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Abstract

Uncertainty Quantification (UQ) has become an essential tool for detecting hal-1

lucinations and unreliable outputs of large language models (LLMs), particularly2

in settings where external verification is infeasible, such as contextual question3

answering (QA). To quantify epistemic uncertainty, the model’s confusion to an-4

swer a question reliably, we introduce a generic token-level uncertainty measure5

defined as the cross-entropy between the distribution of the actual model and that6

of an ideal, most reliable hypothetical model. By decomposing this measure, we7

isolate the epistemic uncertainty and show that it can be bounded by the absence of8

model features in the actual model relative to the ideal one. We hypothesize that9

three features approximate this gap in contextual QA: honesty (avoiding intentional10

lie), contextual reliance (using the provided context rather than parametric knowl-11

edge), and contextual resolvability (extracting relevant information from context).12

Using a top-down interpretability approach, we extract these features from only a13

small number of labeled samples and ensemble them to form a robust uncertainty14

score. Extensive experiments on multiple QA benchmarks demonstrate that our15

method substantially outperforms state-of-the-art unsupervised (sampling-free and16

sampling-based) and supervised UQ approaches, achieving up to 13 PRR points17

improvement, while requiring no sampling and incurring negligible additional18

inference cost. Finally, we demonstrate the effectiveness and robustness of our19

method through extensive ablation studies.20

1 Introduction21

Despite the impressive performance of Large Language Models (LLMs) on a wide range of real-world22

tasks, hallucinations and other non-reliable generations remain a major obstacle to their deployment23

in high-stakes domains such as medicine and finance[7, 27]. Uncertainty Quantification (UQ) has24

emerged as a key tool for hallucination detection, using the observation that models tend to be less25

confident (i.e., more uncertain) when producing incorrect or hallucinated outputs. Compared to26

alternative approaches such as external verifiers, UQ offers a notable advantage: it relies solely on27

the model’s own outputs and internal signals, avoiding the need for additional verification modules.28

This self-contained nature, combined with promising results across various benchmarks, makes UQ a29

compelling direction for improving the reliability of LLMs [6].30

Despite the promising results of UQ methods, most existing works [34, 20, 19, 12] evaluate them31

primarily in factual question answering (QA) tasks. While factual QA is an important problem with32

many practical applications, it is not the most suitable setting for showcasing the unique advantages33
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Figure 1: Overview of the proposed approach: approximating the distance between the ideal and
actual model as an ensemble of three features extracted via a top-down interpretability approach.

of UQ in hallucination detection. For factual queries, verifying the correctness of a generation is34

often straightforward by retrieving relevant context from the web or other knowledge sources, and35

assessing entailment with that context, which is a strategy widely adopted by popular chatbots such36

as ChatGPT, Gemini, and Claude, offers a more reliable and interpretable solution. Moreover, many37

factual questions are inherently temporal; for example, the answer to “How many goals has Arda38

Güler scored in his career?” will change over time, making UQ scores not-reliable. Therefore, UQ is39

better suited for scenarios in which external verification is impractical or infeasible, which is a more40

realistic use case for uncertainty quantification in practice. Motivated by this observation, we focus41

on developing an UQ method for contextual question answering. In this setting, the relevant context42

for a question is already retrieved or directly provided by the user. Hence, detecting hallucinations in43

retrieval-augmented generation via external verification is not practical. Instead, we aim to quantify44

the model’s generation uncertainty as a means to assess whether its output is correct and reliable.45

To quantify the uncertainty of an LLM, we propose a generic novel token-level uncertainty formulation46

defined as the cross-entropy between a hypothetical ideal model and the given model, inspired47

by Aichberger et al. [2]. Our approach introduces a critical modification to their quantification48

method and adapts it specifically for LLMs. We further decompose the total uncertainty into two49

components: epistemic and aleatoric uncertainty. In our problem setup, epistemic uncertainty, the50

model’s lack of ability or knowledge to correctly and reliably answer a given question–context pair,51

is our main interest. We show that epistemic uncertainty can be bounded by the distance between52

the last layer hidden state of the given model and the ideal hypothetical model. This distance can53

be expressed as the sum of distances over linearly independent model features. To approximate this54

distance in contextual question answering task, we hypothesize three desirable features that capture55

how far the given model is from the ideal model: 1) Honesty: the model should avoid intentionally56

outputting wrong answer; 2) Context-reliancy: the model should ground its answer in the provided57

context rather than relying solely on its parametric knowledge; 3) Contextual resolvability: the58

model should be able to extract and integrate relevant information from the context to answer the59

question accurately.60

Following a top-down interpretability approach similar to [37], we extract the aforementioned high-61

level semantic features using a small set of labeled samples and to identify the most optimal layer62

for feature extraction and to find the ensemble weights. At test time, we combine the activation63

amount of three features to quantify epistemic uncertainty by computing only three dot products64

between the model’s hidden state and the corresponding feature vectors, one per feature, without65

requiring any sampling. Our method is highly efficient and achieves substantial performance gains: it66

outperforms SOTA unsupervised, sampling-free, and sampling-based approaches by up to 16 PRR67

points. Furthermore, with the same amount of labeled data, it surpasses strong supervised baselines68

such as SAPLMA [4] and LookbackLens [9] by up to 13 PRR points, while exhibiting significantly69

better out-of-distribution generalization compared to SAPLMA, which is an important and desirable70

property for supervised UQ methods. The overview of our proposed method is visualized in Figure 1.71

