

000 PRESERVING FORGERY ARTIFACTS: AI-GENERATED 001 VIDEO DETECTION AT NATIVE SCALE 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 The rapid advancement of video generation models has enabled the creation of
007 highly realistic synthetic media, raising significant societal concerns regarding the
008 spread of misinformation. However, current detection methods suffer from criti-
009 cal limitations. They often rely on preprocessing operations like fixed-resolution
010 resizing and cropping, which not only discard subtle, high-frequency forgery arti-
011 facts but can also cause distortion and significant information loss. Furthermore,
012 these methods are frequently trained and evaluated on outdated datasets that fail
013 to capture the sophistication of modern generative models. To address these chal-
014 lenges, we introduce two key contributions: a new large-scale dataset and bench-
015 mark, as well as a novel detection framework. We present a comprehensive dataset
016 of over 140K videos from 16 state-of-the-art open-source and leading commercial
017 generators. In addition, we curate Magic Videos Testset, featuring ultra-realistic
018 videos produced through a meticulous generation and filtering pipeline. In addi-
019 tion, we propose a novel detection framework built on the Qwen2.5-VL Vision
020 Transformer, which processes videos at their native spatial resolution and tem-
021 poral duration. This native-scale approach preserves high-frequency details and
022 spatiotemporal inconsistencies that are often lost during conventional preprocess-
023 ing. Extensive experiments show that our method achieves state-of-the-art per-
024 formance across multiple benchmarks. Our work underscores the importance of
025 native-scale processing and establishes a robust new baseline for AI-generated
026 video detection.

032 1 INTRODUCTION

033 Artificial Intelligence-Generated Content (AIGC) has advanced rapidly, revolutionizing the creation
034 of high-quality text Yang et al. (2024); DeepSeek-AI (2024), image Esser et al. (2024); Labs (2024),
035 audio Kreuk et al. (2023); Copet et al. (2023) and video Brooks et al. (2024). Among these ad-
036 vancements, video generation has seen particularly significant progress, evolving from foundational
037 models like Stable Diffusion Rombach et al. (2022) to more advanced architectures such as Diffusion
038 Transformers (DiTs) Peebles & Xie (2023); Brooks et al. (2024), as well as proprietary commercial
039 products Pika Labs (2023); Jimeng AI (2024); Kuaishou (2024). These developments have pushed
040 the boundaries of deepfake technologies Yang et al. (2022), enabling large-scale creation of fully
041 AI-generated videos. However, the emergence of near-photorealistic synthetic videos pose serious
042 threats to privacy, reputation, and public trust Wang et al. (2024), underscoring the urgent need for
043 effective detection and mitigation strategies against disinformation and misinformation.

044 Deepfake detection Yan et al. (2023) and AI-generated image detection Wang et al. (2020); Zhu
045 et al. (2023) have made significant progress in identifying manipulated content. However, existing
046 deepfake detection methods Qian et al. (2020); Xu et al. (2023); Oorloff et al. (2024); Nguyen
047 et al. (2024) often face generalizability issue as they primarily focus on detecting facial forgeries.
048 Meanwhile, approaches for detecting images generated by Generative Adversarial Network (GAN)
049 and diffusion models Wang et al. (2020; 2023c); Tan et al. (2024); Luo et al. (2024) are typically
050 restricted to static media, leaving general spatiotemporal forgery detection largely unaddressed.

051 Recent studies have begun to develop more robust solutions for AI-generated image and video detec-
052 tion Yan et al. (2025); Li et al. (2025); Song et al. (2024); Chen et al. (2024b); Kundu et al. (2025b).
053 A significant and shared limitation among these methods is the conventional preprocessing of resiz-

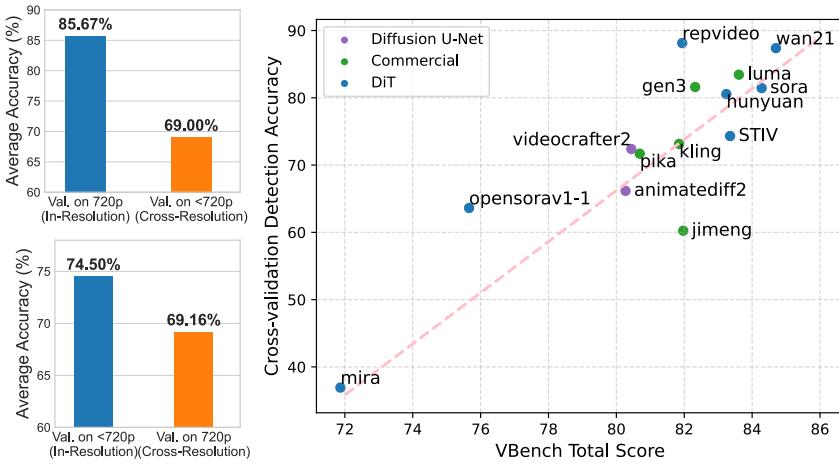


Figure 1: The impact of video resolution and generation quality on detection. **Left:** Models trained on 720p videos (top) and others on <720p videos (bottom) both show a significant drop when validated on a different resolution than they were trained on. **Right:** A strong positive correlation (Pearson $\rho=0.86$) exists between a generator’s quality (VBench score) and cross-validation detection accuracy, indicating that generated videos with higher-quality can assist the training of more effective detectors. These findings highlight the necessity of a general framework that can handle diverse input resolutions and generated artifacts.

ing Yan et al. (2025) or cropping Li et al. (2025) input frames to a fixed resolution (e.g., 224x224). Forgery detection methods often rely on two types of features, subtle artifacts and high-level semantics Cheng et al. (2025). However, this fixed-resolution preprocessing degrades both types of features. Resizing distorts the original aspect ratio, misleading detectors into learning superficial distribution differences rather than robust and generalizable forgery features Rajan et al. (2025). Cropping, meanwhile, can discard important content outside the selected area, thereby destroys global semantic cues of high-resolution content. Furthermore, both downsampling approaches degrade the subtle, pixel-level artifacts that are critical for identifying synthetic media and capturing fine-grained inconsistencies Corvi et al. (2025).

Furthermore, progress in AI-generated video detection is hampered by the use of outdated synthetic data sources. Existing datasets Chen et al. (2024b); Song et al. (2024) are predominantly composed of videos generated by earlier models, which typically exhibit low resolution, limited quality, and short durations. As a result, detection models trained on these datasets experience a significant performance drop when evaluated on modern super-realistic synthetic videos. To better understand these challenges, we conduct cross-validation experiments using existing detectors on a synthetic videos dataset sourced from 14 generative models. Our preliminary results reveal two critical insights, as illustrated in Figure 1. First, we observe a significant performance drop when detectors are evaluated on videos with different resolution. Second, detection performance is positively correlated with the quality of the video generators, meaning that stronger detectors require training on higher-quality, more realistic synthetic videos. These findings further highlight the importance of constructing a high-quality and diverse dataset, as well as a training framework capable of effectively handling videos with diverse resolutions, durations and generative sources.

In response to the limitations of existing methods, we propose a unified framework that supports training and evaluation on videos with diverse resolutions and generative sources. First, we curate a high-quality and diverse video dataset sourced from 15 representative video generation models for training and develop a meticulously crafted pipeline to synthesize high-quality, human-indistinguishable videos for evaluation, termed Magic Videos. Second, we design a native-resolution training framework based on the Qwen2.5-VL Vision Transformer Bai et al. (2025), which unifies image and video modeling and enables the model to natively process videos with arbitrary spatial resolutions and temporal lengths. By removing the constraints of fixed-size downsampling preprocessing, our method achieves strong generalization capabilities to capture general spatiotemporal forgery artifacts. Extensive experiments on a wide range of benchmarks (Genvideo Chen et al. (2024b), DVF Song et al. (2024) and our proposed Magic Videos) demonstrate that our model is ro-

108 bust and achieves state-of-the-art performance in detecting AI-generated videos. Our Contributions
 109 are summarized as follows:

- 111 • We introduce a new high-quality and diverse dataset, sourcing videos from 18 state-of-
 112 the-art generative models, ensuring that both training and evaluation are aligned with the
 113 current generative quality of AIGC.
- 114 • We propose a novel native-resolution training framework built upon the Qwen2.5-VL Vi-
 115 sion Transformer, which processes videos in their original spatial resolutions and temporal
 116 lengths, preserving crucial forgery artifacts often lost during conventional resizing or crop-
 117 ping.
- 118 • Through extensive experiments, we demonstrate that our method achieves state-of-the-art
 119 performance and robust generalization across a wide range of benchmarks, setting a new
 120 standard for AI-generated video detection.

122 2 RELATED WORK

124 2.1 VIDEO GENERATIVE MODELS

126 Diffusion models Ho et al. (2020); Song et al. (2022); Rombach et al. (2022) have significantly
 127 enhanced the quality and controllability of image generation, inspiring researchers to extend these
 128 techniques to video generation tasks. Early work Singer et al. (2022) propose incorporating motion
 129 dynamics into pre-trained text-to-image generation models. More recent studies Chen et al. (2024a);
 130 Guo et al. (2024); Blattmann et al. (2023); Wang et al. (2023a); Wei et al. (2024) leverage latent-
 131 based diffusion models Rombach et al. (2022) to generate short dynamic videos from text or image
 132 inputs. With the growing popularity of Diffusion Transformers (DiTs) Peebles & Xie (2023) in
 133 image generation Labs (2024), DiT and its variants Esser et al. (2024) have been widely proposed
 134 for video generation tasks Ma et al. (2024b); Zheng et al. (2024); Brooks et al. (2024); Yang et al.
 135 (2025); Kong et al. (2024); Team (2025); Polyak et al. (2024). Besides Diffusion based methods,
 136 Generative Adversarial Network (GAN) Shen et al. (2023); Wang et al. (2023b) are also explored for
 137 video generation. The success of decoder-only architecture in language model has also motivated
 138 research in generating long videos using autoregressive models Kondratyuk et al. (2024); Yu et al.
 139 (2023); Yin et al. (2025). Commercial video generation products Brooks et al. (2024); Kuaishou
 140 (2024); Jimeng AI (2024); Pika Labs (2023); MiniMax (2024), employ complex and proprietary
 141 pipelines and produces hyper-realistic videos. However, the lack of transparency surrounding these
 142 systems limits detailed analysis of their methodologies.

143 In this paper, we propose a generative video dataset that encompasses most of the aforementioned
 144 architectures, including Diffusion U-Net Chen et al. (2024a); Guo et al. (2024), DiT Brooks et al.
 145 (2024); Team (2025); Ju et al. (2024); Zheng et al. (2024); Polyak et al. (2024); Lin et al. (2024);
 146 Ma et al. (2025), MMDiT Kong et al. (2024); Si et al. (2025), and auto-regressive Yin et al. (2025)
 147 models. The diversity of generative models included in our dataset ensures broad coverage and
 148 supports the generalizability of the proposed method.

149 2.2 AI-GENERATED IMAGE AND VIDEO DETECTION

150 **Generated Image Detection.** As generative technologies rapidly advance, a growing number of
 151 forged images are now entirely synthesized by GANs Goodfellow et al. (2014) and Diffusion mod-
 152 els Rombach et al. (2022), moving beyond traditional limited manipulation techniques. Conse-
 153 quently, substantial research efforts have focused on developing generalizable synthetic image de-
 154 tection methods Tan et al. (2023); Ojha et al. (2023); Yan et al. (2024); Liu et al. (2024b), including
 155 approaches based on reconstruction error Wang et al. (2023c); Luo et al. (2024); Guillaro et al.
 156 (2025), pixel-level features Wang et al. (2020); Tan et al. (2024); Cheng et al. (2025), or adapting
 157 visual backbones Koutlis & Papadopoulos (2024); Yan et al. (2025); Liu et al. (2024a). These meth-
 158 ods are typically trained on images generated by specific models Karras et al. (2018); Song et al.
 159 (2022) and aim to achieve cross-architecture generalization.

