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ABSTRACT

The rapid advancement of video generation models has enabled the creation of
highly realistic synthetic media, raising significant societal concerns regarding the
spread of misinformation. However, current detection methods suffer from criti-
cal limitations. They often rely on preprocessing operations like fixed-resolution
resizing and cropping, which not only discard subtle, high-frequency forgery arti-
facts but can also cause distortion and significant information loss. Furthermore,
these methods are frequently trained and evaluated on outdated datasets that fail
to capture the sophistication of modern generative models. To address these chal-
lenges, we introduce two key contributions: a new large-scale dataset and bench-
mark, as well as a novel detection framework. We present a comprehensive dataset
of over 140K videos from 16 state-of-the-art open-source and leading commercial
generators. In addition, we curate Magic Videos Testset, featuring ultra-realistic
videos produced through a meticulous generation and filtering pipeline. In addi-
tion, we propose a novel detection framework built on the Qwen2.5-VL Vision
Transformer, which processes videos at their native spatial resolution and tem-
poral duration. This native-scale approach preserves high-frequency details and
spatiotemporal inconsistencies that are often lost during conventional preprocess-
ing. Extensive experiments show that our method achieves state-of-the-art per-
formance across multiple benchmarks. Our work underscores the importance of
native-scale processing and establishes a robust new baseline for Al-generated
video detection.

1 INTRODUCTION

Artificial Intelligence-Generated Content (AIGC) has advanced rapidly, revolutionizing the creation
of high-quality text|Yang et al.|(2024); DeepSeek-All (2024)), image [Esser et al.| (2024]); |[Labs| (2024),
audio [Kreuk et al.[ (2023); (Copet et al.| (2023) and video Brooks et al.[ (2024). Among these ad-
vancements, video generation has seen particularly significant progress, evolving from foundational
models like Stable DiffusionRombach et al.[(2022)) to more advanced architectures such as Diffusion
Transformers (DiTs) |Peebles & Xie| (2023); |[Brooks et al.| (2024), as well as proprietary commercial
products |Pika Labs| (2023); Jimeng Al| (2024)); Kuaishou| (2024)). These developments have pushed
the boundaries of deepfake technologies [Yang et al.| (2022), enabling large-scale creation of fully
Al-generated videos. However, the emergence of near-photorealistic synthetic videos pose serious
threats to privacy, reputation, and public trust[Wang et al.| (2024), underscoring the urgent need for
effective detection and mitigation strategies against disinformation and misinformation.

Deepfake detection |Yan et al.| (2023) and Al-generated image detection Wang et al.| (2020); |[Zhu
et al.| (2023) have made significant progress in identifying manipulated content. However, existing
deepfake detection methods |Qian et al.| (2020); [Xu et al| (2023)); (Oorloff et al.| (2024)); Nguyen
et al.[ (2024) often face generalizability issue as they primarily focus on detecting facial forgeries.
Meanwhile, approaches for detecting images generated by Generative Adversarial Network (GAN)
and diffusion models Wang et al.| (2020; [2023c); |Tan et al.| (2024)); [Luo et al.| (2024) are typically
restricted to static media, leaving general spatiotemporal forgery detection largely unaddressed.

Recent studies have begun to develop more robust solutions for Al-generated image and video detec-
tion|Yan et al.[(2025)); Li et al.|(2025)); Song et al.[(2024); |Chen et al.|(2024b)); Kundu et al.| (2025b)).
A significant and shared limitation among these methods is the conventional preprocessing of resiz-



Under review as a conference paper at ICLR 2026

)
a

90
< 85.67% ] -
< g5 901" . Diffusion U-Net Jepvideo van2l
) e Commercial
© 80 DIT eluma
3 ° gen3e ®sora
8 80 1 ‘hunyuan

o

% 70 69.00% oSTIV
g
<

-
o
L

videocrafter .
?ﬁ)ika’k“ng

@ animatediff2

Cross-validation Detection Accuracy

50 Val. on 720p  Val. on <720p .opensoravl-l
(In-Resolution) (Cross-Resolution) .
60 ejimeng
X ;5 74.50%
oy
© 50 4
3 70 69.16%
Q
<
[}
o 40 h
© 65 ira
5 i
>
< T T T T T T T T
50Vl on <720p  Val. on 720p 72 74 76 78 80 82 84 86

(In-Resolution)(Cross-Resolution) VBench Total Score

Figure 1: The impact of video resolution and generation quality on detection. Left: Models trained
on 720p videos (top) and others on <720p videos (bottom) both show a significant drop when val-
idated on a different resolution than they were trained on. Right: A strong positive correlation
(Pearson p=0.86) exists between a generator’s quality (VBench score) and cross-validation detec-
tion accuracy, indicating that generated videos with higher-quality can assist the training of more
effective detectors. These findings highlight the necessity of a general framework that can handle
diverse input resolutions and generated artifacts.

ing|Yan et al.| (2025) or cropping L1 et al.| (2025) input frames to a fixed resolution (e.g., 224x224).
Forgery detection methods often rely on two types of features, subtle artifacts and high-level se-
mantics [Cheng et al.| (2025)). However, this fixed-resolution preprocessing degrades both types of
features. Resizing distorts the original aspect ratio, misleading detectors into learning superficial
distribution differences rather than robust and generalizable forgery features Rajan et al.| (2025).
Cropping, meanwhile, can discard important content outside the selected area, thereby destroys
global semantic cues of high-resolution content. Furthermore, both downsampling approaches de-
grade the subtle, pixel-level artifacts that are critical for identifying synthetic media and capturing
fine-grained inconsistencies |Corvi et al.| (2025)).

Furthermore, progress in Al-generated video detection is hampered by the use of outdated synthetic
data sources. Existing datasets |Chen et al.| (2024b)); [Song et al.| (2024)) are predominantly composed
of videos generated by earlier models, which typically exhibit low resolution, limited quality, and
short durations. As a result, detection models trained on these datasets experience a significant
performance drop when evaluated on modern super-realistic synthetic videos. To better understand
these challenges, we conduct cross-validation experiments using existing detectors on a synthetic
videos dataset sourced from 14 generative models. Our preliminary results reveal two critical in-
sights, as illustrated in Figure[I] First, we observe a significant performance drop when detectors
are evaluated on videos with different resolution. Second, detection performance is positively cor-
related with the quality of the video generators, meaning that stronger detectors require training on
higher-quality, more realistic synthetic videos. These findings further highlight the importance of
constructing a high-quality and diverse dataset, as well as a training framework capable of effectively
handling videos with diverse resolutions, durations and generative sources.

In response to the limitations of existing methods, we propose a unified framework that supports
training and evaluation on videos with diverse resolutions and generative sources. First, we cu-
rate a high-quality and diverse video dataset sourced from 15 representative video generation mod-
els for training and develop a meticulously crafted pipeline to synthesize high-quality, human-
indistinguishable videos for evaluation, termed Magic Videos. Second, we design a native-resolution
training framework based on the Qwen2.5-VL Vision Transformer [Bai et al.| (2025)), which unifies
image and video modeling and enables the model to natively process videos with arbitrary spatial
resolutions and temporal lengths. By removing the constraints of fixed-size downsampling prepro-
cessing, our method achieves strong generalization capabilities to capture general spatiotemporal
forgery artifacts. Extensive experiments on a wide range of benchmarks (Genvideo [Chen et al.
(2024b)), DVF |Song et al.[(2024) and our proposed Magic Videos) demonstrate that our model is ro-
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bust and achieves state-of-the-art performance in detecting Al-generated videos. Our Contributions
are summarized as follows:

* We introduce a new high-quality and diverse dataset, sourcing videos from 18 state-of-
the-art generative models, ensuring that both training and evaluation are aligned with the
current generative quality of AIGC.

* We propose a novel native-resolution training framework built upon the Qwen2.5-VL Vi-
sion Transformer, which processes videos in their original spatial resolutions and temporal
lengths, preserving crucial forgery artifacts often lost during conventional resizing or crop-
ping.

