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Abstract

Parameterized quantum circuits (PQCs) have emerged as a promising approach for
quantum neural networks. However, understanding their expressive power in ac-
complishing machine learning tasks remains a crucial question. This paper inves-
tigates the expressivity of PQCs for approximating general multivariate function
classes. Unlike previous Universal Approximation Theorems for PQCs, which are
either nonconstructive or rely on parameterized classical data processing, we ex-
plicitly construct data re-uploading PQCs for approximating multivariate polyno-
mials and smooth functions. We establish the first non-asymptotic approximation
error bounds for these functions in terms of the number of qubits, quantum cir-
cuit depth, and number of trainable parameters. Notably, we demonstrate that for
approximating functions that satisfy specific smoothness criteria, the quantum cir-
cuit size and number of trainable parameters of our proposed PQCs can be smaller
than those of deep ReLU neural networks. We further validate the approximation
capability of PQCs through numerical experiments. Our results provide a theo-
retical foundation for designing practical PQCs and quantum neural networks for
machine learning tasks that can be implemented on near-term quantum devices,
paving the way for the advancement of quantum machine learning.

1 Introduction

In quantum computing, one key area is to investigate if quantum computers could accelerate clas-
sical machine learning tasks in data analysis and artificial intelligence, giving rise to an interdisci-
plinary field known as quantum machine learning [1]. As the quantum analogs of classical neural
networks, parameterized quantum circuits (PQCs) [2] have gained significant attention as a promi-
nent paradigm to yield quantum advantages. PQCs offer a concrete and practical way to implement
quantum machine learning algorithms in noisy and intermediate-scale quantum (NISQ) devices [3],
rendering them well-suited for a diverse array of tasks [4–11].

To establish the practical significance of quantum machine learning, an ongoing pursuit is to demon-
strate their superiority in solving real-world learning problems compared to classical learning mod-
els, including the most commonly used deep neural networks [12]. Typical supervised learning
tasks, such as image classification and price prediction, aim to construct a model to learn a mapping
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function from the input to output via training data sets. Essentially, the goal is to approximate multi-
variate functions. This viewpoint leads to the celebrated Universal Approximation Theorem [13, 14],
which limits what neural networks can theoretically learn. Recently, powerful tools from approxi-
mation theory have been utilized to establish a fruitful mathematical framework for understanding
the “black magic” of deep learning by establishing non-asymptotic approximation error bounds of
deep neural networks in terms of the width, depth, number of weights (neurons) and function com-
plexities, see e.g. Refs. [15–25] and references therein.

Substantial investigations have showcased the power of quantum machine learning for specific learn-
ing tasks [26–33]. A fundamental question is whether the expressivity of quantum machine learning
models is as powerful as, or is more powerful than, the expressivity of classical machine learning
models. This can be illustrated by proving universal approximation theorems for PQCs [34–41],
indicating that there exist PQCs with suitable parameter configurations to approximate target func-
tions up to a given approximation accuracy. This will justify the power of PQCs to solve supervised
learning tasks in a mathematical way. To further investigate whether PQCs are more expressive than
the classical models or not, it is natural to examine the PQC approximation performance by estab-
lishing approximation error bounds for important function classes. Such quantitative error bounds
are less known in the quantum setting, because the hypothesis functions generated by PQCs are
more complicated than those generated by classical neural networks.

The difficulties of analyzing the PQC approximation performances can be partially overcome by
allowing parameterized classical data processing. Namely, trainable parameters are allowed not
only in the quantum gates in PQCs but also in the classical data pre- and post-processing. This
allows one to prove approximation error bounds following classical strategies [39, 41, 40]. For
instance, Goto et al. [39] proved PQC approximation error rate for Lipschitz continuous functions in
terms of the number of qubits and trainable parameters by incorporating trainable parameters in the
measurement post-processing phase; similar results can also be obtained by utilizing Tensor-Train
Network [41] or by linear transformations to preprocess the classical data.

However, utilizing parameterized classical data processing makes it hard to distinguish whether
the expressive power of PQCs comes from the classical or quantum parts. In fact, parameterized
classical data processing enables one to directly convert the hypothesis functions generated by the
quantum models into hypothesis functions generated by classical ones and adapt expressivity results
for classical machine learning models to extract the expressivity of such quantum models. As a
consequence, the resulting PQCs have very simple structures and short depth. It remains unknown
whether one can prove approximation error bounds for PQCs without parameterized classical data
processing. On the other hand, Zhao et al. [42] proved exponential lower bounds on the number of
trainable parameters (in terms of the number of variables) needed for approximating bounded Lips-
chitz continuous functions using PQCs without parameterized classical data processing, illustrating
that using PQCs to approximate Lipschitz functions still suffers from the curse of dimensionality
(CoD) met by classical deep neural networks [43]. However, this does not rule out the possibility
that one can achieve the same approximation rate with PQCs of smaller size compared to classical
deep neural networks.

In this paper, we explicitly construct the first PQCs without parameterized classical data process-
ing for approximating multivariate polynomials and smooth functions; a glance at these constructed
PQCs is illustrated in Fig. 1. This eliminates the ambiguity regarding whether the expressivity orig-
inates from classical or quantum parts. We also establish non-asymptotic PQC approximation error
bounds, in the sense that the PQC approximation performances are characterized in terms of the
number of qubits (width), the depth of PQCs, the number of trainable parameters/gates (parameter
count), and the function complexities. These results enable us to compare the approximation power
of PQCs with that of classical neural networks. Notably, we show that for multivariate smooth
functions, the quantum circuit size and the number of trainable parameters of our proposed PQCs
demonstrate an improvement over the prior result of deep ReLU neural networks [21], one of the
most commonly used neural network family in classical deep learning theory. Our proposed PQCs
not only possess the universal approximation property but also achieve parameter efficiency com-
parable to classical neural networks, potentially leading to more efficient and scalable quantum
machine learning algorithms for real-world tasks.
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Figure 1: Overview of PQCs for approximating continuous functions. (a) Flowchart illustrating the strat-
egy for using PQCs to approximate continuous functions via implementing Bernstein polynomials. The input
data x is encoded into the PQC through S(x), with the PQC (blue background) capable of representing parity-
constrained polynomials up to degree 3 (as x is encoded three times). The technique of linear combination of
unitaries (LCU) is used to aggregate these polynomials together. The output of PQC derives from measurement
with a specific observable. Fine-tuning trainable parameters in RZ gates yields a polynomial output depicted
in the right panel. (b) Flowchart illustrating the strategy of approximation via local Taylor expansions. We first
apply a PQC to localize the input domain into K = 5 regions. For example, for input x ∈ [0.8, 1], PQC outputs
x′ = 0.8 as a fixed point. Then x−x′ will be fed into a new PQC for implementing the local Taylor expansions
at the fixed point x′, forming a nesting architecture. Control gates with pink backgrounds implement the Taylor
coefficients. Fine-tuning trainable parameters in RX and RZ gates yields a piecewise polynomial with degree
3 that approximates the target function.

2 Preliminaries

Quantum states. The basic unit of information in quantum computing is the qubit, which can
exist in a superposition of the states 0 and 1 simultaneously, unlike classical bits that are restricted
to either 0 or 1. A pure quantum state in the d-dimensional Hilbert space Cd is represented by the
Dirac notation |ϕ⟩. The conjugate transpose of |ϕ⟩ is denoted by ⟨ϕ|. The inner product of two
quantum states |ϕ⟩ and |ψ⟩ is written as ⟨ϕ|ψ⟩. An important property is that ⟨ϕ|ϕ⟩ = 1 for any
pure state |ψ⟩. By convention, the computational basis states for single-qubit systems are written
as |0⟩ = [1, 0]T and |1⟩ = [0, 1]T , where the superscript T denotes the transpose. For n-qubit
systems, the computational basis states are expressed as |j⟩ ∈ {|0⟩ , |1⟩}⊗n, where ⊗ denotes the
tensor product operation.

Quantum gates. Quantum gates are building blocks of quantum circuits operating on quantum
states. Unlike classical gates, quantum gates are reversible and described as unitary matrices. In
quantum machine learning, common parameterized quantum gates include single-qubit Pauli rota-
tion gates RX(θ) = e−θX/2, RY (θ) = e−θY/2, and RZ(θ) = e−θX/2 that rotate a quantum state
through angle θ around the corresponding axis, where the three Pauli operators are defined as:

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
,

where i represents the imaginary unit. Commonly used two-qubit quantum gates include CNOT
gate that flips the target qubit if and only if the the control qubit is in |1⟩.

Quantum measurement The quantum measurement is a procedure manipulating a quantum sys-
tem to extract classical information. The simplest measurement is the computational basis measure-
ment: For a single-qubit system |ψ⟩ = α |0⟩+ β |1⟩, the outcome is either |0⟩ with probability |α|2
or |1⟩ with probability |β|2. These measurements project the quantum state onto the measured basis,
collapsing the state itself. Observables, represented by Hermitian operators, correspond to measur-
able quantities in a quantum system like energy or position. Each observable has a set of possible
outcomes (eigenvalues) and corresponding states (eigenvectors). When a measurement of an ob-
servable is performed, the outcome is one of the eigenvalues, and the state of the system collapses
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to the corresponding eigenvector. If we are measuring a state |ψ⟩ using observable O, the expected
value of outcome is ⟨ψ| O |ψ⟩. This represents the average result one would expect from repeated
measurements on identically prepared systems. A comprehensive introduction to the fundamental
notations and concepts of quantum computation can be found in [44].

Data re-uploading PQCs. The PQCs we shall construct in this paper are of data re-uploading
type [11], i.e., consisting of interleaved data encoding circuit blocks and trainable circuit blocks.
More precisely, let x be the input data vector and θ = (θ0, . . . ,θL) be a set of trainable parameter
vectors. S(x) is a quantum circuit that encode x and V (θj) is a trainable quantum circuit with
trainable parameter vector θj . An L-layer data re-uploading PQC can be then expressed as

Uθ(x) = V (θ0)

L∏
j=1

S(x)V (θj), (1)

ApplyingUθ(x) to an initial quantum state and measuring the output states provides a way to express
functions on x:

fUθ
(x) := ⟨0|U†

θ(x)OUθ(x) |0⟩ , (2)

where O is some Hermitian observable. The approximation capability of the PQC Uθ(x) can
be characterized by the classes of functions that fUθ

(x) can approximate by tuning the trainable
parameter vector θ. We then turn to an example of single-qubit PQCs approximating univari-
ate functions. For the input x ∈ [−1, 1], we utilized the Pauli X basis encoding scheme [10]
and defined the data encoding operator as a Pauli X rotation S(x) := ei arccos(x)X . Interleav-
ing the data encoding unitary S(x) with some parameterized Pauli Z rotations RZ(θ) gives the
circuit of data re-uploading PQC for one variable as Uθ(x) := RZ(θ0)

∏L
j=1 S(x)RZ(θj) where

θ = (θ0, . . . , θL) ∈ RL+1 is a set of trainable parameters. Utilizing results from quantum signal
processing [45–47], there exists θ ∈ RL+1 such that Uθ(x) implements polynomial transformations
p(x) ∈ R[x] as p(x) = ⟨+|Uθ(x)|+⟩ for any x ∈ [−1, 1] if and only if the degree of p(x) is at most
L, the parity of p(x) is L mod 2 4, and |p(x)| ≤ 1 for all x ∈ [−1, 1]. Then, univariate functions
that could be approximated by the specified polynomial p(x) could also be approximated by the
PQC Uθ(x). Other than the real polynomials, there are also types of single-qubit PQC with Pauli Z
basis encoding that could implement complex trigonometric polynomials [37].

