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Abstract

Uncertainty Quantification (UQ) has become an essential tool for detecting hal-
lucinations and unreliable outputs of large language models (LLMs), particularly
in settings where external verification is infeasible, such as contextual question
answering (QA). To quantify epistemic uncertainty, the model’s confusion to an-
swer a question reliably, we introduce a generic token-level uncertainty measure
defined as the cross-entropy between the distribution of the actual model and that
of an ideal, most reliable hypothetical model. By decomposing this measure, we
isolate the epistemic uncertainty and show that it can be bounded by the absence of
model features in the actual model relative to the ideal one. We hypothesize that
three features approximate this gap in contextual QA: honesty (avoiding intentional
lie), contextual reliance (using the provided context rather than parametric knowl-
edge), and contextual resolvability (extracting relevant information from context).
Using a top-down interpretability approach, we extract these features from only a
small number of labeled samples and ensemble them to form a robust uncertainty
score. Extensive experiments on multiple QA benchmarks demonstrate that our
method substantially outperforms state-of-the-art unsupervised (sampling-free and
sampling-based) and supervised UQ approaches, achieving up to 13 PRR points
improvement, while requiring no sampling and incurring negligible additional
inference cost. Finally, we demonstrate the effectiveness and robustness of our
method through extensive ablation studies.

1 Introduction

Despite the impressive performance of Large Language Models (LLMs) on a wide range of real-world
tasks, hallucinations and other non-reliable generations remain a major obstacle to their deployment
in high-stakes domains such as medicine and finance[7, 27]]. Uncertainty Quantification (UQ) has
emerged as a key tool for hallucination detection, using the observation that models tend to be less
confident (i.e., more uncertain) when producing incorrect or hallucinated outputs. Compared to
alternative approaches such as external verifiers, UQ offers a notable advantage: it relies solely on
the model’s own outputs and internal signals, avoiding the need for additional verification modules.
This self-contained nature, combined with promising results across various benchmarks, makes UQ a
compelling direction for improving the reliability of LLMs [6].

Despite the promising results of UQ methods, most existing works [34} 20, [19] [12] evaluate them
primarily in factual question answering (QA) tasks. While factual QA is an important problem with
many practical applications, it is not the most suitable setting for showcasing the unique advantages
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Figure 1: Overview of the proposed approach: approximating the distance between the ideal and
actual model as an ensemble of three features extracted via a top-down interpretability approach.

of UQ in hallucination detection. For factual queries, verifying the correctness of a generation is
often straightforward by retrieving relevant context from the web or other knowledge sources, and
assessing entailment with that context, which is a strategy widely adopted by popular chatbots such
as ChatGPT, Gemini, and Claude, offers a more reliable and interpretable solution. Moreover, many
factual questions are inherently temporal; for example, the answer to “How many goals has Arda
Giiler scored in his career?” will change over time, making UQ scores not-reliable. Therefore, UQ is
better suited for scenarios in which external verification is impractical or infeasible, which is a more
realistic use case for uncertainty quantification in practice. Motivated by this observation, we focus
on developing an UQ method for contextual question answering. In this setting, the relevant context
for a question is already retrieved or directly provided by the user. Hence, detecting hallucinations in
retrieval-augmented generation via external verification is not practical. Instead, we aim to quantify
the model’s generation uncertainty as a means to assess whether its output is correct and reliable.

To quantify the uncertainty of an LLM, we propose a generic novel token-level uncertainty formulation
defined as the cross-entropy between a hypothetical ideal model and the given model, inspired
by Aichberger et al. [2]. Our approach introduces a critical modification to their quantification
method and adapts it specifically for LLMs. We further decompose the total uncertainty into two
components: epistemic and aleatoric uncertainty. In our problem setup, epistemic uncertainty, the
model’s lack of ability or knowledge to correctly and reliably answer a given question—context pair,
is our main interest. We show that epistemic uncertainty can be bounded by the distance between
the last layer hidden state of the given model and the ideal hypothetical model. This distance can
be expressed as the sum of distances over linearly independent model features. To approximate this
distance in contextual question answering task, we hypothesize three desirable features that capture
how far the given model is from the ideal model: 1) Honesty: the model should avoid intentionally
outputting wrong answer; 2) Context-reliancy: the model should ground its answer in the provided
context rather than relying solely on its parametric knowledge; 3) Contextual resolvability: the
model should be able to extract and integrate relevant information from the context to answer the
question accurately.

Following a top-down interpretability approach similar to [37]], we extract the aforementioned high-
level semantic features using a small set of labeled samples and to identify the most optimal layer
for feature extraction and to find the ensemble weights. At test time, we combine the activation
amount of three features to quantify epistemic uncertainty by computing only three dot products
between the model’s hidden state and the corresponding feature vectors, one per feature, without
requiring any sampling. Our method is highly efficient and achieves substantial performance gains: it
outperforms SOTA unsupervised, sampling-free, and sampling-based approaches by up to 16 PRR
points. Furthermore, with the same amount of labeled data, it surpasses strong supervised baselines
such as SAPLMA [4] and LookbackLens [9] by up to 13 PRR points, while exhibiting significantly
better out-of-distribution generalization compared to SAPLMA, which is an important and desirable
property for supervised UQ methods. The overview of our proposed method is visualized in Figure|[T}