2 Preliminaries72

2.1 Aleatoric and Epistemic Uncertainty73

The total uncertainty of a model is typically decomposed into two components: epistemic and74

aleatoric uncertainty [16]. Epistemic uncertainty arises from a lack of knowledge or insufficient75
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model capacity. In the context of LLMs, when faced with a difficult question that the model does not76

know the answer to, its output distribution tends to be more uniform, which indicates uncertainty77

about which answer is correct. This uncertainty stems from the model’s inability or lack of knowledge78

to provide the correct answer, and is therefore classified as epistemic. In contrast, aleatoric (or data)79

uncertainty captures variability inherent to the task or data, rather than limitations in the model’s80

knowledge. For example, a model may be epistemically confident, knowing the answer, but still81

produce multiple valid responses due to ambiguity in the question or the presence of multiple equally82

correct phrasings. This variability arises from the nature of the query and the language itself, not83

from the model’s lack of ability. In the next section, we discuss how existing works conceptualize84

UQ in LLMs, and how these concepts relate to epistemic and aleatoric uncertainty.85

2.2 Uncertainty Quantification in LLMs86

In the LLM literature, uncertainty quantification is typically used to identify incorrect or unreliable87

answers generated for a given query. Unlike the well-established frameworks in classification88

tasks [15], there is no widely accepted UQ framework for generative LLMs [6, 33]. With few89

exceptions, most existing approaches rely on heuristic-based methods that estimate the correctness of90

a model’s (greedy or sampled) generation. UQ methods naturally only use the model itself to find such91

a score by using signals such as token probabilities, internal representations, or output consistencies.92

Although rarely stated explicitly, the underlying objective in many of these works is to better quantify93

epistemic uncertainty, i.e., to produce an uncertainty score that has a sense of negative correlation94

with the correctness of the model’s generation. This correlation is typically evaluated using threshold-95

free metrics such as the Area Under the ROC Curve (AUROC) and the Prediction–Rejection Ratio96

(PRR). A smaller number of studies [1, 2] take a more theoretically grounded approach, explicitly97

distinguishing between epistemic and aleatoric uncertainty. In this work, we also aim to separate98

epistemic and aleatoric uncertainty through our proposed UQ formulation. In the following section,99

we introduce our notation and describe the problem setup.100

2.3 Problem Setup and Notation101

We denote the context sequence as c, and the question together with any relevant instructions as102

x. The probability distribution over the token at position t produced by the model, conditioned on103

the context c, query x, and previously generated tokens, is given by: P (yt | y<t,x, c, θ), where104

y<t denotes the sequence of tokens generated before timestep t, and θ represents the given model105

parameters. The model θ is trained on a dataset Dtrain consisting of both pretraining and post-106

training data. Since model training involves stochasticity (e.g., random initialization, data shuffling,107

hyperparameter selection), θ can be considered as one realization from the set of all possible models108

trained on Dtrain, θrandom
Dtrain−−−→ θ ∼ Θ where Θ denotes the distribution of all such possible models.109

Our objective is to find an uncertainty quantification method U(x, c,y) ∈ R that is negatively110

correlated with the correctness of the generated sequence y. More formally, we aim to maximize111

E
[
1U(x1,c1,y1)<U(x2,c2,y2) · 1y1∈Y1 ∧ y2 /∈Y2

]
, where (x1,y1), (x2,y2) ∼ Dtest, with Dtest denoting112

the evaluation dataset obtained by getting the most probable (greedy) output for a context-query113

pair, and Yi representing the set of acceptable (correct) generations for instance i. This expectation114

enforces a ranking consistency: correct outputs should receive lower uncertainty scores than incorrect115

outputs, making high-uncertainty scored generations more likely to be wrong.116

3 Quantification and Decomposition of LLM Uncertainty117

3.1 Proposed Uncertainty Definition118

Hypothetical Ideal Model. Before defining our proposed uncertainty quantification method for119

LLMs, we introduce the notion of a hypothetical ideal model θ∗. This model shares the same120

architecture as θ (i.e., θ∗ ∈ Θ) and is trained on Dtrain. However, unlike θ, all training choices, such as121

data selection, augmentation, fine-tuning strategies, and optimization parameters, are assumed to be122

made optimally so that the model is as reliable as possible. Specifically, θ∗ abstains from answering123

questions it cannot reliably answer, while achieving the best possible performance on those it can. In124

other words, θ∗ is the epistemically optimal model for a given architecture and training dataset Dtrain.125
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Definition 1. [ϵ-Ideal Model] An ϵ-ideal language model θ∗, trained on Dtrain, is defined as126

θrandom
Dtrain−−−→ θ∗ ∼ Θ

and is optimal for the test data distribution Dtest if and only if127

Ex∼Dtest [y /∈ Yreliable] < ϵ

and128

θ∗ = argmax
θ∈Θ

Ex∼Dtest [y ∈ Ycorrect]

where y ∼greedy p(· | x, θ∗) with non-zero probability of model’s existence pΘ(θ
∗) > 0.129

Here, Ycorrect denotes the set of all sequences that correctly answer the query x, and Yreliable ⊃ Ycorrect130

additionally includes abstaining responses such as “I don’t know” or “I cannot help with that”.131

ϵ characterizes the trade-off between risk, the probability of making an error, and coverage, the132

proportion of questions answered correctly.133

Lemma 1. An ϵ-ideal model exists for all ϵ ≥ 0.134

Proof. It suffices to show that there exists at least one model θ such that Ex∼Dtest [y /∈ Yreliable] <135

ϵ, y ∼greedy p(· | θ,x). This condition is trivially satisfied by a model that always outputs136

an abstaining response, e.g., p(“I cannot help with that” | θ,x) = 1, ∀x, since in this case137

