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Abstract

Neural ordinary differential equations describe how values change in time. This
is the reason why they gained importance in modeling sequential data, especially
when the observations are made at irregular intervals. In this paper we propose an
alternative by directly modeling the solution curves — the flow of an ODE — with
a neural network. This immediately eliminates the need for expensive numerical
solvers while still maintaining the modeling capability of neural ODEs. We propose
several flow architectures suitable for different applications by establishing precise
conditions on when a function defines a valid flow. Apart from computational effi-
ciency, we also provide empirical evidence of favorable generalization performance
via applications in time series modeling, forecasting, and density estimation.

1 Introduction

Ordinary differential equations (ODEs) are among the most important tools for modeling complex
systems, both in natural and social sciences. They describe the instantaneous change in the system,
which is often an easier way to model physical phenomena than specifying the whole system itself.
For example, the change of the pendulum angle or the change in population can be naturally expressed
in the differential form. Similarly, Chen et al. [11] introduce neural ODEs that describe how some
quantity of interest represented as a vector x, changes with time: ẋ = f(t,x(t)), where f is now a
neural network. Starting at some initial value x(t0) we can find the result of this dynamic at any t1:

x(t1) = x(t0) +

∫ t1

t0

f(t,x(t)) dt = ODESolve(x(t0), f, t0, t1). (1)
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Figure 1: (Left) ODE requires nu-
merical solver which evaluates f
at many points along the solution
curve. (Right) Our approach re-
turns the solutions directly.

It is sufficient for f to be continuous in t and Lipschitz continuous
in x to have a unique solution, by the Picard–Lindelöf theorem
[14]. This mild condition is already satisfied by a large family
of neural networks. In most practically relevant scenarios, the
integral in Equation 1 has to be solved numerically, requiring
a trade-off between computation cost and numerical precision.
Much of the follow up work to [11] focused on retaining expres-
sive dynamics while requiring fewer solver evaluations [22, 37].

In the machine learning context we are given a set of initial
conditions (often at t0 = 0) and a loss function for the solution
evaluated at time t1. One example is modeling time series where
the latent state is evolved in continuous time and is used to predict
the observed measurements [16]. Here, unlike in physics for
example, the function f is completely unknown and needs to be
learned from data. Thus, [11] used neural networks to model it,
for their ability to capture complex dynamics. However, note that
this comes at the cost of the ODE being non-interpretable.
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Since solving an ODE is expensive, we want to find a way to keep the desired properties of neural
ODEs at a much smaller computation cost. If we take a step back, we see that neural ODEs take initial
values as inputs and return non-intersecting solution curves (Figure 1). In this paper we propose to
model the solution curves directly, with a neural network, instead of specifying the derivative. That
is, given an initial condition we return the solution with a single forward pass through our network.
Straight away, this leads to improvements in computation performance because we avoid using ODE
solvers altogether. We show how our method can be used as a faster alternative to ODEs in existing
models [9, 16, 34, 69], while improving the modeling performance. In the following, we derive the
conditions that our method needs to satisfy and propose different architectures that implement them.

2 Neural flows

In this section, we present our method, neural flows, that directly models the solution curve of an
ODE with a neural network. For simplicity, let us briefly assume that the initial condition x0 = x(t0)
is specified at t0 = 0. We handle the general case shortly. Then, Equation 1 can be written as
x(t) = F (t,x0), where F is the solution to the initial value problem, ẋ = f(t,x(t)),x0 = x(0).
We will model F with a neural network. For this, we first list the conditions that F must satisfy so
that it is a solution to some ODE. Let F : [0, T ]× Rd → Rd be a smooth function satisfying:

i) F (0,x0) = x0, (initial condition)
ii) F (t, ·) is invertible, ∀t. (uniqueness of the solution given the initial value x0; i.e., the curves

specified by F corresponding to different initial values should not intersect for any t)

There is an exact correspondence between a function F with the above properties and an ODE defined
with f such that the derivative d

dtF (t,x0) matches f(t,x(t)) everywhere, given x0 = x(0) [47,
Theorem 9.12]. In general, we can say that f defines a vector field and F defines a family of integral
curves, also known as the flow in mathematics (not to be confused with normalizing flow). As F will
be parameterized with a neural network, condition i) requires that its parameters must depend on t
such that we have the identity map at t = 0.