2 Preliminaries

2.1 Aleatoric and Epistemic Uncertainty

The total uncertainty of a model is typically decomposed into two components: epistemic and
aleatoric uncertainty [16]. Epistemic uncertainty arises from a lack of knowledge or insufficient
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model capacity. In the context of LLMs, when faced with a difficult question that the model does not
know the answer to, its output distribution tends to be more uniform, which indicates uncertainty
about which answer is correct. This uncertainty stems from the model’s inability or lack of knowledge
to provide the correct answer, and is therefore classified as epistemic. In contrast, aleatoric (or data)
uncertainty captures variability inherent to the task or data, rather than limitations in the model’s
knowledge. For example, a model may be epistemically confident, knowing the answer, but still
produce multiple valid responses due to ambiguity in the question or the presence of multiple equally
correct phrasings. This variability arises from the nature of the query and the language itself, not
from the model’s lack of ability. In the next section, we discuss how existing works conceptualize
UQ in LLMs, and how these concepts relate to epistemic and aleatoric uncertainty.

2.2 Uncertainty Quantification in LLMs

In the LLM literature, uncertainty quantification is typically used to identify incorrect or unreliable
answers generated for a given query. Unlike the well-established frameworks in classification
tasks [15], there is no widely accepted UQ framework for generative LLMs [6} [33]]. With few
exceptions, most existing approaches rely on heuristic-based methods that estimate the correctness of
amodel’s (greedy or sampled) generation. UQ methods naturally only use the model itself to find such
a score by using signals such as token probabilities, internal representations, or output consistencies.
Although rarely stated explicitly, the underlying objective in many of these works is to better quantify
epistemic uncertainty, i.e., to produce an uncertainty score that has a sense of negative correlation
with the correctness of the model’s generation. This correlation is typically evaluated using threshold-
free metrics such as the Area Under the ROC Curve (AUROC) and the Prediction—Rejection Ratio
(PRR). A smaller number of studies [[1, 2] take a more theoretically grounded approach, explicitly
distinguishing between epistemic and aleatoric uncertainty. In this work, we also aim to separate
epistemic and aleatoric uncertainty through our proposed UQ formulation. In the following section,
we introduce our notation and describe the problem setup.

2.3 Problem Setup and Notation

We denote the context sequence as c, and the question together with any relevant instructions as
x. The probability distribution over the token at position ¢ produced by the model, conditioned on
the context ¢, query x, and previously generated tokens, is given by: P(y; | y<t,X,c,0), where
vy <: denotes the sequence of tokens generated before timestep ¢, and 0 represents the given model
parameters. The model 6 is trained on a dataset Dy, consisting of both pretraining and post-
training data. Since model training involves stochasticity (e.g., random initialization, data shuffling,

hyperparameter selection), € can be considered as one realization from the set of all possible models

. Dlmin . . . .
trained on Dypin, Grandom —— 0 ~ © where © denotes the distribution of all such possible models.

Our objective is to find an uncertainty quantification method U(x,c,y) € R that is negatively
correlated with the correctness of the generated sequence y. More formally, we aim to maximize
E [ILU(xl_ycl,y1)<U(X27627y2) Iy ev, A y2¢y2] , where (x1,¥1), (X2,¥2) ~ Diest, With Dy denoting
the evaluation dataset obtained by getting the most probable (greedy) output for a context-query
pair, and Y; representing the set of acceptable (correct) generations for instance ¢. This expectation
enforces a ranking consistency: correct outputs should receive lower uncertainty scores than incorrect
outputs, making high-uncertainty scored generations more likely to be wrong.

3 Quantification and Decomposition of LLM Uncertainty

3.1 Proposed Uncertainty Definition

Hypothetical Ideal Model. Before defining our proposed uncertainty quantification method for
LLMs, we introduce the notion of a hypothetical ideal model 0*. This model shares the same
architecture as 6 (i.e., 0* € ©) and is trained on Dy.,;,. However, unlike 6, all training choices, such as
data selection, augmentation, fine-tuning strategies, and optimization parameters, are assumed to be
made optimally so that the model is as reliable as possible. Specifically, §* abstains from answering
questions it cannot reliably answer, while achieving the best possible performance on those it can. In
other words, 6™ is the epistemically optimal model for a given architecture and training dataset Dy, .
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Definition 1. [e-Ideal Model] An e-ideal language model 0%, trained on Dy, is defined as

Dirain
O random — 0" ~ 0
and is optimal for the test data distribution D, if and only if

ExnDyy Y & Yeetiavie] < €
and
0" = En €Yo
arg Ieneaé( X~ Diest [y wrrect]

where 'y ~greeay D(- | X, 8%) with non-zero probability of model’s existence pe(6*) > 0.

Here, Y.orect denotes the set of all sequences that correctly answer the query x, and Yiejiabie O Yeorrect
additionally includes abstaining responses such as “I don’t know” or “I cannot help with that”.
€ characterizes the trade-off between risk, the probability of making an error, and coverage, the
proportion of questions answered correctly.

Lemma 1. An e-ideal model exists for all € > 0.
Proof. It suffices to show that there exists at least one model 6 such that Ex.p_, [y ¢ Yieliable] <
€, Y ~areedy P(- | ,%). This condition is trivially satisfied by a model that always outputs

an abstaining response, e.g., p(“I cannot help with that” | 6,x) = 1, Vx, since in this case
Exp.. [y ¢ Yieliable] = 0. Therefore, an e-ideal model exists for any € > 0.

