, which
might hurt the data owner’s privacy. The existing work has studied protect the
information not leaked from a single-query from RAG under differential privacy
(DP). In this paper, we focus on the more practical setting where the DP is extended
to multiple queries from RAG. We propose two new algorithms that ensure DP
in multi-query RAG. Our first method, MUR AG, applies an individual privacy
accounting framework, allowing the privacy cost to depend on how often each
document is retrieved rather than the total number of queries given. Our second
method, MURAG-ADA, further improves efficiency in the individual privacy
accounting framework by adaptively releasing private query-specific thresholds
for more precisely relevant document selection. Experiments across four question
datasets and three LLMs show that our methods answer 100 queries under £ = 10,
while baseline methods require ¢ = 1000 for comparable utility. We also highlight
scenarios where our approach outperforms fixed-threshold baselines and discuss
when individual accounting is preferable to subsampling-based techniques.

1 Introduction

Retrieval-augmented generation (RAG) has become a popular approach for deploying large language
models (LLMs) in real-world applications. A core feature of RAG is its reliance on an external
dataset as the primary knowledge source at inference time. For example, a medical RAG system
may retrieve historical patient records to answer clinical questions more accurately. However, such
external datasets often contain sensitive or confidential information. In domains like healthcare or
law, the retrieved content may expose private records, raising serious privacy concerns. Prior work
has shown that RAG systems without proper safeguards are vulnerable to information leakage [Naseh
et al.| 2025} |L1u et al.,|2025, |Anderson et al., [2024, |Li et al., {2025, [Zhang et al., [2025] Zeng et al.,
2024al Jiang et al.,|2024] [Peng et al.| 2024]], compromising data owner privacy and user trust.

Differential privacy (DP) is a widely adopted framework for providing rigorous guarantees on
individual data protection. Recent work [Koga et al.l 2024] has proposed DPSparseVoteRAG, a RAG
system that ensures the generated answer satisfies DP with respect to the external dataset, for a single
user query. Empirical results demonstrate that this approach outperforms a strong baseline using a
public LLM without RAG, while achieving an e-pure DP guarantee with € ~ 10.

In realistic deployments, users may issue a sequence of queries, allowing an adversary to aggregate
responses and potentially infer sensitive information about the external dataset. A naive approach
that applies DPSparseVoteRAG to each query and relies on standard differential privacy composition
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quickly exhausts the privacy budget. As shown by our experimental results (Figure 2)), to achieve
reasonable utility this approach achieving may require a privacy budget as large as ¢ = 1000, which
is generally considered meaningless. This raises a key question:

Can we design a differentially private RAG algorithm that handles hundreds of online queries while
ensuring both strong utility and meaningful privacy?

We answer this question affirmatively and summarize our contributions below.

* Novel DP Multi-RAG Framework. We present a novel framework for multi-query differen-
tially private RAG. Our contributions include: (1) bypassing composition across queries using
individual Rényi filters [Feldman and Zrnic,2021]], which significantly reduces the ex-ante privacy
budget. To the best of our knowledge, this is the first use of privacy filters in the RAG literature;
(2) enhancing both privacy and utility through threshold-based screening of relevant documents.
Notably, the framework also adopts a modular design, allowing integration of any private single-
query RAG algorithm as a subroutine. Additionally, the framework adopts a modular design,
allowing the integration of any private single-query RAG algorithm as a subroutine.

* Two DP Multi-RAG Algorithms for Varying Test Query Dependencies. We propose two
differentially private RAG algorithms for the multi-query setting, tailored to the degree of
relevance among test-time queries. MURAG (Algorithm [T)) uses a fixed relevance threshold
across all queries and is sufficient to work well for settings where queries are independent and do
not share relevant private documents. MURAG-ADA (Algorithm [2) allocates a small portion of
the privacy budget to release a query-specific relevance threshold, enabling more efficient use of
the budget when queries are related and share overlapping relevant documents.

* Practical Multi-Query RAG with Non-Trivial Privacy Guarantees. We evaluate our al-
gorithms through extensive experiments on four question datasets (Natural Questions, Trivia
Questions, ChatDoctor Questions, and MQuAKE Questions) and three LLMs (OPT-1.3B, Pythia-
1.4B, and Mistral-7B). The external datasets include Wikipedia (commonly used in standard RAG
setups) and ChatDoctor with QA pairs between patients and doctors, reflecting privacy-sensitive
applications. Empirical results show that both methods can answer hundreds of queries under a
towtal privacy budget of € ~ 10 while achieving a reasonable utility, reducing privacy budget
consumption by up to 100x compared to the baseline DP RAG method that achieves the com-
parable utility. To the best of our knowledge, these are the first DP algorithms to achieve both
non-trivial privacy guarantees and practical utility in the multi-query RAG setting.