* Through extensive experiments, we demonstrate that our method achieves state-of-the-art
performance and robust generalization across a wide range of benchmarks, setting a new
standard for Al-generated video detection.

2 RELATED WORK

2.1 VIDEO GENERATIVE MODELS

Diffusion models [Ho et al.| (2020); |[Song et al.| (2022); Rombach et al.| (2022) have significantly
enhanced the quality and controllability of image generation, inspiring researchers to extend these
techniques to video generation tasks. Early workSinger et al.[(2022) propose incorporating motion
dynamics into pre-trained text-to-image generation models. More recent studies|/Chen et al.|(2024a);
Guo et al.| (2024); Blattmann et al.| (2023)); Wang et al.| (2023a); [Wei et al.| (2024)) leverage latent-
based diffusion models Rombach et al.| (2022)) to generate short dynamic videos from text or image
inputs. With the growing popularity of Diffusion Transformers (DiTs) [Peebles & Xie| (2023)) in
image generation [Labs| (2024), DiT and its variants [Esser et al.| (2024) have been widely proposed
for video generation tasks |Ma et al.| (2024b); Zheng et al.| (2024); Brooks et al.| (2024); Yang et al.
(2025)); [Kong et al.| (2024); [Team| (2025); |[Polyak et al.| (2024). Besides Diffusion based methods,
Generative Adversarial Network (GAN) Shen et al.|(2023);'Wang et al.|(2023b) are also explored for
video generation. The success of decoder-only architecture in language model has also motivated
research in generating long videos using autoregressive models |Kondratyuk et al.| (2024)); |Yu et al.
(2023); |Yin et al.| (2025). Commercial video generation products Brooks et al.| (2024); Kuaishou
(2024); Jimeng Al (2024); [Pika Labs| (2023); MiniMax| (2024)), employ complex and proprietary
pipelines and produces hyper-realistic videos. However, the lack of transparency surrounding these
systems limits detailed analysis of their methodologies.

In this paper, we propose a generative video dataset that encompasses most of the aforementioned
architectures, including Diffusion U-Net |Chen et al.| (20244a)); (Guo et al.| (2024), DiT |Brooks et al.
(2024); [Team| (2025)); [Ju et al.| (2024); Zheng et al.| (2024); [Polyak et al.| (2024); [Lin et al.| (2024);
Ma et al.|(2025), MMDiT |[Kong et al.[(2024); S1 et al.| (2025)), and auto-regressive |Yin et al.| (2025))
models. The diversity of generative models included in our dataset ensures broad coverage and
supports the generalizability of the proposed method.

2.2 AI-GENERATED IMAGE AND VIDEO DETECTION

Generated Image Detection. As generative technologies rapidly advance, a growing number of
forged images are now entirely synthesized by GANs |Goodfellow et al.|(2014) and Diffusion mod-
els Rombach et al| (2022), moving beyond traditional limited manipulation techniques. Conse-
quently, substantial research efforts have focused on developing generalizable synthetic image de-
tection methods Tan et al.[(2023)); (Ojha et al.|(2023)); [Yan et al.|(2024); Liu et al.|(2024b)), including
approaches based on reconstruction error |Wang et al.| (2023c); [Luo et al. (2024); (Guillaro et al.
(2025)), pixel-level features [Wang et al.| (2020); [Tan et al.| (2024); Cheng et al.| (2025), or adapting
visual backbones Koutlis & Papadopoulos|(2024); Yan et al.|(2025); [Liu et al.| (2024a)). These meth-
ods are typically trained on images generated by specific models |[Karras et al.| (2018); |[Song et al.
(2022) and aim to achieve cross-architecture generalization.

Generated Video Detection. More recently, research has expanded to the detection of fully Al-
generated videos Ma et al.|(2024a);|Ni et al.|(2024); J1 et al.[(2024));/Chang et al.| (2025). VLM-based
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Figure 2: An overview of our data generation and detection methodology. Left: High-quality
captions are curated from real videos and refined before being fed into state-of-the-art video gener-
ation models, which produce highly realistic synthetic videos for evaluation. Right: Our proposed
detection framework operates at native resolution. Unlike conventional methods that resize frames
to inputs with a fixed resolution and temporal duration, our framework processes videos into 3D
patches at their native spatial resolution and temporal duration. Built on the Qwen2.5-VL ViT, our
approach preserves subtle forgery artifacts that are essential for robust detection.

methods |Song et al.|(2024)); Wen et al.| (2025) prompts large vision language models to identify un-
natural Al-like clue, while ViT-based methods [Chen et al.| (2024b); [Corvi et al| (2023) introduce

forgery-posed generated datasets and design modules to detect spatial-temporal inconsistencies.
However, existing methods for detecting Al-generated images and videos commonly suffer from
a reliance on fixed resizing operations. Such preprocessing can lead to the loss of fine-grained de-
tails and spatial distortions, ultimately compromising model robustness across diverse inputs. In
this work, we address this issue by training on native spatial resolution and temporal duration, with-
out resizing or temporal padding. This design fundamentally avoids the pitfalls of conventional
preprocessing and significantly enhances the model’s generalization capability.

3 METHODOLOGY

3.1 DATA CURATION

To address the lack of comprehensive datasets for Al-generated video detection, we collect and
construct a large-scale dataset comprising over 140,000 videos. This dataset includes more than
70,000 Al-generated videos from 18 distinct generative models, balanced with an equal number of
real videos sampled from five high-quality sources: MSVD [Chen & Dolan| (2011), Kinetics
(2017), Panda-70M [Chen et al.| (2024d), Mixkit and Pexels. The Al-generated portion cov-

ers 18 mainstream generative models developed between September 2023 and June 2025, including

early Diffusion U-Net models (AnimateDiff (2024), VideoCrafter2 |Chen et al.| (2024a),
mira Ju et al.| (2024)), recent DiT-based models (Open-Sora Zheng et al| (2024)), Sora Brooks et al.
2024), MovieGen [Polyak et al. (2024), HunyuanVideo [Kong et al.| (2024), Apple-STIV LLin et al.
2024), CausVid [Yin et al.| (2025), Step-Video Ma et al.| (2025), Wan2.1 [Team| (2025), and leading

commercial models [Pika Labs| (2023); Jimeng Al| (2024); Kuaishou| (2024); |Lumalabs| (2024)); [Ger-
manidis| (2024)); MiniMax| (2024) that are accessible only via web interfaces or APIs. The generated

videos vary in duration from 1 to 12 seconds and in resolution from 240p to 1080p, ensuring a di-
verse and representative collection of Al-generated content. A detailed breakdown of the dataset’s
composition is provided in the Appendix.

Selection of Data Sources. The Al-generated videos are curated from multiple sources: (1)
VBench [Huang et al.| (2023}, [2024), which provides generated videos from various text-to-video
models using a predefined suite of diverse prompts; (2) Movie Gen [Polyak et al/| (2024)), which con-
tributes videos generated by its proprietary model; and (3) A collection of highly realistic videos
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Data Source Number Resolution Duration
Training Data
(15 models) Vbench 140K 240p-768p 1-10s
Movie Gen MovieGenBench 2003 1920x1088 10.7s
Wan2.1 Open Source 450 1280x720 5.4s
Wan-1.3B Open Source 584 832x480 Ss
Hailuo API (T2V-01) 450 1280x720 5.6s
Seaweed API (Jimeng-S2.0) 450 1472x832 5s
Seedance API (Jimeng-S3.0) 450 1248x704 5s
StepVideo Open Source 450 950x540 8.2s

Table 1: Statistics of our proposed Magic Videos Testset. Please refer to Appendix for details of
our training data.

synthesized using various cutting-edge open-source and commercial models, guided by our custom-
designed prompt library.