We consider our ideal model 8* as having € = 0 (or negligibly close to zero), which corresponds to
the most reliable model with the highest achievable performance under the given setup.

Proposed Metric. Given the hypothetical ideal model §* and the actual model 6, we define the
total uncertainty for a token y, as follows:

Definition 2 (Total Uncertainty). The total uncertainty of a token y, at timestep t, for a given query
x, is defined as the cross-entropy between the ideal model and the given model.:

TU= - Z P(yt ‘ Y<t,X,0*) : lnP(yf | Y<t, X, G)a
Yyt €V

where V denotes the token vocabulary.

This definition allows us to decompose the total uncertainty into aleatoric (data) uncertainty and
epistemic uncertainty, providing an intuitive interpretation. The total uncertainty can be expressed as
the sum of two terms:

TU = H(P(yt ‘ Y<t7X>9*)) + KL (P(yt | Y<t,X, 9*) || P(yt | Y<tvx7'9))7 (1)

Aleatoric (Data) Uncertainty Epistemic Uncertainty

This decomposition is intuitive. The first term, H (P (y; | y<t,%,0*)), is the entropy of the ideal
model, which corresponds to aleatoric (data) uncertainty. Since the ideal model is assumed
to be epistemically optimal, i.e., it has no epistemic uncertainty, any uncertainty in its predic-
tions must arise from inherent randomness (noise) in the training data Dy, or from ambiguity
in the input x. Thus, this term reflects uncertainty due solely to the data. The second term,
KL(P(y: | y<t,%,0%) || P(yt | y<t,x,0)), measures the divergence between the probability dis-
tribution of the ideal model and that of the actual model. This gap captures epistemic uncertainty,
uncertainty arising from the actual model’s lack of knowledge or ability compared to the epistemically
optimal model. Lastly, Schweighofer et al. [28] recently proposed a UQ metric for classification
tasks that instead computes the cross-entropy in the opposite direction (i.e., swapping the positions of
6 and 6*). We discuss the differences between our proposed formulation and theirs, along with the
motivation for our design choice, in Appendix [A.T]

3.2 An Upper Bound for Epistemic Uncertainty

Training an optimal model 68* is infeasible in practice, as it would require infinitely many training runs
with an exhaustive search over the hyperparameter space. Therefore, instead of directly computing the
epistemic uncertainty term in Equation[T} we aim to find a bound for it. To do so, we first approximate
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0* in a way that can be conceptualized through the actual model . Specifically, we approximate
the ideal model as the actual model that has been perfectly instructed or prompted so that its output
distribution is as close as possible to that of 8*. Since appending an instruction or prompt can be
theoretically viewed as a form of fine-tuning, as shown by many works [[11}13], this approximation
corresponds to obtaining the closest possible distribution to 8* by training the actual model in token
space.

Formally, the ideal model is approximated by P(- | S, #), where S = (s1, s2, ..., S,) is an arbitrary
sequence of n tokens chosen to minimize: arg ming KLxp_, (P(- | x,0%) | P(- | x,S,80)) . For
notational simplicity, we will use P(- | 6*) to denote P(- | S, #) in the remainder of this work as P(- |
6*) = P(-| S, #0). Still, finding the optimal sequence S requires an exponential enumeration over all
possible token sequences, which is computationally infeasible. However, this formulation allows us
to derive an upper bound on epistemic uncertainty in terms of the model’s internal representations.
Lemma 2 (Epistemic Uncertainty Upper Bound). For any token y,
KL(P(ye | y<t:%,0%) [ P(ye | y<,%,0)) < 2[W | [|hg — hell,

where hi € R and hy € R? are the last-layer hidden states of the ideal and actual models with
dimension of d, respectively, and W € RY *? is the vocabulary projection matrix at the last layer.

The proof of Lemma [2] begins by expressing the probability distributions in terms of the model’s
internal representations and leveraging the fact that both models share the same vocabulary projection
matrix. The complete derivation is provided in Appendix

Lemma 2] implies that epistemic uncertainty is bounded by the norm of the difference between
the last-layer hidden states, scaled by 2||W||. Since 2||W|| is fixed and we are interested in the
relative magnitude of uncertainty rather than its absolute value, estimating this hidden-state distance
is sufficient for our purposes. In the next section, we introduce an approximate method to compute
this distance using the linear representation hypothesis and interpretability tools.

4 Computable Approximation of Epistemic Uncertainty

4.1 Upper Bound as Lack of Features

Although we have bounded epistemic uncertainty in terms of the distance to the last-layer hidden
state of the ideal model, the hidden state of §* remains unknown. To better conceptualize this hidden
state, we leverage one of the key hypotheses about interpretability in language models (and neural
networks more broadly).

Hypothesis 1 (Linear Representation (Informal)). High-level semantic features are encoded approxi-
mately linearly in the activation space of language models, often as single directions.

This hypothesis is supported by substantial empirical evidence from prior work [25] 23] 131]]. For
example, we can identify a single vector in intermediate layers that corresponds to interpretable
concepts such as “toxicity”: the activation along this direction increases when the model produces
toxic outputs, and decreases otherwise.