3 Expressivity of PQCs for multivariate continuous functions

3.1 Explicit construction of PQCs for multivariate polynomials

Although PQCs for approximate univariate functions have been constructed and analyzed, they have
not yet been generally extended to the case of multivariate functions. Current proofs of universal
approximation for multivariate functions are nonconstructive [34, 38] and require arbitrary circuit
width, arbitrary multi-qubit global parameterized unitaries, and arbitrary observables. Goto et al.
[39] proposed several constructions for approximating multivariate functions with the assistance
of parameterized data pre-processing and post-processing, yielding a quantum-enhanced hybrid
scheme rather than a purely quantum setting.

We now move to our explicit construction of PQCs for multivariate polynomials. A multivariate
polynomial with d variables and degree s is defined as p(x) :=

∑
∥α∥1≤s cαx

α where xα =

xα1
1 xα2

2 · · ·xαd

d . To implement the multivariate polynomial p(x), we first build a PQC to express
a monomial cαxα. The construction is a trivial extension of the univariate case: We simply apply
the single-qubit PQC with Pauli X basis encoding on each xj to implement xαj

j for 1 ≤ j ≤ d,
respectively. The coefficient cα ∈ R could be implemented by any of these PQCs. Thus we could
construct a PQC Uα(x) :=

⊗d
j=1 Uθj

(xj) such that ⟨+|⊗d
Uα(x)|+⟩⊗d

= cαx
α. The depth of

the PQC Uα(x) is at most 2s + 1, the width is at most d, and the number of parameters is at most
s+ d.

4 A polynomial p(x) has parity 0 if all coefficients corresponding to odd powers of x are 0, and similarly p(x)
has parity 1 if all coefficients corresponding to even powers of x are 0.
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Having PQCs that implement monomials, the next step is to aggregate monomials to implement
the multivariate polynomial. A natural idea is to sum the monomial PQCs together as Up(x) =∑

∥α∥1≤s U
α(x). However, the addition operation in quantum computing is non-trivial as the sum

of unitary operators is not necessarily unitary. To overcome this issue, we utilize linear combination
of unitaries (LCU) [48] to implement the operator Up(x) on a quantum computer. Realizing the
linear combination of PQCs Uα(x) requires applying multi-qubit control on each Uα(x), which
could be further decomposed into linear-depth quantum circuits of CNOT gates and single-qubit
rotation gates without using any ancilla qubit [49]. Then we can obtain the polynomial p(x) =

⟨+|⊗d
Up(x)|+⟩⊗d by applying the Hadamard test on the LCU circuit. Summarizing the above, we

establish the following theorem about using PQCs to implement multivariate polynomials. A formal
description of such PQCs is given in Appendix B.

Theorem 1. For any multivariate polynomial p(x) with d variables and degree s such that |p(x)| ≤
1 for x ∈ [0, 1]d, there exists a PQC Wp(x) such that

fWp
(x) := ⟨0|W †

p (x)Z
(0)Wp(x) |0⟩ = p(x) (3)

whereZ(0) is the PauliZ observable on the first qubit. The width of the PQC isO(d+log s+s log d),
the depth is O(s2ds(log s+ s log d)), and the number of parameters is O(sds(s+ d)).

Note that the initial state in the Hadamard test is |0⟩⊗d since |+⟩⊗d could be easily prepared by
applying Hadamard gates on |0⟩⊗d. Measuring the first qubit of Wp(x) for O( 1

ε2 ) times is needed
to estimate the value of p(x) up to an additive error ε. We could further use the amplitude estimation
algorithm [50] to reduce the overhead while increasing the circuit depth by O( 1ε ).

3.2 PQC approximation for continuous functions

Polynomials play a central role in approximation theory. The celebrated Weierstrass approximation
theorem (see e.g. [51, Sec. 10.2.2]) indicates that polynomials are sufficient to approximate continu-
ous univariate functions. For multivariate functions, their approximation can be implemented using
Bernstein polynomials [52, 53]. We shall apply these results to prove PQC approximation error
bounds for multivariate Lipschitz continuous functions.

For a d-variable continuous function f : [0, 1]d → R, the multivariate Bernstein polynomial with
degree n ∈ N+ of f is defined as

Bn(x) :=

n∑
k1=0

· · ·
n∑

kd=0

f
(k
n

) d∏
j=1

(
n

kj

)
x
kj

j (1− xj)
n−kj , (4)

where k = (k1, . . . , kd) ∈ {0, . . . , n}d. It is known that Bernstein polynomials converge uniformly
to f on [0, 1]d as n → ∞ [52, 53]. The PQC constructed in Theorem 1 could implement the
Bernstein polynomial with proper rescaling, which implies that the PQC is a universal approximator
for any bounded continuous functions.

Theorem 2 (The Universal Approximation Theorem of PQC). For any continuous function f :
[0, 1]d → [−1, 1], given an ε > 0, there exist an n ∈ N and a PQC Wb(x) with width O(d log n),
depth O(dnd log n) and the number of trainable parameters O(dnd) such that

|f(x)− fWb
(x)| ≤ ε (5)

for all x ∈ [0, 1]d, where fWb
(x) := ⟨0|W †

b (x)Z
(0)Wb(x) |0⟩.

Theorem 2 serves as the quantum counterpart to the universal approximation theorem of classi-
cal neural networks. Moreover, the PQCs that universally approximate continuous functions are
explicitly constructed without any impractical assumption, improving the previous results pre-
sented in Refs. [34, 38]. Moreover, for continuous functions f satisfying the Lipschitz condition,
|f(x) − f(y)| ≤ ℓ∥x − y∥∞ for any x,y, the approximation rate of Bernstein polynomials could
be quantitatively characterized in terms of the degree n, the number of variables d and the Lipschitz
constant ℓ [53]. Thus a non-asymptotic error bound for PQC approximating Lipschitz continuous
functions could be obtained as follows.
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Theorem 3. Given a Lipschitz continuous function f : [0, 1]d → [−1, 1] with a Lipschitz con-
stant ℓ, for any ε > 0 and n ∈ N, there exists a PQC Wb(x) with such that fWb

(x) :=

⟨0|W †
b (x)Z

(0)Wb(x) |0⟩ satisfies

|f(x)− fWb
(x)| ≤ ε+ 2

((
1 +

ℓ2

nε2

)d
− 1

)
≤ ε+ d2d

ℓ2

nε2
(6)

for all x ∈ [0, 1]d. The width of the PQC is O(d log n), the depth is O
(
dnd log n

)
, and the number

of parameters is O(dnd).

We prove these theorems in Appendix C. Although a quantitative approximation error bound is char-
acterized in Theorem 3, we could find that n must be sufficiently large to obtain a good precision,
yielding an extremely deep PQC. This inefficiency is essentially due to the intrinsic difficulty of us-
ing a single global polynomial to approximate a continuous function uniformly. A possible approach
that may overcome the obstacle is to use local polynomials to achieve a piecewise approximation,
which we will discover in the next section.

3.3 PQC approximation for Hölder smooth functions

To achieve a piecewise approximation of multivariate functions, we follow the path of classical deep
neural networks approximation [18, 21, 25], which utilizes multivariate Taylor series to approximate
target functions in small local regions.

We focus on Hölder smooth functions. Let β = s + r > 0, where r ∈ (0, 1] and s ∈ N+. For a
finite constant B0 > 0, the β-Hölder class of functions Hβ([0, 1]d, B0) is defined as

Hβ([0, 1]d, B0)=
{
f : [0, 1]d→R, max

∥α∥1≤s
∥∂αf∥∞≤B0, max

∥α∥1=s
sup
x̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥r2

≤B0

}
,

(7)
where ∂α = ∂α1 · · · ∂αd for α = (α1, . . . , αd) ∈ Nd. We note that Hölder smooth functions are
natural generalizations of various continuous functions: When β ∈ (0, 1), f is Hölder continuous
with order β and Hölder constantB0; when β = 1, f is Lipschitz continuous with Lipschitz constant
B0; when 1 < β ∈ N, f ∈ Cs([0, 1]d), the class of s-smooth functions whose s-th partial derivatives
exist and are bounded. As shown in Petersen and Voigtlaender [18], for any β-Hölder smooth
function f ∈ Hβ([0, 1]d, B0), its local Taylor expansion at some fixed point x0 ∈ [0, 1]d satisfies∣∣∣f(x)− ∑

∥α∥1≤s

∂αf(x0)

α!
(x− x0)

α
∣∣∣ ≤ ds∥x− x0∥β2 (8)

for all x ∈ [0, 1]d, where α! = α1! · · ·αd!. Next, we show how to construct PQCs to implement the
Taylor expansion of β-Hölder functions in the following three steps.

Localization. To utilize the Hölder smoothness, we need to first localize the entire region [0, 1]d.
The motivation of localization is to determine the local point x0 in Eq. (8) so that the distance
between x and x0 is fairly small. An intuitive configuration is illustrated in Fig. 2, where the
stars represent the local points. Given K ∈ N and ∆ ∈ (0, 1

3K ), for each η = (η1, . . . , ηd) ∈
{0, 1, . . . ,K − 1}d, we define

Qη :=
{
x = (x1, . . . , xd) : xi ∈

[ ηi
K
,
ηi + 1

K
−∆ · 1ηi<K−1

]}
. (9)

By the definition of Qη , the region [0, 1]d is approximately divided into small hypercubes
⋃

η Qη

and some trifling region Λ(d,K,∆) := [0, 1]d \ (⋃η Qη), as illustrated in Fig. 2.

We construct a PQC that maps all x ∈ Qη to some fixed point xη = η
K in Qη , i.e., approximating

the piecewise-constant function D(x) = η
K if x ∈ Qη . We describe our construction for d = 1,

where D(x) = k
K if x ∈ [ kK ,

k+1
K − ∆ · 1k<K−1] for k = 0, . . . ,K − 1. The multivariate case

could be naturally generalized by applying D(x) to each variable xj . The idea is to construct a
polynomial that approximates the function D(x) based on the polynomial approximation to the
sign function [54], which a single-qubit PQC can then implement. Generalizing to the multivariate
localization, there exists a PQC WD(x) of depth O( 1

∆ log K
ε ) and width O(d) such that the output

fWD
(x) maps x to the corresponding fixed point xη with precision ε. We can obtain an estimation

of η using ⌊KfWD
(x)⌋.
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Figure 2: An illustration of localization. The left panel demonstrates the localization
⋃

η Qη for K = 5 and
d = 1. The right panel shows the case of localization for K = 5 and d = 2. The “volume” of the trifling
region Λ(d,K,∆) is no more than dK∆.