2 Preliminaries

Notation. Let V denote a finite vocabulary set, and let x € V* represent a prompt of arbitrary
length. The document set with arbitrary size is denoted by D = {z1, 22, . . .}, where each document
z; € V*. For convenience, we define the document space as Z.

Differential Privacy. Given dataspace X, two datasets D, D’ € X'* are said to be neighboring if
they differ by at most one element. In this work, we focus on document-level privacy, where the data
universe is given by V*.

Definition 1 (Differential Privacy [Dwork et al.,[2006b]]). A randomized algorithm M : X* — Q
is said to satisfy (e, 6)-differential privacy if for all neighboring datasets X, X' € X* and for all
measurable subsets O C (), we have

P(M(X) € O) < eEP(M(X') € O) + 4.

Definition 2 (Rényi Differential Privacy [Mironov, 2017]). A randomized algorithm M : X* —
is said to satisfy (o, £)-Rényi Differential Privacy (RDP) if for all neighboring datasets X, X' € X*,
the Rényi divergence of order o > 0 between M(X) and M(X') is at most ¢, i.e.,

Da(M(X)IM(X)) < <.

We may also consider individual-level RDP, where the Rényi divergence is evaluated for neighboring
datasets that differ on a particular data point z;. We use S(z;,n) to denote the set of neighboring
dataset pairs (5, .5) such that | S|, |S| < n, and z; € SAS—i.e., exactly one of the datasets contains
Zi.
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Definition 3 (Individual Rényi Differential Privacy). A randomized algorithm M : X* — () satisfies
(a, €)-individual RDP at point z; if for all datasets X, X' € §(z;,n), we have

Da(M(X)IM(X) < e,

A privacy filter is a stopping time that monitors the cumulative privacy loss and terminates the
algorithm once the total privacy budget is exhausted, thereby ensuring that the prescribed privacy
guarantees are not violated. We now introduce the definitions of (individual) privacy filters in the
context of Rényi Differential Privacy.

Definition 4 ((Individual) Rényi Differential Privacy Filters [Feldman and Zrnic}, 2021]]). We say that
a random variable F, g : Q" — {CONT,HALTY} is a privacy filter for (o, B)-RDP if it halts the
execution of an algorithm before its accumulated (individual) privacy loss exceeds B (measured in
a-Rényi divergence).

3 Problem Setting

We study retrieval-augmented generation (RAG) over a sensitive external dataset D. Given a user
prompt z € V*, a retrieval function R selects the top-k relevant documents D, = R(z, D; k) from
D, and a decoder-only LLM then generates a response conditioned on both = and D, using greedy
decoding. The dataset D contains individual records, each corresponding to a single person’s private
information. We adopt a realistic threat model where the adversary cannot directly access D but may
issue arbitrary prompts x and observe the system’s outputs. The underlying LLM is assumed to be
public; the privacy risk arises solely from the retrieval over D.

Our objective is to design a differentially private RAG algorithm that answers a sequence of online
queries {q1, . .., qr} while protecting the privacy of D. Specifically, given the private dataset D, a
public LLM, and a total privacy budget &, we seek an algorithm A(D,{q1, ..., qr}, LLM, ¢) that
generates high-utility responses while guaranteeing e-differential privacy with respect to the external
document dataset D.

4 Methodology

4.1 Technical Overview

Document-level Privacy Accounting through Individual Privacy Filters. In retrieval-augmented
generation, each query typically accesses only a small (relative to the whole external dataset D),
query-specific subset of relevant documents. This “sparsity” means most documents are retrieved
infrequently. We exploit this by applying an individual-level privacy filter that tracks the cumulative
privacy loss per document and halts access once its budget is exhausted. Since a document incurs
privacy loss only when retrieved, this approach ensures privacy accounting scales with retrieval
frequency rather than the total number of queries.