160 **Generated Video Detection.** More recently, research has expanded to the detection of fully AI-
 161 generated videos Ma et al. (2024a); Ni et al. (2024); Ji et al. (2024); Chang et al. (2025). VLM-based

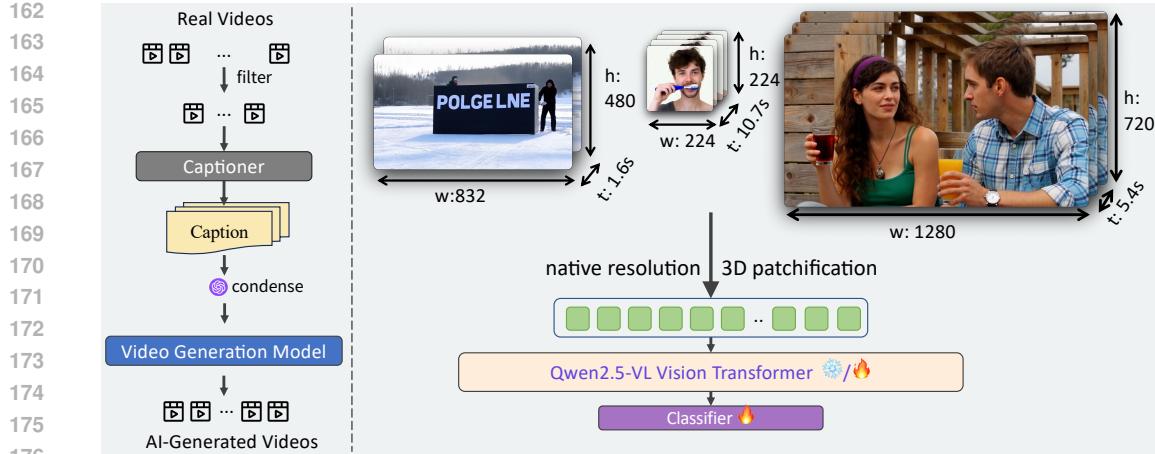


Figure 2: **An overview of our data generation and detection methodology.** **Left:** High-quality captions are curated from real videos and refined before being fed into state-of-the-art video generation models, which produce highly realistic synthetic videos for evaluation. **Right:** Our proposed detection framework operates at native resolution. Unlike conventional methods that resize frames to inputs with a fixed resolution and temporal duration, our framework processes videos into 3D patches at their native spatial resolution and temporal duration. Built on the Qwen2.5-VL ViT, our approach preserves subtle forgery artifacts that are essential for robust detection.

methods Song et al. (2024); Wen et al. (2025) prompts large vision language models to identify unnatural AI-like clue, while ViT-based methods Chen et al. (2024b); Corvi et al. (2025) introduce forgery-posed generated datasets and design modules to detect spatial-temporal inconsistencies. However, existing methods for detecting AI-generated images and videos commonly suffer from a reliance on fixed resizing operations. Such preprocessing can lead to the loss of fine-grained details and spatial distortions, ultimately compromising model robustness across diverse inputs. In this work, we address this issue by training on native spatial resolution and temporal duration, without resizing or temporal padding. This design fundamentally avoids the pitfalls of conventional preprocessing and significantly enhances the model’s generalization capability.

3 METHODOLOGY

3.1 DATA CURATION

To address the lack of comprehensive datasets for AI-generated video detection, we collect and construct a large-scale dataset comprising over 140,000 videos. This dataset includes more than 70,000 AI-generated videos from 18 distinct generative models, balanced with an equal number of real videos sampled from five high-quality sources: MSVD Chen & Dolan (2011), Kinetics Kay et al. (2017), Panda-70M Chen et al. (2024d), Mixkit and Pexels. The AI-generated portion covers 18 mainstream generative models developed between September 2023 and June 2025, including early Diffusion U-Net models (AnimateDiff Guo et al. (2024), VideoCrafter2 Chen et al. (2024a), mira Ju et al. (2024)), recent DiT-based models (Open-Sora Zheng et al. (2024), Sora Brooks et al. (2024), MovieGen Polyak et al. (2024), HunyuanVideo Kong et al. (2024), Apple-STIV Lin et al. (2024), CausVid Yin et al. (2025), Step-Video Ma et al. (2025), Wan2.1 Team (2025), and leading commercial models Pika Labs (2023); Jimeng AI (2024); Kuaishou (2024); Lumalabs (2024); Germanidis (2024); MiniMax (2024) that are accessible only via web interfaces or APIs. The generated videos vary in duration from 1 to 12 seconds and in resolution from 240p to 1080p, ensuring a diverse and representative collection of AI-generated content. A detailed breakdown of the dataset’s composition is provided in the Appendix.

Selection of Data Sources. The AI-generated videos are curated from multiple sources: (1) VBench Huang et al. (2023; 2024), which provides generated videos from various text-to-video models using a predefined suite of diverse prompts; (2) Movie Gen Polyak et al. (2024), which contributes videos generated by its proprietary model; and (3) A collection of highly realistic videos

Data	Source	Number	Resolution	Duration
Training Data (15 models)	Vbench	140K	240p-768p	1-10s
Movie Gen Wan2.1	MovieGenBench Open Source	2003 450	1920x1088 1280x720	10.7s 5.4s
Wan-1.3B Hailuo	Open Source API (T2V-01)	584 450	832x480 1280x720	5s 5.6s
Seaweed Seedance	API (Jimeng-S2.0) API (Jimeng-S3.0)	450 450	1472x832 1248x704	5s 5s
StepVideo	Open Source	450	950x540	8.2s

Table 1: **Statistics of our proposed Magic Videos Testset.** Please refer to Appendix for details of our training data.

synthesized using various cutting-edge open-source and commercial models, guided by our custom-designed prompt library.

Realistic Video Generation Pipeline. To evaluate the capability of generative content detectors in real-world scenarios, we design a pipeline for constructing synthetic videos that closely resemble authentic content. We prioritize scenarios that pose significant risks to information security, such as realistic landscapes, architectural scenes, and human interactions, as these categories are particularly susceptible to misuse and misinformation due to their inherent plausibility. Leveraging ShareGPT4Video Chen et al. (2024c) repository of detailed and high-quality captions, we curate content specifically within these realism-oriented themes. To accommodate the capabilities of state-of-the-art architectures, we filter videos by duration (3-12 seconds) and caption length (fewer than 1000 characters). The curated prompts are further optimized using GPT-4o to condense the description to under 500 characters. Table 1 summarizes videos that are synthesized by six distinct video generators using our comprehensive prompt library. These videos represent the current frontier of photorealistic synthetic content, enabling a rigorous assessment of detection models under practical and high-risk conditions.

3.2 QWEN2.5-VL ViT

Contemporary AI-generated content detectors primarily operate by identifying two categories of features: local artifacts and global semantic inconsistencies Cheng et al. (2025). However, a common practice in existing methodologies is to resize input images to a low, fixed resolution, typically 224x224 pixels. This downscaling operation adversely affects the features crucial for detection: it degrades subtle local artifacts and distorts global semantic structures. In this paper, we introduce a unified framework that processes images and videos at native resolution, thereby preserving the original forgery artifacts. The framework begins by tokenizing input videos into 3D patches at the native scale and adopts Qwen2.5-VL ViT Bai et al. (2025) as a novel visual backbone for general video forgery detection.

3D Video Patchifying at Native Scale. We follow the video processing steps of Bai et al. (2025), which introduces a 3D patch partitioning strategy that enables native-resolution inputs. For static images, it employ a standard spatial patch extraction method (e.g., 14x14 pixels). Unlike conventional ViTs that operate on static frames independently, our method extends patchification into the temporal dimension for video data. Given an input video tensor $V \in \mathbb{R}^{T \times H \times W \times C}$, it partitions V to non-overlapping 3D patches of size $(P_t, P_h, P_w) = (2, 14, 14)$ and computes patch embedding via linear projection matrix E . This design eliminates the need for conventional resizing and padding operations, allowing the Transformer model to operate natively on both the spatial and temporal scales. The initial transformation of a raw video tensor V into a sequence of feature embeddings $X^{(0)}$ is described in Equation (1). The 3D patchification is particularly effective in detecting subtle texture artifact and minimal temporal consistencies at the patch level. By preserving the original resolution during preprocessing, our method ensures potential features critical for forgery detection remain intact and undistorted.

$$X^{(0)} = \text{Unfold}(V; P_t, P_h, P_w)^T \cdot E \quad (1)$$

270 **Transformer Layer Structure.** Qwen2.5-VL ViT consists of 32 Transformer layers, each adopting
 271 a pre-normalization structure, in which RMSNorm is applied before both the self-attention
 272 and feed-forward network (FFN). The FFN component employs the SwiGLU activation function.
 273 To effectively encode the spatial relationships between patches, 2D Rotary Positional Embedding
 274 (RoPE) Su et al. (2023) is applied to the queries and keys in self attention, enhancing the model’s
 275 extrapolation capability across input resolutions. The computations performed within each Trans-
 276 former layer are described as

$$\begin{aligned} \hat{X}^{(l)} &= X^{(l-1)} + \text{Attention}(\text{RMSNorm}(X^{(l-1)})), \\ X^{(l)} &= \hat{X}^{(l)} + \text{FFN}_{\text{SwiGLU}}(\text{RMSNorm}(\hat{X}^{(l)})). \end{aligned} \quad (2)$$

280 In Equation (2), $X^{(l-1)}$ and $X^{(l)}$ denote the input and output hidden states of the l -th Transformer
 281 layer, respectively.

282 **Infrastructure Optimization for Efficiency.** To address the computational challenges associated
 283 with high-resolution inputs, which typically lead to quadratic complexity, several optimizations are
 284 integrated. A batch packing strategy from NaViT Dehghani et al. (2023) is adopted to allow the
 285 model to handle variable-length sequences without padding or attention masks. This is combined
 286 with Flash Attention Dao (2023), enabling GPU awareness of sequence boundaries and significantly
 287 improving both computational efficiency and memory usage through optimized CUDA kernels. In
 288 addition, a hybrid attention strategy is adopted where the majority of Transformer layers utilize
 289 114×114 windowed attention, ensuring that the computational cost scales linearly with the number
 290 of input patches.

291 **Classifier and Tuning Methods.** For the final binary classification task of distinguishing between
 292 authentic and AI-generated content, we append a simple yet effective classification head to the
 293 Qwen2.5-VL ViT backbone. The output tokens from the final Transformer layer is first aggre-
 294 gated into a single, fixed-size feature vector using global average pooling. This vector is then passed
 295 through a single fully connected (FC) linear layer that outputs the logits corresponding to the “real”
 296 and “generated” classes. To adapt the pre-trained model to this task, we explore three fine-tuning
 297 strategies: (1) Full Finetuning: Both the visual backbone and classification head are jointly opti-
 298 mized during training. (2) Linear-Probing: Serves as a baseline, where the entire vision backbone
 299 is frozen and only the classification head is trained. (3) Parameter-Efficient Fine-Tuning (PEFT):
 300 Specifically. we adopt Low-Rank Adaptation (LoRA Hu et al. (2021)), which introduces small,
 301 trainable low-rank matrices into the frozen backbone, allowing only a subset of parameters to be
 302 updated.

4 EXPERIMENTS

4.1 DATASETS

308 **Traning Set.** We construct a training set of 70K AI-generated videos and 70K real videos. The
 309 synthetic videos are generated by VBench Huang et al. (2023) using their prompt set, while the real
 310

Model	Training Data	Movie Gen	Wan 2.1	Wan-1.3B	Hailuo	Seaweed	Seedance	StepVideo	mACC
RINE [†]	ldm	52.97	49.07	45.03	50.70	48.37	48.60	48.37	48.36
FatFormer [†]	ProGAN	50.02	50.23	45.55	50.00	50.00	50.00	50.23	49.34
B-Free [†]	SD 2.1	64.30	56.74	72.14	60.93	28.60	36.51	51.86	51.13
Effort [†]	GenImage(SD1.4)	70.74	81.40	29.97	70.93	85.58	76.74	50.23	65.81
F3Net		92.51	67.44	66.95	67.67	69.53	70.00	59.53	66.85
TALL		91.71	52.33	58.05	56.98	56.98	58.14	53.26	55.96
NPR		92.66	70.47	50.68	70.23	73.02	71.63	66.51	67.09
TimeSformer		91.41	66.74	64.55	61.86	68.84	66.28	67.91	66.03
SAFE	15Model-140K	91.76	72.33	52.91	71.40	56.51	80.70	74.42	68.41
CLIP ViT-L/14	(Ours)	99.20	76.98	60.62	76.05	66.51	77.67	77.21	72.51
X-CLIP-B/16		98.55	70.23	60.10	71.40	72.79	74.42	62.33	68.55
X-CLIP-L/14		98.85	74.65	59.93	74.42	64.65	74.42	73.26	70.22
Moon-ViT		98.25	75.35	59.76	75.12	74.88	74.42	73.49	72.17
Qwen2.5-ViT (Ours)		97.20	85.12	72.26	83.26	84.65	84.19	77.67	81.19

322 **Table 2: Benchmarking Results in terms of ACC Performance on the Movie Gen valid set and**
 323 **Magic Videos Testset.** [†] indicates that the results are obtained by using the official pre-trained
 324 model.