Formally, let h; and &} denote the d-dimensional hidden states of the actual and ideal models,
respectively. We can rewrite them as weighted sums over a set of features 7, where |F| > d and
rank(F) = d: hy = >, 7 aivy, hi = ), 7 Biv; where v; denotes the feature vectors, and «;, f;
are their coefficients for the actual and ideal models, respectively. The difference between the hidden

states then becomes:
D (B = ai)v;

ieF

|hy = hell = 2)

This derivation shows that hidden state differences can be conceptualized as differences in feature
magnitudes, which in turn may be interpreted as a lack of features in the actual model relative to the
ideal model.

4.2 Approximation of Epistemic Uncertainty in Contextual QA

Remark 1. All derivations up to this point have been generic to any language modeling task,
including factual QA, mathematics, or contextual QA.
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To make the error term in Equation [2] computable, we hypothesize that a small set of high-level
semantic features can serve as a practical approximation of the hidden-state difference. This hy-
pothesis is reasonable since the ideal model shares the same feature space, as it is approximated by
P(-]0*) =~ P(-| S, ). Concretely, we focus on three features:

The first is Honesty: language models may sometimes generate false information deliberately. An
example of this is LLM sycophancy [29], where the model fabricates answers to align with user
expectations rather than admitting ignorance. An ideal reliable model would not exhibit this behavior,
which makes honesty a crucial discriminative feature. The second is Contextual Reliance: in
contextual QA, the information contained in the provided context may contradict the model’s own
parametric knowledge [21]]. Models often default to their internal knowledge (which may be outdated
or incorrect), resulting in unreliable answers. An ideal model should instead ground its answers in the
context, so reliance on context is essential. The third is Contextual Resolvability: in many contextual
QA tasks, the answer is not explicitly stated in the context but must be extracted or inferred from it.
An ideal model should be capable of such resolution to achieve maximum accuracy as described in
Definition[I] We hypothesize that these three features may be sufficient to approximate the epistemic
uncertainty term. More formally, we approximate: HZZG ;(ﬁi — a;)v; || R Hzieﬂ(ﬁi — a;)vill
where F denotes the full set of latent features and H is the restricted set consisting of the three
features defined above.

4.3 Feature Extraction and Ensembling

Feature Extraction. To extract the three features, we adopt a top-down interpretability approach
similar to [37]], which requires only a small amount of labeled data. Suppose we have access to
a set of T" labeled samples, each consisting of a question—instruction pair x and a context c. We
first obtain the greedy answer y from the model under the standard instruction. For each feature,
we then construct contrastive instruction—input pairs designed to isolate that feature. Concretely,
this involves two forward passes with carefully designed prompts. For example, to capture the
honesty feature, we run one forward pass with the instruction “be honest” and another with “be
a liar”: m; = 6;(y,x + “be honest”,c) — 6;(y,x + “be aliar”, c) where 6; denotes the hidden
representation at layer /. This difference is expected to capture the “honesty—liar” direction in
representation space. Repeating this procedure over the dataset D yields a collection of difference
vectors M; = [m},m?,..., mlT] Applying singular value decomposition (SVD) to M then identifies
the dominant direction associated with the honesty feature for each layer, m; = SVD(M;). We
follow a similar procedure for the other two features. For contextual reliance, we contrast the
instructions “look at the context” versus “use your own knowledge.” For contextual resolvability,
we perform one pass with the original context ¢ and another with ¢ + "{ ground truth }". This ground
truth append simulates the model having already resolved the relevant information from the context,
thereby isolating the resolvability feature.

Validation and Ensembling. We use the same dataset employed for feature extraction to select
the most informative layer for each feature. While the extraction procedure can be applied at every
layer, the linear representation hypothesis suggests that individual features are typically localized
to specific layers. To identify the best layer, we treat the correctness of the model’s generation as
a proxy label. Concretely, for each sample and each layer /, we compute the dot product between
the hidden state h; (averaged across all tokens in y) and the extracted feature vector m;: s; = thml
We then measure the correlation between these scores [s, s, ..., s{ ] and the generation correctness
using PRR. The layer with the highest PRR is selected as the optimal feature layer.

To ensemble the three features, we need to estimate coefficients ;. Since (3; values are unknown and
vary dynamically across samples, we approximate them using observed activations c;, where each «;
is defined as the dot product between the hidden state h. and the corresponding feature vector m;.

We predict 3; as a linear function of the «;’s, learned on the same dataset used for feature extraction.
Formally, we set 3; = wial + wéag + wgag, where the weights w? are trained to minimize
cross-entropy error with respect to correctness of a generation. The weights are simplified to
Sien(Bi — a)vi = X (Whan + whoo + whas) — a;)v; = 3,cq whioyv;. where w) =
(w? +wh +wi — 1). Atinference time, we compute the dot product «; for each feature at its selected
layer and combine them linearly using the learned weights, which yields the final uncertainty score.
Lastly, we calculate the token uncertainty for each token in the generation and take the average. This
whole framework is visualized in Figure
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5 Experimental Results

5.1 Experimental Setup

Datasets. We evaluate our approach on three contextual question answering datasets: (i) Qasper [10],
a dataset for question answering over scientific research papers; (ii) HotpotQA [33], a Wikipedia-
based dataset consisting of multi-hop question—answer pairs with supporting passages provided;
and (iii) NarrativeQA [18]], a dataset of stories and associated questions designed to test reading
comprehension, particularly over long documents. We use 1000 samples from the each dataset.

Models. We conduct all experiments with two models: LLaMA-3.1-8BandMistral-v0.3-7B.