Ex∼Dtest [y /∈ Yreliable] = 0. Therefore, an ϵ-ideal model exists for any ϵ ≥ 0.138

We consider our ideal model θ∗ as having ϵ = 0 (or negligibly close to zero), which corresponds to139

the most reliable model with the highest achievable performance under the given setup.140

Proposed Metric. Given the hypothetical ideal model θ∗ and the actual model θ, we define the141

total uncertainty for a token yt as follows:142

Definition 2 (Total Uncertainty). The total uncertainty of a token yt at timestep t, for a given query143

x, is defined as the cross-entropy between the ideal model and the given model:144

TU = −
∑
yt∈V

P (yt | y<t,x, θ
∗) · lnP (yt | y<t,x, θ),

where V denotes the token vocabulary.145

This definition allows us to decompose the total uncertainty into aleatoric (data) uncertainty and146

epistemic uncertainty, providing an intuitive interpretation. The total uncertainty can be expressed as147

the sum of two terms:148

TU = H (P (yt | y<t,x, θ
∗))︸ ︷︷ ︸

Aleatoric (Data) Uncertainty

+KL (P (yt | y<t,x, θ
∗) ∥P (yt | y<t,x, θ))︸ ︷︷ ︸

Epistemic Uncertainty

, (1)

This decomposition is intuitive. The first term, H(P (yt | y<t,x, θ
∗)), is the entropy of the ideal149

model, which corresponds to aleatoric (data) uncertainty. Since the ideal model is assumed150

to be epistemically optimal, i.e., it has no epistemic uncertainty, any uncertainty in its predic-151

tions must arise from inherent randomness (noise) in the training data Dtrain or from ambiguity152

in the input x. Thus, this term reflects uncertainty due solely to the data. The second term,153

KL(P (yt | y<t,x, θ
∗) ∥P (yt | y<t,x, θ)), measures the divergence between the probability dis-154

tribution of the ideal model and that of the actual model. This gap captures epistemic uncertainty,155

uncertainty arising from the actual model’s lack of knowledge or ability compared to the epistemically156

optimal model. Lastly, Schweighofer et al. [28] recently proposed a UQ metric for classification157

tasks that instead computes the cross-entropy in the opposite direction (i.e., swapping the positions of158

θ and θ∗). We discuss the differences between our proposed formulation and theirs, along with the159

motivation for our design choice, in Appendix A.1.160

3.2 An Upper Bound for Epistemic Uncertainty161

Training an optimal model θ∗ is infeasible in practice, as it would require infinitely many training runs162

with an exhaustive search over the hyperparameter space. Therefore, instead of directly computing the163

epistemic uncertainty term in Equation 1, we aim to find a bound for it. To do so, we first approximate164

4



θ∗ in a way that can be conceptualized through the actual model θ. Specifically, we approximate165

the ideal model as the actual model that has been perfectly instructed or prompted so that its output166

distribution is as close as possible to that of θ∗. Since appending an instruction or prompt can be167

theoretically viewed as a form of fine-tuning, as shown by many works [11, 3], this approximation168

corresponds to obtaining the closest possible distribution to θ∗ by training the actual model in token169

space.170

Formally, the ideal model is approximated by P (· | S, θ), where S = (s1, s2, . . . , sn) is an arbitrary171

sequence of n tokens chosen to minimize: argminS KLx∼Dtest (P (· | x, θ∗) ∥P (· | x,S, θ)) . For172

notational simplicity, we will use P (· | θ∗) to denote P (· | S, θ) in the remainder of this work as P (· |173

θ∗) ≈ P (· | S, θ). Still, finding the optimal sequence S requires an exponential enumeration over all174

possible token sequences, which is computationally infeasible. However, this formulation allows us175

to derive an upper bound on epistemic uncertainty in terms of the model’s internal representations.176

Lemma 2 (Epistemic Uncertainty Upper Bound). For any token yt,177

KL(P (yt | y<t,x, θ
∗) ∥P (yt | y<t,x, θ)) ≤ 2∥W∥ ∥h∗

t − ht∥,
where h∗

t ∈ Rd and ht ∈ Rd are the last-layer hidden states of the ideal and actual models with178

dimension of d, respectively, and W ∈ RV×d is the vocabulary projection matrix at the last layer.179

The proof of Lemma 2 begins by expressing the probability distributions in terms of the model’s180

internal representations and leveraging the fact that both models share the same vocabulary projection181

matrix. The complete derivation is provided in Appendix A.2.182

Lemma 2 implies that epistemic uncertainty is bounded by the norm of the difference between183

the last-layer hidden states, scaled by 2∥W∥. Since 2∥W∥ is fixed and we are interested in the184

relative magnitude of uncertainty rather than its absolute value, estimating this hidden-state distance185

is sufficient for our purposes. In the next section, we introduce an approximate method to compute186

this distance using the linear representation hypothesis and interpretability tools.187

4 Computable Approximation of Epistemic Uncertainty188

4.1 Upper Bound as Lack of Features189

Although we have bounded epistemic uncertainty in terms of the distance to the last-layer hidden190

state of the ideal model, the hidden state of θ∗ remains unknown. To better conceptualize this hidden191

state, we leverage one of the key hypotheses about interpretability in language models (and neural192

networks more broadly).193

Hypothesis 1 (Linear Representation (Informal)). High-level semantic features are encoded approxi-194

mately linearly in the activation space of language models, often as single directions.195