324	Model	Training Data	Movie Gen	Wan 2.1	Wan-1.3B	Hailuo	Seaweed	Seedance	StepVideo	mAP
325	RINE [†]	Idm	71.11	38.70	35.62	54.43	33.69	35.53	34.14	38.69
326	FatFormer [†]	ProGAN	58.84	48.04	34.01	54.50	46.52	38.93	57.73	46.62
327	B-Free [†]	SD 2.1	70.38	63.76	83.58	68.21	35.24	39.77	55.99	57.76
328	Effort [†]	GenImage(SD1.4)	80.60	89.86	34.09	78.71	92.65	86.83	57.04	73.20
329	F3Net		96.20	75.93	74.81	72.48	82.88	79.61	62.90	74.77
330	TALL		96.07	82.36	70.23	74.97	88.63	81.32	82.36	79.98
331	NPR		97.10	78.74	50.82	76.93	87.33	79.40	73.71	74.49
332	TimeSformer		96.91	86.62	74.29	75.92	87.11	82.15	90.04	82.69
333	SAFE	15Model-140K	96.55	76.77	85.27	71.63	58.22	86.93	80.56	76.56
334	CLIP ViT-L/14	(Ours)	99.95	92.02	63.45	92.74	90.84	95.35	94.81	88.20
335	X-CLIP-B/16		99.87	81.08	87.88	87.37	86.24	95.25	64.96	83.80
336	X-CLIP-L/14		99.94	96.91	81.30	93.83	69.26	96.95	93.66	<u>88.65</u>
337	Moon-ViT		99.24	92.18	74.17	89.70	88.12	90.46	86.19	86.80
338	Qwen2.5-ViT (Ours)		99.46	96.11	91.51	90.83	92.38	94.59	77.31	90.46

Table 3: **Benchmarking Results in terms of AP Performance on the Movie Gen valid set and Magic Videos Testset.** [†] indicates that the results are obtained by using the official pre-trained model.

ones are sampled from MSVD Chen & Dolan (2011) and Kinetics Kay et al. (2017). For validation, we use 1,003 fake videos from MovieGenVideoBench Polyak et al. (2024) and 1,000 real videos from Panda-70M Chen et al. (2024d). To comprehensively evaluate detection performance, we introduce three test sets spanning different generations of video models.

Test Sets. To benchmark robustness against state-of-the-art synthetic content, we curate the **Magic Videos** (Table 1), containing high-quality, hyper-realistic videos generated by six cutting-edge video generators with carefully filtered prompts. Each subset is paired with corresponding real videos, and performance is reported using Accuracy (ACC) and Average Precision (AP). **GenVideo-Val and DVF-Test:** We also evaluate on the test sets of two external datasets: DVF Song et al. (2024) and GenVideo Chen et al. (2024b). These datasets include videos from models released before September 2024, offering insights into the detector performance on earlier synthetic content. These sets provide a complementary, historically grounded perspective on detector performance.

Baselines. We benchmark four categories of methods: (1) AI-generated video detection methods (MM-Det Song et al. (2024), DeMamba Chen et al. (2024b), UNITE Kundu et al. (2025b), and TruthLens Kundu et al. (2025a)); (2) visual foundation backbones (X-CLIP-B/16 Ni et al. (2022), X-CLIP-L/14 Ni et al. (2022), TimeSformer Bertasius et al. (2021), and Moon-ViT Team et al. (2025)); (3) facial forgery detection methods (TALL Xu et al. (2023) and F3Net Qian et al. (2020)); and (4) general AI-generated image detection methods (NPR Tan et al. (2024), FatFormer Liu et al. (2024a), RINE Koutlis & Papadopoulos (2024), B-Free Guillaro et al. (2025), and Effort Yan et al. (2025)). For image-based methods, we average the logits across T frames to obtain video-level predictions.

Implementation Details. We train our model for 3 epochs using binary cross-entropy loss and the AdamW optimizer. The learning rate is set to 1e-5 for full fine-tuning and 1e-4 for PEFT tuning. To balance performance and computational cost, we follow the preprocessing steps described in Bai et al. (2025); Team et al. (2025), which define the minimum and maximum token budgets for images. Input frames are resized to the highest possible resolution within the range (`min_pixels`, `max_pixels`), while preserving the original aspect ratio. In our experiments, we set the resolution range to $(224 \times 224, 720 \times 720)$. For temporal sampling, videos are sampled at 2 fps. We select either $T = 8$ consecutive frames randomly during training or centrally during testing. Additional implementation details for other baseline models are provided in the Appendix.

4.2 AI-GENERATED VIDEO DETECTION

Evaluation on Magic Videos. The experimental results presented in Table 2 and Table 3 offer a comprehensive evaluation of our model against several distinct classes of detection methods. A notable observation is the underwhelming performance of models originally developed for AI image detection, including RINE, FatFormer, B-Free, and Effort. These models exhibit relatively poor performance on video-based benchmarks, even compared to image-based methods that are trained on our video datasets. This suggests a fundamental difference between forgery patterns present in static

Method	Video-Crafter	Zero-scope	Open-Sora	Sora	Pika	Stable Diff.	Stable Video	AVG
CNNDet*	87.4	88.2	78.0	63.8	77.3	73.5	78.9	78.2
DIRE*	55.9	61.8	53.8	60.5	65.8	62.7	69.9	62.1
MM-Det	93.5	94.0	88.8	86.2	95.9	95.7	89.9	92.0
NPR	86.6	85.6	96.0	81.0	94.6	71.1	97.0	87.4
TALL	95.4	91.8	97.2	94.9	97.5	83.6	98.2	92.6
F3Net	90.4	90.2	95.9	90.1	97.8	93.1	98.5	93.7
TimeSformer	94.5	92.7	98.0	92.5	98.4	92.4	99.5	95.4
Ours	93.5	99.8	98.6	96.4	99.1	95.6	99.7	97.6

Table 4: **Benchmarking Results in terms of AUC Performance on DVF-Test** Song et al. (2024). Results with * are derived from Song et al. (2024).

Model	Averaged			Overall		Method	ACC	Fake ACC	Real ACC
	Recall	F1	AP	ACC	Recall				
UNITE	89.60	-	92.76	-	-	GPT-5	90.7	84.6	98.8
TruthLens	-	-	-	90.49	-	GPT-4.1	92.9	89.1	97.9
DeMamba-CLIP	91.58	89.19	93.45	96.14	92.29	Gemini 2.5 Pro	84.3	75.7	95.8
NPR	83.01	47.99	63.66	86.75	92.40	Qwen2.5-VL 7B	51.7	20.2	93.4
F3Net	83.48	56.78	71.57	88.26	93.06	Qwen2.5-VL 72B	50.0	16.6	94.3
TimeSformer	86.42	65.38	77.67	87.51	91.55	DeepTraceReward	74.7	55.7	100.0
TALL	89.44	61.51	76.67	90.05	91.76	(w/ Qwen2.5 VL 7B)	97.2	96.3	98.2
XCLIP-B	89.79	53.76	72.04	92.60	90.90	Qwen2.5-ViT (Ours)	97.2	96.3	98.2
Qwen2.5-ViT (Ours)	91.16	90.64	96.13	96.64	93.18				

Table 5: **Benchmarking Results in terms of averaged Recall, F1, AP per subset and overall Recall** of ACC on DeepTraceReward Fu et al. and ACC Performance on Genvideo-Val Chen et al. (2025). Results of baseline methods are reported in Fu et al. (2025).

Table 6: **Benchmarking Results in terms of ACC on DeepTraceReward** Fu et al. and ACC Performance on Genvideo-Val Chen et al. (2025). Results of baseline methods are reported in Fu et al. (2025).

images and those in dynamic video sequences. Features learned for detecting image artifacts do not generalize well to the spatio-temporal domain required for video-level analysis. Similarly, methods designed specifically for deepfake detection, such as F3Net and TALL show limited effectiveness. While these models excel at identifying at facial manipulations, their specialization becomes a constraint when faced with the broader challenge of detecting fully synthesized videos. In contrast, large-scale visual backbones like TimeSformer, CLIP-ViT and X-CLIP demonstrate competitive performance, leveraging extensive pre-training on diverse visual data. However, their effectiveness is ultimately constrained by architectural limitations. A key issue is the conventional practice of resizing input frames to a fixed resolution of 224×224 pixels. This downsampling may eliminate subtle pixel-level forgery artifacts and disrupt global semantic features that are crucial for detecting sophisticated generative content. Moon-ViT Team et al. (2025), which applies a similar processing pipeline based on NaViT, also suffers from this limitation as it operates on static images and cannot capture temporal inconsistencies. Our proposed method achieves the highest average scores in both ACC and AP, establishing a new state-of-the-art on these benchmarks. While our model does not achieve the best AP on every individual generator, it consistently delivers strong performance across all generator types, highlighting its robust generalizability. This superior performance is attributed to its advanced architecture. By leveraging the Qwen2.5-ViT backbone, our model integrates native-resolution modeling with dynamic temporal duration modeling, avoids destructive downsampling and preserves the fidelity of forgery cues present in the original content. By effectively capturing both fine-grained artifacts and high-level semantic inconsistencies, our model delivers a more robust and accurate solution for detecting AI-generated videos.

Evaluation on DVF-test. We train our model and four competing methods on our training set, excluding any data originating from the Sora and Pika generators, and evaluate them on the DVF test set. The results are presented in Table 4. Notably, despite the imbalance between real and generated samples in certain subsets of DVF-test, we report the Area Under the ROC Curve (AUC) for consistent and direct comparison. Our model achieves the highest average AUC of 97.6, demonstrating

Archs.	Variants	Magic	Genvideo	Avg.
spatial resolution	random crop to 224p	52.41	93.50	72.96
	random resize to 224p	67.90	95.52	81.71
	dynamic [224p, 448p]	77.01	96.01	86.51
	dynamic [224p, 720p]	81.19	96.64	88.92
temporal resolution	$T=2$	71.20	94.70	82.95
	$T=4$	73.46	94.40	83.93
	$T=8$	77.01	96.01	86.51
tuning mode	LP	62.04	91.91	76.98
	LoRA(r=16)	73.14	94.95	84.05
	full	77.01	96.01	86.51

Table 7: Ablation studies regarding spatial-temporal resolution and tuning mode. We report averaged ACC(%) on Magic Testset and Genvideo. For temporal and tuning experiments, the spatial resolution is set to dynamic[224p, 448p].

the high quality of our training dataset and the strong generalizability of our model in detecting AI-generated videos across diverse generation techniques.

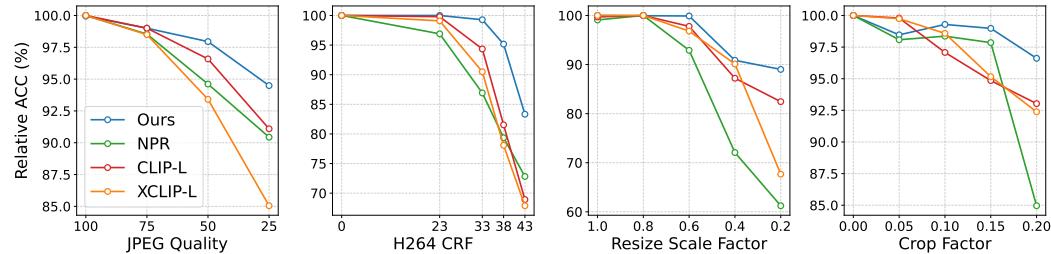
Evaluation on GenVideo-Val. We train our method and five baseline models on our curated training set, excluding generators that appear in the GenVideo-Val set. Due to the substantial class imbalance between real and generated samples in the GenVideo evaluation subsets, we report both overall Recall and Accuracy (ACC) to enable a more comprehensive comparison. As shown in Table 5, our method outperforms all baselines, including larger MLLM-based models such as TruthLens Kundu et al. (2025a) and other baseline methods trained on the same data as ours. Despite using only 1/20th of the training data scale employed by DeMamba Chen et al. (2024b), our model showcases superior effectiveness and generalizability to earlier generated content.

Evaluation on DeepTraceReward. To further demonstrate robustness against unseen generators, we evaluated our method on the DeepTraceReward Fu et al. (2025), which contains 4,335 videos from 7 recent generators (including Pika-1.5, Kling-1.5, etc). Table 6 compares our Qwen2.5-ViT against leading multimodal LLMs. Our model achieves 97.2% accuracy, significantly outperforming massive foundation models (e.g., GPT-5, Gemini 2.5 Pro) on the binary classification task. Moreover, while general-purpose VLMs often struggle with detecting fakes (showing lower Fake ACC), our model demonstrates balanced performance (96.3% Fake ACC vs. 98.2% Real ACC), proving its effectiveness in identifying artifacts from the latest generation engines without overfitting to specific training generators.