Performance Metrics. We evaluate uncertainty quantification methods using two widely adopted
metrics [6l 33]]: Area Under the Receiver Operating Characteristic Curve (AUROC) and Predic-
tion—Rejection Ratio (PRR). AUROC measures a method’s ability to discriminate between correct
and incorrect outputs across all possible thresholds, with values ranging from 0.5 (random per-
formance) to 1.0 (perfect discrimination). PRR quantifies the relative precision gain achieved by
rejecting low-confidence predictions, ranging from 0.0 (random rejection) to 1.0 (perfect rejection).

Correctness Measure. Because our tasks involve free-form generation, model outputs may be
semantically correct even when they do not exactly match the reference answers lexically. To account
for this, we adopt the LLM-as-a-judge paradigm, following prior work [6| [14]]. Concretely, we
prompt a language model (Gemini-2.5-flash) with the question, the generated answer, the
reference answer, and the supporting context, and ask it to output a correctness judgment: 1 (correct),
0 (incorrect), or —1 if the generated answer abstains (i.e., refuses to answer the question). Instances
where the model abstains are omitted from AUROC and PRR calculations.

Baselines. We compare our method against several widely used unsupervised and supervised un-
certainty quantification approaches. Specifically, we include: Confidence [2], which computes the
average log-probability of the greedy output; Entropy [22]], which samples multiple generations
and averages their log-probabilities; Semantic Entropy [14]], which samples generations, clusters
semantically equivalent outputs, and then computes entropy over the clusters; LLM-Judge [36],
which queries an LLM directly to verify whether a generation is supported by the provided context;
Kernel Language Entropy (KLE) [24] and Eccentricity [20], both of which sample multiple gener-
ations, compute pairwise similarities, and apply linear-algebraic operations to quantify uncertainty;
SAPLMA [4], a supervised approach that trains a classifier on the internal hidden states of the
model to predict correctness; LookBackLens [9], another supervised method that leverages attention
ratios between generated tokens and context tokens to predict correctness. For all methods requiring
sampling, we generate 5 samples per input. For all supervised methods, including ours, we use a total
of 256 labeled examples (training and validation data together). Additional experiments in lower data
regimes (64 and 128 labeled samples) are presented in Section [5.3]

Qasper HotpotQA NarrativeQA
Model UQMethod | ppr™ AUROC | PRR  AUROC | PRR  AUROC

Entropy 29.1 58.4 41.0 63.1 39.7 62.1

LLM-Judge 35.7 60.7 12.1 55.6 154 54.1

KLE 43.9 66.4 39.8 68.7 47.3 71.6

Eccentricity 42.1 66.1 42.7 70.0 50.0 73.2

LLama3.1 - 8B Semantic Entropy | 42.7 67.2 47.6 69.0 51.9 72.3
Confidence 47.7 68.8 50.8 69.9 57.9 72.6

LookBackLens - - 53.3 73.4 - -

SAPLMA 59.9 74.7 53.0 72.8 473 67.5

Our-idea 64.9 75.3 66.6 78.0 59.7 74.0

Entropy 51.3 70.3 34.3 64.3 40.1 65.5

LLM-Judge 39.2 65.5 28.8 64.0 22.4 61.4

KLE 334 63.1 45.8 71.9 48.6 74.7

Eccentricity 37.7 65.2 44.1 70.7 55.5 76.3

Mistralv0.3 - 7B | Semantic Entropy | 51.6 69.6 42.1 68.9 54.4 75.1
Confidence 51.2 70.4 28.8 62.5 43.0 67.8

LookBackLens - - 52.2 71.4 - -
SAPLMA 444 69.1 53.2 73.3 53.8 71.3
Our-idea 59.6 75.9 54.2 71.4 385 65.1

Table 1: AUROC and PRR performances of UQ methods on Qasper, HotpotQA, and NarrativeQA.



301

302
303

305
306
307
308
309
310
311
312
313
314
315

317
318
319
320
321
322
323
324

325
326
327
328
329

330

331
332
333

335
336
337
338
339
340
341
342
343

Qasper - Llama8b HotpotQA - Llama8b NarrativeQA - Llama8b

+ — - Y ./‘\1
60 60 601 «— s
° D o e T
5] T 50
£ 50 S 50
= S B —— ~ i
~E 60 Qasper - Mistral7b HotpotQA - Mistral7b NarrativeQA - Mistral7b
&) < ..
& ———— ‘\-\. -
50 ~
o 50l wooommmmmmmm BN L
g 50 50 w
40 ~ .
30 40 ‘ 40
\\x Tee——ll - \)(/
In dist Semi-ood Full-ood In dist Semi-ood Full-ood In dist Semi-ood Full-ood
Distribution Type —e— Our-idea  --x-- SAPLMA

Figure 2: Out of Distribution Experiments
5.2 Results

The results of our method compared to the baselines are presented in Table|l} Our approach achieves
consistently superior performance in both PRR and AUROC across all datasets and models, with
the sole exception of Mistral-7B on NarrativeQA. We attribute this drop in performance to the
limited context window of Mistral-7B (32k tokens) relative to the long contexts in NarrativeQA
(13.3% of samples exceed 32k tokens). As a result, the model may fail to produce reliable feature
activations for such long contexts, which lie outside its effective training distribution (potentially even
shorter than the theoretical 32k limit). In contrast, LLaMA-3 . 1-8B, which supports a 128k-token
context window, does not suffer from this limitation and our ideall demonstrates consistently strong
performance across all datasets. Moreover, our method requires neither sampling nor additional
forward passes, making it substantially faster than sampling-based approaches such as Semantic
Entropy, KLE, and Eccentricity. Lastly, LookBackLens could only be evaluated on the HotpotQA
dataset. For the other datasets (Qasper and NarrativeQA), extracting all attention weights was
computationally infeasible with the HuggingFace implementation/interface on 8 x 40GB NVIDIA
A100 GPUgs, as it resulted in out-of-memory errors.