This hypothesis is supported by substantial empirical evidence from prior work [25, 23, 31]. For196

example, we can identify a single vector in intermediate layers that corresponds to interpretable197

concepts such as “toxicity”: the activation along this direction increases when the model produces198

toxic outputs, and decreases otherwise.199

Formally, let ht and h∗
t denote the d-dimensional hidden states of the actual and ideal models,200

respectively. We can rewrite them as weighted sums over a set of features F , where |F| ≥ d and201

rank(F) = d: ht =
∑

i∈F αivi, h
∗
t =

∑
i∈F βivi where vi denotes the feature vectors, and αi, βi202

are their coefficients for the actual and ideal models, respectively. The difference between the hidden203

states then becomes:204

∥h∗
t − ht∥ =

∥∥∥∥∥∑
i∈F

(βi − αi)vi

∥∥∥∥∥ . (2)

This derivation shows that hidden state differences can be conceptualized as differences in feature205

magnitudes, which in turn may be interpreted as a lack of features in the actual model relative to the206

ideal model.207

4.2 Approximation of Epistemic Uncertainty in Contextual QA208

Remark 1. All derivations up to this point have been generic to any language modeling task,209

including factual QA, mathematics, or contextual QA.210
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To make the error term in Equation 2 computable, we hypothesize that a small set of high-level211

semantic features can serve as a practical approximation of the hidden-state difference. This hy-212

pothesis is reasonable since the ideal model shares the same feature space, as it is approximated by213

P (· | θ∗) ≈ P (· | S, θ). Concretely, we focus on three features:214

The first is Honesty: language models may sometimes generate false information deliberately. An215

example of this is LLM sycophancy [29], where the model fabricates answers to align with user216

expectations rather than admitting ignorance. An ideal reliable model would not exhibit this behavior,217

which makes honesty a crucial discriminative feature. The second is Contextual Reliance: in218

contextual QA, the information contained in the provided context may contradict the model’s own219

parametric knowledge [21]. Models often default to their internal knowledge (which may be outdated220

or incorrect), resulting in unreliable answers. An ideal model should instead ground its answers in the221

context, so reliance on context is essential. The third is Contextual Resolvability: in many contextual222

QA tasks, the answer is not explicitly stated in the context but must be extracted or inferred from it.223

An ideal model should be capable of such resolution to achieve maximum accuracy as described in224

Definition 1. We hypothesize that these three features may be sufficient to approximate the epistemic225

uncertainty term. More formally, we approximate:
∥∥∑

i∈F (βi − αi)vi
∥∥ ≈

∥∥∑
i∈H(βi − αi)vi

∥∥ ,226

where F denotes the full set of latent features and H is the restricted set consisting of the three227

features defined above.228

4.3 Feature Extraction and Ensembling229

Feature Extraction. To extract the three features, we adopt a top-down interpretability approach230

similar to [37], which requires only a small amount of labeled data. Suppose we have access to231

a set of T labeled samples, each consisting of a question–instruction pair x and a context c. We232

first obtain the greedy answer y from the model under the standard instruction. For each feature,233

we then construct contrastive instruction–input pairs designed to isolate that feature. Concretely,234

this involves two forward passes with carefully designed prompts. For example, to capture the235

honesty feature, we run one forward pass with the instruction “be honest” and another with “be236

a liar”: ml = θl(y,x + “be honest”, c) − θl(y,x + “be a liar”, c) where θl denotes the hidden237

representation at layer l. This difference is expected to capture the “honesty–liar” direction in238

representation space. Repeating this procedure over the dataset D yields a collection of difference239

vectors Ml = [m1
l ,m

2
l , . . . ,m

T
l ]. Applying singular value decomposition (SVD) to Ml then identifies240

the dominant direction associated with the honesty feature for each layer, ml = SVD(Ml). We241

follow a similar procedure for the other two features. For contextual reliance, we contrast the242

instructions “look at the context” versus “use your own knowledge.” For contextual resolvability,243

we perform one pass with the original context c and another with c+ "{ ground truth }". This ground244

truth append simulates the model having already resolved the relevant information from the context,245

thereby isolating the resolvability feature.246

Validation and Ensembling. We use the same dataset employed for feature extraction to select247

the most informative layer for each feature. While the extraction procedure can be applied at every248

layer, the linear representation hypothesis suggests that individual features are typically localized249

to specific layers. To identify the best layer, we treat the correctness of the model’s generation as250

a proxy label. Concretely, for each sample and each layer l, we compute the dot product between251

the hidden state hl (averaged across all tokens in y) and the extracted feature vector ml: sl = h⊤
l ml252

We then measure the correlation between these scores [s1l , s
2
l , . . . , s

T
l ] and the generation correctness253

using PRR. The layer with the highest PRR is selected as the optimal feature layer.254

To ensemble the three features, we need to estimate coefficients βi. Since βi values are unknown and255

vary dynamically across samples, we approximate them using observed activations αi, where each αi256

is defined as the dot product between the hidden state hl
t and the corresponding feature vector ml.257

We predict βi as a linear function of the αi’s, learned on the same dataset used for feature extraction.258

Formally, we set βi = wi
1α1 + wi

2α2 + wi
3α3, where the weights wi

j are trained to minimize259

cross-entropy error with respect to correctness of a generation. The weights are simplified to260 ∑
i∈H(βi − αi)vi =

∑
i∈H

(
(wi

1α1 + wi
2α2 + wi

3α3) − αi

)
vi =

∑
i∈H w′

iαivi. where w′
i =261

(wi
1+wi

2+wi
3− 1). At inference time, we compute the dot product αi for each feature at its selected262

layer and combine them linearly using the learned weights, which yields the final uncertainty score.263