Realistic Video Generation Pipeline. To evaluate the capability of generative content detectors
in real-world scenarios, we design a pipeline for constructing synthetic videos that closely resem-
ble authentic content. We prioritize scenarios that pose significant risks to information security,
such as realistic landscapes, architectural scenes, and human interactions, as these categories are
particularly susceptible to misuse and misinformation due to their inherent plausibility. Leveraging
ShareGPT4Video (Chen et al.| (2024c) repository of detailed and high-quality captions, we curate
content specifically within these realism-oriented themes. To accommodate the capabilities of state-
of-the-art architectures, we filter videos by duration (3-12 seconds) and caption length (fewer than
1000 characters). The curated prompts are further optimized using GPT-40 to condense the descrip-
tion to under 500 characters. Table [I| summarizes videos that are synthesized by six distinct video
generators using our comprehensive prompt library. These videos represent the current frontier of
photorealistic synthetic content, enabling a rigorous assessment of detection models under practical
and high-risk conditions.

3.2 QWEN2.5-VL VIT

Contemporary Al-generated content detectors primarily operate by identifying two categories of
features: local artifacts and global semantic inconsistencies |(Cheng et al.[(2025). However, a com-
mon practice in existing methodologies is to resize input images to a low, fixed resolution, typically
224x224 pixels. This downscaling operation adversely affects the features crucial for detection: it
degrades subtle local artifacts and distorts global semantic structures. In this paper, we introduce
a unified framework that processes images and videos at native resolution, thereby preserving the
original forgery artifacts. The framework begins by tokenizing input videos into 3D patches at the
native scale and adopts Qwen2.5-VL ViT Bai et al.| (2025) as a novel visual backbone for general
video forgery detection.

3D Video Patchifying at Native Scale. We follow the video processing steps of |Bai et al.[(2025)),
which introduces a 3D patch partitioning strategy that enables native-resolution inputs. For static
images, it employ a standard spatial patch extraction method (e.g., 14x14 pixels). Unlike conven-
tional ViTs that operate on static frames independently, our method extends patchification into the
temporal dimension for video data. Given an input video tensor V' € RT>*HxWxC it partitions V' to
non-overlapping 3D patches of size (P;, Py, P,,) = (2,14, 14) and computes patch embedding via
linear projection matrix E. This design eliminates the need for conventional resizing and padding
operations, allowing the Transformer model to operate natively on both the spatial and temporal
scales. The initial transformation of a raw video tensor V" into a sequence of feature embeddings
X ©) is described in Equation . The 3D patchification is particularly effective in detecting subtle
texture artifact and minimal temporal consistencies at the patch level. By preserving the original
resolution during preprocessing, our method ensures potential features critical for forgery detection
remain intact and undistorted.

X = Unfold(V; P, Py, P,)" - E (D
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Transformer Layer Structure. Qwen2.5-VL ViT consists of 32 Transformer layers, each adopt-
ing a pre-normalization structure, in which RMSNorm is applied before both the self-attention
and feed-forward network (FFN). The FFN component employs the SwiGLU activation function.
To effectively encode the spatial relationships between patches, 2D Rotary Positional Embedding
(RoPE) [Su et al.| (2023)) is applied to the queries and keys in self attention, enhancing the model’s
extrapolation capability across input resolutions. The computations performed within each Trans-
former layer are described as

X® = x(=1 4 Attention(RMSNorm(X (=1))),
X = XU 4 FFNgyioLu (RMSNorm(X 1)),

In Equation , XU=1) and X denote the input and output hidden states of the I-th Transformer
layer, respectively.

2

Infrastructure Optimization for Efficiency. To address the computational challenges associated
with high-resolution inputs, which typically lead to quadratic complexity, several optimizations are
integrated. A batch packing strategy from NaViT Dehghani et al| (2023)) is adopted to allow the
model to handle variable-length sequences without padding or attention masks. This is combined
with Flash AttentionDao|(2023), enabling GPU awareness of sequence boundaries and significantly
improving both computational efficiency and memory usage through optimized CUDA kernels. In
addition, a hybrid attention strategy is adopted where the majority of Transformer layers utilize
114 x 114 windowed attention, ensuring that the computational cost scales linearly with the number
of input patches.

Classifier and Tuning Methods. For the final binary classification task of distinguishing between
authentic and Al-generated content, we append a simple yet effective classification head to the
Qwen2.5-VL ViT backbone. The output tokens from the final Transformer layer is first aggre-
gated into a single, fixed-size feature vector using global average pooling. This vector is then passed
through a single fully connected (FC) linear layer that outputs the logits corresponding to the “real”
and “generated” classes. To adapt the pre-trained model to this task, we explore three fine-tuning
strategies: (1) Full Finetuning: Both the visual backbone and classification head are jointly opti-
mized during training. (2) Linear-Probing: Serves as a baseline, where the entire vision backbone
is frozen and only the classification head is trained. (3) Parameter-Efficient Fine-Tuning (PEFT):
Specifically. we adopt Low-Rank Adaptation (LoRA |Hu et al.| (2021)), which introduces small,
trainable low-rank matrices into the frozen backbone, allowing only a subset of parameters to be
updated.

4 EXPERIMENTS

4.1 DATASETS

Traning Set. We construct a training set of 70K Al-generated videos and 70K real videos. The
synthetic videos are generated by VBench Huang et al.[(2023) using their prompt set, while the real

Model Training Data | Movie Gen | Wan2.1 Wan-1.3B  Hailuo Seaweed Seedance StepVideo mACC
RINE 1dm 52.97 49.07 45.03 50.70 48.37 48.60 48.37 48.36
FatFormert ProGAN 50.02 50.23 45.55 50.00 50.00 50.00 50.23 49.34
B-Freet SD2.1 64.30 56.74 72.14 60.93 28.60 36.51 51.86 51.13
Effort Genlmage(SD1.4) 70.74 81.40 29.97 70.93 85.58 76.74 50.23 65.81
F3Net 9251 67.44 66.95 67.67 69.53 70.00 59.53 66.85
TALL 91.71 5233 58.05 56.98 56.98 58.14 53.26 55.96
NPR 92.66 70.47 50.68 70.23 73.02 71.63 66.51 67.09
TimeSformer 91.41 66.74 64.55 61.86 68.84 66.28 67.91 66.03
SAFE 15Model-140K 91.76 72.33 5291 71.40 56.51 80.70 74.42 68.41
CLIP ViT-L/14 (Ours) 99.20 76.98 60.62 76.05 66.51 77.67 77.21 72,51
X-CLIP-B/16 98.55 70.23 60.10 71.40 72.79 74.42 62.33 68.55
X-CLIP-L/14 98.85 74.65 59.93 74.42 64.65 74.42 73.26 70.22
Moon-ViT 98.25 75.35 59.76 75.12 74.88 74.42 73.49 72.17
Qwen2.5-ViT (Ours) 97.20 85.12 72.26 83.26 84.65 84.19 717.67 81.19

Table 2: Benchmarking Results in terms of ACC Performance on the Movie Gen valid set and
Magic Videos Testset. 7 indicates that the results are obtained by using the official pre-trained
model.
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Model Training Data ‘ Movie Gen ‘ Wan 2.1 Wan-1.3B  Hailuo Seaweed Seedance StepVideo mAP
RINE¥ ldm 71.11 38.70 35.62 54.43 33.69 35.53 34.14 38.69
FatFormert ProGAN 58.84 48.04 34.01 54.50 46.52 38.93 57.73 46.62
B-Freet SD 2.1 70.38 63.76 83.58 68.21 35.24 39.77 55.99 57.76
Effortf Genlmage(SD1.4) 80.60 89.86 34.09 78.71 92.65 86.83 57.04 73.20
F3Net 96.20 75.93 74.81 72.48 82.88 79.61 62.90 74.77
TALL 96.07 82.36 70.23 74.97 88.63 81.32 82.36 79.98
NPR 97.10 78.74 50.82 76.93 87.33 79.40 73.71 74.49
TimeSformer 96.91 86.62 74.29 75.92 87.11 82.15 90.04 82.69
SAFE 15Model-140K 96.55 76.77 85.27 71.63 58.22 86.93 80.56 76.56
CLIP ViT-L/14 (Ours) 99.95 92.02 63.45 92.74 90.84 95.35 94.81 88.20
X-CLIP-B/16 99.87 81.08 87.88 87.37 86.24 95.25 64.96 83.80
X-CLIP-L/14 99.94 96.91 81.30 93.83 69.26 96.95 93.66 88.65
Moon-ViT 99.24 92.18 74.17 89.70 88.12 90.46 86.19 86.80
Qwen2.5-ViT (Ours) 99.46 96.11 91.51 90.83 92.38 94.59 77.31 90.46

Table 3: Benchmarking Results in terms of AP Performance on the Movie Gen valid set and
Magic Videos Testset. i indicates that the results are obtained by using the official pre-trained
model.

ones are sampled from MSVD |Chen & Dolan|(2011)) and Kinetics |Kay et al.|(2017). For validation,
we use 1,003 fake videos from MovieGenVideoBench |Polyak et al.| (2024) and 1,000 real videos
from Panda-70M |Chen et al.| (2024d). To comprehensively evaluate detection performance, we
introduce three test sets spanning different generations of video models.