Screening Relevant Documents via Adaptive Thresholding. Applying RAG directly over the
entire dataset negates individual privacy filters, as all documents contribute to privacy loss. To mitigate
this, MURAG uses a global threshold 7: only documents with relevance scores above 7 are retrieved
and charged privacy cost. Once a document’s budget is exhausted, it is excluded from future responses.
However, a fixed 7 can be suboptimal due to varying relevance distributions across queries, leading
to inefficient budget use. For example, a poorly calibrated 7 may retrieve low-value documents
early or omit high-value ones later, leading to inefficient budget use and degraded utility over time.
To address this, we propose MURAG-ADA, which privately releases a query-specific threshold 7;
tailored to each query’s relevance distribution. By combining individual privacy accounting with
private release of cumulative statistics, MURAG-ADAselectively retrieves high-relevance documents,
reducing unnecessary budget consumption on irrelevant documents and potentially preserving utility
across other queries.

After screening relevant documents, we apply a single-query DP-RAG algorithm to generate the
response. As shown in Algorithms|T]and 2] our multi-query framework is modular and supports any
private single-query RAG method — that is, an algorithm that ensures DP with respect to the retrieved
document set. In this paper, we instantiate it with a pure DP variant of the single-query DP-RAG
algorithm from [Koga et al.| [2024], detailed in Algorithm 5]
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Figure 1: Histogram of how many questions each document appears in among the top-K retrieved
results (K = 50). The x-axis indicates the number of questions, and the y-axis shows the number of
such documents. We show the histogram for four datasets.

4.2 DP RAG with fixed threshold

In MURAG, we set a fixed threshold 7 on the relevance score, which can be either public or privately
estimated using a minimal portion of the privacy budget. This approach performs well when relevance
score distributions are consistent across queries, as is the case for datasets such as Natural Questions
and Trivia Questions. Implementation details are provided in Algorithm [T}

Algorithm 1: MURAG: Differentially Private Multi-Query Retrieval-Augmented Generation

Input: Private external dataset D, a sequence of online queries {q1, g2, - , g}, per query
privacy budget €4, per query retrieved number of documents £, maximum retrieval
times per document M, relevance score threshold 7

Set: Individual privacy budget for each document z € D: £(z) = M - ¢,

1 fort=1,...,Tdo
2 A ={z€Dle >¢e4} > Update active document set
3 D, ={z€ A |r(zq)>T} > Find relevant documents
4 for 2 € D, do
5 | E(2) =E(2) —¢gq > Update remaining privacy budget

6 Dl;f = TOP'K(DQU kvr(',qt))
7 a; = DP-RAG(z, Dk | LLM, ¢) > Answer for question ¢; using Algo.

o

return (a1,as,...,ar)

Lemma 1 (Privacy guarantee of Algorithm[I). MURAG sarisfies e-differential privacy if, for every
document z € D, the ex-ante individual privacy budget is at most ¢.

4.3 DP RAG with Adaptive Threshold

To address the limitations of using a static threshold, we propose releasing a query-specific threshold
corresponding to the top-K relevance scores for each query. Specifically, we first discretize the
similarity scores into bins and then iteratively release noisy prefix sums until the cumulative count
exceeds K. Additional implementation details are provided in Algorithm[2] As we demonstrate in
the experimental section, this approach yields improved utility on the ChatDoctor and MQuAKE
datasets.

Lemma 2 (Privacy guarantee of Algorithm[2). MURAG-ADA satisfies e-differential privacy if, for
every document z € D, the ex-ante individual privacy budget is at most €.

S Experiment

5.1 Dataset and Model set-up

Question datasets in two categories. We evaluate our methods on four question datasets: Nat-
ural Questions, Trivia Questions, ChatDoctor Questions, and MQuAKE Questions. Natural Ques-
tions [[Kwiatkowski et al.,[2019]] and Trivia Questions [Joshi et al.,|2017]] are standard benchmarks
for evaluating RAG systems and have been used in prior work on per-query DP for RAG [Koga
et al.| |2024]|. Following their setup, we randomly subsample 100 questions from each dataset to
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Algorithm 2: MURAG-ADA: DP Multi-Query RAG with adaptive threshold

Input: Private external dataset D, a sequence of online queries {q1, g2, - - , g1}, per query
budget ¢, per query retrieved number of documents k, maximum retrieval times per
document M, initial relevance threshold 7

Set: Individual privacy budget for each document z € D: £(z) = M - g4, privacy budget

allocation: €, = €¢nr + €RAG

Require: Discretization on similarity scores [a;, ;]2 ;