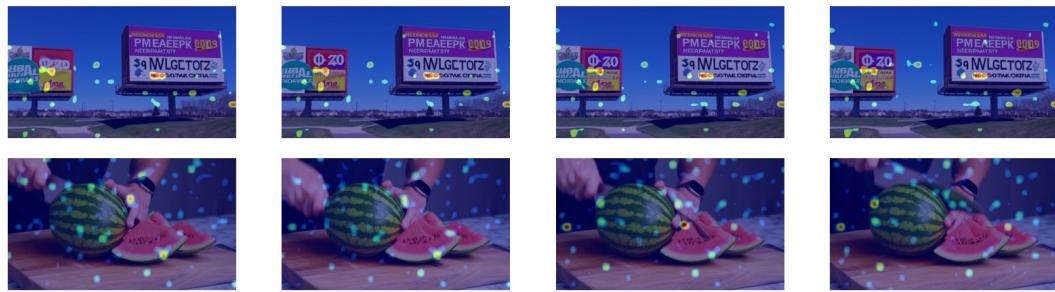
4.3 ABLATION STUDY AND ANALYSIS

We conduct a series of ablation studies, as detailed in Table 7, to systematically investigate the impact of spatial resolution, temporal resolution, and different fine-tuning strategies on our model’s performance. **Dataset Difference.** The performance gains from using higher-fidelity inputs are substantially larger on our Magic dataset. This is because GenVideo, with its lower native resolution and shorter clips, is less susceptible to the performance degradation caused by downsampling preprocessing. **Ablation Study on Spatial Resolution.** Our analysis reveals critical performance differences. The conventional random crop to 224p method yields the lowest average accuracy on high-resolution content (52.41). Switching to random resize to 224p boosts performance to 67.90, but this approach can still cause degradation of subtle artifacts. In contrast, our dynamic resolution strategy, which preserves the original aspect ratio, demonstrates markedly superior performance, with the average accuracy peaking at 88.92 when using resolutions up to 720p. This confirms our hypothesis that maintaining aspect ratio and processing at higher resolutions are critical for capturing subtle, pixel-level forgery artifacts. **Ablation Study on Temporal Resolution.** For all candidates, we sample the original videos at 2 fps and select random or center-aligned T frames during training and testing, respectively. We observe that incorporating more temporal context is beneficial. Increasing the number of sampled frames (T) from 1 to 8 improves the average performance from 82.95 to 85.91. This suggests that longer sequences enhance the model’s ability to detect temporal

486 inconsistencies common in AI-generated videos. **Ablation Study on Tuning method.** Regarding
 487 tuning strategies, full fine-tuning achieves the best average performance (85.91). Although the
 488 parameter-efficient LoRA approach (81.10) significantly outperforms linear probing (76.98), full
 489 fine-tuning is justified for maximizing detection accuracy.
 490



491
 492
 493
 494
 495
 496
 497
 498
 499 **Figure 3: Robustness Comparison of Relative ACC on MovieGen Under Diverse Perturbation.**
 500



501
 502
 503
 504
 505
 506
 507
 508
 509
 510 **Figure 4: Saliency Analysis.** Saliency Maps of Our Model on AI-Generated Video Samples.
 511

512 **Robustness Analysis.** We evaluate our model’s robustness under common video perturbations, in-
 513 cluding compression, downscaling, and cropping, as shown in Figure 3. The model remains highly
 514 accurate under mild degradations such as moderate JPEG and H.264 compression. Performance
 515 drops become more pronounced with severe spatial changes. Notably, our model outperforms base-
 516 lines under aggressive downscaling (scale ≤ 0.4) and cropping (crop factor ≥ 0.15), though all
 517 methods are affected by extreme spatial loss. These results highlight strong robustness to moderate
 518 noise and sensitivity to substantial spatial degradation.
 519

520 **Saliency Analysis.** We examine the model’s attention responses to better understand its dis-
 521 criminative behavior, as illustrated in Figure 4. The results confirm that our native-resolution framework
 522 effectively captures two key types of features crucial for AIGC detection. (1) Low-level Artifacts:
 523 In billboard scenes, the model focuses on fine details such as distorted text rendering and unnatural
 524 edge transitions that are often lost during resolution downsampling. These high-frequency artifacts
 525 are indicative of generation errors and are critical for reliable detection. (2) High-level Semantics:
 526 In the fruit-cutting examples, the model attends to global inconsistencies, including object de-
 527 formations and unrealistic lighting, suggesting it captures holistic content-level anomalies. This dual
 528 focus demonstrates that our approach leverages both spatial fidelity and semantic context, validating
 529 the design choice of preserving native resolution.
 530

5 CONCLUSION

531 In this work, we address two critical weaknesses in AGIC detection: the reliance on outdated training
 532 datasets and the destructive practice of resizing inputs to a fixed, low resolution. Our primary
 533 contributions are two-fold: the construction of a comprehensive and up-to-date dataset comprising
 534 AI-generated videos from 18 diverse generators, and the development of a novel detection frame-
 535 work that operates directly on videos at their native resolution and temporal length. Experimental
 536 results demonstrate that our method, built upon Qwen2.5-VL ViT backbone, establishes a new state-
 537 of-the-art across three established benchmarks. Crucially, by avoiding downsampling, our model
 538 preserves both fine-grained artifacts and high-level semantic inconsistencies, resulting in signifi-
 539 cantly improved robustness and generalization to recent advances in generative video content.
 540

540 REFERENCES
541

542 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
543 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
544 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
545 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025.

546 Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
547 understanding? In *ICML*, pp. 813–824, 2021.

548 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
549 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rom-
550 bach. Stable video diffusion: Scaling latent video diffusion models to large datasets, 2023.

552 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
553 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
554 generation models as world simulators, 2024. URL <https://openai.com/index/sora/>.

555 Chirui Chang, Jiahui Liu, Zhengzhe Liu, Xiaoyang Lyu, Yi-Hua Huang, Xin Tao, Pengfei Wan,
556 Di Zhang, and Xiaojuan Qi. How far are ai-generated videos from simulating the 3d visual world:
557 A learned 3d evaluation approach. In *ICCV*, 2025.

559 David Chen and William Dolan. Collecting highly parallel data for paraphrase evaluation. In Dekang
560 Lin, Yuji Matsumoto, and Rada Mihalcea (eds.), *ACL*, pp. 190–200, 2011.

562 Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
563 Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
564 *CVPR*, pp. 7310–7320, 2024a.

565 Haoxing Chen, Yan Hong, Zizheng Huang, Zhuoer Xu, Zhangxuan Gu, Yaohui Li, Jun Lan, Huijia
566 Zhu, Jianfu Zhang, Weiqiang Wang, and Huaxiong Li. Demamba: Ai-generated video detection
567 on million-scale genvideo benchmark, 2024b.

569 Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong
570 Duan, Bin Lin, Zhenyu Tang, Li Yuan, Yu Qiao, Dahua Lin, Feng Zhao, and Jiaqi Wang.
571 Sharegpt4video: Improving video understanding and generation with better captions. In *NeurIPS*,
572 2024c.

573 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Ekaterina Deyneka, Hsiang-wei Chao,
574 Byung Eun Jeon, Yuwei Fang, Hsin-Ying Lee, Jian Ren, Ming-Hsuan Yang, and Sergey Tulyakov.
575 Panda-70m: Captioning 70m videos with multiple cross-modality teachers. In *CVPR*, 2024d.

577 Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, and Vikash Sehwag. Co-spy: Com-
578 bining semantic and pixel features to detect synthetic images by ai. In *CVPR*, 2025.

579 Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
580 Alexandre Defossez. Simple and controllable music generation. In *NeurIPS*, volume 36, pp.
581 47704–47720, 2023.

583 Riccardo Corvi, Davide Cozzolino, Ekta Prashnani, Shalini De Mello, Koki Nagano, and Luisa Ver-
584 doliva. Seeing what matters: Generalizable ai-generated video detection with forensic-oriented
585 augmentation, 2025.

586 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

588 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

591 Mostafa Dehghani, Basil Mustafa, Josip Djolonga, Jonathan Heek, Matthias Minderer, Mathilde
592 Caron, Andreas Steiner, Joan Puigcerver, Robert Geirhos, Ibrahim Alabdulmohsin, Avital Oliver,
593 Piotr Padlewski, Alexey Gritsenko, Mario Lučić, and Neil Houlsby. Patch n' pack: Navit, a vision
transformer for any aspect ratio and resolution. In *NeurIPS*, 2023.

594 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 595 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
 596 glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
 597 transformers for high-resolution image synthesis, 2024.

598 Xingyu Fu, Siyi Liu, Yinuo Xu, Pan Lu, Guangqiuse Hu, Tianbo Yang, Taran Anantasagar, Christo-
 599 pher Shen, Yikai Mao, Yuanzhe Liu, Keyush Shah, Chung Un Lee, Yejin Choi, James Zou, Dan
 600 Roth, and Chris Callison-Burch. Learning human-perceived fakeness in ai-generated videos via
 601 multimodal llms, 2025.

602 Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi
 603 Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie Lin, Jiawei Liu, Shu Liu,
 604 Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Li Sun, Zhi Tian, Rui Wang, Sen Wang, Guoqiang Wei,
 605 Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao, Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang, Jianchao
 606 Yang, Runkai Yang, Tao Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng Zhang,
 607 Yang Zhao, Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, and Feilong Zuo. Seedance 1.0: Exploring
 608 the boundaries of video generation models, 2025.

609 Anastasis Germanidis. Runway gen-3, 2024. URL <https://runwayml.com/research/introducing-gen-3-alpha>.

610 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 611 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In *NeurIPS*, 2014.

612 Fabrizio Guillaro, Giada Zingarini, Ben Usman, Avneesh Sud, Davide Cozzolino, and Luisa Ver-
 613 doliva. A bias-free training paradigm for more general ai-generated image detection. In *CVPR*,
 614 2025.

615 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
 616 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
 617 sion models without specific tuning. In *ICLR*, 2024.

618 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*,
 619 2020.

620 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 621 and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

622 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 623 ing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua
 624 Lin, Yu Qiao, and Ziwei Liu. Vbench: Comprehensive benchmark suite for video generative
 625 models, 2023.

626 Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chan-
 627 paisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin Wang,
 628 Dahua Lin, Yu Qiao, and Ziwei Liu. Vbench++: Comprehensive and versatile benchmark suite
 629 for video generative models, 2024.

630 Lichuan Ji, Yingqi Lin, Zhenhua Huang, Yan Han, Xiaogang Xu, Jiafei Wu, Chong Wang, and Zhe
 631 Liu. Distinguish any fake videos: Unleashing the power of large-scale data and motion features,
 632 2024.

633 Jimeng AI. <https://jimeng.jianying.com/ai-tool/home>, 2024. URL <https://jimeng.jianying.com/ai-tool/home>.

634 Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu Xiong, Qiang
 635 Xu, and Ying Shan. Miradata: A large-scale video dataset with long durations and structured
 636 captions. In *NeurIPS*, 2024.

637 Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for im-
 638 proved quality, stability, and variation. In *ICLR*, 2018.

648 Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
 649 narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew
 650 Zisserman. The kinetics human action video dataset. *arXiv*, pp. 1–22, 2017.

651

652 Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama, Jonathan Huang, Grant Schindler, Rachel Hor-
 653 nung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Krishna Somandepalli, Hassan Akbari,
 654 Yair Alon, Yong Cheng, Josh Dillon, Agrim Gupta, Meera Hahn, Anja Hauth, David Hendon,
 655 Alonso Martinez, David Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan Yang, Hartwig Adam,
 656 Ming-Hsuan Yang, Irfan Essa, Huisheng Wang, David A. Ross, Bryan Seybold, and Lu Jiang.
 657 Videopoet: A large language model for zero-shot video generation. In *ICML*, 2024.

658

659 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 660 Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
 661 dong Wang, Changlin Li, Duoju Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
 662 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
 663 Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
 664 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu,
 665 Daquan Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar Zhong.
 Hunyuanvideo: A systematic framework for large video generative models, 2024.

666

667 Christos Koutlis and Symeon Papadopoulos. Leveraging representations from intermediate encoder-
 blocks for synthetic image detection. In *ECCV*, 2024.

668

669 Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
 670 Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually guided audio generation. In *ICLR*,
 2023.

671

672 Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method. *Psychometrika*, 29
 673 (2):115–129, 1964.

674

675 Kuaishou. <https://klingai.kuaishou.com>, 2024. URL <https://klingai.kuaishou.com>.

676

677 Rohit Kundu, Athula Balachandran, and Amit K. Roy-Chowdhury. Truthlens: Explainable deepfake
 678 detection for face manipulated and fully synthetic data, 2025a.

679

680 Rohit Kundu, Hao Xiong, Vishal Mohanty, Athula Balachandran, and Amit K. Roy-Chowdhury.
 681 Towards a universal synthetic video detector: From face or background manipulations to fully
 682 ai-generated content. In *CVPR*, 2025b.