Note that by providing x0 we define a smooth trajectory F (·,x0) — the solution to some ODE with
the initial condition at t0 = 0. If we relax the restriction t0 = 0 and allow x0 to be specified at an
arbitrary t0 ∈ R, the solution can be obtained with a simple procedure. We first go back to the case
t = 0 where we obtain the corresponding “initial” value x̂0 := x(0) = F−1(t0,x0). This then gives
us the required solution F (·, x̂0) to the original initial value problem. Thus, we often prefer functions
with an analytical inverse.

Finally, we tackle implementing F . The second property instructs us that the function F (t, ·) is a
diffeomorphism on Rd. We can satisfy this by drawing inspiration from existing works on normalizing
flows and invertible neural networks [e.g., 17, 2]. In our case, the parameters must be conditioned
on time, with identity at t = 0. As a starting example, consider a linear ODE f(t,x(t)) = Ax(t),
with x(0) = x0. Its solution can be expressed as F (t,x0) = exp(At)x0, where exp is the matrix
exponential. Here, the learnable parametersA are simply multiplied by t to ensure condition i); and
given fixed t, the network behaves as an invertible linear transformation. In the following we propose
other, more expressive functions suitable for applications such as time series modeling.

2.1 Proposed flow architectures

ResNet flow. A single residual layer xt+1 = xt + g(xt) [30] bears a resemblance to Equation 1 and
can be seen as a discretized version of a continuous transformation which inspired the development
of neural ODEs. Although plain ResNets are not invertible, one could use spectral normalization [26]
to enforce a small Lipschitz constant of the network, which guarantees invertibility [2, Theorem 1].
Thus, ResNets become a natural choice for modeling the solution curve F resulting in the following
extension — ResNet flow:

F (t,x) = x+ ϕ(t)g(t,x), (2)

where ϕ : R→ Rd. This satisfies properties i) and ii) from above when ϕ(0) = 0 and |ϕ(t)i| < 1;
and g : Rd+1 → Rd is an arbitrary contractive neural network (Lip(g) < 1). One simple choice for
ϕ is a tanh function. The inverse of F can be found via fixed point iteration similar to [2].
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GRU flow. Time series data is traditionally modeled with recurrent neural networks, e.g., with a
GRU [12], such that the hidden state ht−1 is updated at fixed intervals with the new observation xt:

ht = GRUCell(ht−1,xt) = zt � ht−1 + (1− zt)� ct, (3)

where zt and ct are functions of the previous state ht−1 and the new input xt.

De Brouwer et al. [16] derived the continuous equivalent of this architecture called GRU-ODE (see
Appendix A.1). Given the initial condition h0 = h(t0), they evolve the hidden state h(t) with an
ODE, until they observe new xt1 at time t1, when they use Equation 3 to update it:

h̄t1 = ODESolve(h0,GRU-ODE, t0, t1), ht1 = GRUCell(h̄t1 ,xt1). (4)

Here, we will derive the flow version of GRU-ODE. If we rewrite Equation 3 by regrouping terms:
ht = ht−1 + (1− zt)� (ct − ht−1), we see that GRU update acts as a single ResNet layer.

Definition 1. Let fz, fr, fc : Rd+1 → Rd be any arbitrary neural networks and let z(t,h) =
α · σ(fz(t,h)), r(t,h) = β · σ(fr(t,h)), c(t,h) = tanh(fc(t, r(t,h)� h)), where α, β ∈ R and
σ is a sigmoid function. Further, let ϕ : R → Rd be a continuous function with ϕ(0) = 0 and
|ϕ(t)i| < 1. Then the evolution of GRU state in continuous time is defined as:

F (t,h) = h+ ϕ(t)(1− z(t,h))� (c(t,h)− h). (5)

Theorem 1. A neural network defined by Equation 5 specifies a flow when the functions fz , fr and
fc are contractive maps, i.e., Lip(f·) < 1, and α = 2

5 , β = 4
5 .

We prove Theorem 1 in Appendix A.3 by showing that the second summand on the right hand side in
Equation 5 satisfies Lipschitz constraint making the whole network invertible. We also show that
the GRU flow has the same desired properties as GRU-ODE, namely, bounding the hidden state in
(−1, 1) and having the Lipschitz constant of 2. Note that GRU flow (Equation 5) acts as a replacement
to ODESolve in Equation 4. Alternatively, we can append xt to the input of fz, fr and fc, which
would give us a continuous-in-time version of GRU.