Test Sets. To benchmark robustness against state-of-the-art synthetic content, we curate the Magic
Videos (Table([I), containing high-quality, hyper-realistic videos generated by six cutting-edge video
generators with carefully filtered prompts. Each subset is paired with corresponding real videos,
and performance is reported using Accuracy (ACC) and Average Precision (AP). GenVideo-Val
and DVF-Test: We also evaluate on the test sets of two external datasets: DVF |Song et al.| (2024)
and GenVideo |Chen et al.| (2024b)). These datasets include videos from models released before
September 2024, offering insights into the detector performance on earlier synthetic content. These
sets provide a complementary, historically grounded perspective on detector performance.

Baselines. We benchmark four categories of methods: (1) Al-generated video detection methods
(MM-Det Song et al.| (2024), DeMamba |Chen et al.| (2024b), UNITE |Kundu et al.| (2025b), and
TruthLens [Kundu et al.| (2025a)); (2) visual foundation backbones (X-CLIP-B/16 |Ni et al.| (2022),
X-CLIP-L/14 N1 et al.| (2022), TimeSformer Bertasius et al.| (2021), and Moon-ViT [Team et al.
(2025)); (3) facial forgery detection methods (TALL Xu et al.[(2023) and F3Net|Qian et al.| (2020)));
and (4) general Al-generated image detection methods (NPR |Tan et al.|(2024)), FatFormer Liu et al.
(20244a), RINE [Koutlis & Papadopoulos| (2024), B-Free |Guillaro et al.| (2025)), and Effort|Yan et al.
(2025))). For image-based methods, we average the logits across 1" frames to obtain video-level
predictions.

Implementation Details. We train our model for 3 epochs using binary cross-entropy loss and the
AdamW optimizer. The learning rate is set to le-5 for full fine-tuning and le-4 for PEFT tuning.
To balance performance and computational cost, we follow the preprocessing steps described in|Bai
et al.| (2025)); [Team et al.| (2025), which define the minimum and maximum token budgets for im-
ages. Input frames are resized to the highest possible resolution within the range (min_pixels,
max_pixels), while preserving the original aspect ratio. In our experiments, we set the resolution
range to (224 x 224,720 x 720). For temporal sampling, videos are sampled at 2 fps. We select
either ' = 8 consecutive frames randomly during training or centrally during testing. Additional
implementation details for other baseline models are provided in the Appendix.

4.2 AI-GENERATED VIDEO DETECTION

Evaluation on Magic Videos. The experimental results presented in Table 2 and Table 3 offer
a comprehensive evaluation of our model against several distinct classes of detection methods. A
notable observation is the underwhelming performance of models originally developed for Al image
detection, including RINE, FatFormer, B-Free, and Effort. These models exhibit relatively poor per-
formance on video-based benchmarks, even compared to image-based methods that are trained on
our video datasets. This suggests a fundamental difference between forgery patterns present in static
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Video- Zero- Open- . Stable Stable
Method Crafter scope Sora Sora  Pika Diff. Video AVG
CNNDet* 874 882 780 638 773 735 789 782
DIRE* 559 61.8 538 605 658 627 699 62.1
MM-Det 93,5 94.0 88.8 862 959 957 899 92.0
NPR 86.6 856 960 81.0 946 71.1 970 874
TALL 954 918 972 949 975 83.6 982 926
F3Net 904 902 959 90.1 97.8 93.1 985 937
TimeSformer | 94.5 927 98.0 925 984 924 995 954
Ours 935 998 98.6 964 99.1 956 99.7 97.6

Table 4: Benchmarking Results in terms of AUC Performance on DVF-Test Song et al.| (2024).
Results with * are derived from [Song et al.|(2024).

Averaged Overall Fake Real
Model Recall FI AP | ACC Recall ~ Method ACC Acc  acc
UNITE 860 - 9276 - - GPT-5 90.7 846 988
ruthLens - - C |04 - GPT-4.1 929 8.1 979
DeMamba-CLIP 91.58 89.19 9345 | 96.14 92.29 -4 : : :
e amba Gemini 2.5 Pro 843 757 958
W mhgmoeswnon omalh dow o
JINE B . . . .
TimeSformer 8642 6538 77.67 | 8751 91.55 gwenTz.s 'Vl{‘ 72Bd 00166 94.3
TALL 89.44 6151 76.67 | 90.05 91.76 e/ep race2 Se"\jaf 747 557  100.0
XCLIP-B 89079 5376 72.04 | 92.60 9090  (W/ Qwen2.5 VL7B)
Qwen2.5-ViT (Ours)  91.16  90.64 96.13 | 96.64 93.18  Qwen2.5-ViT (Ours) | 972 963 982

Table 5: Benchmarking Results in terms of aver- Table 6: Benchmarking Results in terms
aged Recall, F1, AP per subset and overall Recall of ACC on DeepTraceReward Fu et al.
and ACC Performance on Genvideo-Val[Chen et al. (2025). Results of baseline methods are re-
(2024Db). Detailed results are in Appendix. ported in Fu et al.| (2025).

images and those in dynamic video sequences. Features learned for detecting image artifacts do not
generalize well to the spatio-temporal domain required for video-level analysis. Similarly, methods
designed specifically for deepfake detection, such as F3Net and TALL show limited effectiveness.
While these models excel at identifying at facial manipulations, their specialization becomes a con-
straint when faced with the broader challenge of detecting fully synthesized videos. In contrast,
large-scale visual backbones like TimeSformer, CLIP-ViT and X-CLIP demonstrate competitive
performance, leveraging extensive pre-training on diverse visual data. However, their effectiveness
is ultimately constrained by architectural limitations. A key issue is the conventional practice of
resizing input frames to a fixed resolution of 224x224 pixels. This downsampling may eliminate
subtle pixel-level forgery artifacts and disrupt global semantic features that are crucial for detecting
sophisticated generative content. Moon-ViT [Team et al.| (2025)), which applies a similar processing
pipeline based on NaViT, also suffers from this limitation as it operates on static images and cannot
capture temporal inconsistencies. Our proposed method achieves the highest average scores in both
ACC and AP, establishing a new state-of-the-art on these benchmarks. While our model does not
achieve the best AP on every individual generator, it consistently delivers strong performance across
all generator types, highlighting its robust generalizability. This superior performance is attributed to
its advanced architecture. By leveraging the Qwen2.5-ViT backbone, our model integrates native-
resolution modeling with dynamic temporal duration modeling, avoids destructive downsampling
and preserves the fidelity of forgery cues present in the original content. By effectively capturing
both fine-grained artifacts and high-level semantic inconsistencies, our model delivers a more robust
and accurate solution for detecting Al-generated videos.