683

684 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

685

686 Ouxiang Li, Jiayin Cai, Yanbin Hao, Xiaolong Jiang, Yao Hu, and Fuli Feng. Improving synthetic
 687 image detection towards generalization: An image transformation perspective. In *KDD*, 2025.

688

689 Zongyu Lin, Wei Liu, Chen Chen, Jiasen Lu, Wenze Hu, Tsu-Jui Fu, Jesse Allardice, Zhengfeng
 690 Lai, Liangchen Song, Bowen Zhang, Cha Chen, Yiran Fei, Yifan Jiang, Lezhi Li, Yizhou Sun,
 691 Kai-Wei Chang, and Yinfei Yang. Stiv: Scalable text and image conditioned video generation,
 692 2024.

693

694 Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Jingdong Wang, and Yao Zhao. Forgery-
 695 aware adaptive transformer for generalizable synthetic image detection. In *CVPR*, pp. 10770–
 696 10780, 2024a.

697

698 Huan Liu, Zichang Tan, Chuangchuang Tan, Yunchao Wei, Jingdong Wang, and Yao Zhao. Forgery-
 699 aware adaptive transformer for generalizable synthetic image detection. In *CVPR*, pp. 10770–
 700 10780, 2024b.

701 Lumalabs. <https://lumalabs.ai/dream-machine>, 2024. URL <https://lumalabs.ai/dream-machine>.

702 Yunpeng Luo, Junlong Du, Ke Yan, and Shouhong Ding. Lare'2: Latent reconstruction error based
 703 method for diffusion-generated image detection. In *CVPR*, pp. 17006–17015, 2024.

704

705 Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
 706 Ranchen Ming, Xiaoni Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kaijun
 707 Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge, Ao-
 708 jie Li, Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei Wu,
 709 Chenguang Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang, Gulin
 710 Yan, Haiyang Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng Wang,
 711 Hongcheng Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu, Jie Wu,
 712 Jie Yang, Jiashuai Liu, Jiashuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang Li, Lei
 713 Liu, Lei Xia, Liang Zhao, Liguang Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang Li, Muhua
 714 Cheng, Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun, Rui Wang,
 715 Shaoliang Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao, Tianyu Wang,
 716 Weipeng Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaoqia Liu, Xuan Yang,
 717 Yaqi Dai, Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang, Yuanwei Lu, Yu Chen,
 718 Yu Luo, Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng Tang, Zekai Zhang, Zidong
 719 Yang, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xiangyu Zhang, Xinhao Zhang,
 720 Yibo Zhu, Heung-Yeung Shum, and Dixin Jiang. Step-video-t2v technical report: The practice,
 721 challenges, and future of video foundation model, 2025.

722

723 Long Ma, Jiajia Zhang, Hongping Deng, Ningyu Zhang, Qinglang Guo, Haiyang Yu, Yong Liao, and
 724 Pengyuan Zhou. Decof: Generated video detection via frame consistency: The first benchmark
 725 dataset, 2024a.

726

727 Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
 728 Yu Qiao. Latte: Latent diffusion transformer for video generation, 2024b.

729

730 Minimax. Minimax officially releases the video-01 video generation model ,
 731 https://hailuoai.com/video, 2024. URL <https://www.minimax.io/news/video-01>.

732

733 mixkit. mixkit. <https://mixkit.com/videos/>, 2024.

734

735 Dat Nguyen, Nesryne Mejri, Inder Pal Singh, Polina Kuleshova, Marcella Astrid, Anis Kacem, Enjie
 736 Ghorbel, and Djamila Aouada. Laa-net: Localized artifact attention network for quality-agnostic
 737 and generalizable deepfake detection. In *CVPR*, pp. 17395–17405, 2024.

738

739 Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming
 740 Xiang, and Haibin Ling. Expanding language-image pretrained models for general video recog-
 741 nition. In *ECCV*, 2022.

742

743 Zhen-Liang Ni, Qiangyu Yan, Tianning Yuan, Mouxiao Huang, Hailin Hu, Xinghao Chen, and
 744 Yunhe Wang. Genvidbench: A challenging benchmark for detecting ai-generated video, 2024.

745

746 Utkarsh Ojha, Yuheng Li, and Yong Jae Lee. Towards universal fake image detectors that generalize
 747 across generative models. In *CVPR*, pp. 24480–24489, 2023.

748

749 Trevine Oorloff, Surya Koppisetty, Nicolò Bonettini, Divyarat Solanki, Ben Colman, Yaser Yacoob,
 750 Ali Shahriyari, and Gaurav Bharaj. Avff: Audio-visual feature fusion for video deepfake detec-
 751 tion. In *CVPR*, pp. 27102–27112, 2024.

752

753 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, 2023.

754

755 pexels. pexels. <https://www.pexels.com/videos/>, 2024.

756

757 Pika Labs. <https://pika.art/>, 2023. URL <https://pika.art/>.

758

759 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 760 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 761 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Ja-
 762 gadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu,
 763 Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sum-
 764 baly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyuk Datta, Sanyuan Chen, Sean

756 Bell, Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu,
 757 Tianhe Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-
 758 Cheng Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola,
 759 Ali Thabet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Car-
 760 leigh Wood, Ce Liu, Cen Peng, Dmitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix
 761 Juefei-Xu, Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivaku-
 762 mar, Lawrence Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K.
 763 Sampson, Shikai Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming
 764 Du. Movie gen: A cast of media foundation models, 2024.

765 Yuyang Qian, Guojun Yin, Lu Sheng, Zixuan Chen, and Jing Shao. Thinking in frequency: Face
 766 forgery detection by mining frequency-aware clues. In *ECCV*, 2020.

767 Anirudh Sundara Rajan, Utkarsh Ojha, Jeddiah Schloesser, and Yong Jae Lee. Aligned datasets
 768 improve detection of latent diffusion-generated images. In *ICLR*, 2025.

769 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 770 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

771 Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo,
 772 Hao Chen, Lu Qi, Sen Wang, Feng Cheng, Feilong Zuo, Xuejiao Zeng, Ziyuan Yang, Fangyuan
 773 Kong, Zhiwu Qing, Fei Xiao, Meng Wei, Tuyen Hoang, Siyu Zhang, Peihao Zhu, Qi Zhao,
 774 Jiangqiao Yan, Liangke Gui, Sheng Bi, Jiashi Li, Yuxi Ren, Rui Wang, Huixia Li, Xuefeng Xiao,
 775 Shu Liu, Feng Ling, Heng Zhang, Houmin Wei, Huafeng Kuang, Jerry Duncan, Junda Zhang,
 776 Junru Zheng, Li Sun, Manlin Zhang, Renfei Sun, Xiaobin Zhuang, Xiaojie Li, Xin Xia, Xuyan
 777 Chi, Yanghua Peng, Yuping Wang, Yuxuan Wang, Zhongkai Zhao, Zhuo Chen, Zuquan Song,
 778 Zhenheng Yang, Jiashi Feng, Jianchao Yang, and Lu Jiang. Seaweed-7b: Cost-effective training
 779 of video generation foundation model, 2025.

780 Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Mostgan-v: Video generation with temporal
 781 motion styles. In *CVPR*, pp. 5652–5661, 2023.

782 Chenyang Si, Weichen Fan, Zhengyao Lv, Ziqi Huang, Yu Qiao, and Ziwei Liu. Repvideo: Rethink-
 783 ing cross-layer representation for video generation, 2025.

784 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 785 Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
 786 Text-to-video generation without text-video data, 2022.

787 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*,
 788 2022.

789 Xiufeng Song, Xiao Guo, Jiache Zhang, Qirui Li, Lei Bai, Xiaoming Liu, Guangtao Zhai, and
 790 Xiaohong Liu. On learning multi-modal forgery representation for diffusion generated video
 791 detection. In *NeurIPS*, 2024.

792 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 793 hanced transformer with rotary position embedding, 2023.

794 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, and Yunchao Wei. Learning on gradients:
 795 Generalized artifacts representation for gan-generated images detection. In *CVPR*, pp. 12105–
 800 12114, 2023.

801 Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu, Ping Liu, and Yunchao Wei. Rethinking
 802 the up-sampling operations in cnn-based generative network for generalizable deepfake detection.
 803 In *CVPR*, pp. 28130–28139, 2024.

804 Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin
 805 Zhang, Chenzhuang Du, Chu Wei, Congcong Wang, Dehao Zhang, Dikang Du, Dongliang Wang,
 806 Enming Yuan, Enzhe Lu, Fang Li, Flood Sung, Guangda Wei, Guokun Lai, Han Zhu, Hao Ding,
 807 Hao Hu, Hao Yang, Hao Zhang, Haoning Wu, Haotian Yao, Haoyu Lu, Heng Wang, Hongcheng
 808 Gao, Huabin Zheng, Jiaming Li, Jianlin Su, Jianzhou Wang, Jiaqi Deng, Jiezhong Qiu, Jin Xie,
 809

810 Jinhong Wang, Jingyuan Liu, Junjie Yan, Kun Ouyang, Liang Chen, Lin Sui, Longhui Yu, Meng-
 811 fan Dong, Mengnan Dong, Nuo Xu, Pengyu Cheng, Qizheng Gu, Runjie Zhou, Shaowei Liu,
 812 Sihan Cao, Tao Yu, Tianhui Song, Tongtong Bai, Wei Song, Weiran He, Weixiao Huang, Weixin
 813 Xu, Xiaokun Yuan, Xingcheng Yao, Xingzhe Wu, Xinxing Zu, Xinyu Zhou, Xinyuan Wang,
 814 Y. Charles, Yan Zhong, Yang Li, Yangyang Hu, Yanru Chen, Yeqie Wang, Yibo Liu, Yibo Miao,
 815 Yidao Qin, Yimin Chen, Yiping Bao, Yiqin Wang, Yongsheng Kang, Yuanxin Liu, Yulun Du,
 816 Yuxin Wu, Yuzhi Wang, Yuzi Yan, Zaida Zhou, Zhaowei Li, Zhejun Jiang, Zheng Zhang, Zhilin
 817 Yang, Zhiqi Huang, Zihao Huang, Zijia Zhao, and Ziwei Chen. Kimi-vl technical report, 2025.

818 Wan Team. Wan: Open and advanced large-scale video generative models, 2025.

819 Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A. Efros. Cnn-generated
 820 images are surprisingly easy to spot... for now. In *CVPR*, pp. 8695–8704, 2020.

821 Tao Wang, Yushu Zhang, Shuren Qi, Ruoyu Zhao, Zhihua Xia, and Jian Weng. Security and privacy
 822 on generative data in aigc: A survey. *ACM Computing Surveys*, 57(4):1–34, 2024.

823 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
 824 He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian
 825 Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, and Ziwei Liu. Lavie: High-quality video
 826 generation with cascaded latent diffusion models. *IJCV*, 2023a.

827 Yuhan Wang, Liming Jiang, and Chen Change Loy. Styleinv: A temporal style modulated inversion
 828 network for unconditional video generation. In *ICCV*, pp. 22851–22861, 2023b.

829 Zhendong Wang, Jianmin Bao, Wengang Zhou, Weilun Wang, Hezhen Hu, Hong Chen, and
 830 Houqiang Li. Dire for diffusion-generated image detection. In *ICCV*, pp. 22445–22455, 2023c.

831 Yujie Wei, Shiwei Zhang, Zhiwu Qing, Hangjie Yuan, Zhiheng Liu, Yu Liu, Yingya Zhang, Jingren
 832 Zhou, and Hongming Shan. Dreamvideo: Composing your dream videos with customized subject
 833 and motion. In *CVPR*, 2024.

834 Haiquan Wen, Yiwei He, Zhenglin Huang, Tianxiao Li, Zihan Yu, Xingru Huang, Lu Qi, Baoyuan
 835 Wu, Xiangtai Li, and Guangliang Cheng. Busterx: Mllm-powered ai-generated video forgery
 836 detection and explanation, 2025.

837 Shiyu Wu, Jing Liu, Jing Li, and Yequan Wang. Few-shot learner generalizes across ai-generated
 838 image detection. In *ICML*, 2025.

839 Yuting Xu, Jian Liang, Gengyun Jia, Ziming Yang, Yanhao Zhang, and Ran He. Tall: Thumbnail
 840 layout for deepfake video detection. In *ICCV*, pp. 22658–22668, 2023.

841 Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang, Jiashi
 842 Feng, and Mike Zheng Shou. MagicAnimate: Temporally Consistent Human Image Animation
 843 using Diffusion Model. In *CVPR*. arXiv, 2024. doi: 10.48550/arXiv.2311.16498. URL <http://arxiv.org/abs/2311.16498> [cs].

844 Zhiyuan Yan, Yong Zhang, Xinhang Yuan, Siwei Lyu, and Baoyuan Wu. Deepfakebench: A com-
 845 prehensive benchmark of deepfake detection. In *NeurIPS*, 2023.