Implementing the Taylor coefficients. Next, we use PQC to implement the Taylor coefficients
ξη,α :=

∂αf(xη)
α! ∈ [−1, 1] for each η = (η1, . . . , ηd) ∈ {0, 1, . . . ,K − 1}d and α, which is

essentially a point-fitting problem. Then we could construct a PQC Uα
co =

∑
η|η⟩⟨η| ⊗ RX(θη,α)

such that ⟨η, 0|Uα
co |η, 0⟩ = ξη,α, where |η⟩ = |η1⟩ ⊗ · · · ⊗ |ηd⟩ and θη,α = 2arccos(ξη,α). The

depth of Uα is O(Kd), the width is O(d logK), and the number of parameters is O(Kd). Note
that the state |η⟩ can be prepared using basis encoding on the provided η = ⌊KfWD

(x)⌋ from the
localization step.

Implementing multivariate Taylor series. To implement the multivariate Taylor expansion of a
function at some fixed point xη , we first build a PQC to represent a single term in the Taylor series,
which could be done by combining the PQC, which implements the Taylor coefficients and the PQC
which implements monomials, i.e., constructing Uα

η (x) := Uα
co⊗Uα(x−xη). The depth of Uα

η (x)

isO(Kd+s), the width isO(d logK), and the number of parameters is at mostKd+s+d. The next
step is to aggregate single Taylor terms together to implement the truncated Taylor expansion of the
target function. We use LCU to construct the PQC Ut(x,xη) :=

∑
∥α∥1≤s U

α
η (x) so that we can

implement the Taylor expansion of the function f at point xη as ⟨η, 0|⟨+|⊗d
Ut(x,xη) |η, 0⟩|+⟩⊗d.

We construct a nested PQC as Ut(x, fWD
(x)), such that for any input x, the corresponding fixed

point could be determined by the localization PQC. Such a PQC could be used, together with the
Hadamard test, to approximate Hölder smooth functions. In particular, we prove the approximation
error bound of our constructed PQC based on the error rate of Taylor expansion in Eq. (8).

Theorem 4. Given a function f ∈ Hβ([0, 1]d, 1) with β = r + s, r ∈ (0, 1] and s ∈ N+, for any
K ∈ N and ∆ ∈ (0, 1

3K ), there exists a PQC Wt(x) such that fWt
(x) := ⟨0|W †

t (x)Z
(0)Wt(x) |0⟩

satisfies

|f(x)− fWt
(x)| ≤ ds+β/2K−β (10)

for x ∈ ⋃η Qη . The width of the PQC isO(d logK+log s+s log d), the depth isO(s2dsKd(log s+

s log d+ d logK)) + 1
∆ logK), and the number of parameters is O(sds(s+ d+Kd) + d

∆ logK).

The proof can be found in Appendix D. Note that the PQC in Theorem 4 consists of two nested
parts and its depth is counted as the sum of two PQCs for simplicity. We have established the
uniform convergence property of PQCs for approximating Hölder smooth function on [0, 1]d except
for the trifling region Λ(d,K,∆). The Lebesgue measure of such a trifling region is no more than
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dK∆. We can set ∆ = K−d with no influence on the size of the constructed PQC, and a similar
approximation error bound in the entire region [0, 1]d under the L2 distance could be obtained.

4 Numerical experiments

This section presents numerical experiments to illustrate the expressivity of our proposed PQCs in
approximating multivariate functions. We focus on approximating a bivariate polynomial function

f(x, y) =
(x2 + y − 1.5π)2 + (x+ y2 + π)2 + (x+ y − 0.5π)2

5π2
,

over the domain (x, y) ∈ [0, 1]2. The approximation process involves two separate steps: (1) Learn-
ing a piecewise-constant function, D(x) = k

K if x ∈ [ kK ,
k+1
K ), using a single-qubit PQC, where

K ∈ N+ determines the number of intervals for the piecewise-constant function. (2) Learning the
Taylor expansion of f(x, y) using multi-qubit PQCs based on Theorem 4. Both learning processes
are implemented on a Gold 6248 2.50 GHz Intel(R) Xeon(R) CPU.

We randomly sample 200 data points within the domain [0, 1] to create training and test datasets
for D(x). A single-qubit PQC with adjustable parameters L = 764 (L = 996) is used to learn
D(x) with K = 2 (K = 10). Each parameter of the PQC is randomly initialized within the range
[0, π]. We use the Adam optimizer [55] with a learning rate of 0.01 to minimize the Mean Squared
Error (MSE) loss function during training. The training process was limited to a maximum of 300
iterations with a batch size of 100 data points. Early termination occurred if the MSE reached below
10−4. The achieved MSE on the test data was 3.57 × 10−4 (K = 2) and 1.04 × 10−4 (K = 10).
The numerical results are visualized in Fig. 3.

Figure 3: Simulation results of localization. We use single-qubit PQCs to approximate the localization
function D(x) for K = 2 and K = 10 respectively.

Similar to the previous step, we randomly sampled 200 data points within the domain [0, 1]2 to
create training and test datasets for f(x, y). A nested PQC structure was designed. It combined 12
two-qubit PQCs with a depth of 2, allowing the approximation of a degree-4 polynomial through a
combination of lower-degree ones. Additionally, Taylor coefficients were stored in a separate matrix
of size K2 × 12. The number of trainable parameters varied from 120 (K = 2) to 1272 (K = 10),
each initialized randomly from [0, π]. The Adam optimizer with a learning rate of 0.01 was used
to minimize the MSE loss during training. The training was limited to 500 iterations with a batch
size of 100, with early termination for MSE below 10−4. The achieved MSE on the test data was
2.22× 10−4 (K = 2) and 9.82× 10−5 (K = 10). Fig. 4 visualizes the results. As K increases, the
PQC demonstrates improved approximation performance, aligning with the theoretical findings.

5 Discussion

To the best of our knowledge, our results establish the first explicit PQC constructions for approx-
imating Lipschitz continuous and Hölder smooth functions with quantitative approximation error
bounds. These results open up the possibility of comparing the size of PQCs and the size of classi-
cal deep neural networks for accomplishing the same function approximation tasks and see if there
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Figure 4: Simulation results for learning f(x, y). The left two panels are derived by interpolating and
smoothing the output values of PQC on 100 test data points.

is any quantum advantage in terms of the model size and the number of trainable parameters. Here,
we mainly focus on the comparison with the results of approximation errors of classical machine
learning models. In classical deep learning, the deep feed-forward neural network (FNN) equipped
with the rectified linear unit (ReLU) activation function is one of the most commonly used models.
The quantitative approximation error bounds of ReLU FNNs for approximating continuous func-
tions have been recently established, including the nearly optimal approximation error bounds of
ReLU FNNs for smooth functions [21]. We briefly compare the approximation errors of PQCs and
ReLU FNNs in terms of width, depth and the number of trainable parameters. Detailed comparisons
can be found in Appendix E.

We consider multivariate smooth functions in Cs
u([0, 1]

d) (the unit ball of Cs([0, 1]d)) with smooth
index s ∈ N as the target functions in our comparison. Note that smooth functions with smooth
index s are exactly (s + 1)-Hölder smooth functions by definition. For simplicity, we first show
the case of s = 2. To achieve the same approximation error ε (say some constant), we need to set
KQ = Θ(d2/

√
ε) for the constructed PQCs from Theorem 4 and set KC = Θ(2d/2/

√
ε) for the

constructed near-optimal ReLU FNNs from Ref. [21]. Substituting the choices of K’s in the sizes
of PQCs and ReLU FNNs, we have

Width of PQC × Depth of PQC
Width of FNN × Depth of FNN

= O
( d3Kd

Q

2d+3K
d/2
C

)
= O

( ε−d/4

2d2−d log d

)
. (11)

One can obtain a similar relation for the number of required parameters in PQCs and ReLU FNNs for
approximating smooth functions and extend these results to any 2 ≤ s < d, which holds relevance
in numerous real-world applications (e.g., the input dimension d is 784 for the MNIST dataset
and is 150 528 for the ImageNet dataset [56], and empirically s ≤ 10). Therefore, to achieve the
same approximation error, the required quantum circuit size and number of parameters of PQCs
is exponentially smaller than the required network size and number of parameters of ReLU FNNs
proposed in Ref. [21].

Aiming to understand and continuously expand the range of problems that can be addressed using
quantum machine learning, we have demonstrated the approximation capabilities of PQC models
in supervised learning. We characterized the approximation error of PQCs in terms of the model
size, delivering a deeper understanding of the expressive power of PQCs that is beyond the univer-
sal approximation properties. With these results, we can unlock the full potential of these models
and drive advancements in quantum machine learning. Notably, by comparing our results with the
near-optimal approximation error bound of classical ReLU neural networks, we demonstrate an
improvement over the classical models on approximating high-dimensional functions that satisfy
specific smoothness criteria, quantified by an improvement on the model size and the number of
parameters.

Unlike many other investigations in the universal approximation properties of PQC models [26–33],
our constructions of PQCs for approximating broad classes of continuous functions do not rely on
any impractical assumptions. All the variables take the form of parameters within single-qubit rota-
tion gates, avoiding any classical parameterized pre-processing or post-processing. Ultimately, our
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research provides valuable insights into the theoretical underpinnings of PQCs in quantum machine
learning and paves the way for leveraging its capabilities in machine learning for both classical and
quantum applications.

In this work, we introduce a novel nested PQC structure, which significantly improves the approxi-
mation capabilities. Future work could focus on exploring more powerful PQC constructions based
on our proposed idea and understanding the capabilities and limitations of PQCs in more practical
tasks even with real-world data. Developing efficient training strategies for PQCs, such as acceler-
ated methods that achieve faster convergence rates, will also be interesting.
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A Preliminaries

In this section, we will first present some essential mathematical foundations for deriving the main
results of this work. Moreover, to contextualize our work within the existing literature, we compre-
hensively review relevant studies in Appendix A.3.

A.1 Notation

We unify the notations throughout the whole work. The univariate polynomial ring over a field F
is symbolized as F[x], with the variable x representing the input. The ring of Laurent polynomial
F[x, x−1] is an extension of the polynomial ring obtained by adding inverses of x. The collection
of natural numbers is represented by the symbol N := {1, 2, 3, . . . }, while the set of non-negative
integers is denoted as N0 := {0} ∪ N. The 1-norm of a vector α = (α1, α2, . . . , αd) is denoted by
∥α∥1 := |α1|+ |α2|+ · · ·+ |αd|.

A.2 Data re-uploading PQCs

In this section, we review the concept of data re-uploading PQC and define the PQC we use in this
paper. The data re-uploading PQC is a quantum circuit that consists of interleaved data encoding
circuit blocks and trainable circuit blocks [35, 11]. More precisely, let x be the input data vector
and θ = (θ0, . . . ,θL) be a set of trainable parameters. S(x) is a quantum circuit that encode
x and V (θj) is a trainable quantum circuit with trainable parameter vector θj . An L-layer data
re-uploading PQC can be then expressed as

Uθ(x) = V (θ0)

L∏
j=1

S(x)V (θj), (A.1)

Applying Uθ(x) to a quantum state and measuring the output states provides a way to express
functions on x. The expressivity of the data re-uploading PQC model can be characterized by the
classes of functions that it can implement. It is common to build data encoding circuits and trainable
circuits using the most prevalent Pauli rotation operators,

RX(θ) =

[
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

]
, RY (θ) =

[
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

]
, RZ(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
.

(A.2)
Different data encoding schemes lead to different types of data re-uploading PQCs.