Evaluation on DVF-test. We train our model and four competing methods on our training set, ex-
cluding any data originating from the Sora and Pika generators, and evaluate them on the DVF test
set. The results are presented in Table[d] Notably, despite the imbalance between real and generated
samples in certain subsets of DVF-test, we report the Area Under the ROC Curve (AUC) for con-
sistent and direct comparison. Our model achieves the highest average AUC of 97.6, demonstrating
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Archs. Variants | Magic Genvideo ~ Avg.

random crop to 224p | 52.41 93.50 72.96

spatial random resize to 224p | 67.90 95.52 81.71
resolution  dynamic [224p, 448p] | 77.01 96.01 86.51
dynamic [224p, 720p] | 81.19 96.64 88.92

temporal T=2 71.20 94.70 82.95
resolution T=4 73.46 94.40 83.93
T=8 77.01 96.01 86.51

uning LP 62.04 91.91 76.98
mode LoRA(r=16) 73.14 94.95 84.05
full 77.01 96.01 86.51

Table 7: Ablation studies regarding spatial-temporal resolution and tuning mode. We report
averaged ACC(%) on Magic Testset and Genvideo. For temporal and tuning experiments, the spatial
resolution is set to dynamic[224p, 448p].

the high quality of our training dataset and the strong generalizability of our model in detecting
Al-generated videos across diverse generation techniques.

Evaluation on GenVideo-Val. We train our method and five baseline models on our curated train-
ing set, excluding generators that appear in the GenVideo-Val set. Due to the substantial class imbal-
ance between real and generated samples in the GenVideo evaluation subsets, we report both overall
Recall and Accuracy (ACC) to enable a more comprehensive comparison. As shown in Table[5] our
method outperforms all baselines, including larger MLLM-based models such as TruthLens [Kundu
et al. (2025a) and other baseline methods trained on the same data as ours. Despite using only 1/20th
of the training data scale employed by DeMamba Chen et al.|(2024b)), our model showcases superior
effectiveness and generalizability to earlier generated content.

Evaluation on DeepTraceReward. To further demonstrate robustness against unseen generators,
we evaluated our method on the DeepTraceReward [Fu et al.| (2025)), which contains 4,335 videos
from 7 recent generators (including Pika-1.5, Kling-1.5, etc). Table [6] compares our Qwen2.5-ViT
against leading multimodal LLMs. Our model achieves 97.2% accuracy, significantly outperforming
massive foundation models (e.g., GPT-5, Gemini 2.5 Pro) on the binary classification task. More-
over, while general-purpose VLMs often struggle with detecting fakes (showing lower Fake ACC),
our model demonstrates balanced performance (96.3% Fake ACC vs. 98.2% Real ACC), proving its
effectiveness in identifying artifacts from the latest generation engines without overfitting to specific
training generators.

4.3 ABLATION STUDY AND ANALYSIS

We conduct a series of ablation studies, as detailed in Table[7} to systematically investigate the im-
pact of spatial resolution, temporal resolution, and different fine-tuning strategies on our model’s
performance. Dataset Difference. The performance gains from using higher-fidelity inputs are
substantially larger on our Magic dataset. This is because GenVideo, with its lower native resolu-
tion and shorter clips, is less susceptible to the performance degradation caused by downsampling
preprocessing. Ablation Study on Spatial Resolution. Our analysis reveals critical performance
differences. The conventional random crop to 224p method yields the lowest average accuracy on
high-resolution content (52.41). Switching to random resize to 224p boosts performance to 67.90,
but this approach can still cause degradation of subtle artifacts. In contrast, our dynamic resolution
strategy, which preserves the original aspect ratio, demonstrates markedly superior performance,
with the average accuracy peaking at 88.92 when using resolutions up to 720p. This confirms our
hypothesis that maintaining aspect ratio and processing at higher resolutions are critical for capturing
subtle, pixel-level forgery artifacts. Ablation Study on Temporal Resolution. For all candidates,
we sample the original videos at 2 fps and select random or center-aligned 7" frames during train-
ing and testing, respectively. We observe that incorporating more temporal context is beneficial.
Increasing the number of sampled frames (7') from 1 to 8 improves the average performance from
82.95 to 85.91. This suggests that longer sequences enhance the model’s ability to detect temporal
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inconsistencies common in Al-generated videos. Ablation Study on Tuning method. Regard-
ing tuning strategies, full fine-tuning achieves the best average performance (85.91). Although the
parameter-efficient LoRA approach (81.10) significantly outperforms linear probing (76.98), full
fine-tuning is justified for maximizing detection accuracy.

100.0 100 100 100.0
3 975 95 97.5
< 90
O 95.0 90 95.0
E 8s
. 92.5
S 925 Ours 80
2 90.01 —— NPR 80 90.0
5] —— 75 70
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Figure 3: Robustness Comparison of Relative ACC on MovieGen Under Diverse Perturbation.
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Figure 4: Saliency Analysis. Saliency Maps of Our Model on Al-Generated Video Samples.
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Robustness Analysis. We evaluate our model’s robustness under common video perturbations, in-
cluding compression, downscaling, and cropping, as shown in Figure[3] The model remains highly
accurate under mild degradations such as moderate JPEG and H.264 compression. Performance
drops become more pronounced with severe spatial changes. Notably, our model outperforms base-
lines under aggressive downscaling (scale < 0.4) and cropping (crop factor > 0.15), though all
methods are affected by extreme spatial loss. These results highlight strong robustness to moderate
noise and sensitivity to substantial spatial degradation.

Saliency Analysis. We examine the model’s attention responses to better understand its discrimi-
native behavior, as illustrated in FigureEl The results confirm that our native-resolution framework
effectively captures two key types of features crucial for AIGC detection. (1) Low-level Artifacts:
In billboard scenes, the model focuses on fine details such as distorted text rendering and unnatural
edge transitions that are often lost during resolution downsampling. These high-frequency artifacts
are indicative of generation errors and are critical for reliable detection. (2) High-level Semantics:
In the fruit-cutting examples, the model attends to global inconsistencies, including object defor-
mations and unrealistic lighting, suggesting it captures holistic content-level anomalies. This dual
focus demonstrates that our approach leverages both spatial fidelity and semantic context, validating
the design choice of preserving native resolution.

5 CONCLUSION

In this work, we address two critical weaknesses in AGIC detection: the reliance on outdated train-
ing datasets and the destructive practice of resizing inputs to a fixed, low resolution. Our primary
contributions are two-fold: the construction of a comprehensive and up-to-date dataset comprising
Al-generated videos from 18 diverse generators, and the development of a novel detection frame-
work that operates directly on videos at their native resolution and temporal length. Experimental
results demonstrate that our method, built upon Qwen2.5-VL ViT backbone, establishes a new state-
of-the-art across three established benchmarks. Crucially, by avoiding downsampling, our model
preserves both fine-grained artifacts and high-level semantic inconsistencies, resulting in signifi-
cantly improved robustness and generalization to recent advances in generative video content.
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APPENDIX

This appendix provides a detailed analysis of our dataset, implementation details, additional experi-
mental results, and visualizations:

* Section A: Data distribution and analysis of our dataset.
* Section B: Cross-validation experiment.

* Section C: Additional implementation details for both our method and the baseline meth-
ods.

* Section D: Additional experimental results and ablation studies.

¢ Section E: Visualizations and discussion.