1fort=1,....,7T do

/* Release prefix sum */

5=0,A=¢

fori=1,...,Bdo
4 AY = {z € D|r(zq) € [ai, bi) and £(2) > e}
5 5=35+ |A§Z)| + Lap(1/etny)
6 A=A, uAY
7 for z ¢ A,Ei) do

| €(2) = €(2) — €tnr

9 if s > K then
10 | Halt

/* RAG */
u | Ay={z€ A |&(z) > eract
12 DE = Top-K(A}, k,r(-,q))
13 a; = DP-RAG(Z‘,Dgt,LLM,Tt,e’:‘RA(;) > Answer ¢; using Algo.
4 | forze Aido
15 | €(2) = £(2) — erac > Update remaining budget
16 return (a1,as,...,ar)

reduce computational overhead. Chatdoctor Questions [Li et al.,|2023]] consist of QA interactions
between patients and doctors in the healthcare domain. We sample 100 patient questions from the
original dataset as our test set. MQUAKE Questions [Zhong et al.] contain sequences of semantically
related single-hop questions that collectively form multi-hop reasoning chains. We select 100 such
sequences, resulting in a test set of 400 individual questions.

To better analyze the performance differences between MURAG and MURAG-ADA, we categorize
the four datasets into two types: independent question sets and dependent question sets. As discussed
in Section we expect MURAG-ADA to be particularly effective in datasets where questions
are semantically related and share overlapping relevant documents, while offering limited benefit in
datasets where questions are unrelated and retrieve disjoint sets of documents.

To support this categorization, we plot histograms showing how frequently each document appears
in the top-K retrieved results (K = 50) across questions. As shown in Figure [I] we observe
that in Natural Questions and Trivia Questions, most documents are retrieved for only one or two
questions. This indicates minimal overlap in relevant documents, and we therefore categorize them
as independent question sets. In contrast, in ChatDoctor Questions and MQuAKE Questions, many
documents are shared across multiple questions, suggesting substantial overlap in relevance. We
categorize these as dependent question sets.

External datasets reflecting both standard and privacy-sensitive settings. For Natural Questions,
Trivia Questions, and MQuAKE Questions, we use Wikipedia as the external knowledge source
following the standard RAG setup [Chen et al.| 2017} Lewis et al.,|2020]. For ChatDoctor Questions,
the external dataset consists of the remaining QA pairs from the original ChatDoctor dataset, excluding
the 100 patient questions used for testing. This setup reflects a realistic privacy-sensitive application,
where the external corpus contains inherently private information.
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QA evaluation metric. For Natural Questions, Trivia Questions and MQuAKE Questions, the
datasets provide a list of all acceptable correct answers for each question. Following the evaluation
protocol of |[Koga et al.| [2024]], we use the Match Accuracy metric: a prediction is scored as 1 if it
contains any correct answer, and 0 otherwise. For Chatdoctor Questions, we adopt the evaluation
metric from the original dataset paper, using the F1 score of BERTScore [Zhang et al., 2020] to
measure semantic similarity between the predicted response and the ground-truth answer.

Model set-up. Our RAG pipeline integrates three pre-trained LLMs: OPT-1.3B [Zhang et al.,[2022],
Pythia-1.4B [Biderman et al., |2023|], and Mistral-7B [Jiang et al.,2023]]. For document retrieval, we
use the Dense Passage Retriever (DPR) [Karpukhin et al.,|2020] to compute dense query-document
relevance scores.

5.2 Method Set-up

Baseline methods. We compare our two proposed methods with three baselines. The first is DP-
MULTI-RAG (Algorithm @), which applies the per-question DP RAG method, DPSparse VoteRAG,
independently to each query and uses the standard sequential composition theorem [[Dwork et al.,
2006a] to compute the overall privacy guarantee. The other two are non-private baselines: Non-RAG,
which generates answers using the pretrained LLM without retrieval, and Non-Private-RAG, which
performs retrieval-augmented generation without any privacy mechanism.

Privacy budget setup for DP algorithms. Following the setup in [Koga et al.|[2024]], we vary
the per-query RAG privacy budget ¢, € 2,5, 10, 15, 20, 30, 40 to explore the privacy-utility trade-
off. For DP-MULTI-RAG, the total privacy budget is T - €4, where T is the number of questions.
For MURAG and MURAG-ADA, the total budget is M - ¢,, where M is the number of retrieved
documents with nonzero privacy loss. In our main results, we conservatively set M/ = 1 for a realistic
privacy region. Moreover, ey}, is fixed as 1.0.