Coupling flow. The disadvantage of both ResNet flow and GRU flow is the missing analytical inverse.
To this end, we propose a continuous-in-time version of an invertible transformation based on splitting
the input dimensions into two disjoint sets A and B, A∪B = {1, 2, . . . , d} [17]. We copy the values
indexed by B and transform the rest conditioned on xB which gives us the coupling flow:

F (t,x)A = xA exp(u(t,xB)ϕu(t)) + v(t,xB)ϕv(t), (6)

where u, v are arbitrary neural networks and ϕu(0) = ϕv(0) = 0. We can easily see that this satisfies
condition i), and it is invertible by design regardless of t [17]. Since some values stay constant in a
single layer, we apply multiple consecutive transformations, choosing different partitions A and B.

For all three models we can stack multiple layers F = F1 ◦ · · · ◦ Fn and still define a proper flow
since the composition of invertible functions is invertible, and consecutive identities give an identity.

We can think of ϕ (including ϕu, ϕv) as a time embedding function that has to be zero at t = 0. Since
it is a function of a single variable, we would like to keep the complexity low and avoid using general
neural networks in favor of interpretable and expressive basis functions. A simple example is linear
dependence on time ϕ(t) = αt, or tanh(αt) for ResNet flow. We use these in the experiments. An
alternative, more powerful embedding consists of Fourier features ϕ(t)i =

∑
k αik sin(βikt).

2.2 On approximation capabilities

Previous works established that neural ODEs are sup-universal for diffeomorphic functions [76] and
are Lp-universal for continuous maps when composed with terminal family [48]. A similar result also
holds for affine coupling flows [75], whereas general residual networks can approximate any function
[53]. The ResNet flow, as defined in Equation 2, can be viewed as an Euler discretization, meaning it
is enough to stack appropriately many layers to uniformly approximate any ODE solution [48]. GRU
flow can be viewed as a ResNet flow and coupling flow shares a similar structure, meaning that if
we can set them to act as an Euler discretization we can match any ODE. However, this is of limited
use in practice since we use finitely many layers, so the main focus of this paper is to provide the
empirical evidence that we can outperform neural ODEs on relevant real-world tasks.

Other results [20, 81] consider limitations of neural ODEs in modeling general homeomorphisms
(e.g., x 7→ −x) and propose the solution that adds dimensions to the input x. Such augmented

3



networks can model higher order dynamics. This can be explicitly defined through certain constraints
for further improvements in performance and better interpretability [59]. We can apply the same trick
to our models. However, instead of augmenting x, a simpler solution is to relax the conditions on F
given the task. For example, if we do not need invertibility, we can remove the Lipschitz constraint in
Equation 2. Since neural flows offer such flexibility, they might be of more practical relevance in
these use cases.

3 Applications

In this section we review two main applications of neural ODEs: modeling irregularly-sampled time
series and density estimation. We describe the existing modeling approaches and propose extensions
using neural flows. In Section 4 we will use models presented here to qualitatively and quantitatively
compare neural flows with neural ODEs.

3.1 Continuous-time latent variable models

Autoregressive [62, 70] and state space models [32, 68] have achieved considerable success modeling
regularly-sampled time series. However, many real-world applications do not have a constant
sampling rate and may contain missing values, e.g., in healthcare we have very sparse measurements
at irregular time intervals. Here we describe how our neural flow models can be used in such scenario.

Encoder. In this setting, we are given a sequence of observations X = (x1, . . . ,xn), xi ∈ Rd
at times t = (t1, . . . , tn). To represent this type of data, previous RNN-based works relied on
exponentially decaying hidden state [8], time gating [58], or simply adding time as an additional
input [19]. More recently, various ODE-based models built on top of RNNs to evolve the hidden state
between observations in continuous time, giving rise to, e.g., ODE-RNN [69], while outperforming
previous approaches. Another model is GRU-ODE [16], which we already described in Equation 4.
We proposed the GRU flow (Equation 5) that can be used as a straightforward replacement.

Lechner and Hasani [46] showed that simply evolving the hidden state with a neural ODE can
cause vanishing or exploding gradients, a known issue in RNNs [3]. Thus, they propose using an
LSTM-based [31] model instead. The difference to ODE-RNN [69] is using an LSTMCell and
introducing another hidden state that is not updated continuously in time, which in turn allows
gradient propagation via internal LSTM gating. To adapt this to our framework, we simply replace
the ODESolve with the ResNet or coupling flow to obtain a neural flow model.