A  DATASET COMPOSITION

Model / Video Source \ Ver.  Availability Videos Resolution FPS Frame Duration
Kinetics-400 |Kay et al.|(2017) 17.05 real videos 68K 720p - - 5-10s
MSVD Chen & Dolan|(2011) 11.06  real videos 1970K  240-1080p 6-60 1-60s
Overall Real - - 70,543  240-1080p 6-60 - 1-60s
RepVideo|Si et al.|(2025) 25.01 open-source 4720 720x480 8 49 6.1s
Wan2.1 Team|(2025) 25.01 open-source 4725 1280x720 16 81 5.0s
CausVid (5s)|Yin et al.|(2025) 25.01 open-source 4720 640x352 24 120 5.0s
Apple-STIV Lin et al.|(2024) 24.12  open-report 4715 512x512 60 60 1.0s
Sora|Brooks et al.|(2024) 24.12 private 4720 854x480 30 150 5.0s
HunyuanVideo|Kong et al.{(2024) 24.12  open-source 4725 1280x720 24 129 5.4s
Gen-3 |Germanidis|(2024) 24.06 private 4707 1280x768 24 256 10.7s
Luma|Lumalabs|(2024) 24.06 private 4680 1360x752 24 121 5.0s
Kling |Kuaishou|(2024) 24.06 private 4679 1280x720 30 153 5.1s
Jimeng Jimeng Al|(2024) 24.05 private 6214 1280x720 8 96 12.0s
OpenSora V1.1 Zheng et al.|(2024) 24.04 open-source 4720 424x240 8 64 8.0s
Mira|Ju et al.|(2024) 24.04 open-source 4721 384x240 6 60 10.0s
VideoCrafter-2.0|Chen et al.|(2024a) | 24.01 open-source 4720 320x512 10 16 1.6s
Pika 1.0|Pika Labs|(2023) 23.11 private 4715 1280x720 24 72 3.0s
AnimateDitf-V2|Guo et al.|(2024) 23.09 open-source 4715 512x512 8 16 2.0s
Overall Fake - - 70,692  240-720p 6-60 16-256 1-12s

Table 8: Statistics of real and synthetic videos in the proposed training set.

Model / Video \ Split Videos Resolution FPS  Frame Duration
Movie Gen [Polyak et al.|(2024) | validation (fake) 1003 1920x1088 24 256 10.7s
Panda-70M |Chen et al.|(2024d) | validation (real) 1000 720p 6-30 - 10-50s
Mixkit mixkit|(2024) test (real) 215 720p 15-60 - 10-17s
Pexels pexels|(2024) 292 720p 24-60 - 6-39s
Wan2.1 Team|(2025) 215 1280x720 30 161 5.4s
Wan-1.3B [Team|(2025) 292 832x480 16 81 5.0s
Hailuo MiniMax|(2024) test (fake) 215 1280x720 25 141 5.6s
Seaweed |Seawead et al.|(2025) 215 1472x832 24 121 5.0s
Seedance|Gao et al.|(2025) 215 1248x704 24 121 5.0s
StepVideo|Ma et al.|(2025) 215 960x540 25 204 8.2s

Table 9: Statistics of real and synthetic videos in the proposed validation and Magic Videos
Testset.

A.1 TRAINING SET.
Table [§] provides a comprehensive summary of the training dataset used in our work. Previous

research has emphasized the critical importance of dataset quality and diversity in training robust
detectors|Rajan et al.[(2025)), especially given the variety of artifacts produced by different generative
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models |[Wu et al.| (2025). To advance the field of Al-generated video detection, we curated a large-
scale dataset comprising outputs from 15 distinct video generation models. The majority of these
synthetic videos are sourced from VBench Huang et al.| (2023)), a benchmark selected for its high-
quality prompt library and extensive evaluation of state-of-the-art models. This choice allowed us
to avoid the costly and time-consuming processes of large-scale video filtering, quality control, and
generation while ensuring high quality and consistency of generated video data.

Our dataset reflects the diverse and evolving landscape of video generation, featuring models de-
veloped between 2023 and 2025. It includes a wide range of model types in terms of availabil-
ity (i.e., open-source, open-report, and private) and architecture (e.g., Diffusion U-Net, DiT-based,
auto-regressive models, and others with undisclosed architectures). The models differ significantly
in training methodology, data scale, output resolution, and video duration, contributing to a richly
diverse training set.

To complement the synthetic videos, we sampled an equal number of real videos from two authentic
sources, MSVD [Chen & Dolan| (2011) and Kinetics-400 Kay et al.| (2017). These were carefully
selected to match the resolution, duration, and encoder distribution of the generated videos. This
matching is essential for reducing potential biases and ensuring that the learned features are gen-
uinely discriminative between real and fake content.

A key feature of our dataset is that all generative models were conditioned on the same prompt
library, ensuring a shared semantic distribution across the generated videos. This unique setup
enables controlled cross-validation experiments, allowing us to investigate inter-model relationships
and identify key factors that influence detector performance, as discussed in Section B.

A.2 VALIDATION AND TEST SET

Table [9] presents the composition of our validation set and introduces a novel, high-quality test set,
which we name the Magic Videos Testset.

Validation Set. Rather than adopting the common practice of partitioning a subset of the training
data, we constructed the validation set from videos generated by Movie Gen |Polyak et al|(2024), a
model that is architecturally and semantically similar but not identical to the models used in training.
These synthetic videos are paired with 1,000 of real videos sampled from the Panda-70M |Chen et al.
(2024d)) dataset. During training, we apply early stopping based on the validation loss computed on
this set. This strategy helps mitigate overfitting to the specific models and scenarios encountered
during training, promoting the selection of a model checkpoint with stronger generalization capabil-
ities.

Test Set. We identified a critical gap in existing benchmarks: they often lack coverage of the latest
generative models and may exhibit evaluation biases. To address this, we constructed the Magic
Videos Testset using a high-quality video generation pipeline, as introduced in Section 3 of the main
paper. This test set includes real videos from two premium platforms—Mixkitmixkit| (2024) and
Pexelspexels| (2024)—covering a diverse range of common scenes such as landscapes, architecture,
human subjects, and news footage. These videos are provided at resolutions up to 1080p to ensure
both high fidelity and content diversity. For evaluation, real and generated videos are matched into
balanced subsets, allowing for the computation of accuracy and other performance metrics.

To generate the synthetic counterparts, we first applied ShareGPT4Video (Chen et al.|(2024c) to pro-
duce high-quality captions for the real videos. These captions were then refined through a rigorous
process of filtering, rewriting, and final prompt polishing. The resulting prompts were input to six
advanced text-to-video models, comprising both open-source and commercial systems. Below, we
detail the generative models used to construct the Magic Videos Testset:

* Wan2.1 Team|(2025)): We used the Wanxiang platform API with the “’professional” model,
default settings, and prompt optimization disabled. Prompts were derived from the Mixkit
collection. This model may apply post-processing, resulting in a higher frame rate than
Wan-14B.

* Wan-1.3B [Team| (2025)): Videos were generated using the official open-source implemen-
tation and pre-trained model, with prompts from the Pexels collection.
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¢ Hailuo [MiniMax| (2024)): Accessed via the MiniMax-T2V-01 commercial API, this model
was configured to generate 5-second videos using prompts from the Mixkit collection.
Prompt optimization was not applied.

* SeaweedSeawead et al. (2025): As official model weights are not publicly available, we
used the commercial model Jimeng-S2.0Jimeng Al (2024), which is based on the Seaweed-
alpha model. Prompts were sourced from the Mixkit collection. Generation was performed
using prompts from the Mixkit collection.

* SeedanceGao et al.|(2025): In place of unavailable official weights, we used the commer-
cial model Jimeng-S3.0Jimeng Al (2024), corresponding to the Seedance 1.0 Mini model.
Prompts were sourced from the Mixkit collection.

» StepVideo Ma et al.| (2025)): Videos were generated using the official API with the Step-
Video-T2V endpoint (544px x 992px x 204f), using prompts from the Mixkit collection.

B CROSS-VALIDATION EXPERIMENT

B.1 EXPERIMENT SETUP

Cross-Validation Setup. This experiment focuses on in-domain, cross-model validation of detec-
tors. The benchmark utilizes data generated by 15 models from VBench Huang et al.|(2023), which
evaluates various generative models using a shared set of predefined prompts. Because all mod-
els generate videos from the same prompt library, we consider their outputs to belong to the same
semantic domain. Let F; denote the subset of videos generated by model i, and let R, represent
a fixed set of real videos, sampled to contain the same number of examples as each F;. For each
model 7, we train a deepfake detector on the dataset F;, Ry and evaluate its performance on all other
generated subsets F; (for j # ¢). This setup allows us to rigorously assess the generalization ability
of detectors across different generative architectures while keeping the semantic domain fixed. It
also provides a controlled environment for analyzing the relationships between generative model ar-
chitectures and detection performance. This Cross-Validation Benchmark produces an n x n matrix
M, where M[i, j] represents the recall of a detection model trained on subset ¢ and evaluated on
subset j. Based on preliminary observations, we propose the following two hypotheses, which will
be validated in subsequent experiments.