Lastly, we calculate the token uncertainty for each token in the generation and take the average. This264

whole framework is visualized in Figure 1265
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5 Experimental Results266

5.1 Experimental Setup267

Datasets. We evaluate our approach on three contextual question answering datasets: (i) Qasper [10],268

a dataset for question answering over scientific research papers; (ii) HotpotQA [35], a Wikipedia-269

based dataset consisting of multi-hop question–answer pairs with supporting passages provided;270

and (iii) NarrativeQA [18], a dataset of stories and associated questions designed to test reading271

comprehension, particularly over long documents. We use 1000 samples from the each dataset.272

Models. We conduct all experiments with two models: LLaMA-3.1-8B and Mistral-v0.3-7B.273

Performance Metrics. We evaluate uncertainty quantification methods using two widely adopted274

metrics [6, 33]: Area Under the Receiver Operating Characteristic Curve (AUROC) and Predic-275

tion–Rejection Ratio (PRR). AUROC measures a method’s ability to discriminate between correct276

and incorrect outputs across all possible thresholds, with values ranging from 0.5 (random per-277

formance) to 1.0 (perfect discrimination). PRR quantifies the relative precision gain achieved by278

rejecting low-confidence predictions, ranging from 0.0 (random rejection) to 1.0 (perfect rejection).279

Correctness Measure. Because our tasks involve free-form generation, model outputs may be280

semantically correct even when they do not exactly match the reference answers lexically. To account281

for this, we adopt the LLM-as-a-judge paradigm, following prior work [6, 14]. Concretely, we282

prompt a language model (Gemini-2.5-flash) with the question, the generated answer, the283

reference answer, and the supporting context, and ask it to output a correctness judgment: 1 (correct),284

0 (incorrect), or −1 if the generated answer abstains (i.e., refuses to answer the question). Instances285

where the model abstains are omitted from AUROC and PRR calculations.286

Baselines. We compare our method against several widely used unsupervised and supervised un-287

certainty quantification approaches. Specifically, we include: Confidence [2], which computes the288

average log-probability of the greedy output; Entropy [22], which samples multiple generations289

and averages their log-probabilities; Semantic Entropy [14], which samples generations, clusters290

semantically equivalent outputs, and then computes entropy over the clusters; LLM-Judge [36],291

which queries an LLM directly to verify whether a generation is supported by the provided context;292

Kernel Language Entropy (KLE) [24] and Eccentricity [20], both of which sample multiple gener-293

ations, compute pairwise similarities, and apply linear-algebraic operations to quantify uncertainty;294

SAPLMA [4], a supervised approach that trains a classifier on the internal hidden states of the295

model to predict correctness; LookBackLens [9], another supervised method that leverages attention296

ratios between generated tokens and context tokens to predict correctness. For all methods requiring297

sampling, we generate 5 samples per input. For all supervised methods, including ours, we use a total298

of 256 labeled examples (training and validation data together). Additional experiments in lower data299

regimes (64 and 128 labeled samples) are presented in Section 5.5.300

Model UQ Method Qasper HotpotQA NarrativeQA
PRR AUROC PRR AUROC PRR AUROC

LLama3.1 - 8B

Entropy 29.1 58.4 41.0 63.1 39.7 62.1
LLM-Judge 35.7 60.7 12.1 55.6 15.4 54.1

KLE 43.9 66.4 39.8 68.7 47.3 71.6
Eccentricity 42.1 66.1 42.7 70.0 50.0 73.2

Semantic Entropy 42.7 67.2 47.6 69.0 51.9 72.3
Confidence 47.7 68.8 50.8 69.9 57.9 72.6

LookBackLens - - 53.3 73.4 - -
SAPLMA 59.9 74.7 53.0 72.8 47.3 67.5
Our-idea 64.9 75.3 66.6 78.0 59.7 74.0

Mistralv0.3 - 7B

Entropy 51.3 70.3 34.3 64.3 40.1 65.5
LLM-Judge 39.2 65.5 28.8 64.0 22.4 61.4

KLE 33.4 63.1 45.8 71.9 48.6 74.7
Eccentricity 37.7 65.2 44.1 70.7 55.5 76.3

Semantic Entropy 51.6 69.6 42.1 68.9 54.4 75.1
Confidence 51.2 70.4 28.8 62.5 43.0 67.8

LookBackLens - - 52.2 71.4 - -
SAPLMA 44.4 69.1 53.2 73.3 53.8 71.3
Our-idea 59.6 75.9 54.2 71.4 38.5 65.1

Table 1: AUROC and PRR performances of UQ methods on Qasper, HotpotQA, and NarrativeQA.
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Figure 2: Out of Distribution Experiments
5.2 Results301

The results of our method compared to the baselines are presented in Table 1. Our approach achieves302

consistently superior performance in both PRR and AUROC across all datasets and models, with303

the sole exception of Mistral-7B on NarrativeQA. We attribute this drop in performance to the304

limited context window of Mistral-7B (32k tokens) relative to the long contexts in NarrativeQA305

(13.3% of samples exceed 32k tokens). As a result, the model may fail to produce reliable feature306

activations for such long contexts, which lie outside its effective training distribution (potentially even307

shorter than the theoretical 32k limit). In contrast, LLaMA-3.1-8B, which supports a 128k-token308

context window, does not suffer from this limitation and our ideaß demonstrates consistently strong309

performance across all datasets. Moreover, our method requires neither sampling nor additional310

forward passes, making it substantially faster than sampling-based approaches such as Semantic311