Other hyperparameter settings. All three DP algorithms rely on shared hyperparameters from
DPSparseVoteRAG, including the number of retrieved documents k, the per-token privacy budget
Etokens and the SVT threshold 7. Following Koga et al.|[2024], we evaluate each method under a grid
of settings with k& € 30,40, 50, €oken € 0.5, 1.0, 2.0, and 74, = k/2. We report the best performance
for each method over these configurations.

5.3 Results

Figure 2] presents the performance of our two proposed methods alongside three baselines across
four datasets and three pretrained LLMs. To focus the analysis, we truncate the figure to show only
the utility region above the Non-RAG baseline, i.e. where using a DP-protected RAG system offers
a utility gain over simply using the pretrained LLM alone. This region is of primary interest, as it
justifies the use of a private external dataset under differential privacy. Within this utility range, we
compare different DP algorithms based on the amount of privacy budget they consume to achieve a
given performance level.

Comparing our methods with baselines. Across all four datasets and three LLMs, both of
our proposed methods consistently outperform the Non-RAG baseline at a total privacy budget of
€ = 10. In contrast, the baseline method NAIVE-MULTI-RAG requires a significantly larger budget,
exceeding ¢ = 102, to achieve comparable utility. These results demonstrate that our methods make
differential privacy practical in the multi-query RAG setting, enabling strong performance while
staying within a realistic privacy budget.

Comparison between our two methods. We observe a clear performance pattern between our two
methods based on the dataset type. On the two independent question sets (Natural Questions and
Trivia Questions) MURAG consistently outperforms MURAG-ADA. In contrast, on the dependent
question sets (ChatDoctor Questions and MQuAKE Questions) MURAG-ADA shows superior
performance. The improvement is especially pronounced on MQuAKE Questions, where MURAG
performs only marginally better than the Non-RAG baseline, while MURAG-ADA yields a significant
utility gain.
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Figure 2: Utility-privacy tradeoffs of our two proposed methods (MURAG and MURAG-ADA)
compared to three baselines across four question datasets and three pretrained LLMs. The plots are
truncated to show only the region where the utility exceeds the Non-RAG baseline (i.e., the pretrained
LLM without access to the external dataset), which is the regime of practical interest.

Table 1: Precision of retrieved documents under MURAG and MURAG-ADA, measured as the
percentage of truly top-50 relevant documents among the retrieved. Results are reported for each
dataset. MURAG-ADA achieves significantly higher precision on the dependent question sets
(ChatDoctor and MQuAKE), demonstrating its more efficient use of the privacy budget to save
documents for later questions.

Independent Question Set Dependent Question Set
Natural Questions  Trivia Questions ~ Chatdoctor Questions MQUuAKE Questions
MURAG 78.8% 72.2% 13.3% 17.6%
MURAG-ADA 92.6% 94.6% 67.2% 40.7%
MURAG-ADA (non-private top-K-release) 99.4% 99.6% 71.2% 43.5%

This discrepancy arises from the limitations of using a fixed retrieval threshold 7 in MURAG. Since
different queries induce different distributions over relevance scores, a single global threshold can lead
to imbalanced behavior: a threshold that retrieves sufficient relevant documents for one query may
result in many low-relevance documents for another. These low-relevance documents still consume
privacy budget without meaningfully improving the response, and may become unavailable for future
queries where they are actually useful. This inefficiency is especially problematic in dependent
question sets, where documents are frequently shared across queries.

To quantify this effect Table[I]reports the precision under both MURAG and MURAG-ADA, where
the precision is defined as the percentage of truly top-50 documents among the retrieved documents for
each question. We observe that precision under MURAG is particularly low for ChatDoctor Questions
and MQuAKE Questions, whereas MURAG-ADA significantly improves retrieval precision on these
datasets through its adaptive thresholds. This improvement in retrieval quality directly contributes to
the superior performance of MURAG-ADA in the setting of dependent question set.
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Figure 3: Comparison of M = 1 and M = 5 in the individual privacy accounting framework. Left
plot shows the retrieval precisions of two methods with M = 1, 5. The right three plots show the
trade-off between the QA performance and the €051 in DP. Increasing M improves retrieval precision
and RAG utility, but incurs a higher total privacy cost. M = 1 remains preferable for a stronger
privacy-utility trade-off.