Decoder. Once we have a hidden state representation hi of the irregularly-sampled sequence up
to xi, we are interested in making future predictions. The ODE based models continue evolving
the hidden state using a numerical solver to get the representation at time ti+1, with hi+1 =
ODESolve(hi, f, ti, ti+1). With neural flows we can simply pass the next time point ti+1 into F
and get the next hidden state directly. In the following we show how the presented encoder-decoder
model is used in both the smoothing and filtering approaches for irregular time series modeling.

Smoothing approach. The given sequence of observations (X, t) is modeled with latent variables
or states (z1, . . . ,zn) ∼ Rh, such that xi ∼ p(xi|zi), conditionally independent of other xj [11, 69].
There is a predesignated prior state z0 at t = 0 from which the latent state is assumed to evolve
continuously. More precisely, if z0 is a sample from the initial latent state z0, then a latent state
sample at any future time step t is given by zt = F (t, z0).

Since the exact inference on the initial state z0, p(z0|X, t), is intractable, we proceed by doing
approximate inference following the variational auto-encoder approach [11, 69]. We use an LSTM-
based neural flow encoder that processes (X, t) and outputs the approximate posterior parameters
µ and σ from the last state, q(z0|X, t) = N (µ,σ). The decoder returns all zi deterministically at
times t with F (t, z0), with initial condition z0 ∼ q(z0|X, t). For the latent state at an arbitrary ti,
the target is generated according to the model xi ∼ p(xi|zi). Given p(z0) = N (0,1), the overall
model is trained by maximizing the evidence lower bound:

ELBO = Ez0∼q(z0|X,t))[log p(X)]−KL[q(z0|X, t)||p(z0)]. (7)

Using continuous time models brings up multiple advantages, from handling irregular time points
automatically to making predictions at any, and as many time points as required, allowing us to do

4



reconstruction, missing value imputation and forecasting. This holds whether we use neural flows or
ODEs, but our approach is more computationally efficient, which matters as we scale to bigger data.

Filtering approach. In contrast to the previous approach, we can alternatively do the inference in an
online fashion at each of the observed time points, i.e., estimating the posterior p(zi|x1:i, t1:i) after
seeing observations until the current time step i. This is known as filtering. Here, the prediction for
future time steps is done by evolving the posterior corresponding to the final observed time point
p(zn|X, t) instead of the initial time point p(z0|X, t), as was done in the smoothing approach.

In this paper, we follow the general approach suggested by De Brouwer et al. [16] for capturing
non-linear dynamics. We use GRU flow (instead of GRU-ODE) for evolving the hidden state hi ∈ Rh
and we output the mean and variance of the approximate posterior q(zi|x1:i, t1:i). The log-likelihood
cannot be computed exactly under this model so [16] suggest using a custom objective that is the
analogue to Bayesian filtering (see Appendix A.2 for details). Unlike [16], which needs to solve the
ODE for every observation, our method only needs a single pass through the network per observation.

3.2 Temporal point processes

Sometimes temporal data is measured irregularly and the times at which we observe the events come
from some underlying process modeled with temporal point processes (TPPs). For example, we can
use TPPs to model the times of messages between users. One example type of behavior we want to
capture is excitation [29], e.g., observing one message increases the chance of seeing other soon after.

A realization of a TPP on an interval [0, T ] is an increasing sequence of arrival times t = (t1, . . . , tn),
ti ∈ [0, T ], where n is a random variable. The model is defined with an intensity function λ(t) that
tells us how many events we expect to see in some bounded area [15]. The intensity has to be positive.
We define the historyHti as the events that precede ti, and further define the conditional intensity
function λ∗(t) which depends on history. For convenience, we can also work with inter-event times
τi = ti − ti−1, without losing generality. We train the model by maximizing the log-likelihood:

log p(t) =

n∑
i

log λ∗(ti)−
∫ T

0

λ∗(s) ds. (8)

Previous works [72] used autoregressive models (e.g., RNNs) to represent the history with a fixed-size
vector hi [19]. The intensity function can correspond to a simple distribution [19] or a mixture of
distributions [71]. Then the integral in Equation 8 can be computed exactly. Another possibility
is modeling λ(t) with an arbitrary neural network which requires Monte Carlo integration [6, 56].
On the other hand, Jia and Benson [34] propose a jump ODE model that evolves the hidden state
h(t) with an ODE and updates the state with new observations, similar to LSTM-ODE. In this case,
obtaining the hidden state and solving the integral in Equation 8 can be done in a single solver call.