846 Zhiyuan Yan, Yuhao Luo, Siwei Lyu, Qingshan Liu, and Baoyuan Wu. Transcending forgery speci-
 847 ficity with latent space augmentation for generalizable deepfake detection. In *CVPR*, pp. 8984–
 848 8994, 2024.

849 Zhiyuan Yan, Jiangming Wang, Peng Jin, Ke-Yue Zhang, Chengchun Liu, Shen Chen, Taiping Yao,
 850 Shouhong Ding, Baoyuan Wu, and Li Yuan. Orthogonal subspace decomposition for generaliz-
 851 able ai-generated image detection. In *ICML*, 2025.

852 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 853 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 854 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 855 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 856 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 857 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint*
 858 *arXiv:2412.15115*, 2024.

864 Tianyi Yang, Zixuan Huang, Junjie Cao, et al. Deepfake network architecture attribution. In *Pro-
865 ceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 4662–4670, 2022.
866

867 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
868 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Xiaotao Gu, Yuxuan Zhang, Weihan Wang,
869 Yean Cheng, Ting Liu, Bin Xu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion
870 models with an expert transformer. In *ICLR*, 2025.

871 Tianwei Yin, Qiang Zhang, Richard Zhang, William T. Freeman, Fredo Durand, Eli Shechtman, and
872 Xun Huang. From slow bidirectional to fast autoregressive video diffusion models, 2025.
873

874 Lijun Yu, Yong Cheng, Kihyuk Sohn, José Lezama, Han Zhang, Huiwen Chang, Alexander G.
875 Hauptmann, Ming-Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. Magvit: Masked generative
876 video transformer. In *CVPR*, pp. 10459–10469, 2023.

877 Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
878 Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
879 March 2024. URL <https://github.com/hpcaitech/Open-Sora>.

880 Mingjian Zhu, Hanting Chen, Qiangyu Yan, Xudong Huang, Guanyu Lin, Wei Li, Zhijun Tu, Hailin
881 Hu, Jie Hu, and Yunhe Wang. Genimage: A million-scale benchmark for detecting ai-generated
882 image, 2023.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918 APPENDIX
919920 This appendix provides a detailed analysis of our dataset, implementation details, additional exper-
921 imental results, and visualizations:
922923

- 924 • Section A: Data distribution and analysis of our dataset.
- 925 • Section B: Cross-validation experiment.
- 926 • Section C: Additional implementation details for both our method and the baseline meth-
927 ods.
- 928 • Section D: Additional experimental results and ablation studies.
- 929 • Section E: Visualizations and discussion.

930931 A DATASET COMPOSITION
932933

Model / Video Source	Ver.	Availability	Videos	Resolution	FPS	Frame	Duration
Kinetics-400 Kay et al. (2017)	17.05	real videos	68K	720p	-	-	5-10s
MSVD Chen & Dolan (2011)	11.06	real videos	1970K	240-1080p	6-60	-	1-60s
Overall Real	-	-	70,543	240-1080p	6-60	-	1-60s
RepVideo Si et al. (2025)	25.01	open-source	4720	720x480	8	49	6.1s
Wan2.1 Team (2025)	25.01	open-source	4725	1280x720	16	81	5.0s
CausVid (5s) Yin et al. (2025)	25.01	open-source	4720	640x352	24	120	5.0s
Apple-STIV Lin et al. (2024)	24.12	open-report	4715	512x512	60	60	1.0s
Sora Brooks et al. (2024)	24.12	private	4720	854x480	30	150	5.0s
HunyuanVideo Kong et al. (2024)	24.12	open-source	4725	1280x720	24	129	5.4s
Gen-3 Germanidis (2024)	24.06	private	4707	1280x768	24	256	10.7s
Luma Lumalabs (2024)	24.06	private	4680	1360x752	24	121	5.0s
Kling Kuaishou (2024)	24.06	private	4679	1280x720	30	153	5.1s
Jimeng Jimeng AI (2024)	24.05	private	6214	1280x720	8	96	12.0s
OpenSora V1.1 Zheng et al. (2024)	24.04	open-source	4720	424x240	8	64	8.0s
Mira Ju et al. (2024)	24.04	open-source	4721	384x240	6	60	10.0s
VideoCrafter-2.0 Chen et al. (2024a)	24.01	open-source	4720	320x512	10	16	1.6s
Pika 1.0 Pika Labs (2023)	23.11	private	4715	1280x720	24	72	3.0s
AnimateDiff-V2 Guo et al. (2024)	23.09	open-source	4715	512x512	8	16	2.0s
Overall Fake	-	-	70,692	240-720p	6-60	16-256	1-12s

950
951 Table 8: **Statistics of real and synthetic videos in the proposed training set.**
952953

Model / Video	Split	Videos	Resolution	FPS	Frame	Duration
Movie Gen Polyak et al. (2024)	validation (fake)	1003	1920x1088	24	256	10.7s
Panda-70M Chen et al. (2024d)	validation (real)	1000	720p	6-30	-	10-50s
Mixkit mixkit (2024)	test (real)	215	720p	15-60	-	10-17s
Pexels pexels (2024)		292	720p	24-60	-	6-39s
Wan2.1 Team (2025)	test (fake)	215	1280x720	30	161	5.4s
Wan-1.3B Team (2025)		292	832x480	16	81	5.0s
Hailuo MiniMax (2024)		215	1280x720	25	141	5.6s
Seaweed Seaweed et al. (2025)		215	1472x832	24	121	5.0s
Seedance Gao et al. (2025)		215	1248x704	24	121	5.0s
StepVideo Ma et al. (2025)		215	960x540	25	204	8.2s

954
955 Table 9: **Statistics of real and synthetic videos in the proposed validation and Magic Videos
956 Testset.**
957958 A.1 TRAINING SET.
959960 Table 8 provides a comprehensive summary of the training dataset used in our work. Previous
961 research has emphasized the critical importance of dataset quality and diversity in training robust
962 detectors Rajan et al. (2025), especially given the variety of artifacts produced by different generative

972 models Wu et al. (2025). To advance the field of AI-generated video detection, we curated a large-
 973 scale dataset comprising outputs from 15 distinct video generation models. The majority of these
 974 synthetic videos are sourced from VBench Huang et al. (2023), a benchmark selected for its high-
 975 quality prompt library and extensive evaluation of state-of-the-art models. This choice allowed us
 976 to avoid the costly and time-consuming processes of large-scale video filtering, quality control, and
 977 generation while ensuring high quality and consistency of generated video data.

978 Our dataset reflects the diverse and evolving landscape of video generation, featuring models de-
 979 veloped between 2023 and 2025. It includes a wide range of model types in terms of availabil-
 980 ity (i.e., open-source, open-report, and private) and architecture (e.g., Diffusion U-Net, DiT-based,
 981 auto-regressive models, and others with undisclosed architectures). The models differ significantly
 982 in training methodology, data scale, output resolution, and video duration, contributing to a richly
 983 diverse training set.

984 To complement the synthetic videos, we sampled an equal number of real videos from two authentic
 985 sources, MSVD Chen & Dolan (2011) and Kinetics-400 Kay et al. (2017). These were carefully
 986 selected to match the resolution, duration, and encoder distribution of the generated videos. This
 987 matching is essential for reducing potential biases and ensuring that the learned features are gen-
 988 uinely discriminative between real and fake content.

989 A key feature of our dataset is that all generative models were conditioned on the same prompt
 990 library, ensuring a shared semantic distribution across the generated videos. This unique setup
 991 enables controlled cross-validation experiments, allowing us to investigate inter-model relationships
 992 and identify key factors that influence detector performance, as discussed in Section B.

994 A.2 VALIDATION AND TEST SET

995 Table 9 presents the composition of our validation set and introduces a novel, high-quality test set,
 996 which we name the Magic Videos Testset.

997 **Validation Set.** Rather than adopting the common practice of partitioning a subset of the training
 998 data, we constructed the validation set from videos generated by Movie Gen Polyak et al. (2024), a
 999 model that is architecturally and semantically similar but not identical to the models used in training.
 1000 These synthetic videos are paired with 1,000 of real videos sampled from the Panda-70M Chen et al.
 1001 (2024d) dataset. During training, we apply early stopping based on the validation loss computed on
 1002 this set. This strategy helps mitigate overfitting to the specific models and scenarios encountered
 1003 during training, promoting the selection of a model checkpoint with stronger generalization capabili-
 1004 ties.

1005 **Test Set.** We identified a critical gap in existing benchmarks: they often lack coverage of the latest
 1006 generative models and may exhibit evaluation biases. To address this, we constructed the Magic
 1007 Videos Testset using a high-quality video generation pipeline, as introduced in Section 3 of the main
 1008 paper. This test set includes real videos from two premium platforms—Mixkitmixkit (2024) and
 1009 Pexelspexels (2024)—covering a diverse range of common scenes such as landscapes, architecture,
 1010 human subjects, and news footage. These videos are provided at resolutions up to 1080p to ensure
 1011 both high fidelity and content diversity. For evaluation, real and generated videos are matched into
 1012 balanced subsets, allowing for the computation of accuracy and other performance metrics.

1013 To generate the synthetic counterparts, we first applied ShareGPT4Video Chen et al. (2024c) to pro-
 1014 duce high-quality captions for the real videos. These captions were then refined through a rigorous
 1015 process of filtering, rewriting, and final prompt polishing. The resulting prompts were input to six
 1016 advanced text-to-video models, comprising both open-source and commercial systems. Below, we
 1017 detail the generative models used to construct the Magic Videos Testset:

- 1018 • Wan2.1 Team (2025): We used the Wanxiang platform API with the "professional" model,
 1019 default settings, and prompt optimization disabled. Prompts were derived from the Mixkit
 1020 collection. This model may apply post-processing, resulting in a higher frame rate than
 1021 Wan-14B.
- 1022 • Wan-1.3B Team (2025): Videos were generated using the official open-source implemen-
 1023 tation and pre-trained model, with prompts from the Pexels collection.

- 1026 • Hailuo MiniMax (2024): Accessed via the MiniMax-T2V-01 commercial API, this model
1027 was configured to generate 5-second videos using prompts from the Mixkit collection.
1028 Prompt optimization was not applied.
- 1029 • SeaweedSeaweed et al. (2025): As official model weights are not publicly available, we
1030 used the commercial model Jimeng-S2.0Jimeng AI (2024), which is based on the Seaweed-
1031 alpha model. Prompts were sourced from the Mixkit collection. Generation was performed
1032 using prompts from the Mixkit collection.
- 1033 • SeedanceGao et al. (2025): In place of unavailable official weights, we used the commer-
1034 cial model Jimeng-S3.0Jimeng AI (2024), corresponding to the Seedance 1.0 Mini model.
1035 Prompts were sourced from the Mixkit collection.
- 1036 • StepVideo Ma et al. (2025): Videos were generated using the official API with the Step-
1037 Video-T2V endpoint (544px \times 992px \times 204f), using prompts from the Mixkit collection.
1038

1039 B CROSS-VALIDATION EXPERIMENT

1040 B.1 EXPERIMENT SETUP

1041 **Cross-Validation Setup.** This experiment focuses on in-domain, cross-model validation of detec-
1042 tors. The benchmark utilizes data generated by 15 models from VBench Huang et al. (2023), which
1043 evaluates various generative models using a shared set of predefined prompts. Because all mod-
1044 els generate videos from the same prompt library, we consider their outputs to belong to the same
1045 semantic domain. Let F_i denote the subset of videos generated by model i , and let R_0 represent
1046 a fixed set of real videos, sampled to contain the same number of examples as each F_i . For each
1047 model i , we train a deepfake detector on the dataset F_i, R_0 and evaluate its performance on all other
1048 generated subsets F_j (for $j \neq i$). This setup allows us to rigorously assess the generalization ability
1049 of detectors across different generative architectures while keeping the semantic domain fixed. It
1050 also provides a controlled environment for analyzing the relationships between generative model ar-
1051 chitectures and detection performance. This Cross-Validation Benchmark produces an $n \times n$ matrix
1052 \mathbf{M} , where $\mathbf{M}[i, j]$ represents the recall of a detection model trained on subset i and evaluated on
1053 subset j . Based on preliminary observations, we propose the following two hypotheses, which will
1054 be validated in subsequent experiments.
1055

1056 **Similarity Between Generative Models.** The matrix entry $M[i, j]$ reflects the output similarity
1057 between generative models i and j , influenced by factors such as model architecture, sampling
1058 strategies, and training data. We observe that models with more similar architectures tend to exhibit
1059 higher cross-validation accuracy between them. To quantify this relationship, we define a non-
1060 directional distance metric, $d(i, j) = 1 - 0.5 \times (M[i, j] + M[j, i])$. Using this metric, we apply
1061 Non-metric Multidimensional Scaling (MDS) Kruskal (1964) to produce a 2D spatial representation
1062 of the generative models. This visualization aids in understanding the architectural relationships and
1063 clustering patterns among the models, offering insights into how architectural similarity correlates
1064 with cross-detection performance.
1065