Effect of different )/ in the individual privacy accounting framework. Both of our proposed
methods include a hyperparameter M, which controls the maximum number of queries for which an
individual document’s privacy budget can be consumed. In our main results (Figure[2), we set M =1
to ensure strict per-document privacy usage. However, this setting may limit utility: once a document
is used for one query, it becomes unavailable for future queries, even if it would have been highly
relevant. This limitation is evident in Table I where both methods exhibit low retrieval precision
on the MQuUAKE Questions dataset and this suggests that relevant documents were prematurely
deactivated.

To better understand the impact of M, we evaluate our two methods with a larger value of M = 5.
Figure [3|compares performance with M = 1 and M = 5. The left plot shows a substantial increase
in Top-50 retrieval precision when using M = 5, indicating better access to relevant documents. This
improvement translates into higher end-to-end RAG utility, as shown in the three plots on the right.
However, increasing M also leads to a higher total privacy cost (iota1 = M - £4). Overall, while
M = 5 enhances utility, we find that M = 1 still achieves the best privacy-utility trade-off under a
practical privacy regime.

6 Discussion

Why Privacy Filter rather than Amplification by Subsampling? As surveyed in Section[A.2]
privacy amplification by subsampling [Balle et al., 2018, |Wang et al.,|2019} Zhu and Wang|, 2019]
is widely used in DP LLM applications, such as DP prompt tuning and DP in-context learning, to
enhance generation quality. However, this technique is not well-suited for DP RAG:

* In prompt tuning, the goal is to learn a single task-specific prompt that can generalize to all
future queries. In DP in-context learning, a small number of example inputs are selected under
DP constraints and reused across queries. In contrast, our RAG setting does not allow for such
"unified" prompts or examples: each test-time query requires retrieving and using query-specific
documents, which must be handled privately, which makes individual privacy filter a more suitable
choice.

* Moreover, in prompt tuning and in-context learning, all data points in the private dataset can
meaningfully contribute to the learned prompt or selected example set. This property enables the
use of subsampling-based amplification techniques in algorithm design. In RAG, however, only a
sparse subset of documents in the large external corpus are relevant to any given query—most
documents provide no utility.

These two key differences, the lack of reusable prompts and the sparsity of useful data, motivate the
development of our new DP RAG algorithms using Renyi filter rather than amplification by sampling.

Leveraging Historical QA.  As shown in Table[T]and Figure[T] when the relevant documents for
different questions exhibit significant overlap, the quality of answers to later questions degrades. This
occurs because the documents required to answer the queries may exhaust their privacy budgets and
are subsequently filtered out from the active set passed to the RAG algorithm. In the extreme case
where a user repeatedly submits the same query, only the first response may retain high quality, while
subsequent answers degrade due to the unavailability of relevant documents.
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A potential remedy is to reuse historical answers as auxiliary documents in future queries. This
can be done without incurring any additional privacy cost, owing to the post-processing property of
differential privacy.

7 Conclusion

We proposed the first differentially private (DP) framework for retrieval-augmented generation (RAG)
that supports answering multiple queries while protecting a sensitive external dataset. Our methods
build on individual privacy accounting to overcome the limitations of the prior single-query DP-
RAG system with the basic sequential composition. We introduced two algorithms—MURAG and
MURAG-ADAdiffer in how they select documents for each query under DP guarantees. MURAG
uses a fixed threshold for document retrieval, while MURAG-ADA adaptively adjusts the threshold
per query to improve the efficiency of individual privacy accounting. Through comprehensive experi-
ments on four question datasets and three LLMs, we demonstrated that both methods significantly
reduce the privacy cost needed to outperform a Non-RAG baseline, achieving strong utility for
answering 100 questions under a realistic budget of ¢ = 10. We also showed that MURAG-ADA
performs particularly well on datasets with overlapping document relevance across queries. This
work highlights the importance of tailoring differential privacy mechanisms to the characteristics of
the RAG setting. We hope our contributions provide a foundation for more practical and principled
privacy-preserving RAG systems.
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A Related Work

A.1 Privacy-Preserving Retrieval Augmented Generation

Recent studies have revealed two main categories of privacy risks in retrieval-augmented generation
(RAG) systems. The first is membership inference attacks (MIA)[Shokri et al.,|2017]], which aim
to determine whether a specific document was included in the private external dataset. Research
on MIA in RAG has explored adversarial prompt construction|Naseh et al.| 2025| [Liu et al., 2025,
Anderson et al.,[2024] and scoring mechanisms [Li et al.,[2025]] to increase inference success. The
second type is data reconstruction attacks, which aim to recover the raw content of documents in
the private dataset. These attacks have been explored via adversarial prompt design [Zhang et al.|
2025| Zeng et al, 2024a Jiang et al.,|[2024] as well as through data poisoning techniques that embed
triggers to facilitate reconstruction [Peng et al.|[2024]]. Together, these works highlight the growing
need for principled privacy-preserving algorithms for RAG.