5.3 Out-of-Distribution (OOD) Experiments our-idea and SAPLMA

A key challenge for supervised UQ methods is their performance under distribution shifts, i.e., when
the test distribution differs from the training or validation data. To evaluate robustness, we design
three experimental setups. In the in-distribution (ID) setting, training and validation samples are
drawn from different portions of the same dataset as the test set. In the semi-OOD setting, training
samples are drawn from datasets different from the test dataset, while validation samples still come
from the same dataset as the test set. Finally, in the fully OOD setting, both training and validation
samples are drawn from datasets different from the test dataset. In all cases, we use 256 labeled
samples, with further details provided in Appendix[A.4.1]

The results, shown in Figure 2] demonstrate that our method is highly robust to distribution shifts,
maintaining almost stable performance in both semi-OOD and OOD settings. By contrast, SAPLMA
suffers significant degradation under distribution shift, particularly in the fully OOD case. This
indicates that our feature-based formulation generalizes effectively across domains, providing reliable
uncertainty estimates that are largely independent of the specific dataset used for feature extraction.

5.4 Performance of Individual Features

An important ablation study is to understand how

. Features asper | HotpotQA | NarrtvQA
much of the performance gain comes from the en- | | Qasper | PotQA | Q

semble itself versus the contribution of individual Honesty 62.0 577 56.7
C.-Rely. 436 38.8 -16.9

features. To investigate this, we evaluat.e each feat}lre CoRes. 596 6.8 o
separately across all model-dataset pairs, measuring Ensemble | 64.9 66.6 507

LLama

PRR as an indicator of its ability to predict correct-
ness (1.e.., to serve as a reliable measure of epistemic C.-Rely. 07 4 18
uncertainty). Results are reported in Table 2] We C.-Res. 274 573 214
find that individual features already act as strong epis- Ensemble | 59.6 54.2 38.5

Honesty 51.4 54.9 373

Mistral

temic uncertainty estimators on their own. The en-
semble offers little to no additional performance gain
in terms of PRR. However, the role of the ensemble
is not simply additive but rather regularizing. The best-performing feature varies depending on the

Table 2: PRR scores of individual features on
Qasper, HotpotQA, and NarrativeQA.
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dataset and model because of the inherent randomness of the idea which uses small number of labeled
examples used for feature extraction. As shown in Table 2] the top feature differs across datasets. In
such cases, the ensemble balances these fluctuations, yielding a more stable and consistent uncertainty
quantifier across datasets and, importantly, under OOD conditions (see Section[5.3).

5.5 Performance in Low Data Regimes

All supervised methods, including ours, are

.t . Num Sampl HotpotQA | NarrtvQA
primarily evaluated using 256 labeled samples. | Num Samples | Qasper | HotpotQA | NarrtvQ

However, the performance of our approach un- £ 64 644 57.0 575
der more limited supervision is critical for its = 128 632 620 632
nore limi p ¢ o 256 64.9 66.6 59.7
applicability in extreme low-data settings. To

: . & 64 383 49.5 39.4

assess this, we further evaluate our method with £
Z 128 52.2 55.2 38.7
only 128 and 64 labeled samples. Results are & 256 595 540 385

reported in Table 3] The findings are encourag-
ing: with 128 samples, performance is largely
preserved, showing only marginal degradation
compared to the 256-sample setting. Even with as few as 64 samples, although some performance
drop is observed, our method remains substantially stronger than alternative baselines reported in
Table[I] These results demonstrate that our approach is highly data-efficient and remains effective
even in extreme low-data regimes, which highlights its practicality for real-world scenarios where
labeled correctness data is scarce.

Table 3: PRR performances of our-idea on low
data regimes.

5.6 Comparison with Baseline Directions

Demonstrating the effectiveness of each compo- | Dircctions | Qasper | HotpotQA | NarrtvQA

nent of our method is essential for a rigorous

scientific evaluation. To this end, we compare Pols{ii‘i':if’s““,]) i‘;-i 23'? ig';
our extracted feature directions against several gl N egative-SVD | 405 613 540
alternative baselines that could plausibly serve 3 All-SVD 4.0 26.1 18.1
as candidates: Random: three random direc- ™ Mean-Dif 48.5 53.1 36.6
tions are chosen instead of using our feature Our-idea 64.9 66.6 9.7
extraction process. Positive-SVD: SVD is ap- Random 11.1 24.4 7.6
plied directly on positive samples (e.g. "be hon- < | Positive-SVD 39.0 454 418
est"), omitting the contrastive difference step. & Neial:'g‘;%VD 542']0 gé'g ?gz
Negative-SVD: similar to Positive, but using = Mean-Dif 517 190 485
only negative samples (e.g. "be a liar"). All- Our-idea 59.6 54.2 385

SVD: the strongest direction is extracted from . -
Eest X - Table 4: PRR scores of baseline directions on
regular prompts without forming contrastive

pairs. Mean-Dif: a supervised baseline simi- Qasper, HotpotQA, and NarrativeQA.

lar to SAPLMA, where we compute the mean hidden states of correct and incorrect samples at each
layer and use their difference as a correctness direction, rather than learning a linear classifier.