In some cases, trainable parameters are also included both during the initial data encoding phase
and the final processing of measurement outcomes. These PQCs are considered to have hybrid
structures. For instance, in the models proposed by Refs. [35, 36, 40], each input data is multiplied
by a specific trainable parameter and subsequently subjected to RZ gates during the data encoding
stage. In a similar vein, Refs. [39, 40] incorporate trainable weights into each measurement outcome
generated by the constructed PQCs, aggregating these weighted outcomes to produce the final result.
Such a structure makes it hard to judge whether the expressive power comes from the classical or
quantum part.

A.2.1 Implementing real polynomials

We first introduce the data re-uploading PQC for implementing real univariate polynomials. We
utilize the so-called PauliX basis encoding [10]: The data encoding unitary is a single-qubit rotation
defined as

S(x) := ei arccos(x)X =

(
x i

√
1− x2

i
√
1− x2 x

)
, (A.3)

where x ∈ [−1, 1] is the input data. Then interlaying the data encoding unitary S(x) with some
parameterized Pauli Z rotations RZ(θ) gives the circuit of data re-uploading PQC for one variable
as

Uθ(x) := RZ(θ0)

L∏
j=1

S(x)RZ(θj), (A.4)
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where θ = (θ0, . . . , θL) ∈ RL+1 is a set of trainable parameters. The PQC in Eq. (A.4) can be used
to implement polynomial transformations on input x, as shown in the following lemma.

Lemma S1 ([47]). There exists θ ∈ RL+1 such that

Uθ(x) =

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√
1− x2 P ∗(x)

)
(A.5)

if and only if polynomials P,Q ∈ C[x] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L− 1,

2. P has parity L mod 2 and Q has parity (L− 1) mod 25,

3. ∀x ∈ [−1, 1], |P (x)|2 + (1− x2)|Q(x)|2 = 1.

As shown in the above lemma, one could implement a polynomial transformation Poly(x) such that
Poly(x) = ⟨0|Uθ(x)|0⟩ = P (x). Notice that the achievable polynomial Poly(x) implemented in
this way is limited to P (x) for which there exists a polynomial Q(x) satisfying the conditions of
Lemma S1. As the target polynomial is often real in practice, we could overcome such a limitation
by defining Poly(x) = ⟨+|Uθ(x)|+⟩ = ℜ(P (x)) + iℜ(Q(x))

√
1− x2. Then we can achieve any

real polynomials with parity L mod 2 such that deg(Poly(x)) ≤ L, and |Poly(x)| ≤ 1 for all
x ∈ [−1, 1].

Corollary S2 ([47]). There exists θ ∈ RL+1 such that

p(x) = ⟨+|Uθ(x)|+⟩ (A.6)

if and only if the real polynomial p(x) ∈ R[x] satisfies

1. deg(p(x)) ≤ L,

2. p(x) has parity L mod 2 6,

3. ∀x ∈ [−1, 1], |p(x)| ≤ 1.

Remark S1. The results of PQC with Pauli X basis encoding presented here have been established
in the technique of quantum signal processing [45–47], which uses interleaving signal operators
and signal processing operators to transform the input signal. The QSP circuit could be identified
as a PQC in the context of quantum machine learning.

A.2.2 Implementing trigonometric polynomials

Other than the real polynomials, there are also types of single-qubit PQC with Pauli Z basis encod-
ing that could implement complex trigonometric polynomials [37]. The data encoding unitary is a
single-qubit rotation in the Pauli Z basis

S(x) := RZ(x) =

(
eix/2 0
0 e−ix/2

)
, (A.7)

where x ∈ R is the data. By interleaving the data encoding unitary S(x) with trainable gates
RY (θ)RZ(ϕ), the PQC is defined as

Uθ,ϕ(x) := RZ(ω)RY (θ0)RZ(ϕ0)

L∏
j=1

S(x)RY (θj)RZ(ϕj), (A.8)

where θ = (θ0, . . . , θL) ∈ RL+1, ϕ = (ϕ0, . . . , ϕL) ∈ RL+1 and ω ∈ R. The following lemma
characterizes the correspondence between PQC with σz basis encoding and complex trigonometric
polynomials.

5 For a polynomial P ∈ C[x], P has parity 0 if all coefficients corresponding to odd powers of x are 0, and
similarly P has parity 1 if all coefficients corresponding to even powers of x are 0.

6 A polynomial p(x) has parity 0 if all coefficients corresponding to odd powers of x are 0, and similarly p(x)
has parity 1 if all coefficients corresponding to even powers of x are 0.
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Lemma S3 ([37]). There exist θ,ϕ ∈ RL+1 and ω ∈ R such that

Uθ,ϕ(x) =

(
P (x) −Q(x)
Q∗(x) P ∗(x)

)
(A.9)

if and only if Laurent polynomials P,Q ∈ C[eix/2, e−ix/2] satisfy

1. deg(P ) ≤ L and deg(Q) ≤ L,

2. P and Q have parity L mod 2,

3. ∀x ∈ R, |P (x)|2 + |Q(x)|2 = 1.

Note that Laurent polynomials in C[eix/2, e−ix/2] with parity 0 are Laurent polynomials in
C[eix, e−ix] without parity constraints, which implies that the trigonometric QSP could implement
complex trigonometric polynomials.
Corollary S4 ([37, 57]). There exist θ,ϕ ∈ R2L+1 and ω ∈ R such that

t(x) = ⟨0|Uθ,ϕ(x) |0⟩ (A.10)

if and only if the complex-valued trigonometric polynomial t(x) =
∑L

j=−L cje
ijx satisfies |t(x)| ≤

1 for all x ∈ R.

A.3 Related work in PQC approximation

In this subsection, we review prior literature related to the approximation capabilities of PQCs,
which characterizes how the architectural properties of a PQC affect the resulting functions it can
fit, and its ensuing performance. After a systematic comparison, we conclude that our results pro-
vide precise error bounds for continuous function approximation and make no assumptions about
the constructed PQCs. More importantly, all the variables in our proposal take the form of param-
eters within rotation gates and remain distinct from the data encoding gates to avoid any classical
computational influence, thus preserving the inherent quantum property of our approach.

In theoretical machine learning, statistical complexity is a notion that measures the inherent richness
characterizing a given hypothesis space. There are various statistical complexity measures, includ-
ing the Vapnik-Chervonenkis (VC) dimension [58], the metric entropy [59], the Gaussian complex-
ity [60], and the Rademacher complexity [60], etc. To gauge the statistical complexity of PQCs, Du
et al. [61] have explored the covering entropy of PQCs in terms of the number of quantum gates and
the measurement observable. Bu et al. [62] have investigated the dependence of the Rademacher
complexity of PQCs on the resources, width, depth, and the property of input and output registers.
The assessment of PQCs has extended to encompass an array of statistical complexity measures,
including the Pseudo-Dimension, as delineated in Caro and Datta [63], and the VC dimension, as
expounded upon in Chen et al. [64]. Furthermore, the evaluation of PQC expressivity has extended
its purview to metrics rooted in information theory. Abbas et al. [65] have evaluated PQC expres-
sivity through the prism of the effective dimension, a data-dependent metric contingent upon the
Fisher information. In a parallel endeavor, Du et al. [27] have concentrated their attention on gen-
erative tasks, employing entanglement entropy as a metric for quantifying PQC expressivity. It is
important to underscore that, while statistical complexity metrics and information-inspired metrics
provide invaluable insights into the ‘volume’ of hypothesis spaces, they do not precisely delineate
the functions amenable to representation by these models.

To further explore the intricacies of PQCs and their expressivity, an alternative avenue of research
has emerged, as highlighted by recent studies [34, 35, 37, 36, 38]. They rewrote the PQC output,
i.e., the inner product between an input quantum state and a variational observable, in the form of
partial Fourier series. This innovative perspective introduces a more nuanced toolbox for assess-
ing PQC expressivity, offering fresh insights within the quantum machine learning domain, notably
with respect to the universal approximation property (UAP). However, it is imperative to underscore
that many investigations employing Fourier expansion have been predicated upon certain imprac-
tical assumptions. These assumptions encompass the demand for arbitrary parameterized global
unitaries and observables, thus posing significant challenges to the practical implementation of the
constructed quantum circuits. The existence proof of universal approximation also does not explic-
itly give approximation error bounds of PQCs.
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A very general approach to expressiveness in the context of approximation is the method of nonlin-
ear widths by DeVore et al. [66] that concerns the approximation of a family of functions under the
assumption of a continuous dependence of the model on the approximated function. Pérez-Salinas
et al. [36] have proved that single-qubit data re-uploading PQCs are universal function approxi-
mators, inheriting the famous universal approximation theorem for neural networks [13, 67]. In a
quantum-enhanced context, Goto et al. [39] have constructed PQCs to approximate any continuous
function guided by the Stone-Weierstrass theorem. Qi et al. [41] have studied the approximation
error of PQCs enhanced by tensor-train networks. Their investigation focused on smooth functions,
considering factors such as the number of qubits and quantum measurement counts. Furthermore,
Gonon and Jacquier [40] have defined a specific hypothesis space consisting of non-oscillating func-
tions, drawing inspiration from Barron [15] and devised PQCs for approximating such functions
without encountering the curse of dimensionality (CoD). Notably, the mitigation of CoD arises from
their specific hypothesis space definition and is also observed within the domain of classical neural
network [68]. It is essential to acknowledge that these works unveil a hybrid nature, blurring the
boundaries between classical and quantum domains in circuit construction. The hybrid structure
manifests in the data encoding phase and becomes evident in the weighted summation of outputs
from foundational quantum circuits. Consequently, whether the powerful expressivity comes from
the classical part or the quantum part of hybrid models is unclear.

In our present work, we make no assumptions in the construction of the PQCs. In our PQC model,
all variables take the form of parameters within rotation gates. Besides, these trainable parameters
remain distinct from the data encoding gates to avoid any classical computational influence. These
properties ensure that our constructed PQCs retain practicality and remain firmly rooted within the
quantum domain.

B Implementing multivariate polynomials using PQCs

B.1 Implementing multivariate real polynomials

A multivariate polynomial with d variables and degree s ∈ N is defined as

p(x) :=
∑

∥α∥1≤s

cαx
α, (B.11)

where x = (x1, . . . , xd) ∈ Rd, α = (α1, . . . , αd) ∈ Nd, cα ∈ R and xα = xα1
1 xα2

2 · · ·xαd

d . To
implement the multivariate polynomial p(x), we first build a PQC to express a monomial cαxα =
cαx

α1
1 xα2

2 · · ·xαd

d , where |cαxα| ≤ 1 for x ∈ [0, 1]d and ∥α∥1 ≤ s. We apply the single-qubit
PQC with Pauli X basis encoding defined in Eq. (A.4) on each xj for 1 ≤ j ≤ d, respectively.

Lemma S5. Given a monomial cαxα = cαx
α1
1 xα2

2 · · ·xαd

d such that |cαxα| ≤ 1 for all x ∈ [0, 1]d

and ∥α∥1 ≤ s for s ∈ N, there exists a PQC Uα(x) such that

⟨+|⊗d
Uα(x)|+⟩⊗d

= cαx
α. (B.12)

The width of the PQC is at most d, the depth is at most 2s + 1, and the number of parameters is at
most s+ d.