Similarity Between Generative Models. The matrix entry M i, j] reflects the output similarity
between generative models ¢ and j, influenced by factors such as model architecture, sampling
strategies, and training data. We observe that models with more similar architectures tend to exhibit
higher cross-validation accuracy between them. To quantify this relationship, we define a non-
directional distance metric, d(i,j) = 1 — 0.5 x (M][i, j] + M[j,4]). Using this metric, we apply
Non-metric Multidimensional Scaling (MDS) |[Kruskal|(1964) to produce a 2D spatial representation
of the generative models. This visualization aids in understanding the architectural relationships and
clustering patterns among the models, offering insights into how architectural similarity correlates
with cross-detection performance.

Impact of Generation Quality. In addition to architecture, M, j] is also influenced by the gen-
eration quality of model :. We hypothesize that higher-quality synthetic videos provide more re-
alistic and informative supervision signals, enabling the classifier to learn more effective forgery-
discriminative features. Since ground-truth quality labels are unavailable, we adopt scores from
recent T2V benchmarks Huang et al.| (2023); [Liu et al.| (2024c); [Huang et al.| (2024) as a proxy for
generation quality. To assess the relationship between generation quality and detection effective-
ness, we compute Pearson correlation coefficients (p) between the benchmark quality scores and
corresponding detection accuracies.

B.2 CROSS-VALIDATION RESULTS

Cross Validation. As discussed above, we use the cross-validation matrix IM to evaluate the simi-
larity between generative models. Four detection models—F3NetQian et al.[(2020), X-CLIP-B/32Ni
et al.|(2022), TALLXu et al.| (2023)), and NPRTan et al.| (2024)—are trained on 5K real videos from
MSR-VTT and 5K generated videos from each specific model subset. These detectors are then
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Figure 5: MDS |Kruskal| (1964) Visualization of video generation models. Model similarity is
based on pairwise detection accuracy.

Model WanZII;l:J;I; Kling Sora Gen3 &P JimengLuma Mira Pika O strv (2 VErr ADIT yyq
Wan21 997 974 931 9701 984 887 968 975 338 013 447 883 977 021 942 8738
Hunyuan 939 994 813 929 920 697 897 914 385 844 342 742 898 863 906 80.55
Kling 850 820 985 822 844 663 767 848 262 659 352 69.0 922 710 768 7315
Sora 903 849 756 995 937 787 992 961 352 8.1 341 707 980 883 904 8144
Gen-3 926 849 817 930 99.6 8§38 944 953 237 881 506 751 965 804 845 8160
RepVideo 970 915 928 969 983 988 986 978 294 048 566 869 998 917 Ol 8813
Jimeng* 611 479 399 784 8§16 545 997 813 148 709 264 396 917 550 608 6023
Luma 908 843 802 957 942 791 984 986 414 8§94 477 725 993 880 920 8344
Mira 206 336 214 333 242 124 326 420 987 253 244 166 295 597 797 3693
Pika 772 643 590 810 871 682 91 826 219 972 439 656 803 839 721 7169
Opensora V1 | 58.1 552 574 641 791 493 703 737 504 738 904 482 550 652 641 6362
Apple-STIV | 873 748 775 744 887 786 733 749 297 780 364 963 676 Ol 862 743l
CausVid 287 218 196 396 345 383 507 448 73 160 74 167 996 184 288 3147
VideoCrafter2 | 768 678 542 797 743 604 818 776 641 788 289 704 770 992 946 7239
AnimateDiff-V2 | 684 60.5 494 756 677 5L.1 837 739 604 581 200 589 762 894 99.1 66.16

Table 10: Cross-Validation Results. Each cell in the table represents the average recall (%) of four
detection models (NPR [Tan et al.| (2024), TALL Xu et al. (2023)), X-CLIP-B/32 N1 et al.| (2022),
F3Net Qian et al. (2020)). The model is trained on generated videos of each subset and Sk real
videos from MSR-VTT dataset.

tested on all other generative subsets. The average cross-validation accuracy across the four de-
tectors is reported in Table [I0} Each element in the table represents the mean detection accuracy
across the four models. Diagonal entries correspond to in-subset evaluations, where the detector is
tested on the same generative model used for training As shown in Figure[5] we interpret the matrix
M as a distance metric between generative models and apply Multidimensional Scaling (MDS) to
project their relationships into a 2D space. This visualization reveals clusters of architecturally sim-
ilar models, such as AnimateDiff2Xu et al.| (2024) and VideoCrafterV2Chen et al. (2024a)), while
autoregressive-based models, such as|Yin et al.| (2025)), appear more distant from the rest. This map-
ping also informs a diverse training set selection of generative models, we could combine the cross
validation accuracy and similarity to construct a high-quality and diverse dataset for data-efficient
training.

Better Generation, Better Detection. In our cross-validation experiment, we observed that de-
tection models trained on higher-quality generated videos exhibit stronger detection performance.
To validate this observation, we retrieved the overall VBench scores [Huang et al.| (2023)) for each
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generative model and conducted a correlation analysis between these scores and the average detec-
tion accuracies reported in Table The results are visualized in Fig.1 of our main paper. Since
the cross-validation data is directly sampled from VBench’s evaluation set, the VBench scores pro-
vide an accurate proxy for the generation quality of each subset. Across 14 models (excluding
CausVid, which features a fundamentally different model structure and training paradigm), we com-
pute a Pearson correlation coefficient of p = 0.86 between average detection accuracy and VBench
scores, indicating a strong positive correlation. Furthermore, when restricting the analysis to the six
DiT-based models, the correlation increases to p = 0.92. These results strongly support our hypoth-
esis: among models with similar architectures, higher-quality generation leads to better supervision
signals, enabling detection models to learn more effective forgery-discriminative features.

C IMPLEMENTATION DETAILS

This section outlines the configurations and hyper-parameters used for training our proposed
method, as well as the baseline models.

Our Method. For our detector and Moon-ViT, all experiments are conducted using PyTorch with
Automatic Mixed Precision (AMP) in bfloat16 to enable Flash Attention optimization and accel-
erate training. The visual backbone is initialized with Vision Transformer (ViT) weights from the
officially released Qwen2.5-VL model. We explore multiple fine-tuning strategies with distinct hy-
perparameter settings: (1) Full fine-tuning: We set the batch size to 4 and train for 3 epochs with a
learning rate of le-5. (2) Linear Probing (LP) and Parameter-Efficient Fine-Tuning (PEFT): These
approaches use a larger batch size of 32 and a learning rate of le-4. Training continues for up to 30
epochs, with early stopping based on validation loss (patience = 5 epochs) to prevent overfitting.

Other Baseline Methods. To ensure fair comparison, all baseline models are trained under a uni-
fied experimental setup. We used a consistent batch size of 32 and trained for a maximum of 30
epochs, also employing an early stopping strategy with a 5 epochs patience. The learning rate was
adjusted based on the model architecture: for baselines utilizing a CLIP ViT backbone, such as X-
CLIP and CLIP-based detectors, we set the learning rate to 1e-6; for all other models, a learning rate
of le-5 was used.

Data Pre-processing for Baseline Methods. A consistent data pre-processing pipeline is applied
across all models during both training and testing. During training, each video is first sampled at
a rate of 2 frames per second, from which 8 consecutive frames are extracted. If a video contains
fewer than 8 frames, it is padded with blank frames to meet the required sequence length. Each frame
is resized such that the shorter side is 224 pixels, followed by a random crop to a final resolution
of 224x224. To enhance model robustness, we apply two forms of data augmentation: random
horizontal flipping and random Gaussian noise. During testing, frames are sampled in the same
manner as during training. After resizing the shorter side of each frame to 224 pixels, a center crop
to 224x224 is applied instead of a random crop to ensure deterministic evaluation.