Marked point processes. Often, we are also interested in what type of an event happened at time
point ti. Thus, we can assign the observed type xi, also called mark, and model the arrival times and
marks jointly: p(t,X) = p(t)p(X|t). Written like this, we can keep the model for arrival times as
in Equation 8, and add a module that inputs the history hi and the next time point ti+1 and outputs
the probabilities for each mark type. The special case of xi ∈ Rd is covered in the next section.

3.3 Time-dependent density estimation

Normalizing flows (NFs) define densities with invertible transformations of random variables. That
is, given a random variable z ∼ q(z), z ∈ Rd and an invertible function F : Rd → Rd, we can
compute the probability density function of x = F (z) with the change of variables formula [65]:
p(x) = q(z)|det JF (z)|−1, where JF is the Jacobian of F . As we can see, it is important to define
a function F that is easily invertible and has a tractable determinant of the Jacobian. One example is
the coupling NF [17], which we used to construct the coupling flow in Equation 6. Other tractable
models include autoregressive [41, 64] and matrix factorization based NFs [4, 40].

In contrast to this, Chen et al. [11] define the transformation with an ODE: f(t, z(t)) = ∂
∂tz(t). This

allows them to define the instantaneous change in log-density as well as the continuous equivalent to
the change of variables formula, giving rise to the continuous normalizing flow (CNF):

∂

∂t
log p(z(t)) = −tr

(
∂f

∂z(t)

)
, log p(x) = log q(z(t0))−

∫ t1

t0

tr

(
∂f

∂z(t)

)
dt, (9)
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where t0 = 0 and t1 = 1 are usually fixed. The neural network f can be arbitrary as long as it
gives unique ODE solutions. This offers an advantage when we need special structure of f that
cannot be easily implemented with the discrete NFs, e.g., in physics we often require equivariant
transformations [5, 43]. Besides the cost of running the solver, calculating the trace at each step in
Equation 9 becomes intractable as the dimension of data grows, so one resorts to stochastic estimation
[27]. A similar approximation method is used for estimating the determinant in an invertible ResNet
model [2]. We discuss the computation complexity in Appendix A.8. Again, if we consider a
linear ODE, we can easily show that calculating the trace and calculating the determinant of the
corresponding flow is equivalent (see Appendix A.7).

However, we are not interested in comparison between different normalizing flows for stationary
densities [see e.g., 42], since flow endpoints t0 and t1 are always fixed; thus, our models would
be reduced to the discrete NFs. Recently, Chen et al. [9] demonstrated how CNFs can evolve the
densities in continuous time, with varying t0 and t1, which proves useful for spatio-temporal data. We
will show how to do the same with our coupling flow, something that has not been explored before.

Spatio-temporal processes. We reuse the notation from Section 3.2 to denote the arrival times with
t and marks with X , xi ∈ Rd, which are now continuous variables. Values xi often correspond
to locations of events, e.g., earthquakes [60] or disease outbreaks [57]. We use the temporal point
processes from Section 3.2 to model p(t), and are only left with the conditional density p(X|t). Chen
et al. [9] propose several models for this, the first one being the time-varying CNF where p(xi|ti) is
estimated by integrating Equation 9 from t0 = 0 to observed ti. Using our affine coupling flow as
defined in Equation 6 we can write:

p(xi|ti) = q(F−1(ti,xi))|det JF−1(xi)|, (10)
where q is the base density (defined with any NF) and the determinant is the product of the diagonal
values of the Jacobian w.r.t. xi, which are simply exp terms from Equation 6 [17]. The density p
evolves with time, the same way as in the CNF model, but without using the solver or trace estimation.
To generate new realizations at ti, we first sample from q to get x0 ∼ q(x0), then evaluate F (ti,x0).

An alternative model, attentive CNF [9], is more expressive compared to the time-varying CNF
and more efficient than jump ODE models [9, 34]. The probability density of xi depends on all
the previous values xj<i through the attention mechanism [79]. In our model, we represent all the
previous points xj<i with an attention encoder and define a conditional coupling NF p(xi|ti,xj<i).
We describe the full model in Appendix A.5. Both of the previous models can also use ResNet flow,
but the benefits over ODEs vanish since the determinant and the inverse require iterative procedure.