Proof. By Corollary S2, there exist d single-qubit PQCs Uα1

θ1
(x1), U

α2

θ2
(x2), . . . , U

αd

θd
(xd) such that

⟨+|Uα1

θ1
(x1)|+⟩ = cαx

α1
1 ,

⟨+|Uα2

θ2
(x2)|+⟩ = xα2

2 ,

· · ·
⟨+|Uαd

θd
(xd)|+⟩ = xαd

d ,

where the number of layers of each PQC is Lj = αj for 1 ≤ j ≤ d. We then define a d-qubit PQC
as

Uα(x) =

d⊗
j=1

U
αj

θj
(xj), (B.13)
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which gives

⟨+|⊗d
Uα(x)|+⟩⊗d

=

d∏
j=1

⟨+|Uαj

θj
(xj)|+⟩ = cαx

α. (B.14)

Since ∥α∥1 =
∑d

j=1 αj ≤ s, we can conclude that the depth of Uα(x) is at most 2s + 1 and the
number of parameters in Uα(x) is at most s+ d. ⊓⊔

The next step is to combine monomials together to implement the multivariate polynomial. Specifi-
cally, we would like to implement the following (unnormalized) operator

Up(x) :=
∑

∥α∥1≤s

Uα(x) (B.15)

so that we can implement an (unnormalized) polynomial as

⟨+|⊗d
Up(x)|+⟩⊗d

=
∑

∥α∥1≤s

⟨+|⊗d
Uα(x)|+⟩⊗d

=
∑

∥α∥1≤s

cαx
α = p(x). (B.16)

We denote T the number of terms in the summation and observe that it can be bounded as

T =
∑

∥α∥1≤s

1 =

s∑
j=0

∑
∥α∥1=j

1 ≤
s∑

j=0

ds ≤ (s+ 1)ds. (B.17)

For convenience, we rewrite the normalized target operator with α being an indexed variable as

Up(x) =

T∑
j=1

1

T
Uα(j)

(x). (B.18)

However, the addition operation in quantum computing is non-trivial as the sum of unitary opera-
tors is not necessarily unitary. To sum the monomials together, we utilize the technique of linear
combination of unitaries (LCU) [48] to implement the operator Up(x) in Eq. (B.18) on a quantum
computer. We first construct a unitary operator F such that

F |0⟩ = 1√
T

T∑
j=1

|j⟩ . (B.19)

The unitary F could be simply implemented by Hadamard gates. Next, we construct a controlled
unitary

Uc(x) =

T∑
j=1

|j⟩⟨j| ⊗ Uα(j)

(x). (B.20)

Note that each |j⟩⟨j| ⊗ Uα(j)

(x) could be constructed using (log T )-qubit controlled Pauli rotation
gates, as Uα(j)

(x) consisting of single-qubit Pauli rotation gates. The (log T )-qubit controlled gates
could be further decomposed into quantum circuits of CNOT gates and single-qubit rotation gates in
O(log T ) circuit depth without using any ancilla qubit. We refer to the detailed implementation of
these multi-controlled gates to da Silva and Park [49]. Then the unitary Wlcu = (F †⊗ I)Uc(F ⊗ I)
satisfies that

Wlcu |0⟩ |+⟩⊗d
= |0⟩Up(x) |+⟩⊗d

+ |⊥⟩ , (B.21)
where (⟨0| ⊗ I) |⊥⟩ = 0. Notice that

⟨0| ⟨+|⊗d
Wlcu |0⟩ |+⟩⊗d

= ⟨+|⊗d
Up(x) |+⟩⊗d

= p(x). (B.22)

To obtain the polynomial p(x), we could estimate ⟨0| ⟨+|⊗d
Wlcu |0⟩ |+⟩⊗d using the Hadamard

test.
Theorem 1. For any multivariate polynomial p(x) with d variables and degree s such that |p(x)| ≤
1 for x ∈ [0, 1]d, there exists a PQC Wp(x) such that

fWp
(x) := ⟨0|W †

p (x)Z
(0)Wp(x) |0⟩ = p(x) (B.23)

whereZ(0) is the PauliZ observable on the first qubit. The width of the PQC isO(d+log s+s log d),
the depth is O(s2ds(log s+ s log d)), and the number of parameters is O(sds(s+ d)).
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Proof. We apply the Hadamard test on Wlcu, giving the quantum circuit Wp(x) as follows.

|0⟩ H • H

|0⟩ /
Wlcu|0⟩ / H⊗d

Measuring the first qubit of Wp(x), we have

fWp
(x) := ⟨0|W †

p (x)Z
(0)Wp(x) |0⟩ = ⟨0| ⟨+|⊗d

Wlcu |0⟩ |+⟩⊗d
= p(x). (B.24)

The controlled unitary used in LCU,

Uc(x) =

T∑
j=1

|j⟩⟨j| ⊗ Uα(j)

(x), (B.25)

could be implemented by at most O(Ts) (log T )-qubit controlled gates. A (log T )-qubit controlled
gate could be implemented by a quantum circuit consisting of CNOT gates and single-qubit gates
with depth O(log T ) [49]. Thus Uc(x) could be implemented by a quantum circuit with depth
O(sT log T ) and width O(d+ log T ). Then the depth and width of Wlcu = (F † ⊗ I)Uc(F ⊗ I) are
in the same order of Uc(x) since F is simply tensor of Hadamard gates. Therefore the entire depth
of the circuit Wp is O

(
sT log T + d

)
, and the width of Wp is O(d + log T ). As T ≤ (s + 1)ds.

Note that the number of parameters in the PQC equals the number of parameters in Uc(x), which is
O(T (s+ d)). ⊓⊔

Note that measuring the first qubit ofWp(x) forO( 1
ε2 ) times is needed to estimate the value of p(x)

up to an additive error ε. We could further use the amplitude estimation algorithm [50] to reduce the
overhead while increasing the circuit depth by O( 1ε ).

B.2 Implementing multivariate trigonometric polynomials

We extend the PQCs with RZ encoding to implement multivariate trigonometric polynomials. A
multivariate trigonometric polynomials with d variables and degree s is defined as

t(x) :=
∑

∥n∥1≤s

cne
in·x (B.26)

where cn ∈ C, x = (x1, . . . , xd) ∈ Rd, ν = (α1, . . . , αd) ∈ Zd, and ein·x =
ein1x1ein2x2 · · · eindxd . Consider a trigonometric monomial cnein·x = cne

in1x1ein2x2 · · · eindxd

such that |cnein·x| ≤ 1 for all x ∈ Rd and ∥n∥1 ≤ s, we could apply the single-qubit PQC with
RZ encoding as defined in Eq. (A.8) on each xj for 1 ≤ j ≤ d respectively.

Lemma S6. Given a trigonometric monomial cnein·x = cne
in1x1ein2x2 · · · eindxd such that

|cnein·x| ≤ 1 for all x ∈ Rd and ∥n∥1 ≤ s, there exists a PQC Un(x) such that

⟨0|⊗d
Un(x)|0⟩⊗d

= cne
in·x. (B.27)

The width of the PQC is at most d, the depth is at most 6s + 3, and the number of parameters is at
most 4s+ 3d.

Proof. By Corollary S4, we could construct d single-qubit PQCs
Un1

θ1,ϕ1
(x1), U

n2

θ2,ϕ2
(x2), . . . , U

nd

θd,ϕd
(xd) such that

⟨0|Un1

θ1,ϕ1
(x1)|0⟩ = cne

in1x1 ,

⟨0|Un2

θ2,ϕ2
(x2)|0⟩ = ein2x2 ,

· · ·
⟨0|Und

θd,ϕd
(xd)|0⟩ = eindxd ,
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where the number of layers of each PQC is Lj = nj for 1 ≤ j ≤ d. We then define a d-qubit PQC
as

Un(x) =

d⊗
j=1

U
nj

θj ,ϕj
(xj), (B.28)

which gives

⟨0|⊗d
Un(x)|0⟩⊗d

=

d∏
j=1

⟨0|Unj

θj ,ϕj
(xj)|0⟩ = cne

in·x. (B.29)

Since ∥n∥1 =
∑d

j=1 nj ≤ s, we can conclude that the depth of Un(x) is at most 6s + 3 and the
number of parameters in Un(x) is at most 4s+ 3d. ⊓⊔

Then we could apply the technique of LCU on the PQCs Un(x) to implement the operator

Ut(x) :=
∑

∥n∥1≤s

Un(x), (B.30)

so that we can implement the multivariate trigonometric polynomial as

⟨+|⊗d
Ut(x)|+⟩⊗d

=
∑

∥n∥1≤s

⟨+|⊗d
Un(x)|+⟩⊗d

=
∑

∥n∥1≤s

cne
in·x = t(x). (B.31)

Note that the number of terms in the summation is∑
∥n∥1≤s

1 =

s∑
j=0

∑
∥n∥1=j

1 ≤
s∑

j=0

d2s ≤ (s+ 1)d2s. (B.32)

Then, we have the following proposition.
Proposition S7. For any multivariate trigonometric polynomial t(x) with d variables and degree s
such that |t(x)| ≤ 1 for x ∈ Rd, there exists a PQC Wtri(x) such that

fWtri
(x) := ⟨0|W †

tri(x)Z
(0)Wtri(x) |0⟩ = t(x) (B.33)

whereZ(0) is the PauliZ observable on the first qubit. The width of the PQC isO(d+log s+s log d),
the depth is O(s2d2s(log s+ s log d)), and the number of parameters is O(sd2s(s+ d)).

The proof is similar to Theorem 1. This result demonstrates the universal approximation property
of PQC in the perspective of multivariate Fourier series, which yields similar results as in Schuld
et al. [34]. Notably, the PQC in Proposition S7 has an explicit construction without any assumption,
improving the implicit PQCs proposed in Schuld et al. [34] in terms of circuit size. For instance,
to implement the d-variable Fourier series with degree s, the PQC with parallel structure in Schuld
et al. [34] requires width O(ds) and potentially exponential depth O(4ds).

C Approximating continuous functions via PQCs

We have constructively shown in the previous section that PQCs could implement multivariate poly-
nomials. To study the approximation capabilities of PQC, a natural strategy involves aggregating
multiple polynomials to approximate the continuous function, drawing on well-established princi-
ples from classical approximation theory. In the context of univariate functions, this endeavor is
guided by the Stone-Weierstrass Theorem [69]. For the multivariate case, we accomplish this task
by employing PQCs to implement Bernstein polynomials, followed by the established result on the
approximation error bound of Bernstein polynomials [52, 53].

C.1 Established results of Bernstein polynomials approximation

For a d-variable continuous function f : Rd → R, the multivariate Bernstein polynomial with degree
n ∈ N of f is defined as

Bn(f ;x) :=

n∑
k1=0

· · ·
n∑

kd=0

f
(k
n

) d∏
j=1

(
n

kj

)
x
kj

j (1− xj)
n−kj , (C.34)
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and k = (k1, . . . , kd) ∈ {0, . . . , n}d. Then, we have the following lemma on the approximation
error bound of the Bernstein polynomial.

Lemma S8 (Bernstein polynomials approximation for Lipschitz functions [53]). Given a Lipschitz
continuous function f : [0, 1]d → R with Lipschitz constant ℓ, which is defined as |f(x)− f(y)| ≤
ℓ∥x−y∥∞. Let f be bounded by Γ. The approximation error of the n-degree Bernstein polynomial
of f scales as

|f(x)−Bn(f ;x)| ≤ ε+ 2Γ

d∑
j=1

(
d

j

)(
ℓ2

4nε2

)j

≤ ε+ 2Γ

((
1 +

ℓ2

4nε2

)d

− 1

)
, (C.35)

where ε > 0 is an arbitrarily small quantity.