Entropy, KLE, and Eccentricity. Lastly, LookBackLens could only be evaluated on the HotpotQA312

dataset. For the other datasets (Qasper and NarrativeQA), extracting all attention weights was313

computationally infeasible with the HuggingFace implementation/interface on 8× 40GB NVIDIA314

A100 GPUs, as it resulted in out-of-memory errors.315

5.3 Out-of-Distribution (OOD) Experiments our-idea and SAPLMA316

A key challenge for supervised UQ methods is their performance under distribution shifts, i.e., when317

the test distribution differs from the training or validation data. To evaluate robustness, we design318

three experimental setups. In the in-distribution (ID) setting, training and validation samples are319

drawn from different portions of the same dataset as the test set. In the semi-OOD setting, training320

samples are drawn from datasets different from the test dataset, while validation samples still come321

from the same dataset as the test set. Finally, in the fully OOD setting, both training and validation322

samples are drawn from datasets different from the test dataset. In all cases, we use 256 labeled323

samples, with further details provided in Appendix A.4.1.324

The results, shown in Figure 2, demonstrate that our method is highly robust to distribution shifts,325

maintaining almost stable performance in both semi-OOD and OOD settings. By contrast, SAPLMA326

suffers significant degradation under distribution shift, particularly in the fully OOD case. This327

indicates that our feature-based formulation generalizes effectively across domains, providing reliable328

uncertainty estimates that are largely independent of the specific dataset used for feature extraction.329

5.4 Performance of Individual Features330

Features Qasper HotpotQA NarrtvQA

L
L

am
a Honesty 62.0 57.7 56.7

C.-Rely. 43.6 38.8 -16.9
C.-Res. 59.6 66.8 52.2

Ensemble 64.9 66.6 59.7

M
is

tr
al Honesty 51.4 54.9 37.3

C.-Rely. 60.7 52.4 21.8
C.-Res. 27.4 52.3 21.4

Ensemble 59.6 54.2 38.5

Table 2: PRR scores of individual features on
Qasper, HotpotQA, and NarrativeQA.

An important ablation study is to understand how331

much of the performance gain comes from the en-332

semble itself versus the contribution of individual333

features. To investigate this, we evaluate each feature334

separately across all model–dataset pairs, measuring335

PRR as an indicator of its ability to predict correct-336

ness (i.e., to serve as a reliable measure of epistemic337

uncertainty). Results are reported in Table 2. We338

find that individual features already act as strong epis-339

temic uncertainty estimators on their own. The en-340

semble offers little to no additional performance gain341

in terms of PRR. However, the role of the ensemble342

is not simply additive but rather regularizing. The best-performing feature varies depending on the343
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dataset and model because of the inherent randomness of the idea which uses small number of labeled344

examples used for feature extraction. As shown in Table 2, the top feature differs across datasets. In345

such cases, the ensemble balances these fluctuations, yielding a more stable and consistent uncertainty346

quantifier across datasets and, importantly, under OOD conditions (see Section 5.3).347

5.5 Performance in Low Data Regimes348

Num Samples Qasper HotpotQA NarrtvQA

L
L

am
a 64 64.4 57.0 57.5

128 63.2 62.0 63.2
256 64.9 66.6 59.7

M
is

tr
al 64 38.3 49.5 39.4

128 52.2 55.2 38.7
256 59.5 54.2 38.5

Table 3: PRR performances of our-idea on low
data regimes.

All supervised methods, including ours, are349

primarily evaluated using 256 labeled samples.350

However, the performance of our approach un-351

der more limited supervision is critical for its352

applicability in extreme low-data settings. To353

assess this, we further evaluate our method with354

only 128 and 64 labeled samples. Results are355

reported in Table 3. The findings are encourag-356

ing: with 128 samples, performance is largely357

preserved, showing only marginal degradation358

compared to the 256-sample setting. Even with as few as 64 samples, although some performance359

drop is observed, our method remains substantially stronger than alternative baselines reported in360

Table 1. These results demonstrate that our approach is highly data-efficient and remains effective361

even in extreme low-data regimes, which highlights its practicality for real-world scenarios where362

labeled correctness data is scarce.363

5.6 Comparison with Baseline Directions364

Directions Qasper HotpotQA NarrtvQA

L
L

am
a

Random 34.5 29.5 17.4
Positive-SVD 45.4 47.1 46.2
Negative-SVD 40.5 61.3 54.0

All-SVD 4.0 26.1 18.1
Mean-Dif 48.5 53.1 36.6
Our-idea 64.9 66.6 59.7

M
is

tr
al

Random 11.1 24.4 7.6
Positive-SVD 39.0 45.4 41.8
Negative-SVD 52.0 52.9 33.2

All-SVD 4.1 36.7 12.8
Mean-Dif 51.7 49.0 48.5
Our-idea 59.6 54.2 38.5

Table 4: PRR scores of baseline directions on
Qasper, HotpotQA, and NarrativeQA.