1066 **Impact of Generation Quality.** In addition to architecture, $M[i, j]$ is also influenced by the gen-
1067 eration quality of model i . We hypothesize that higher-quality synthetic videos provide more re-
1068 alistic and informative supervision signals, enabling the classifier to learn more effective forgery-
1069 discriminative features. Since ground-truth quality labels are unavailable, we adopt scores from
1070 recent T2V benchmarks Huang et al. (2023); Liu et al. (2024c); Huang et al. (2024) as a proxy for
1071 generation quality. To assess the relationship between generation quality and detection effective-
1072 ness, we compute Pearson correlation coefficients (ρ) between the benchmark quality scores and
1073 corresponding detection accuracies.
1074

1075 B.2 CROSS-VALIDATION RESULTS

1076 **Cross Validation.** As discussed above, we use the cross-validation matrix \mathbf{M} to evaluate the simi-
1077 larity between generative models. Four detection models—F3NetQian et al. (2020), X-CLIP-B/32Ni
1078 et al. (2022), TALLXu et al. (2023), and NPRTan et al. (2024)—are trained on 5K real videos from
1079 MSR-VTT and 5K generated videos from each specific model subset. These detectors are then

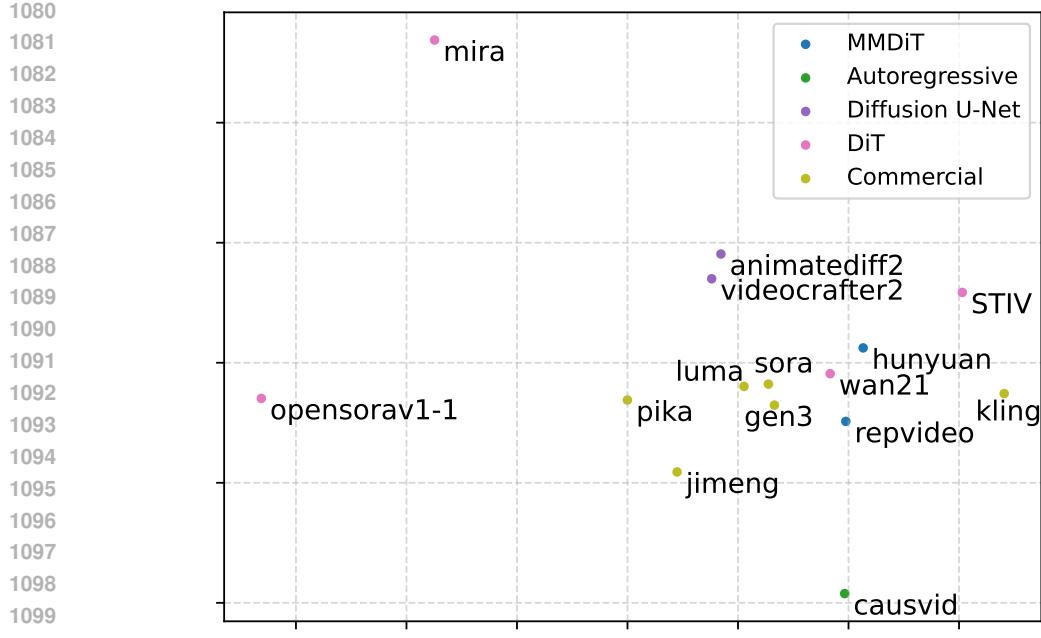


Figure 5: **MDS Kruskal (1964) Visualization of video generation models.** Model similarity is based on pairwise detection accuracy.

Model	Wan21	Hunyuhan	Kling	Sora	Gen-3	Rep-Video	Jimeng	Luma	Mira	Pika	Open Sora	STIV	Caus Vid	VCraft-2	ADiff -V2	AVG
Wan21	99.7	97.4	93.1	97.1	98.4	88.7	96.8	97.5	33.8	91.3	44.7	88.3	97.7	92.1	94.2	87.38
Hunyuhan	93.9	99.4	81.3	92.9	92.0	69.7	89.7	91.4	38.5	84.4	34.2	74.2	89.8	86.3	90.6	80.55
Kling	85.9	82.0	98.5	82.2	84.4	66.3	76.7	84.8	26.2	65.9	35.2	69.1	92.2	71.0	76.8	73.15
Sora	90.3	84.9	75.6	99.5	93.7	78.7	99.2	96.1	35.2	87.1	34.1	70.7	98.0	88.3	90.4	81.44
Gen-3	92.6	84.9	81.7	93.0	99.6	83.8	94.4	95.3	23.7	88.1	50.6	75.1	96.5	80.4	84.5	81.60
RepVideo	97.0	91.5	92.8	96.9	98.3	98.8	98.6	97.8	29.4	94.8	56.6	86.9	99.8	91.7	91.1	88.13
Jimeng*	61.1	47.9	39.9	78.4	81.6	54.5	99.7	81.3	14.8	70.9	26.4	39.6	91.7	55.0	60.8	60.23
Luma	90.8	84.3	80.2	95.7	94.2	79.1	98.4	98.6	41.4	89.4	47.7	72.5	99.3	88.0	92.0	83.44
Mira	20.6	33.6	21.4	33.3	24.2	12.4	32.6	42.0	98.7	25.3	24.4	16.6	29.5	59.7	79.7	36.93
Pika	77.2	64.3	59.1	81.0	87.1	68.2	91.1	82.6	21.9	97.2	43.9	65.6	80.3	83.9	72.1	71.69
Opensora V1.1	58.1	55.2	57.4	64.1	79.1	49.3	70.3	73.7	50.4	73.8	90.4	48.2	55.0	65.2	64.1	63.62
Apple-STIV	87.3	74.8	77.5	74.4	88.7	78.6	73.3	74.9	29.7	78.0	36.4	96.3	67.6	91.1	86.2	74.31
CausVid	28.7	21.8	19.6	39.6	34.5	38.3	50.7	44.8	7.3	16.0	7.4	16.7	99.6	18.4	28.8	31.47
VideoCrafter-2	76.8	67.8	54.2	79.7	74.3	60.4	81.8	77.6	64.1	78.8	28.9	70.4	77.0	99.2	94.6	72.39
AnimateDiff-V2	68.4	60.5	49.4	75.6	67.7	51.1	83.7	73.9	60.4	58.1	20.0	58.9	76.2	89.4	99.1	66.16

Table 10: **Cross-Validation Results.** Each cell in the table represents the average recall (%) of four detection models (NPR Tan et al. (2024), TALL Xu et al. (2023), X-CLIP-B/32 Ni et al. (2022), F3Net Qian et al. (2020)). The model is trained on generated videos of each subset and 5k real videos from MSR-VTT dataset.

tested on all other generative subsets. The average cross-validation accuracy across the four detectors is reported in Table 10. Each element in the table represents the mean detection accuracy across the four models. Diagonal entries correspond to in-subset evaluations, where the detector is tested on the same generative model used for training. As shown in Figure 5, we interpret the matrix M as a distance metric between generative models and apply Multidimensional Scaling (MDS) to project their relationships into a 2D space. This visualization reveals clusters of architecturally similar models, such as AnimateDiff2Xu et al. (2024) and VideoCrafterV2Chen et al. (2024a), while autoregressive-based models, such as Yin et al. (2025), appear more distant from the rest. This mapping also informs a diverse training set selection of generative models, we could combine the cross validation accuracy and similarity to construct a high-quality and diverse dataset for data-efficient training.

Better Generation, Better Detection. In our cross-validation experiment, we observed that detection models trained on higher-quality generated videos exhibit stronger detection performance. To validate this observation, we retrieved the overall VBench scores Huang et al. (2023) for each

1134 generative model and conducted a correlation analysis between these scores and the average detection
 1135 accuracies reported in Table 10. The results are visualized in Fig.1 of our main paper. Since
 1136 the cross-validation data is directly sampled from VBench’s evaluation set, the VBench scores pro-
 1137 vide an accurate proxy for the generation quality of each subset. Across 14 models (excluding
 1138 CausVid, which features a fundamentally different model structure and training paradigm), we com-
 1139 pute a Pearson correlation coefficient of $\rho = 0.86$ between average detection accuracy and VBench
 1140 scores, indicating a strong positive correlation. Furthermore, when restricting the analysis to the six
 1141 DiT-based models, the correlation increases to $\rho = 0.92$. These results strongly support our hypoth-
 1142 esis: among models with similar architectures, higher-quality generation leads to better supervision
 1143 signals, enabling detection models to learn more effective forgery-discriminative features.

1144 C IMPLEMENTATION DETAILS

1145 This section outlines the configurations and hyper-parameters used for training our proposed
 1146 method, as well as the baseline models.

1147 **Our Method.** For our detector and Moon-ViT, all experiments are conducted using PyTorch with
 1148 Automatic Mixed Precision (AMP) in bfloat16 to enable Flash Attention optimization and acceler-
 1149 ate training. The visual backbone is initialized with Vision Transformer (ViT) weights from the
 1150 officially released Qwen2.5-VL model. We explore multiple fine-tuning strategies with distinct hy-
 1151 perparameter settings: (1) Full fine-tuning: We set the batch size to 4 and train for 3 epochs with a
 1152 learning rate of 1e-5. (2) Linear Probing (LP) and Parameter-Efficient Fine-Tuning (PEFT): These
 1153 approaches use a larger batch size of 32 and a learning rate of 1e-4. Training continues for up to 30
 1154 epochs, with early stopping based on validation loss (patience = 5 epochs) to prevent overfitting.

1155 **Other Baseline Methods.** To ensure fair comparison, all baseline models are trained under a uni-
 1156 fied experimental setup. We used a consistent batch size of 32 and trained for a maximum of 30
 1157 epochs, also employing an early stopping strategy with a 5 epochs patience. The learning rate was
 1158 adjusted based on the model architecture: for baselines utilizing a CLIP ViT backbone, such as X-
 1159 CLIP and CLIP-based detectors, we set the learning rate to 1e-6; for all other models, a learning rate
 1160 of 1e-5 was used.

1161 **Data Pre-processing for Baseline Methods.** A consistent data pre-processing pipeline is applied
 1162 across all models during both training and testing. During training, each video is first sampled at
 1163 a rate of 2 frames per second, from which 8 consecutive frames are extracted. If a video contains
 1164 fewer than 8 frames, it is padded with blank frames to meet the required sequence length. Each frame
 1165 is resized such that the shorter side is 224 pixels, followed by a random crop to a final resolution
 1166 of 224×224. To enhance model robustness, we apply two forms of data augmentation: random
 1167 horizontal flipping and random Gaussian noise. During testing, frames are sampled in the same
 1168 manner as during training. After resizing the shorter side of each frame to 224 pixels, a center crop
 1169 to 224×224 is applied instead of a random crop to ensure deterministic evaluation.

1170 D ADDITIONAL RESULTS AND ABLATIONS

1171 **Full Results on Genvideo-Val.** As shown in Table 4, our proposed method achieves state-of-the-
 1172 art performance across several key metrics. Notably, it attains an F1 score of 90.64 and an average
 1173 precision (AP) of 96.13, surpassing all other leading methods—including DeMamba-CLIP, which
 1174 was trained on the GenVideo dataset comprising 2.2 million samples. In contrast, our model was
 1175 trained on only 140K samples, over ten times fewer, underscoring both the high quality of our
 1176 training data and the efficiency of our method in learning robust forgery-discriminative features at
 1177 native resolution.

1178 In addition, our model achieves a balanced accuracy (bACC) of 95.38, significantly outperforming
 1179 all competing methods. This result demonstrates not only high overall detection performance but
 1180 also the model’s well-rounded and consistent capabilities across diverse forgery cases.