Proof. Drawing inspiration from the Lipschitz continuity of the target function f , we define δ = ϵ/ℓ.
Consequently, for any two points x = (x1, . . . , xd) and y = (y1, . . . , yd) such that |xi − yi| < δ
for all i ∈ {1, . . . , d}, it follows that |f(x)− f(y)| ≤ ε. The target function can be written as

f(x) = f(x1, . . . , xd)

= f (x1, · · · , xd)
n∑

k1=0

· · ·
n∑

kd=0

d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

=

n∑
k1=0

· · ·
n∑

kd=0

f (x1, · · · , xd)
d∏

i=1

(
n
ki

)
xki
i (1− xi)

n−ki . (C.36)

Let us consider the set E =
∏d

i=1{0, 1, . . . , n}, and for j = 1, 2, . . . , d, we define the sets

Ωj = {kj ∈ {0, 1, . . . , n} : |ki
n

− xj | < δ} and F = E \ (Ω1 × · · · × Ωd). (C.37)

Then, F =
⋃d

k=1 Fk, with Fk =
{∏d

i=1 Ω
[αik]
ik ∈ F : αik ∈ {0, 1}, ∑d

i=1 αik = k
}

, where

Ω
[αik]
ik =

{
Ωi if αik = 0
Ωc

i if αik = 1
and Ωc

i =
{
ki ∈ {0, · · · , n} :

∣∣ki

n − xi
∣∣ ≥ δ

}
. For Ak =∏d

i=1 Ω
[αik]
ik ∈ Fk, k = 1, · · · , d, let us define also IAk

= {i ∈ {1, · · · , d} : αik = 1} (that means
card (IAk

) = k ≥ 1). We have

|f (x1, · · · , xd)−Bn (f ;x1, · · · , xd)|

= |
n∑

k1=0

· · ·
n∑

kd=0

f (x1, · · · , xd)
d∏

i=1

(
n
ki

)
xki
i (1− xi)

n−ki

−
n∑

k1=0

· · ·
n∑

kd=0

f

(
k1
n
, · · · , kd

n

) d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki |

=

∣∣∣∣∣
n∑

k1=0

· · ·
n∑

kd=0

[
f (x1, · · · , xd)− f

(
k1
n
, · · · , kd

n

)] d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

∣∣∣∣∣
≤

n∑
k1=0

· · ·
n∑

kd=0

∣∣∣∣f (x1, · · · , xd)− f

(
k1
n
, · · · , kd

n

)∣∣∣∣ d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

≤
∑
Ω1

· · ·
∑
Ωd

∣∣∣∣f (x1, · · · , xd)− f

(
k1
n
, · · · , kd

n

)∣∣∣∣ d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

+
∑
F

∣∣∣∣f (x1, · · · , xd)− f

(
k1
n
, · · · , kd

n

)∣∣∣∣ d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki .

(C.38)
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Using the fact that f is continuous and bounded, we get

|f (x1, · · · , xd)−Bn (f ;x1, · · · , xd)|

≤ε
∑
Ω1

· · ·
∑
Ωd

d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki + 2Γ
∑
F

d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

≤ε+ 2Γ

d∑
l=1

∑
Al∈Fl

d∏
i=1

(
n
ki

)
xki
i (1− xi)

n−ki

≤ε+ 2Γ

d∑
l=1

∑
Al∈Fl

∏
i∈IAl

1

4nδ2

=ε+ 2Γ

d∑
j=1

(
d

j

)
1

(4nδ2)j
≤ ε+ 2Γ

((
1 +

ℓ2

4nε2

)d

− 1

)
.

(C.39)

This completes the proof. A more detailed expansion of Eq. (C.39) can be seen in Theorem 2 in
Foupouagnigni and Mouafo Wouodjié [53]. ⊓⊔
Remark S2. Here, it is important to observe that for a continuous target function, denoted as f(x),
there exists a value of δ > 0 such that:

|f (x1, · · · , xd)−Bn (f ;x1, · · · , xd)| ≤ ε+ 2Γ

((
1 +

1

4nδ2

)d

− 1

)
.

This expression signifies the convergence rate of the Bernstein polynomial for general continuous
functions.

C.2 Implement Bernstein polynomials via PQCs

In Lemma S8, we have defined the Bernstein polynomial and its approximation error towards the
Lipschitz continuous function. Guided by Theorem 1, we can construct a PQC to implement such a
Bernstein polynomial.
Lemma S9. For any d-variable Bernstein polynomial with degree n ∈ N defined in Eq. (C.34) such
that |Bn(f ;x)| ≤ 1 for x ∈ [0, 1]d, there exist a PQC Wb(x) satisfying

fWb
(x) := ⟨0|W †

b (x)Z
(0)Wb(x) |0⟩ = Bn(f ;x). (C.40)

The width of the PQC is O(d log n), the depth is O
(
dnd log n

)
, and the number of parameters is

O(dnd).

Proof. We undertake a two-step process in the proof of Lemma S9. Initially, we construct PQCs to
provide an exact representation of f

(
k
n

)∏d
j=1

(
n
kj

)
x
kj

j (1−xj)n−kj for all k ∈ {0, 1, . . . , n}d. Sub-
sequently, we employ LCU to aggregate these PQCs for the purpose of approximating the Bernstein
polynomial described in Eq. (C.34).

The univariate polynomial xk(1 − x)n−k can be represented by a PQC. The depth of this PQC is
less than 2n+1, the width is 2, and the number of parameters is n+2. The multivariate polynomial
f
(
k
n

)∏d
j=1

(
n
kj

)
x
kj

j (1 − xj)
n−kj can be exactly represented by the product of the univariate poly-

nomial xk(1 − x)n−k. The same routine has been employed in Lemma S5. The depth of this PQC
is less than 2n+ 1, the width is 2d, and the number of parameters is d(n+ 2).

The number of terms in the summation in Eq. (C.34) is (n + 1)d. We can employ the same routine
in Theorem 1 to construct the PQC Wb(x). The depth of Wb scales as

O
((
d(n+ 1)d+1 log (n+ 1) + d

))
,

the width is 2d + d log (n+ 1), and the number of parameters is (n + 1)d(n + 2)d. The results
presented in Lemma S9 can be obtained after simplification. ⊓⊔
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C.3 PQC approximating continuous functions

We have successfully derived results regarding the approximation error between PQCs and Bern-
stein polynomials and between Bernstein polynomials and continuous functions. Leveraging these
established findings, we can now formulate a rigorous assertion regarding the universal approxima-
tion theorem and the error bound of PQCs, employing the well-established principles of triangle
inequality.
Theorem 2 (The Universal Approximation Theorem of PQC). For any continuous function f :
[0, 1]d → [−1, 1], given an ε > 0, there exist an n ∈ N and a PQC Wb(x) with width O(d log n),
depth O(dnd log n) and the number of trainable parameters O(dnd) such that

|f(x)− fWb
(x)| ≤ ε (C.41)

for all x ∈ [0, 1]d, where fWb
(x) := ⟨0|W †

b (x)Z
(0)Wb(x) |0⟩.

Proof. Remark S2 has established the uniform convergence of the Bernstein polynomial towards
any continuous function within the cubic domain [0, 1]d, denoted as Bn(f ;x), with the property
that Bn(f ;x) → f(x) as n → +∞. Building on Lemma S9, we can effectively implement this
Bernstein polynomial Bn(f ;x) using fWb

(x). The depth of the PQC Wb(x) is O
(
dnd log n

)
, the

width is O(d log n), and the number of parameters is O(dnd). This completes the proof. ⊓⊔
Theorem 3. Given a Lipschitz continuous function f : [0, 1]d → [−1, 1] with a Lipschitz con-
stant ℓ, for any ε > 0 and n ∈ N, there exists a PQC Wb(x) with such that fWb

(x) :=

⟨0|W †
b (x)Z

(0)Wb(x) |0⟩ satisfies

|f(x)− fWb
(x)| ≤ ε+ 2

((
1 +

ℓ2

nε2

)d
− 1

)
≤ ε+ d2d

ℓ2

nε2
(C.42)

for all x ∈ [0, 1]d. The width of the PQC is O(d log n), the depth is O
(
dnd log n

)
, and the number

of parameters is O(dnd).

Proof. Lemma S8 has established the uniform convergence rate of the Bernstein polynomial towards
any Lipschitz continuous function within the cubic domain [0, 1]d. We know that for any Lipschitz
continuous function f(x) with Lipschitz constant ℓ, there exists a Bernstein polynomial Bn(f ;x)
satisfying

|f(x)−Bn(f ;x)| ≤ ε+ 2Γ

d∑
j=1

(
d

j

)(
ℓ2

4nε2

)j

≤ ε+ 2Γ

((
1 +

ℓ2

4nε2

)d

− 1

)
.

Building on Lemma S9, we can effectively implement this Bernstein polynomial Bn(f ;x) using
fWb

(x). The depth of the PQC Wb(x) is O
(
dnd log n

)
, the width is O(d log n), and the number of

parameters is O(dnd). This completes the proof. ⊓⊔

D Approximating smooth functions via nested PQCs

Other than using a Bernstein polynomial to approximate a continuous function globally, we could
also utilize local polynomials to achieve a piecewise approximation. To do this, we follow the
path of classical deep neural networks [18, 21, 25], using multivariate Taylor series expansion to
approximate a multivariate smooth function f in some small local region. Let β = s + r > 0, r =
(0, 1] and s = ⌊β⌋ ∈ N, for a finite constantB0 > 0, the β-Hölder class of functions Hβ([0, 1]d, B0)
is defined as

Hβ([0, 1]d, B0) =
{
f : [0, 1]d → R, max

∥α∥1≤s
∥∂αf∥∞ ≤ B0, max

∥α∥1=s
sup
x̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥r2

≤ B0

}
,

(D.43)
where ∂α = ∂α1 · · · ∂αd for α = (α1, . . . , αd) ∈ Nd. By definition, for a function f ∈
Hβ([0, 1]d, B0), when β ∈ (0, 1), f is a Hölder continuous function with order β and Hölder
constant B0; when β = 1, f is a Lipschitz function with Lipschitz constant B0; when β > 1, f
belongs to the Cs class of functions whose s-th partial derivatives exist and are bounded.

26



We utilize the following lemma on the Taylor expansion of β-Hölder functions as a mathematical
tool for constructing and analyzing the PQC approximation.
Lemma S10 ([18]). Given a function f ∈ Hβ([0, 1]d, 1) with β = r + s, r ∈ (0, 1] and s ∈ N+,
for any x,x0 ∈ [0, 1]d, we have∣∣∣f(x)− ∑

∥α∥1≤s

∂αf(x0)

α!
(x− x0)

α
∣∣∣ ≤ ds∥x− x0∥β2 , (D.44)

where α! = α1! · · ·αd!.

Next, we show how to construct PQCs to implement the Taylor expansion of β-Hölder functions.