4 Experiments

In this section we show that flow-based models can match or outperform ODEs at a smaller computa-
tion cost, both in latent variable time series modeling, as well as TPPs and time-dependent density
estimation. To make fair comparison, we used recently introduced reparameterization trick for ODEs
that allows faster mini-batching [9], and the semi-norm trick for faster backpropagation [38], making
the models more competitive compared to the original works. In all experiments we split the data into
train, validation and test set; train with early stopping and report results on test set. We use Adam
optimizer [39]. For training we use two different machines, one with 3.4GHz processor and 32GB
RAM and another with 61GB RAM and NVIDIA Tesla V100 GPU 16GB [52]. All datasets are
publicly available, we include the download links and release the code that reproduces the results.2

Synthetic data. We compare the performance of neural ODEs and neural flows on periodic signals
and data generated from autonomous ODEs. Full setup and results are presented in Appendix B. In
short, we observe that training with adaptive solvers [18] is slower compared to fixed-step solvers,
as expected. With the fixed step, however, we are not guaranteed invertibility [63], which can be
an issue in, e.g., density estimation. Using the same setup, our models are an order of magnitude
faster. Finally, neural ODEs struggle with non-smooth signals while neural flows perform much
better, although they also only output smooth dynamics. Neural flows are also better at extrapolating,
although none of the models excel in this task.

Stiff ODEs. The numerical approach to solving ODEs is not only slow but it can be unstable. This
can happen when the ODE becomes stiff, i.e., the solver needs to take very small steps even though

2https://www.daml.in.tum.de/neural-flows
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MuJoCo Activity Physionet
MSE MSE Accuracy MSE AUC

Neural ODE 8.403±0.142 6.390±0.136 0.756±0.013 4.833±0.078 0.777±0.012
Coupling flow 4.217±0.147 6.579±0.049 0.752±0.012 4.860±0.070 0.788±0.004
ResNet flow 5.147±0.171 6.279±0.098 0.760±0.004 4.903±0.125 0.784±0.010

Table 1: Test mean squared error (lower is better) and accuracy/area under curve (higher is better).
Best result is bolded, result within one standard deviation is highlighted. Averaged over 5 runs.

the solution curve is smooth. For neural ODEs, it can happen that the target dynamic is known to be
stiff or the latent dynamic becomes stiff during training.

0 5 10 15 20 25

t

0

10

20

x

ODE
Flow
Data

Figure 2: Flows handle stiffness better.

To see the effects of this, we use the experiment from [24].
The ODE is given by: ẋ = −1000x+3000−2000e−t. We
train a neural ODE model and a coupling flow to match the
data, minimizing MSE. The data contains initial conditions
and solutions, on small intervals with t2 − t1 = 0.125,
t ∈ [0, 15]. The flow first finds the solution at t0 = 0 and
then solves for t2 (Section 2). We evaluate on an extended
time interval given x0 = 0. Figure 2 shows that the neural
ODE with an adaptive solver does not match the correct solution, due to its stiffness. In contrast, flow
captures the solution correctly, as expected, since it does not use a numerical solver.

Smoothing approach. Following [69], we use three datasets: Activity, Physionet, and MuJoCo.
Activity contains 6554 time series of 3d positions of 4 sensors attached to an individual. The goal is
to classify one of the 7 possible activities (e.g., walking, lying, etc.). Physionet [73] contains 8000
time series and 37 features of patients’ measurements from the first 48 hours after being admitted
to ICU. The goal is to predict the mortality. MuJoCo is created from a simple physics simulation
“Hopper” [74] by randomly sampling initial positions and velocities and letting dynamics evolve
deterministically in time. There are 10000 sequences, with 100 time steps and 14 features.

We use the encoder-decoder model (Section 3.1) and maximize Equation 7. We use the same number
of hidden layers and the same size of latent states for both the neural ODE, coupling flow and ResNet
flow, giving approximately the same number of trainable parameters. ODE models use either Euler
or adaptive solvers and we report the best results. The results in Table 1 show the reconstruction error
and the accuracy of prediction. For better readability, we scale MSE scores same as in [69]. Neural
flows outperform ODE models everywhere (Physionet reconstruction within the confidence interval).
We noticed that it is possible to further improve the results with bigger flow models but we focused
on having similar sized models to show that we can get better results at a much smaller cost.

Speed improvements. In the smoothing experiment, our method offers more than two times speed-up
during training compared to an ODE using an Euler method (Figure 3, different boxes corresponding
to different datasets, grouped by experiment types). The gap is even larger for adaptive solvers. Note
that Figure 3 shows an average time to run one training epoch which includes other operations, such
as data fetching, state update etc. This shows that ODESolve contributes significantly to long training
times. When comparing ODEs and flows alone, our method is much faster. In the following we will
discuss the results from Figure 3 for other experiments as well as other results.