Several approaches have been proposed to address these privacy risks. Most notably, |[Koga et al.|[2024]
introduced a differentially private (DP) RAG system that provides privacy guarantees for a single
query. Other works [[Yao and Li, |Grislain, [2025]] have studied how to release document identifiers
under DP guarantees. However, none of these methods address the setting where multiple queries are
issued, which is more representative of real-world usage. In addition to DP-based methods, there are
empirical approaches that aim to enhance privacy without formal guarantees. [Yao and Li/ propose a
synthetic document generation technique, where retrieved documents are paraphrased before being
passed to the generator. |[Zeng et al.|[2024b] introduces a dataset privatization strategy that removes
sensitive content across multiple documents prior to retrieval. While these methods offer promising
empirical results, they lack worst-case guarantees and remain vulnerable to strong adversarial attacks.
Finally, |Cheng et al.|[2024] explores a complementary privacy concern—protecting the user’s query
when interacting with a cloud-hosted RAG system. While important, this line of work addresses a
different threat model than ours.

A.2 Differential Privacy in Large Language Models

Beyond our focus on DP in RAG, DP has also been extensively studied in other LLM settings,
including fine-tuning [Charles et al., 2024 |Yu et al., [2021} |Li et al., [2021]], prompt tuning [Duan
et al.| 2023, Hong et al.,2024], and in-context learning [Tang et al.| 2024} Wu et al.| [2024]]. Due to
the differing nature of these tasks, the effective DP mechanisms vary significantly across settings.
In pre-training and fine-tuning, the core challenge lies in optimizing the model parameters while
maintaining stability against the noise introduced by DP algorithms. These settings are fundamentally
different from RAG, where the goal is not to train the model but to ensure privacy during inference-
time retrieval and generation. More closely related to our work are DP approaches for prompt tuning
and in-context learning. However, the structural differences between these tasks and RAG result
in distinct design considerations for differential privacy algorithms; please see Section [6|for more
details.

A.3 Individual Privacy Accounting and Privacy Filters

Individual privacy accounting focuses on tracking the privacy loss incurred by a single data point,
often yielding tighter privacy bounds than traditional worst-case analyses over all neighboring datasets
[Dwork et al.|[2006b]. This line of work was initiated by [Feldman and Zrnic|[2021] in the context of
Rényi Differential Privacy and was subsequently extended to Gaussian Differential Privacy [Dong
et al., [2022] by [Koskela et al.|[2022]]. For a comprehensive overview, we refer the reader to |Feldman
and Zrnic|[2021}, Section 1.2].

Building upon this framework, the concept of a privacy filter has been introduced as a general
mechanism for adaptively enforcing privacy constraints. A privacy filter refers to a stopping rule
that halts the execution of differentially private (DP) algorithms before the cumulative privacy loss
exceeds a specified budget. Individual privacy filters, introduced by [Feldman and Zrnic|[2021]] and
further developed by |[Koskela et al.[[2022]], represent a specialized instantiation of this framework.
These filters operate at the granularity of individual data points, terminating their participation once
their respective privacy budgets are exhausted. For further details, we refer the reader to |Rogers et al.
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[2016], [Feldman and Zrnic|[2021]], Koskela et al.|[2022]], Smith and Thakurtal [2022], Whitehouse
et al.|[2023]].

B Algorithms
We present additional algorithms that were omitted from the main paper for brevity.

B.1 Top-k document selection

Algorithm [3|returns the top-/& documents from a dataset D ranked by a score function r, padding
with empty strings if | D| < K to ensure the output always has exactly K elements.

Algorithm 3: Tor-K(D, K, r)
Input: dataset D, sample size K, score function r

1 if |D| > K then

2 ‘ DF < top-K documents from D according to score function 7 > assume no ties

3 else

4 L DF « DU {«}k=ID] > Add empty string "" until document set has
size k

5 return DF

B.2 Naive algorithm for DP Multi-Question RAG

Algorithm [ serves as a baseline for handling multi-query DP RAG by composing a single-query
DP-RAG mechanism 7" times.