1181 **Efficiency Comparison.** As detailed in Table 10, we conduct a comprehensive efficiency analysis
 1182 comparing our proposed Qwen2.5-VL ViT (QwenViT) with several strong baseline models. For a

1188	Model	Training Data	Metric	Sora	Morph Studio	Gen2	HotShot	Lavie	Show-1	Moon Valley	Crafter	Model Scope	Wild Scrape	Avg.	
1189	UNITE	FaceForensics++, SAIL-VOS-3D	Recall	92.11	100.0	94.62	96.93	98.12	99.86	98.69	100.0	96.29	89.89	89.60	
			F1	-											
			AP	88.57	100.0	100.0	90.16	89.91	98.34	99.52	100.0	98.96	92.56	92.76	
1190	DeMamba-CLIP	GenVideo	Recall	95.71	100.0	98.70	69.14	92.43	93.29	100.0	100.0	83.57	82.94	91.58	
			F1	64.63	96.15	97.39	78.03	94.14	92.76	95.72	98.04	87.23	87.82	89.19	
			AP	85.50	100.0	99.59	76.15	96.78	96.99	99.97	100.0	89.80	89.72	93.45	
1191	RINE	ProGAN	bACC	-	84.00	89.10	66.00	96.70	91.80	85.70	98.30	76.60	-	74.10*	
		DeMamba	PyramidFlow	bACC	-	83.80	92.20	62.00	79.60	72.60	92.40	87.50	68.60	-	78.10*
		Corvi et al.	PyramidFlow	bACC	-	97.00	98.80	81.40	95.50	92.10	98.40	98.30	97.10	-	94.30*
1192	Ours	15model-140k	Recall	82.14	97.14	99.49	89.00	98.79	92.29	99.05	99.07	83.00	71.60	91.16	
			F1	65.25	95.84	98.35	91.48	98.02	93.29	96.51	98.16	88.03	81.45	90.64	
			AP	82.49	99.36	99.95	96.55	99.78	97.88	99.87	99.89	94.50	90.98	96.13	
1193			bACC	90.87	98.38	99.55	94.31	99.20	95.95	99.33	99.34	91.31	85.61	95.38	

Table 11: **Benchmarking Evaluation in terms of Recall, F1 score (F1), average precision (AP), and balance accuracy (bACC) on Genvideo-Val.** The results of RINE and DeMamba are reported in Corvi et al. (2025).

Model	Resolution	#Params	FLOPS	Peak GPU Mem	Training Time / Epoch
CLIP-L	[224, 224]	303.2M	622.6G	21.5GB (bs=4) 129.3GB (bs=32)	9.5 A100 hours
X-CLIP-L	[224, 224]	429.2M	650.6G	21.5GB (bs=4) 129.3GB (bs=32)	10.5 A100 hours
Effort	[224, 224]	0.2M/504.6M	623.4G	17.3G (bs=4) 75.1GB(bs=32)	7.5 A100 hours
QwenViT	[224, 224]	668.7M	656G	16.0GB(bs=4)	2.3 A100 hours
QwenViT	dynamic [224p, 448p]	668.7M	-	37.9GB(bs=4)	7 A100 hours
QwenViT-LoRA	dynamic [224p, 448p]	2.6M/671.31M	-	27.4GB(bs=4)	5.5 A100 hours

Table 12: Efficiency comparison results on model parameters, FLOPS, GPU memory utilization and time consumed during training.

standard input resolution of [224, 224], QwenViT exhibits remarkable training efficiency. Despite having more parameters (668.7M) than CLIP-L (303.2M), it achieves a $4.1 \times$ reduction in training time (2.3 vs. 9.5 A100 hours) and a 25% decrease in peak GPU memory usage (16.0GB vs. 21.5GB at a batch size of 4). These gains are primarily attributed to efficiency-oriented design choices such as bfloat16 training and Flash Attention, which allow QwenViT to utilize computational resources more effectively. When adopting a dynamic resolution strategy, the training overhead naturally increases, yet QwenViT remains faster and more memory-efficient than the baselines. Moreover, our parameter-efficient fine-tuning variant, QwenViT-LoRA, requires updating only 2.6M parameters. This substantially reduces resource demands compared to full dynamic fine-tuning, lowering GPU memory from 37.9GB to 27.4GB and cutting training time from 7 to 5.5 hours. Overall, these results highlight that the superior efficiency of QwenViT stems from architectural optimizations, making the additional cost of higher dynamic resolutions acceptable in practice.

E VISUALIZATION AND DISCUSSION

Figures 6 to 9 present a selection of video samples from our dataset, with Figures 3–5 offering detailed visualizations along with their corresponding generative prompts. As illustrated in these figures, the videos in our test set exhibit high visual quality, characterized by aesthetic appeal, rich motion, and diverse themes and visual effects.

By using carefully curated prompts to control the generative themes, we are able to evaluate a model’s detection performance without introducing content bias. This methodological design promotes a fairer and more reliable assessment, encouraging the detector to learn generalizable forgery artifacts rather than memorizing specific object- or scene-level patterns.

Acknowledgment of LLM Usage. This manuscript has benefited from the assistance of a large language model, which was employed solely for grammar checking and language polishing. All scientific ideas, experimental designs, analyses, and conclusions are made by the authors.

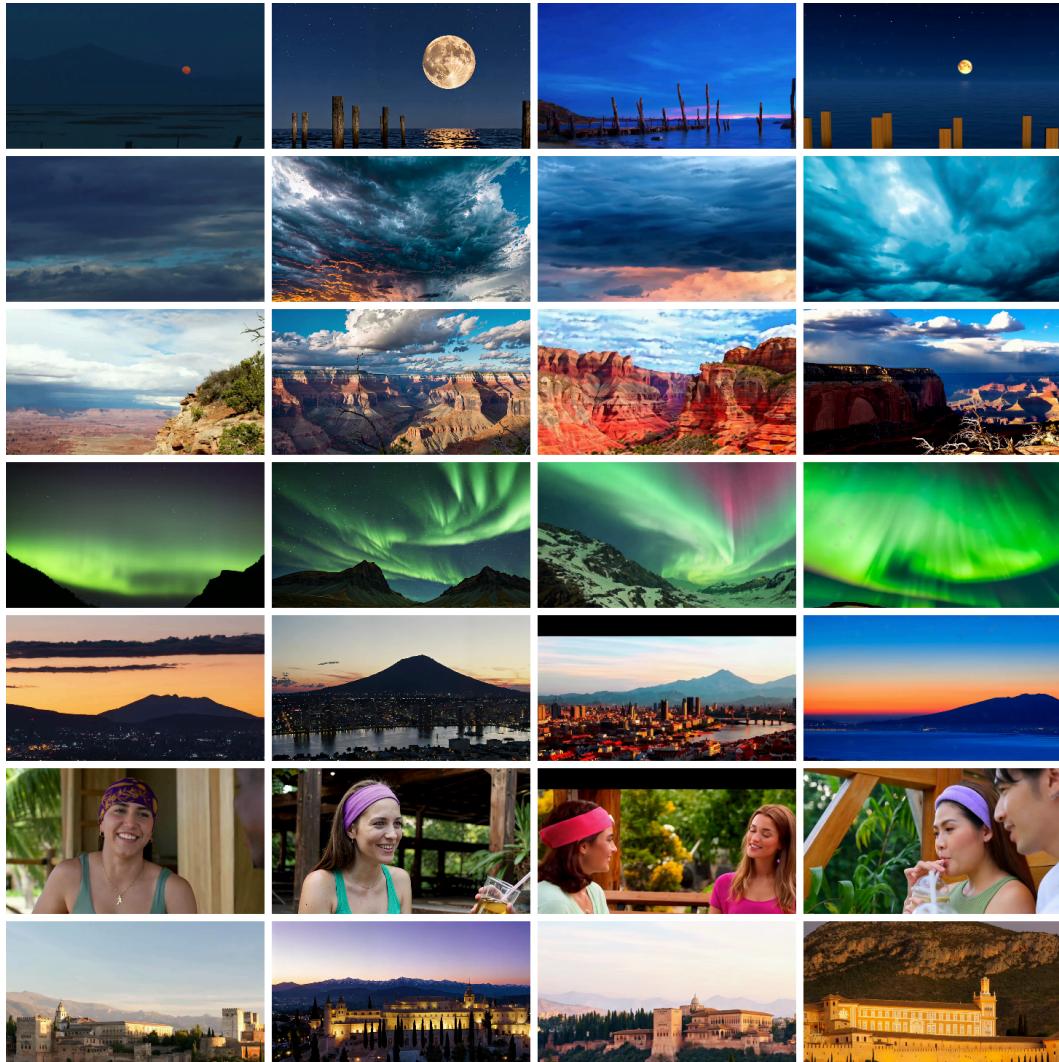


Figure 6: **Video Visualization from Magic Video Testset.** From left to right, each column denotes videos from real sources, seaweed, seedance, and wan2.1.

Limitations. First, despite our best efforts, the field of generative AI is advancing at an exceptional pace. As new generator architectures continue to emerge, the dataset and detection framework will require periodic updates to maintain relevance. Second, although optimized for efficiency, processing videos at their native resolution remains more computationally intensive than traditional methods based on downsampled inputs. This may limit deployment in resource-constrained environments. Finally, further investigation into the model’s explainability could yield valuable insights into the specific artifacts it learns to detect, thereby advancing the understanding of generative model fingerprints.

1296
1297
1298
1299
1300
1301
1302
1303
1304 *real video*
1305
1306
1307
1308
1309
1310

1311 *prompt: The video showcases the Alhambra in Granada, Spain, transitioning from warm*
1312 *golden sunset tones to deep violet hues as night falls. The palatial structures, set against*
1313 *the Sierra Nevada mountains and lined with cypress trees, shift from sunlit brilliance to*
1314 *dramatic nighttime illumination. A subtle zoom enhances the view, while the changing light*
1315 *casts a striking contrast between the fortress's golden glow and the darkening sky, creating*
1316 *a captivating visual transformation.*
1317

1318
1319
1320 *generated video*
1321

1327
1328
1329
1330
1331
1332
1333

1334
1335
1336
1337
1338
1339
1340

1341
1342 **Figure 7: Video Visualization from Magic Video Testset.**
1343
1344
1345
1346
1347
1348
1349

1350
1351
1352
1353
1354
1355
1356
1357
1358 *real video*
1359

1360
1361
1362
1363
1364
1365 *prompt: A woman and a man engage in a friendly outdoor conversation amid wooden structures and greenery. The woman, wearing a purple headband and green tank top, sips her drink, signaling relaxation. Her expressions shift from savoring to engaging warmly, smiling and making eye contact. The man listens attentively, maintaining a steady demeanor. Both hold beverages, emphasizing the leisurely tone. Their uninterrupted dialogue features moments of humor and enjoyment in a serene setting.*
1370
1371

1372
1373
1374 *generated video*
1375

1396 **Figure 8: Video Visualization from Magic Video Testset.**
1397
1398
1399
1400
1401
1402
1403

1404

1405

1406

1407

1408

1409

1410

1411

real video

prompt: The video showcases billboards for Powerball (\$470M) and Mega Millions (\$999M) under a sunny sky, with a '3 News Now' banner highlighting a '\$1 BILLION MEGA MILLIONS JACKPOT.' Vibrant designs and mentions of 'NEBRASKA POWERBALL POWERPLAY' add local context. A brief error misstates the Mega Millions jackpot as \$9M before correcting it. The video ends with a wide shot of the billboards against a residential backdrop, emphasizing their public appeal.

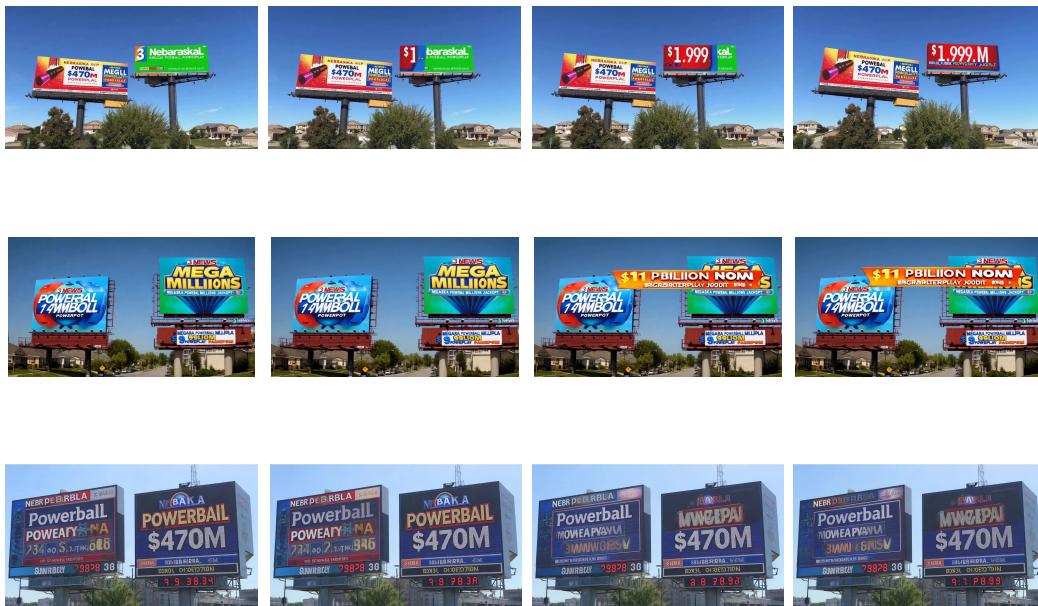
generated video

Figure 9: **Video Visualization from Magic Video Testset.**