Filtering approach. Following De Brouwer et al. [16], we use clinical database MIMIC-III [35],
pre-processed to contain 21250 patients’ time series, with 96 features. We also process newly released
MIMIC-IV [25, 36] to obtain 17874 patients. The details are in Appendix D.2. The goal is to predict
the next three measurements in the 12 hour interval after the observation window of 36 hours.

Table 2 shows that our GRU flow model (Equation 5) mostly outperforms GRU-ODE [16]. Addition-
ally, we show that the ordinary ResNet flow with 4 stacked transformations (Equation 2) performs
worse. The reason might be because it is missing GRU flow properties, such as boundedness. Simi-
larly, an ODE with a regular neural network does not outperform GRU-ODE [16]. Finally, we report
that the model with GRU flow requires 60% less time to run one training epoch.

Temporal point processes. As we saw in Section 3.2, most of the TPP models consist of two parts:
the encoder that processes the history, and the network that outputs the intensity. In the context of
neural ODEs, we would like to answer: 1) whether having continuous state h(t) outperforms RNNs,
and 2) if intertwining the hidden state evolution with the intensity outperforms other approaches. For
this purpose we propose the following models based on continuous intensity and mixture distributions.
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MIMIC-III MIMIC-IV
MSE NLL MSE NLL

GRU-ODE 0.507±0.005 0.770±0.023 0.379±0.005 0.748±0.045
ResNet flow 0.508±0.007 0.779±0.023 0.379±0.005 0.774±0.059
GRU flow 0.499±0.004 0.781±0.041 0.364±0.008 0.734±0.054
Table 2: Forecasting on healthcare data averaged over 5 runs (lower is better).

MOOC Reddit Wiki

Discrete GRU -0.4448 2.7563 -0.9299 1.8468 -0.5832 8.0527

C
on

t. Jump ODE 0.8710 4.6118 0.1308 3.6654 -0.3115 10.6040
Coupling flow 0.7694 5.5494 -0.1263 3.6312 -0.2807 9.7214
ResNet flow -1.2379 2.9466 -1.2962 2.3932 -1.2907 10.4368

M
ix

. Jump ODE -0.2626 3.0723 -1.0907 1.9057 -1.3635 7.5537
Coupling flow -0.4026 2.5877 -1.0933 1.6817 -1.2702 8.8018
ResNet flow -0.5664 3.0005 -1.0605 1.9491 -1.1937 8.5489

Table 3: Test NLL for TPP (left columns, per dataset) and marked TPP (right columns); full results in
Appendix C. Cont. denotes models with continuous intensity, and Mix. with mixture distribution.

Jump ODE evolves h(t) continuously together with the intensity function λ(t) = g(h(t)) [34, 9],
where g is a neural network. The neural flow version replaces an ODE with our proposed flow models
to evolve h(t) and uses Monte Carlo integration to evaluate Equation 8. Note that this operation can
be parallelized unlike solving an ODE.

The mixture-based models keep the same continuous time encoders (ODEs and flows) but output the
stationary log-normal mixture for the next arrival time. That is, instead of outputting the continuous
intensity, they only use the hidden state at the last observation to define the probability density
function [71]. As a baseline, we use a discrete GRU with the same mixture decoder.

We use both synthetic and real-world data, following [61, 71]. We generate 4 synthetic datasets
corresponding to homogeneous, renewal and self-correcting processes. For real-world data, we collect
timesteps of forum posts (Reddit), interactions of students with an online course system (MOOC),
and Wiki page edits [44]. The details of the data are in Appendix D.3.

We report the test negative log-likelihood on real-world data in Table 3, for models trained both
with and without marks. Full results, including synthetic data can be found in the Appendix C. We
note that all the models capture the synthetic data, although continuous intensity models struggle
compared to those with the mixture distribution. We can see this is the case for real-world data too,
where the mixture distribution usually outperforms the corresponding continuous intensity model.
In general, neural flows are better than ODE-based models, with the exception of one ODE model
on Wiki dataset. We can conclude that having a continuous encoder is preferred to a discrete RNN
because it can capture the irregular time sequence better. However, there is no benefit in parametrizing
the intensity function in a continuous fashion, especially since this is a much slower approach.

Table 8 in Appendix C shows the comparison of wall clock times. Comparing only continuous
intensity models we can see that Monte Carlo integration is faster than solving an ODE. As expected,
using the mixture distribution gives the best performance. Thus, our flow models offer more than an
order of magnitude faster processing compared to ODEs with continuous intensity. Figure 3 shows
the difference for continuous models on the respective real-world datasets, the gap is even bigger if
we include mixture-based models, where the speed-up is over an order of magnitude.