D.1 Localization via PQC

As shown in Eq. (D.44), the Taylor expansion of a multivariate smooth function only converges in
a fairly small local region. So, we need first to localize the entire region [0, 1]d. Given K ∈ N and
∆ ∈ (0, 1

3K ), for each η = (η1, . . . , ηd) ∈ {0, 1, . . . ,K − 1}d, we define

Qη :=
{
x = (x1, . . . , xd) : xi ∈

[ ηi
K
,
ηi + 1

K
−∆ · 1ηi<K−1

]}
. (D.45)

By the definition of Qη , the region [0, 1]d is approximately divided into small hypercubes
⋃

η Qη

and some trifling region Λ(d,K,∆) := [0, 1]d \ (
⋃

η Qη), as illustrated in Fig. 2 in the main
text. Then we need to construct a PQC that maps any x ∈ Qη to some fixed point xη =
η
K ∈ Qη , i.e., approximating the piecewise-constant function D(x) = η

K if x ∈ Qη , where
η
K = (η1/K, . . . , ηd/K). We consider the case of d = 1, where the localization function is

D(x) =
k

K
, if x ∈

[ k
K
,
k + 1

K
−∆ · 1k<K−1

]
for k = 0, 1, . . . ,K − 1. (D.46)

The multivariate case could be easily generalized by applying D(x) to each variable xj . The idea is
to find a polynomial that approximates the sign function

sgn(x− c) =


1, if x > c,
0, if x = c

−1, if x < c

, (D.47)

as shown in the following lemma.
Lemma S11 (Polynomial approximation to the sign function sgn(x − c) [54]). ∀c ∈ [−1, 1],∆ >
0, ε ∈ (0, 1). there exists an odd polynomial P∆,ε(x) of degree n = O( 1

∆ log 1
ε ) that satisfies

1. |P∆,ε(x− c)| ≤ 1 for all x ∈ [−1, 1],

2. |sgn(x− c)− P∆,ε(x− c)| ≤ ε for all x ∈ [−1, 1] \ (c− ∆
2 , c+

∆
2 ).

Note that we could also approximate the step function defined as stp(x − c) := 1
2 sgn(x − c) + 1

2

by the polynomial P ′
∆,ε(x − c) = 1

2P∆,ε(x − c) + 1
2 of degree n = O( 1

∆ log 1
ε ), which satisfies

that |P ′
∆,ε(x − c)| ≤ 1 for all x ∈ [−1, 1] and |stp(x − c) − P ′

∆,ε(x − c)| ≤ ε
2 for all x ∈

[−1, 1] \ (c − ∆
2 , c +

∆
2 ). Note that the polynomial P ′

∆,ε(x − c) does not have definite parity and
thus cannot be directly implemented by a PQC as shown in Corollary S2. Since only the domain
[0, 1] is relevant to x, for c ∈ (0, 1), we could define an even polynomial

P even
c,∆,ε(x) =

1

1 + ε
2

(
P ′
∆,ε(x− c) + P ′

∆,ε(−x− c)
)

(D.48)

such that |P even
c,∆,ε(x)| ≤ 1 for all x ∈ [−1, 1] and |stp(x − c) − P even

c,∆,ε(x)| ≤ ε
2 for all x ∈

[0, 1] \ (c − ∆
2 , c +

∆
2 ). The piecewise-constant function D(x) can be written as a combination of

step functions,

D(x) =

K−1∑
k=1

1

K
stp
(
x− k

K
+

∆

2

)
. (D.49)

Then we could find even polynomials P even
c,∆,ε(x) that approximate stp

(
x − k

K + ∆
2

)
for each k.

Combining those polynomials together as in Eq. (D.49), we have the following lemma.
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Lemma S12. Given K ∈ N and ∆ ∈ (0, 1
3K ), there exists an even polynomial P∆,ε(x) of degree

n = O( 1
∆ log K

ε ) that satisfies

1. |P∆,ε(x)| ≤ 1 for all x ∈ [−1, 1],

2. |D(x)− P∆,ε(x)| ≤ ε for all x ∈ ⋃K−1
k=0

[
k
K ,

k+1
K −∆ · 1k<K−1

]
.

Note that we could shift the polynomial P∆,ε(x) such that P∆,ε(x)−D(x) ∈ (0, ε) without chang-
ing the degree. It follows that we can construct a PQC to implement the polynomial P∆,ε(x) by
Corollary S2.

Corollary S13. GivenK ∈ N, ∆ ∈ (0, 1
3K ) and ε ∈ (0, 1

K ), there exists a single-qubit PQC UD(x)

of depth O( 1
∆ log K

ε ) that satisfies

⟨+|UD(x)|+⟩− k

K
∈ (0, ε) if x ∈

[ k
K
,
k + 1

K
−∆ · 1k<K−1

]
for k = 0, 1, . . . ,K − 1. (D.50)

Note that ε has to be bounded by 1
K , which is the length of the localized region. We could further

implement such a localization procedure for x = (x1, . . . , xd) on the region [0, 1]d by applying the
PQC for each xj , as stated in the following corollary.

Lemma S14 (Localization via PQC). Given K ∈ N, ∆ ∈ (0, 1
3K ) and ε ∈ (0, 1

K ), there exists a
PQC WD(x) of width O(d) and depth O( 1

∆ log K
ε ) implementing a localization function fWD

(x) :

Rd → Rd such that
0 ≤ fWD

(x)− η

K
≤ ε if x ∈ Qη , (D.51)

where 0 = (0, . . . , 0) and ε = (ε, . . . , ε) are d-dimensional vectors.

Proof. We construct a d-qubit PQC WD(x) :=
⊗d

j=1 UD(xj) where the single-qubit PQC UD(x)

is constructed in Corollary S13. Then we apply the Hadamard test on each UD(xj) to obtain
fUD

(xj) := ⟨+|UD(xj)|+⟩. Let fWD
(x) := (fUD

(x1), . . . , fUD
(xd)), which implements the lo-

calization function as required. ⊓⊔

D.2 Implementing the Taylor coefficients by PQC

Next, we use PQC to implement the Taylor coefficients, which is essentially a point-fitting problem.
For each η = (η1, . . . , ηd) ∈ {0, 1, . . . ,K − 1}d and α, we denote ξη,α :=

∂αf( η
K )

α! ∈ [−1, 1].
Then we could construct the following PQC,

Uα
co =

∑
η

|η⟩⟨η| ⊗RX(θη,α), (D.52)

where |η⟩ = |η1⟩ ⊗ · · · ⊗ |ηd⟩ and θη,α = 2arccos(ξη,α). It gives the following lemma.

Lemma S15. Given a β-Hölder smooth function f : [0, 1]d → [−1, 1], for any α ∈ Nd and
η ∈ {0, 1, . . . ,K − 1}d, there exists a PQC Uα

co such that

⟨η, 0|Uα
co |η, 0⟩ = ξη,α. (D.53)

The width of the PQC is O(d logK), and the depth is O(Kd).

We note that the state |η⟩ can be prepared using basis encoding according to the results of localiza-
tion in Lemma S14.

D.3 Implementing multivariate Taylor series by PQC

To implement the multivariate Taylor expansion of a function, we first build a PQC to represent a
single term in the Taylor series, which could be done by combining the monomial implementation in
Lemma S5 and the Taylor coefficient implementation in Lemma S15. Thus, we have the following
corollary.
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Corollary S16. For any β-Hölder smooth function f , given an α ∈ Nd with ∥α∥1 ≤ s for s ∈ N+

and an η ∈ {0, 1, . . . ,K − 1}d, there exists a PQC Uα
η (x) such that

⟨η, 0|⟨+|⊗d
Uα
η (x) |η, 0⟩|+⟩⊗d

=
∂αf( η

K )

α!

(
x− η

K

)α
. (D.54)

The width of the PQC is O(d logK), the depth is O(Kd + s), and the number of parameters is at
most Kd + s+ d.

Proof. Let Uα
η (x) := Uα

co ⊗ Uα(x − η
K ), where Uα

co is defined in Lemma S15 and Uα(x − η
K )

is defined in Lemma S5 with changing input from x to x − η
K . Then the corollary directly follows

from Lemma S5 and Lemma S15. ⊓⊔

The next step is to combine single Taylor terms together to implement the truncated Taylor expansion
of the target function. The method is in the same spirit as what is utilized in Theorem 1, i.e., using
LCU to achieve the following (unnormalized) operator,

Ut(x) :=
∑

∥α∥1≤s

Uα
η (x). (D.55)

Then we can implement the Taylor expansion of the function f at point η
K as

⟨η, 0|⟨+|⊗d
Ut(x) |η, 0⟩|+⟩⊗d

=
∑

∥α∥1≤s

∂αf( η
K )

α!

(
x− η

K

)α
. (D.56)

Hence we have the following lemma.
Lemma S17. Given a function f ∈ Hβ([0, 1]d, 1) with β = r + s, r ∈ (0, 1] and s ∈ N+, for any
η ∈ {0, . . . ,K−1}d, there exists a PQCWe(x,

η
K ) such that fWe

(x) := ⟨0|W †
e (x)Z

(0)We(x) |0⟩
implements the truncated Taylor expansion at point η

K ,

fWe
(x) =

∑
∥α∥1≤s

∂αf( η
K )

α!

(
x− η

K

)α
. (D.57)

The depth of the PQC is O(s2dsKd(log s + s log d + d logK)), the width is O(d logK + log s +
s log d), and the number of parameters is O(sds(s+ d+Kd)).

Proof. The idea of constructing the PQC We(x,
η
K ) is similar to the construction of Wp(x) in

Theorem 1. The only difference is that here we apply LCU on unitaries Uα
η (x) := Uα

co⊗Uα(x− η
K )

instead of Uα(x). Thus, the controlled unitary is

Uc

(
x,

η

K

)
=

T∑
j=1

|j⟩⟨j| ⊗ Uα(j)

η (x) (D.58)

and the unitary Wlcu(x,
η
K ) = (F † ⊗ I)Uc(x,

η
K )(F ⊗ I) satisfies that

⟨0|⟨η, 0|⟨+|⊗d
Wlcu

(
x,

η

K

)
|0⟩|η, 0⟩|+⟩⊗d

=
∑

∥α∥1≤s

∂αf( η
K )

α!
(x− η

K
)α. (D.59)

We then apply the Hadamard test on Wlcu(x,
η
K ), giving the quantum circuit We(x,

η
K ) as below

|0⟩ H • H

|0⟩ /

Wlcu

|0⟩ / U(η)

|0⟩
|0⟩ / H⊗d
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where the unitary U(η) takes η as input and maps |0⟩ to |η⟩. Note that the controlled uni-
tary Uc(x,

η
K ) could be implemented by O(T (s + 1)) number of (log T )-qubit controlled gates

and O(TKd) number of (log T + d logK)-qubit controlled gates. An n-qubit controlled gate
could be implemented by a quantum circuit consisting of CNOT gates and single-qubit gates
with depth O(n) [49]. Thus Uc(x) could be implemented by a quantum circuit with depth
O((s + 1)T log T + TKd(log T + d logK)) and width O(d + log T + d logK). Then the depth
and width of Wlcu(x,

η
K ) = (F † ⊗ I)Uc(x,

η
K )(F ⊗ I) are in the same order of Uc(x,

η
K )

since F is simply tensor of Hadamard gates. Therefore the entire depth of the circuit We is
O((sT log T+TKd(log T+d logK))) and the width isO(d+log T+d logK). As T ≤ (s+1)ds,
we have the depth and width of PQC shown in Lemma S17. Note that the number of parameters in
the PQC equals the number of parameters in Uc(x), which is O(T (s+ d+Kd)). ⊓⊔

Finally, we combine the steps of localization and the Taylor series implementation to achieve a local
Taylor expansion for the target function. The PQC is in a nested structure consisting of a PQC for
localization and a PQC for Taylor series; see the detailed construction in the following theorem.
Theorem 4. Given a function f ∈ Hβ([0, 1]d, 1) with β = r + s, r ∈ (0, 1] and s ∈ N+, for any
K ∈ N and ∆ ∈ (0, 1

3K ), there exists a PQC Wt(x) such that fWt(x) := ⟨0|W †
t (x)Z

(0)Wt(x) |0⟩
satisfies

|f(x)− fWt
(x)| ≤ ds+β/2K−β (D.60)

for x ∈ ⋃η Qη . The width of the PQC isO(d logK+log s+s log d), the depth isO(s2dsKd(log s+

s log d+ d logK)) + 1
∆ logK), and the number of parameters is O(sds(s+ d+Kd) + d

∆ logK).