The results, shown in Table d] highlight the importance of our design choices. Ablating critical steps
such as contrastive differencing and finding features leads to substantial performance drops as shown
in Random, Positive, Negative and All-SVD results. Moreover, Mean-dif underperforms compared to
our approach, which demonstrates that explicitly extracting and combining feature directions is more
effective than simply contrasting mean hidden states.

6 Conclusion

In this work, we theoretically formulated epistemic uncertainty for language model tasks and showed
that it can be bounded by the absence of model features. We further instantiated this idea in contextual
QA, identifying three critical features: honesty, contextual reliance, and contextual resolvability.
Using only a small number of labeled samples, our method achieves superior performance over
existing baselines. We believe this framework provides a foundation for future research on epistemic
uncertainty, including the discovery of additional features and the development of automatic, task-
agnostic feature extraction methods for better epistemic uncertainty quantifiers.
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A Appendix / supplemental material

A.1 Comparison with the Information-Theoretic Uncertainty Quantifier of Schweighofer
et al. [28]

Schweighofer et al. [28] propose to quantify total uncertainty in classification tasks as
TU = _ZP(Z/ ‘ X,H) lnP(y ‘ X,H*),
yeC

where C is the set of classes. In their formulation, the roles of the actual model € and the ideal model
0* are swapped compared to ours. The natural decomposition of their metric is

TU= H(P(y|x0) +KLP(y|x0)[|Pyl|x,0%)).

Aleatoric (Data) Uncertainty Epistemic Uncertainty

We argue that this decomposition is problematic. Data (aleatoric) uncertainty should arise from
the input x or the training distribution Dy, and should be independent of the specific training
outcome. While the actual model 6 is indeed trained on Dy, it is not a deterministic function of

it, different random seeds and hyperparameter settings can yield infinitely many possible models,

Dlrain . . . .
Orandom —— 0 ~ ©. Consequently, properties of 6 should not directly determine the data uncertainty.

Consider an extreme case: if we train § with pathological hyperparameters (e.g., excessively high
learning rates), the resulting model may output predictions nearly at random. The entropy term
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in their decomposition would then be very high, suggesting extreme data uncertainty. Yet, this
uncertainty arises entirely from poor model training (epistemic uncertainty), not from the data itself.
By contrast, in our formulation where 6 and 6* are swapped, the aleatoric component is defined
in terms of %, which is a deterministic function of Dy,;,. By Definition (1} there is a unique best
distribution associated with the ideal model, ensuring that aleatoric uncertainty properly reflects the
data rather than arbitrary training outcomes. For these reasons, we argue that our quantifier provides a
more reasonable decomposition of epistemic and aleatoric uncertainty. Nonetheless, we acknowledge
that the formulation of Schweighofer et al. [28]] was an important inspiration for our work and served
as a foundation for adapting these ideas to language models.

A.2 Proof of Lemmal[2l

Proof. For notational simplicity, let us denote
P(yt ‘ 9*) = P(yt | Y<t, X, 9*)
We begin by explicitly writing the KL term
KL(P(y: | 07) || P(y: | )

. Plyi | 0
KL(P(x |67) | Pl [ 9) = 3 Pl |67 B2
% Yi
Since the probability of a token under model 8 is given by
Vil Why
P(y; | 0) =

T I
Yjeves M

where W e RIVIXd is the vocabulary projection matrix and V; is the one-hot vector of token y; for
token 7, we can re-write KL in terms of model internals:

ZP(:[/Z ‘ 9*) . V;TW(h: - ht) + ZP(yl | 0*) <h’lz erTWht — lnz erTth> .
i€y i€y JEV JEV
as both models share the same vocabulary matrix W. Focusing on the first term, we have

Y Plyi |67) - ViTW(hi —he) <37 Plya | ) IVill [W (A — h)|
i€y i€V
by Cauchy—

D Plyi | 67) - [IW(hi = ho)ll = W (hi = ko),
i€V
because ) ., P(y; | 0*) = 1. Moreover, by Cauchy-Schwarz inequality,
W (hi = ho)ll < W[k = Rl

For the second term, observe that

Z P(y; | 67) (111 Z Vi Whe _ 1y Z eVJ‘TWhr> =In Z Vi Whe _ 1y Z erTWh;‘ka

=% JEV JEV JEV JEV
since ) ;o\, Py | 0°) = 1.
Define f(x) := In( Zle e”i), the log-sum-exp function. Then

lnz evj-rWht N 1DZ erTWh: — f(Wht) _ f(Wh:)
jEV jev
By the mean value theorem, there exists ¢ on the line segment between W h, and WA such that
F(Whe) = [(Whi) =V f(c) (Why = Why).

Since V f(z) = softmax(z), we have
f(Why)—f(Wh?) = softmax(c) " (Wh;—Wh}) < ||softmax(c)|| ||Wh;—Wh}|| < |[Wh,—Wh}|,
because ||softmax(c)|| < 1. Lastly, ||[Why — WhY|| < [[W]| [|hF — hq|
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st8 Combining both terms. From the above bounds, we conclude

KL(P(ye [ 07) | P(ye [ 0)) < 2[[W ] 1Ay = hell.