Algorithm 4: NAIVE-MULTI-RAG

Input: Private external dataset D, a sequence of queries {q1, g2, - - - , g7}, total privacy
budget €, per query budget ¢,
Require: ¢ > T - ¢,
1fort=1,...,7T do
2 | a; = DP-RAG(z, D,LLM,¢,) > Algo.

3 return (a,as,...,ar)

B.3 DP-RAG for single question answering

Algorithm[5]is a variant of [Koga et al|[2024, Algorithm 2], in which we replace the LimitedDomain
mechanism [Durfee and Rogers,[2019] with the exponential mechanism in the private token generation
step. This modification yields a more stringent pure-DP guarantee and results in a cleaner privacy
composition accounting result.
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Algorithm 5: DP-RAG(z, D,LLM, ¢)
Input: Prompt x; external data source D; next-token generator
LLM(prompt, doc | history); total budget ¢;
Set: Per-token privacy budget ¢
Require: maximum length of output tokens 7},,,x; number of voters m; retrievals per voter k;
document retriever R(prompt, doc set, #retrieved docs); threshold for voting 6
1 EExpo < 50/27 €Lap < 80/2 > split privacy budget for per token generation
2 ¢4 |e/erac), 8 < 0+ Lap(2/erap)
3 D, < R(x,D;mk) > retrieve mk documents
4D, {DL ...,D"} > Partition D, into m subsets uniformly random
5 fort < 1to 1, do
6 y?onfRAG « LLM((E, «“» | y<t)
for i < 1tomdo

7

s | [ < LLM(2, D} | yo)

9 Hist; + Hist(yt(l), . ,yt(m)) > Hist, € NIV
10 Count, < Hist,[index = yP°"~RAC)

1 if Count; + Lap(4/erap) < 0 then

12 yi < expoMech(Hists; egxpo)

13 c+—c—1

14 else

15 L Yy y;’;onfRAG
16 if y; = (EOS) or ¢ = 0 then
17 | return (yi,...,y:)

18 return (y1,...,Y7,.. )

C Proofs for Privacy Guarantee

C.1 Privacy Guarantee for Algorithm

Lemma (Restatement of Lemma(I). MURAG satisfies e-differential privacy if, for every z € D, the
ex-ante individual privacy budget is at most ¢.

Proof. Since £(z) < € for every z € D, the privacy guarantee follows directly from Feldman and
Zrnic| 2021, Corollary 3.3]. ]

C.2 Privacy Guarantee for Algorithm 2]

Lemma (Restatement of Lemma [2). MURAG-ADA satisfies e-differential privacy if, for every
z € D, the ex-ante individual privacy budget is at most €.

Proof. We first bound the individual privacy for the ¢-th prefix-sum release algorithm, denoted by
A;. Consider S,5 € S (z;,n), and without loss of generality, we assume z; € S. Conditioned
on the trajectory r*=1) from the previous t — 1 rounds, for any possible output sequence b(9) :=
(b1,b2,...,by) with ¢ < B, the interesting regime is that there exists j € [g] such that z; contributes

to b;; otherwise, we have A;(S | r(t~1) 4 Ay(S | 7*=1). In the former case, we can perform the
decomposition using Bayes’ rule:
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PA(S) = B)\ _  (BA(S)] +1:q] = b+19) | b)) P(A(S)[7] = by [ D9Y)
8 ( S ) o (P<At<§>u T 1:q] = bUt) | b<ﬂ'>>> e (P(At(g)[j] = b; | B0-D)

)

P(A(S) = b(9)
(a) (b)

P(A,(S) = b6~
o (P(At(g) - b<j—1>>>

(e)

< Ethr

Notice that every two bins are disjoint; thus, the consumption of the privacy budget is independent
between two different data points. Therefore, (a), (¢) = 0 and (b) < e¢1, by the privacy guarantee
for single-query release.

Now we consider the RAG step. The interesting regime is when z; € A}. Then, by the composition
theorem, the privacy loss of DP-RAG o Top-K is upper bounded by egac-

In addition, we note that £(z;) is a valid stopping time, since it updates the privacy budget after each
invocation of the algorithms, and z; is only involved when its privacy budget is sufficient.

Thus, by |[Feldman and Zrnic|[2021, Corollary 3.3], the privacy guarantee is given by £(z), which is
upper bounded by €. O
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