D ADDITIONAL RESULTS AND ABLATIONS

Full Results on Genvideo-Val. As shown in Table 4, our proposed method achieves state-of-the-
art performance across several key metrics. Notably, it attains an F1 score of 90.64 and an average
precision (AP) of 96.13, surpassing all other leading methods—including DeMamba-CLIP, which
was trained on the GenVideo dataset comprising 2.2 million samples. In contrast, our model was
trained on only 140K samples, over ten times fewer, underscoring both the high quality of our
training data and the efficiency of our method in learning robust forgery-discriminative features at
native resolution.

In addition, our model achieves a balanced accuracy (bACC) of 95.38, significantly outperforming
all competing methods. This result demonstrates not only high overall detection performance but
also the model’s well-rounded and consistent capabilities across diverse forgery cases.

Efficiency Comparison. As detailed in Table 10, we conduct a comprehensive efficiency analysis
comparing our proposed Qwen2.5-VL ViT (QwenViT) with several strong baseline models. For a
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Training . Morph . Moon Model ~ Wild
Model Data Metric ~ Sora Studio Gen2 HotShot Lavie Show-1 Valley Crafter Scope  Scrape Avg.
. Recall 92.11 1000 94.62 9693 9812 99.86 98.69 1000 9629 89.89  89.60
FaceForensics++,
UNITE SAIL-vOS3D LI y

AP 88.57 100.0 1000  90.16  89.91 9834  99.52 1000 98.96 92.56  92.76

Recall 9571 100.0 98.70  69.14 9243 9329 100.0  100.0  83.57 8294 91.58

DeMamba-CLIP GenVideo F1 6463 96.15 97.39 7803 9414 9276 9572 98.04 8723 87.82  89.19
AP 8550 100.0 99.59  76.15  96.78 9699  99.97 1000 89.80 89.72 9345
RINE ProGAN bACC - 84.00 89.10 66.00 9670 9180 8570 9830  76.60 - 74.10%
DeMamba PyramidFlow bACC - 83.80 9220  62.00 79.60 72.60 9240 87.50  68.60 - 78.10%
Corvi et al. PyramidFlow bACC - 97.00 98.80 81.40 9550 92.10 9840 9830  97.10 - 94.30%
Recall 82.14 97.14 9949  89.00 9879 9229 99.05 99.07 83.00 7160 91.16

Ours 15model-140k F1 6525 9584 9835 9148 98.02 9329 9651 98.16 88.03 8145  90.64

AP 8249 9936 9995 9655 9978 9788  99.87 99.89 9450 9098  96.13
bACC 90.87 9838 99.55 9431 99.20 9595 9933 9934 9131 8561 9538

Table 11: Benchmarking Evaluation in terms of Recall, F1 score (F1), average precision (AP),
and balance accuracy (bACC) on Genvideo-Val. The results of RINE and DeMamba are reported
in |Corvi et al.| (2025)).

Model Resolution | #Params FLOPS Peak GPU Mem  Training Time / Epoch
CLIP-L [224, 224] 303.2M 622.6G é;ggg EEZZL)Z) 9.5 A100 hours
X-CLIP-L [224,224] 9 65066 590p sy 105 A100 hours
Effort [224,224] 02MIS046M  6234G L TEA 0 75 A100 hours
QwenViT [224,224] 668.7M 656G 16.0GB(bs=4) 2.3 A100 hours
QwenViT dynamic [224p, 448p] 6638.7M - 37.9GB(bs=4) 7 A100 hours
QwenViT-LoRA  dynamic [224p, 448p] | 2.6M/671.31M - 27.4GB(bs=4) 5.5 A100 hours

Table 12: Efficiency comparison results on model parameters, FLOPS, GPU memory utilization and
time consumed during training.

standard input resolution of [224, 224], QwenViT exhibits remarkable training efficiency. Despite
having more parameters (668.7M) than CLIP-L (303.2M), it achieves a 4.1 x reduction in training
time (2.3 vs. 9.5 A100 hours) and a 25% decrease in peak GPU memory usage (16.0GB vs. 21.5GB
at a batch size of 4). These gains are primarily attributed to efficiency-oriented design choices such
as bfloat16 training and Flash Attention, which allow QwenViT to utilize computational resources
more effectively. When adopting a dynamic resolution strategy, the training overhead naturally
increases, yet QwenViT remains faster and more memory-efficient than the baselines. Moreover, our
parameter-efficient fine-tuning variant, QwenViT-LoRA, requires updating only 2.6M parameters.
This substantially reduces resource demands compared to full dynamic fine-tuning, lowering GPU
memory from 37.9GB to 27.4GB and cutting training time from 7 to 5.5 hours. Overall, these results
highlight that the superior efficiency of QwenViT stems from architectural optimizations, making
the additional cost of higher dynamic resolutions acceptable in practice.

E VISUALIZATION AND DISCUSSION

Figures [§] to [9] present a selection of video samples from our dataset, with Figures 3—5 offering
detailed visualizations along with their corresponding generative prompts. As illustrated in these
figures, the videos in our test set exhibit high visual quality, characterized by aesthetic appeal, rich
motion, and diverse themes and visual effects.

By using carefully curated prompts to control the generative themes, we are able to evaluate a
model’s detection performance without introducing content bias. This methodological design pro-
motes a fairer and more reliable assessment, encouraging the detector to learn generalizable forgery
artifacts rather than memorizing specific object- or scene-level patterns.

Acknowledgment of LLM Usage. This manuscript has benefited from the assistance of a large
language model, which was employed solely for grammar checking and language polishing. All
scientific ideas, experimental designs, analyses, and conclusions are made by the authors.
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Figure 6: Video Visualization from Magic Video Testset. From left to right, each column denotes
videos from real sources, seaweed, seedance, and wan?2.1.

Limitations. First, despite our best efforts, the field of generative Al is advancing at an excep-
tional pace. As new generator architectures continue to emerge, the dataset and detection frame-
work will require periodic updates to maintain relevance. Second, although optimized for efficiency,
processing videos at their native resolution remains more computationally intensive than traditional
methods based on downscaled inputs. This may limit deployment in resource-constrained envi-
ronments. Finally, further investigation into the model’s explainability could yield valuable insights
into the specific artifacts it learns to detect, thereby advancing the understanding of generative model
fingerprints.
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real video

prompt: The video showcases the Alhambra in Granada, Spain, transitioning from warm
golden sunset tones to deep violet hues as night falls. The palatial structures, set against
the Sierra Nevada mountains and lined with cypress trees, shift from sunlit brilliance to
dramatic nighttime illumination. A subtle zoom enhances the view, while the changing light

casts a striking contrast between the fortress's golden glow and the darkening sky, creating
a captivating visual transformation.

generated video

Figure 7: Video Visualization from Magic Video Testset.
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real video

prompt: A woman and a man engage in a friendly outdoor conversation amid wooden
structures and greenery. The woman, wearing a purple headband and green tank top, sips
her drink, signaling relaxation. Her expressions shift from savoring to engaging warmly,
smiling and making eye contact. The man listens attentively, maintaining a steady

demeanor. Both hold beverages, emphasizing the leisurely tone. Their uninterrupted
dialogue features moments of humor and enjoyment in a serene setting.

generated video

Figure 8: Video Visualization from Magic Video Testset.
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real video

prompt: The video showcases billboards for Powerball ($470M) and Mega Millions
(83999M) under a sunny sky, with a '3 News Now' banner highlighting a '81 BILLION
MEGA MILLIONS JACKPOT.' Vibrant designs and mentions of 'NEBRASKA
POWERBALL POWERPLAY' add local context. A brief error misstates the Mega Millions
Jackpot as $9M before correcting it. The video ends with a wide shot of the billboards
against a residential backdrop, emphasizing their public appeal.

generated video

Figure 9: Video Visualization from Magic Video Testset.
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