619 A.3 Related Work

620 A large body of recent work has focused on Uncertainty Quantification (UQ) for language models.
621 These methods can be broadly categorized into four groups, though some approaches span multiple
622 categories. Most existing methods are heuristic in nature:

623 1. Output-probability based methods, such as Semantic Entropy [19]], Confidence [2], Mutual
624 Information [1]], MARS [5], LARS [34]], and SAR [12]. 2. Output-consistency based methods,
625 including Kernel Language Entropy [24], Eccentricity, and Matrix-Degree [20]. 3. Internal-state
626 based methods, such as INSIDE [§8] and SAPLMA [4]. 4. Self-checking methods, such as
627 Verbalized Confidence [32] and PTrue [17]].

628 With the exception of Mutual Information [[1]] and Confidence [2], which provide theoretical jus-
620 tification, nearly all of these approaches rely on heuristics. Furthermore, none of them have been
630 specifically designed or evaluated for contextual QA.

631 Only a little number of of recent works have directly addressed UQ in contextual QA or retrieval-
632 augmented generation (RAG). Soudani et al. [30] propose an axiomatic framework for diagnosing
633 deficiencies in existing methods and present a generic UQ method that can be layered on top of other
634 approaches. Perez-Beltrachini and Lapata [26]] introduce a passage-utility based metric, training a
635 lightweight neural model to predict the usefulness of retrieved passages for a given QA task. Similarly,
636 Fadeeva et al. [13] propose a method that evaluates factuality by jointly assessing faithfulness and
637 factual correctness under both faithful and unfaithful retrieval conditions.

63s However, all of these methods remain heuristic and largely empirical. In contrast, our work introduces
639 a UQ approach with a grounded theoretical formulation, designed specifically to contextual QA.

s40 A.4 Experimental Details

641  A.4.1 Details of OOD Experiments

e42 In the OOD experiments, we evaluate each dataset by holding out a different dataset as the out-of-
643 distribution source. Specifically, for NarrativeQA we use Qasper as the OOD dataset; for Qasper we
644 use HotpotQA; and for HotpotQA we use Qasper. For the full-OOD and OOD settings, we use a total
645 of 256 labeled samples, which are split between training and validation. For the semi-OOD setting,
646 we use 256 samples for training and an additional 256 samples for validation. For SAPLMA [4], we
647 pick the best layer using the validation dataset.

648 A.4.2 Prompts Used in the Experiments

649 To query the model in the contextual QA setting, we use the following prompt:

650 Context: {context}. Here is a given context. You are a helpful assistant.
651 Answer the following question with a brief but complete response.

652 Use the context information to answer this question.

653

654 Question: {question}

655 Answer:

656 For the LLM-judge, which evaluates the correctness of generated answers, we use the following
657 prompt:

658 You will be given a context, a question relevant to that context, a predicted
659 answer, and a list of possible ground truth answers provided by human experts.
660 Your task is to assign one of the following labels:

661 ["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].

662

663 Context: {context}
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664 Question: {gquestion}

665 Possible Ground Truth Answers Provided by Human Experts: {ground_truths}
666 Predicted Answer: {answer}

667

668 Labeling instructions:

669 — Assign "NOT_ATTEMPTED" if the predicted answer fails to engage with the

670 question, or explicitly states that an answer is not found in the context.
671 — Assign "CORRECT" if the predicted answer is accurate based on the context,
672 even 1f it is not explicitly listed among the ground truth answers.

673 — Assign "INCORRECT" if the predicted answer is contradicted by the context
674 or otherwise wrong.

675

676 Important: The ground truth list may not cover all valid answers.

677 For those cases, look at the context.

678

679 Provide your explanation and then at the end give your grade.

680

681 Response:

682 A.4.3 Prompts for Feature Extraction

683 Honesty. To extract the honesty feature, we design positive and negative prompts that encourage
e84 truthful versus intentionally false responses.

685 Positive:

686 Context: {context}.

687 Here 1s a given context. You are a helpful assistant.

688 Answer the following question with a brief but complete response.

689 Be honest with your answer. Do not give unfactual information. Do not lie.
690

691 Question: {gquestion}

692 Answer:

693 Negative:

694 Context: {context}.

695 Here is a given context. You are a helpful assistant.

696 Answer the following question with a brief but complete response.
697 Be a liar. Give unfactual information. Tell a lie.

698

699 Question: {gquestion}

700 Answer:

701 —

702 Contextual Reliance. To extract the context-reliance feature, we contrast prompts that either
703 require the model to ground its answer in the provided context or explicitly ignore it.

704 Positive:

705 Context: {context}.

706 Here is a given context. You are a helpful assistant.

707 Answer the following question with a brief but complete response.

708 Use the context information to answer this question.
709 Do not use your own knowledge. Just look at the context.

711 Question: {question}
712 Answer:

713 Negative:
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714 Context: {context}.

715 Here 1is a given context. You are a helpful assistant.

716 Answer the following question with a brief but complete response.
7177 DO NOT use the context information to answer this question.

718 Use your own knowledge. Ignore the context.

719

720 Question: {question}

721 Answer:

722 —
723 Contextual Resolvability. For contextual resolvability, we use the regular contextual QA prompt

724 but append the ground-truth answer to the context, simulating an idealized model where the model
725 has already extracted the necessary information.
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