Proof. By Lemma S10, we have the following error bound for x ∈ Qη ,∣∣∣f(x)− ∑
∥α∥1≤s

∂αf( η
K )

α!
(x− η

K
)α
∣∣∣ ≤ ds

∥∥x− η

K

∥∥β
2
≤ ds+β/2K−β . (D.61)

Motivated by this, we first construct a localization PQC WD(x) as in Lemma S14 such that

0 ≤ fWD
(x)− η

K
≤
( 1

2K
, . . . ,

1

2K

)
if x ∈ Qη. (D.62)

The depth of WD(x) is O( 1
∆ logK). We then construct a PQC

Wt(x) :=We(x, fWD
(x)), (D.63)

where We is the PQC proposed in Lemma S17. Note that the state |η⟩ in Lemma S17 could be
prepared by rounding fWD

(η)K, i.e., η = ⌊fWD
(η)K⌋. In other words, the PQC Wt(x) has a

nested structure consisting of a PQC for localization and a PQC for Taylor series implementation.
Then we show that fWt(x) := ⟨0|W †

t (x)Z
(0)Wt(x) |0⟩ can approximate β-Hölder smooth function

f on
⋃

η Qη . By the triangle inequality and Eq. (D.61), we have

|f(x)− fWt
(x)| ≤

∣∣∣fWt
(x)−

∑
∥α∥1≤s

∂αf(fWD
(x))

α!
(x− fWD

(x))α
∣∣∣+ ds∥x− fWD

(x)∥β2

(D.64)

≤
∣∣∣fWt

(x)−
∑

∥α∥1≤s

∂αf(fWD
(x))

α!
(x− fWD

(x))α
∣∣∣+ ds+β/2K−β (D.65)

≤ ds+β/2K−β . (D.66)

The second inequality comes from the fact that ||x− fWD
(x)||2 ≤ 1

K for x ∈ Qη . This completes
the proof. ⊓⊔

Note that the PQC in Theorem 4 is nesting of two PQCs, while its depth is counted as the sum
of two PQCs for simplicity. We have established the uniform convergence property of PQCs for
approximating Hölder smooth function on [0, 1]d except for the trifling region Λ(d,K,∆). Note
that the Lebesgue measure of such a trifling region is no more than dK∆. We can set ∆ = K−d

with no influence on the size of the constructed PQC in Theorem 4. Since ν is absolutely continuous
with respect to the Lebesgue measure, we have the following corollary.
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Table S1: Approximation errors of PQCs and ReLU FNNs

Approach Target Width Depth Number of parameters Approximation error

PQC d-var. deg.-s monomial O(d) O(s) O(d + s) 0

ReLU FNN [21] d-var. deg.-s monomial O(N + s) O(s2M) O((N2 + s2)s2M) O(sN−sM )

Nested PQC Cs
u([0, 1]

d) O(d logK + s log d) O(Kdds) O(Kdds+1) O(d2sK−s)

ReLU FNNi [21] Cs
u([0, 1]

d) O(sd+1N) O(s2M) O(s2d+4Kd/2N) O(sd8sK−s)

i Satisfying NM = Θ(Kd/2).

Corollary S18. Given a function f ∈ Hβ([0, 1]d, 1) with β = r+ s, r ∈ (0, 1] and s ∈ N+, for any
K ∈ N and ∆ ∈ (0, 1

3K ), there exists a PQC Wt(x) such that fWt
(x) := ⟨0|W †

t (x)Z
(0)Wt(x) |0⟩

satisfies

∥f(x)− fWt
(x)∥2L2(v) =

∫
[0,1]d

(f(x)− fWt
(x))2ν(x) dx (D.67)

=

∫
∪ηQη

⋃
Λ(d,K,∆)

(f(x)− fWt
(x))2ν(x) dx (D.68)

≤ (ds+β/2K−β)2 + 4dK1−d. (D.69)

The width of the PQC is O(d logK + log s + s log d), the depth is O(s2dsKd(log s + s log d +
d logK)) + 1

∆ logK), and the number of parameters is O(sds(s+ d+Kd) + d
∆ logK).

D.4 Comparison of “global” and “local” approaches in this work

We note that we have presented two distinct methodologies for constructing PQC models with UAP
properties aimed at approximating continuous functions. In Theorem 3 and Theorem 4, we establish
PQC models, guided by the multivariate Bernstein polynomials and the Taylor expansion of multi-
variate continuous functions, respectively. We categorize these approaches as “local” and “global”.
We proceed to conduct a comprehensive comparative analysis of these two strategies in the context
of approximating Lipschitz continuous functions. For the subsequent analysis, we set β = 1, thus
s = 0 in Theorem 4, in accordance with the Lipschitz continuous property exhibited by the target
function.

The approximation error associated with the global approach can be bounded as (2ddℓ2)/(nε2)+ ε.
By selecting n = (2ddℓ2)/ε3, we ensure an approximation error of 2ε. Concurrently, the corre-
sponding number of trainable parameters scale as O

(
2d

2

dd+1ℓ2d/ε3d
)
. In contrast, the local ap-

proach exhibits an approximation error scaling as
√
dK−1 + ε. Setting K =

√
d/ε ensures a 2ε

approximation error, with the number of trainable parameters scaling as O
(
dd/2/εd

)
. These find-

ings highlight the advantage of the local approach for approximating continuous functions. More
importantly, the approximation error proposed by the local method approaches the optimal conver-
gence rate established in Shen et al. [22]. A formal comparison between PQCs and classical deep
neural networks is stated in the next section.

E Comparison with related works in classical machine learning

In this subsection, we conduct a comparative exploration of PQCs and classical deep neural net-
works, focusing on critical aspects, including model size, the number of trainable parameters, and
approximation error. To establish a meaningful benchmark, we turn our attention to deep feed-
forward neural networks (FNNs) distinguished by the incorporation of rectified linear unit (ReLU)
activation functions. FNNs represent the foundational class of neural networks, characterized by a
unidirectional flow of information, commencing from the input layer and traversing through one or
more hidden layers before culminating at the output layer. This architectural design ensures the ab-
sence of cyclic dependencies or loops among nodes within each layer. The ReLU activation function,
mathematically defined as ReLU(x) := max(x, 0), has gained prominence across diverse domains,
including but not limited to image recognition [70, 71] and natural language processing [72, 73].
Its popularity in feed-forward networks stems from its efficacy in facilitating the convergence of
function approximation during network training. Additionally, a recent study [74] has affirmed
that classical neural networks employing commonly utilized activation functions can be effectively

31



approximated by ReLU-activated networks while maintaining a mild increment in network size.
Readers are also referred to some other excellent works related to ReLU networks [16, 75, 76].

In particular, Shen et al. [22] have proposed the optimal approximation error to approximate any
Lipschitz function. Lu et al. [21] have provided a nearly optimal approximation error to approxi-
mate any smooth function using ReLU FNNs. For clarity, the comparison of our results with theirs
is summarized in Table. S1. It is pertinent to observe that, in the majority of practical instances,
the smoothness coefficient s of the target function tends to be modest since most functions to be
approximated is not very smooth. Additionally, within practical scenarios, particularly in domains
like image recognition and natural language processing, the dimensionality d of input data is sub-
stantially large. Consequently, within this context, we identify terms that solely rely on the variable
s as constants and d≫ s within Table S1.

We extend our investigation by quantifying the performance of PQCs and FNNs in terms of the
model size and the number of parameters for approximating s-smooth functions Cs

u([0, 1]
d). No-

tably, we discover that in cases where the target function adheres to certain norms of smoothness,
PQCs exhibit a notable improvement in approximating this function in terms of the model size and
the number of parameters.

Model size. In particular, we explore the comparison of PQC and FNN model sizes when they yield
the same approximation error ε (say some constant). Here, we use a straightforward measure, the
product of width and depth, to gauge the model size. By setting approximation error as ε, the size
of PQC and FNN scale as O(Kd

Qd
s+1) and O(K

d/2
C sd+3), respectively, where KQ = Θ(d2/ε1/s)

and KC = Θ(sd/s/ε1/s).

Remarkably, when 2 ≤ s < d, an intriguing observation emerges: the ratio of model sizes between
PQCs and FNNs [21] exhibits a scaling behavior of O(ε−d/(2s)/sd

2−d logs d). Our comprehensive
analysis concludes that in situations where the smoothness threshold is satisfied, PQCs boast a sig-
nificantly smaller model size compared to FNNs.

Number of trainable parameters. In the present investigation, we delve into the comparative
analysis of the number of trainable parameters of PQC and FNN under the premise of yielding
comparable approximation errors. From the perspective of approximation theory, the count of pa-
rameters serves as a standard metric for assessing model degrees of freedom and expressing model
expressiveness. By setting approximation error as ε, the number of trainable parameters of PQC
and FNN scale as O(Kd

Qd
s+1) and O(K

(1+λ0)d/2
C s2d+4), respectively. Here, the hyperparameter

λ0 ∈ (0, 1) signifies FNN’s width.

Remarkably, through our analysis, we have uncovered that when 2 ≤ s < d, the relationship
between the number of trainable parameters of PQCs and FNNs [21] demonstrates a scaling pattern
characterized by O(ε−(1−λ0)d/(2s)/s(1+λ0)d

2−d logs d). As a consequence, the number of trainable
parameters of PQCs significantly reduces compared to that of FNNs.

Approximating monomial. Here, we conduct a comparative performance analysis of PQC and
FNN in approximating monomial functions of degree s. Within this specialized target function
space, PQCs exhibit distinct advantages in terms of width, depth, model size, and the number of
trainable parameters. Notably, PQCs possess the unique capability to capture the dynamics of mono-
mial functions precisely, eliminating the need for approximation and thereby offering a compelling
advantage. These advantages position PQCs as promising candidates for outperforming FNNs when
addressing more complex target function spaces.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly summarized the main contribution and scope of our work in
the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The authors have discussed the specific type of functions that PQCs can ap-
proximate with quantitative error bound and the specific case where PQCs would have
improvement over the classical neural networks. The pros and cons of global and local
approximation are also discussed in the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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a complete (and correct) proof?
Answer: [Yes]
Justification: Complete proofs are provided in the supplementary materials. The authors
also discuss the sketch proof ideas in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have clearly stated all information and detailed settings of our experi-
ments.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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