Spatial data. We compare the continuous normalizing flows with our continuous-time version of the
coupling NF on time-dependent density estimation. We use two versions of each model: time-varying
and attentive, as described in Section 3.3. Following Chen et al. [9], we use locations of bike rentals
(Bikes), Covid cases for the state of New Jersey [77], and earthquake events in Japan (EQ) [78].

Results in Table 4 show the test NLL for spatial data, that is, we do not report the TPP loss since this
is shared between models. Our continuous coupling NF models perform better on all datasets. Since
affine coupling is a simple transformation, we require bigger models with more parameters. At the
same time, our models are still more than an order of magnitude faster. Adapting some other, more
expressive normalizing flows to satisfy flow constraints might reduce the number of parameters.
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Bikes Covid EQ

Time-var. CNF 2.315 1.984 1.709
Attentive CNF 2.371 1.973 1.668
Time-var. coupling 2.280 1.916 1.633
Attentive coupling 2.330 1.926 1.457

Table 4: Test NLL for spatial datasets.
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Figure 3: Comparing per-epoch wall-clock times.
Each box is dataset (order by appearance in text).

5 Discussion

In this paper we presented neural flows as an efficient alternative to neural ODEs. We retain all the
desirable properties of neural ODEs, without using numerical solvers. Our method outperforms the
ODE based models in time series modeling and density estimation, at a much smaller computation
cost. This brings the possibility to scale to larger datasets and models in the future.

Other related work. Early works on approximating the ODE solutions without numerical solvers
used splines or radial basis functions [55, 50], or functions similar to modern ResNets [45]. More
recently, [66] approximate the solution by minimizing the error of the solution points and of the
boundary condition. Unlike these approaches, we do not approximate the solution to some given
ODE but learn the solutions which corresponds to learning the unknown ODE. Also, our method
guarantees that we always define a proper flow, as is required in certain applications.

A similar problem is modeling the solutions to partial differential equations, e.g., with a model that is
analogous to the classical discrete encoder-decoder [49]. Although we cannot compare these two
settings directly, one could use our method to enhance modeling PDE solutions.

ResNets were initially recognized as a discretization of dynamical systems [51, 80] and were used to
tackle infinite depth [1, 54], stability [13, 28] and invertibility [7, 33]. We take a different approach
and propose modified ResNets, among other, avoiding any iterative procedure. ResNets also lead
to neural ODEs which have memory efficient backpropagation as one of the main features [21, 11].
Further, to combat solver inefficiency, many improvements have been proposed, such as adding
regularization [22, 24, 37], improving training [23, 38, 82] and having faster inference [67].

Limitations. Defining a flow automatically defines an ODE, but since many ODEs do not have
closed-form solutions, we cannot always find the exact flow corresponding to a particular ODE. This
is usually not an issue since in most applications, such as those presented in Section 3, it is sufficient
for both neural ODEs and neural flows to approximate an unknown dynamic. However, if we restrict
ourselves to autonomous ODEs (fixed vector field in time), we cannot define a general neural flow
that satisfies this condition. We further discuss this in Appendix A.6 and present a potential solution
that involves a simple regularization.

Since neural ODEs reuse the same function f in the solver, essentially defining implicit layers, they
can be more parameter efficient. Sometimes we might need more parameters to represent the same
dynamic, as we observed in the density estimation task. But even here, the results show neural flows
are more efficient. In the special setting with limited memory, we can resort to existing solutions [10].

Future work. In this work we designed neural flow models as invertible functions that satisfy initial
condition using simple dependence on time. Although these models already outperform neural ODEs,
it would be interesting to see if there are other ways to define a neural flow, and whether these
architectures can outperform the ones we proposed here.

We applied our method to the main applications of neural ODEs: time series modeling and density
estimation. In the future we hope to see neural flows adapted for other use cases as well. Investigating
flows that define the higher order dynamics might also be of interest.

Broader impact. We introduced a new method to replace neural ODEs. As such, it has a wide
variety of potential applications, some of which we explored in this paper. We used several healthcare
datasets and hope to see further applications of our method in this domain. At the same time, it is
important to pay attention to data privacy and fairness when building such models, especially for
sensitive applications, such as healthcare. One of the main benefits of our method is the reduced
computation cost, which may imply energy savings.
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