Demonstrating the effectiveness of each compo-365

nent of our method is essential for a rigorous366

scientific evaluation. To this end, we compare367

our extracted feature directions against several368

alternative baselines that could plausibly serve369

as candidates: Random: three random direc-370

tions are chosen instead of using our feature371

extraction process. Positive-SVD: SVD is ap-372

plied directly on positive samples (e.g. "be hon-373

est"), omitting the contrastive difference step.374

Negative-SVD: similar to Positive, but using375

only negative samples (e.g. "be a liar"). All-376

SVD: the strongest direction is extracted from377

regular prompts without forming contrastive378

pairs. Mean-Dif: a supervised baseline simi-379

lar to SAPLMA, where we compute the mean hidden states of correct and incorrect samples at each380

layer and use their difference as a correctness direction, rather than learning a linear classifier.381

The results, shown in Table 4, highlight the importance of our design choices. Ablating critical steps382

such as contrastive differencing and finding features leads to substantial performance drops as shown383

in Random, Positive, Negative and All-SVD results. Moreover, Mean-dif underperforms compared to384

our approach, which demonstrates that explicitly extracting and combining feature directions is more385

effective than simply contrasting mean hidden states.386

6 Conclusion387

In this work, we theoretically formulated epistemic uncertainty for language model tasks and showed388

that it can be bounded by the absence of model features. We further instantiated this idea in contextual389

QA, identifying three critical features: honesty, contextual reliance, and contextual resolvability.390

Using only a small number of labeled samples, our method achieves superior performance over391

existing baselines. We believe this framework provides a foundation for future research on epistemic392

uncertainty, including the discovery of additional features and the development of automatic, task-393

agnostic feature extraction methods for better epistemic uncertainty quantifiers.394
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A Appendix / supplemental material580

A.1 Comparison with the Information-Theoretic Uncertainty Quantifier of Schweighofer581

et al. [28]582

Schweighofer et al. [28] propose to quantify total uncertainty in classification tasks as583

TU = −
∑
y∈C

P (y | x, θ) · lnP (y | x, θ∗),

where C is the set of classes. In their formulation, the roles of the actual model θ and the ideal model584

θ∗ are swapped compared to ours. The natural decomposition of their metric is585

TU = H(P (y | x, θ))︸ ︷︷ ︸
Aleatoric (Data) Uncertainty

+KL(P (y | x, θ) ∥P (y | x, θ∗))︸ ︷︷ ︸
Epistemic Uncertainty

.

We argue that this decomposition is problematic. Data (aleatoric) uncertainty should arise from586

the input x or the training distribution Dtrain, and should be independent of the specific training587

outcome. While the actual model θ is indeed trained on Dtrain, it is not a deterministic function of588

it, different random seeds and hyperparameter settings can yield infinitely many possible models,589

θrandom
Dtrain−−−→ θ ∼ Θ. Consequently, properties of θ should not directly determine the data uncertainty.590

Consider an extreme case: if we train θ with pathological hyperparameters (e.g., excessively high591

learning rates), the resulting model may output predictions nearly at random. The entropy term592
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in their decomposition would then be very high, suggesting extreme data uncertainty. Yet, this593

uncertainty arises entirely from poor model training (epistemic uncertainty), not from the data itself.594

By contrast, in our formulation where θ and θ∗ are swapped, the aleatoric component is defined595

in terms of θ∗, which is a deterministic function of Dtrain. By Definition 1, there is a unique best596

distribution associated with the ideal model, ensuring that aleatoric uncertainty properly reflects the597

data rather than arbitrary training outcomes. For these reasons, we argue that our quantifier provides a598

more reasonable decomposition of epistemic and aleatoric uncertainty. Nonetheless, we acknowledge599

that the formulation of Schweighofer et al. [28] was an important inspiration for our work and served600

as a foundation for adapting these ideas to language models.601

A.2 Proof of Lemma 2602

Proof. For notational simplicity, let us denote603

P (yt | θ∗) = P (yt | y<t,x, θ
∗).

We begin by explicitly writing the KL term604

KL(P (yt | θ∗) ∥P (yt | θ))
605

KL(P (yt | θ∗) ∥P (yt | θ)) =
∑
i∈V

P (yi | θ∗) ln
P (yi | θ∗)
P (yi | θ)

.

Since the probability of a token under model θ is given by606

P (yi | θ) =
eV

⊤
i Wht∑

j∈V eV
⊤
j Wht

,

where W ∈ R|V|×d is the vocabulary projection matrix and Vi is the one-hot vector of token yt for607

token i, we can re-write KL in terms of model internals:608 ∑
i∈V

P (yi | θ∗) · V ⊤
i W (h∗

t − ht) +
∑
i∈V

P (yi | θ∗)

(
ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t

)
.

as both models share the same vocabulary matrix W . Focusing on the first term, we have609 ∑
i∈V

P (yi | θ∗) · V ⊤
i W (h∗

t − ht) ≤
∑
i∈V

P (yi | θ∗) ∥Vi∥ ∥W (h∗
t − ht)∥

by Cauchy–Schwarz. Since Vi is a one-hot vector, ∥Vi∥ = 1, so this simplifies to610 ∑
i∈V

P (yi | θ∗) · ∥W (h∗
t − ht)∥ = ∥W (h∗

t − ht)∥,

because
∑

i∈V P (yi | θ∗) = 1. Moreover, by Cauchy-Schwarz inequality,611

∥W (h∗
t − ht)∥ ≤ ∥W∥ ∥h∗

t − ht∥.

For the second term, observe that612 ∑
i∈V

P (yi | θ∗)

(
ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t

)
= ln

∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t ,

since
∑

i∈V P (yi | θ∗) = 1.613

Define f(x) := ln
(∑d

i=1 e
xi
)
, the log-sum-exp function. Then614

ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t = f(Wht)− f(Wh∗
t ).

By the mean value theorem, there exists c on the line segment between Wht and Wh∗
t such that615

f(Wht)− f(Wh∗
t ) = ∇f(c)⊤(Wht −Wh∗

t ).

Since ∇f(x) = softmax(x), we have616

f(Wht)−f(Wh∗
t ) = softmax(c)⊤(Wht−Wh∗

t ) ≤ ∥softmax(c)∥ ∥Wht−Wh∗
t ∥ ≤ ∥Wht−Wh∗

t ∥,
because ∥softmax(c)∥ ≤ 1. Lastly, ∥Wht −Wh∗

t ∥ ≤ ∥W∥ ∥h∗
t − ht∥617
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Combining both terms. From the above bounds, we conclude618

KL(P (yt | θ∗) ∥P (yt | θ)) ≤ 2 ∥W∥ ∥h∗
t − ht∥.

A.3 Related Work619

A large body of recent work has focused on Uncertainty Quantification (UQ) for language models.620

These methods can be broadly categorized into four groups, though some approaches span multiple621

categories. Most existing methods are heuristic in nature:622

1. Output-probability based methods, such as Semantic Entropy [19], Confidence [2], Mutual623

Information [1], MARS [5], LARS [34], and SAR [12]. 2. Output-consistency based methods,624

including Kernel Language Entropy [24], Eccentricity, and Matrix-Degree [20]. 3. Internal-state625

based methods, such as INSIDE [8] and SAPLMA [4]. 4. Self-checking methods, such as626

Verbalized Confidence [32] and PTrue [17].627

With the exception of Mutual Information [1] and Confidence [2], which provide theoretical jus-628

tification, nearly all of these approaches rely on heuristics. Furthermore, none of them have been629

specifically designed or evaluated for contextual QA.630

Only a little number of of recent works have directly addressed UQ in contextual QA or retrieval-631

augmented generation (RAG). Soudani et al. [30] propose an axiomatic framework for diagnosing632

deficiencies in existing methods and present a generic UQ method that can be layered on top of other633

approaches. Perez-Beltrachini and Lapata [26] introduce a passage-utility based metric, training a634

lightweight neural model to predict the usefulness of retrieved passages for a given QA task. Similarly,635

Fadeeva et al. [13] propose a method that evaluates factuality by jointly assessing faithfulness and636

factual correctness under both faithful and unfaithful retrieval conditions.637

However, all of these methods remain heuristic and largely empirical. In contrast, our work introduces638

a UQ approach with a grounded theoretical formulation, designed specifically to contextual QA.639

A.4 Experimental Details640

A.4.1 Details of OOD Experiments641

In the OOD experiments, we evaluate each dataset by holding out a different dataset as the out-of-642

distribution source. Specifically, for NarrativeQA we use Qasper as the OOD dataset; for Qasper we643

use HotpotQA; and for HotpotQA we use Qasper. For the full-OOD and OOD settings, we use a total644

of 256 labeled samples, which are split between training and validation. For the semi-OOD setting,645

we use 256 samples for training and an additional 256 samples for validation. For SAPLMA [4], we646

pick the best layer using the validation dataset.647

A.4.2 Prompts Used in the Experiments648

To query the model in the contextual QA setting, we use the following prompt:649

Context: {context}. Here is a given context. You are a helpful assistant.650

Answer the following question with a brief but complete response.651

Use the context information to answer this question.652

653

Question: {question}654

Answer:655

For the LLM-judge, which evaluates the correctness of generated answers, we use the following656

prompt:657

You will be given a context, a question relevant to that context, a predicted658

answer, and a list of possible ground truth answers provided by human experts.659

Your task is to assign one of the following labels:660

["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].661

662

Context: {context}663
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Question: {question}664

Possible Ground Truth Answers Provided by Human Experts: {ground_truths}665

Predicted Answer: {answer}666

667

Labeling instructions:668

- Assign "NOT_ATTEMPTED" if the predicted answer fails to engage with the669

question, or explicitly states that an answer is not found in the context.670

- Assign "CORRECT" if the predicted answer is accurate based on the context,671

even if it is not explicitly listed among the ground truth answers.672

- Assign "INCORRECT" if the predicted answer is contradicted by the context673

or otherwise wrong.674

675

Important: The ground truth list may not cover all valid answers.676

For those cases, look at the context.677

678

Provide your explanation and then at the end give your grade.679

680

Response:681

A.4.3 Prompts for Feature Extraction682

Honesty. To extract the honesty feature, we design positive and negative prompts that encourage683

truthful versus intentionally false responses.684

Positive:685

Context: {context}.686

Here is a given context. You are a helpful assistant.687

Answer the following question with a brief but complete response.688

Be honest with your answer. Do not give unfactual information. Do not lie.689

690

Question: {question}691

Answer:692

Negative:693

Context: {context}.694

Here is a given context. You are a helpful assistant.695

Answer the following question with a brief but complete response.696

Be a liar. Give unfactual information. Tell a lie.697

698

Question: {question}699

Answer:700

—701

Contextual Reliance. To extract the context-reliance feature, we contrast prompts that either702

require the model to ground its answer in the provided context or explicitly ignore it.703

Positive:704

Context: {context}.705

Here is a given context. You are a helpful assistant.706

Answer the following question with a brief but complete response.707

Use the context information to answer this question.708

Do not use your own knowledge. Just look at the context.709

710

Question: {question}711

Answer:712

Negative:713
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Context: {context}.714

Here is a given context. You are a helpful assistant.715

Answer the following question with a brief but complete response.716

DO NOT use the context information to answer this question.717

Use your own knowledge. Ignore the context.718

719

Question: {question}720

Answer:721

—722

Contextual Resolvability. For contextual resolvability, we use the regular contextual QA prompt723

but append the ground-truth answer to the context, simulating an idealized model where the model724

has already extracted the necessary information.725
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