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Abstract

Coarse graining (CG) algorithms are widely used to speed up molecular dynamics
(MD) simulations. Recent data-driven CG algorithms have demonstrated competi-
tive performances to empirical CG methods. However, these data-driven algorithms
often rely heavily on labeled information (e.g., force), which is sometimes unavail-
able, and may not scale to large and complex molecular systems. In this paper, we
propose Reinforcement Learning for Coarse Graining (RLCG), a reinforcement-
learning-based framework for learning CG mappings. Particularly, RLCG makes
CG assignments based on local information of each atom and is trained using a
novel reward function. This "atom-centric" approach may substantially improve
computational scalability. We showcase the power of RLCG by demonstrating its
competitive performance against the state-of-the-arts on small (Alanine Dipeptide
and Paracetamol) and medium-sized (Chignolin) molecules. More broadly, RLCG
has great potential in accelerating the scientific discovery cycle, especially on
large-scale problems.

1 Introduction

Molecular dynamics (MD) simulations [1, 2] are commonly used to probe and predict the atomic
interactions of molecules across a wide range of scientific fields, including drug discoveries [3, 4, 5],
protein folding predictions [6, 7], and battery material simulations [8, 9]. One major challenge in MD
applications is the high computational cost, often induced by the spatial and temporal scale of the
problem [10, 11]. Among the multiple approaches proposed to trade high resolution of the simulation
for a better speed, e.g., adopting a larger time step [12], the application of coarse graining (CG)
algorithms has been the most popular one. Coarse graining algorithms group atoms into different
"beads" [13, 14], based on a mapping that can either be empirically defined or learned in a data-driven
fashion [15, 14]. By representing a group of atoms as a bead, coarse graining algorithms reduce the
spatial resolution of the system and are thus easier to simulate. Moreover, coarse-grained models
tend to have smoother energy landscapes because of the removal of small fluctuations. Consequently,
their simulations can be conducted with much larger time steps, leading to even faster simulation
performances [16, 15].

A critical component of a successful CG algorithm is the CG mapping that assigns atoms to beads.
To this end, several approaches have been proposed to define a CG mapping. Empirical methods that
predefine a grouping rule (e.g., a "four-to-one" mapping), are widely used, see, e.g., MARTINI [17,
18]). Other algorithms adopt more automated procedures to the mapping process, such as extensions
to MARTINI , as well as algorithms based on the graph structure of molecules [19, 20, 21]. More
recently, the rise of artificial intelligence (AI) has brought about data-driven algorithms that learn a CG
mapping by training neural networks with MD trajectory data. By learning the CG mapping purely
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Figure 1: Major components of RLCG. The reinforcement learning framework facilitates efficient
decision and learning with the policy network using only local information of each atom.

from data, these algorithms eliminate the presence of human-imposed biases, and have seen success
on small and medium-sized molecules. For example, Coarse-grained Autoencoder (CGAE) [16, 22]
uses an autoencoder to learn the mapping by considering the CG space as its latent space. Another
type of data-driven algorithm adopts a supervised learning approach that uses manually identified
mappings as labels for training the mapping algorithms [23, 24].

There are two major caveats with the aforementioned algorithms. First, an appropriate loss function
needs to be carefully designed in order to achieve a reasonable mapping. Such a loss function (e.g.,
in CGAE) may also require proper tuning and additional data beyond the coordinates of the atoms
to compute, e.g., force labels, which can be hard to acquire. At a higher level, there lacks of an
intuitive metric to assess the quality of CG mappings. As a consequence, measuring the quality of
a CG mapping requires the presence of a downstream task. Secondly, graph-based methods suffer
from limited scalability because of the computational cost of performing matrix manipulations on
the scale of the whole molecule. The same issue also arises in data-driven methods because these
algorithms (e.g. CGAE) learn a mapping of the whole molecule, which typically has a computational
complexity of at least O(Nn) with N,n being the number of atoms and CG beads, respectively. In
particular, these algorithms can take a substantial amount of time to converge for large molecules
with thousands of atoms.

To address these issues, we propose, to the best of our knowledge, the first reinforcement learning
framework to learn CG mappings, i.e., Reinforcement Learning for Coarse graining (RLCG). Our
framework uses an atom-centric approach by making bead assignments per atom, requiring learning
only a fixed number of parameters regardless of the size of the molecule. More specifically, the bead
assignment is facilitated by a novel policy network architecture based on a graph attention (GAT)
neural network [25], together with a novel but simple design of the reward function. These designs
enable us to scale the algorithm to large molecules and provide us with an intuitive metric to measure
the quality of the learned CG mapping.

The rest of this paper is organized as follows: Section 2 details the RLCG framework; Section 3
presents our experimental results on three molecules with different sizes, including Alanine Dipeptide,
Paracetamol, and Chignolin; Section 4 compares our method to several related works and briefly
concludes the paper and discusses some future directions to further improve RLCG.

2 RLCG: Architecture and design

RLCG learns a CG mapping by sequentially assigning individual atoms to different CG beads. At
each iteration, it uses a graph attention policy network to featurize atom-specific information and
make CG assignments on individual atoms. The updated CG mapping will receive an orthogonal
projection reward which quantifies the quality of the mapping. RLCG learns the parameters of the
policy network by routinely making assignments with different random initializations and updating
the parameters under a reinforcement learning framework. The overall procedure is depicted in Fig. 1,
and we will introduce the components in the remainder of this section.

2.1 Preliminaries

Let T be the trajectory of the molecule and Xt ∈ Rn×3 be the coordinates of the molecule at
time t, where n is the number of atoms. We want to learn a mapping M(·) : Rn×3 7→ RN×3 that
maps the atomic coordinates into the CG coordinates (geometric center of the corresponding atomic
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coordinates), where N is the number of CG beads and N ≪ n. Let M−1(xt; k) ∈ RNk×3 denote
the atomic coordinates of the k-th CG bead with Nk atoms at the t-th time. For simplicity, let
M(i) ∈ [N ] represent the CG assignment of the i-th atom.

2.2 The orthogonal projection reward

We need a metric to evaluate the quality of the current CG mapping. Intuitively, a good CG mapping
should preserve intra-bead rigidity. In other words, the atoms mapped within one bead should have
smaller relative movements (Fig. 2.a). Such within-bead rigidity may also benefit the training of
the CG force field. Following this intuition, we introduce the orthogonal projection loss. More
specifically, for two arbitrary frames of the atomic coordinates x and y, the orthogonal projection
loss of a CG mapping, M(·), is defined as:

Lortho(x, y,M) =

K∑
k=1

wk min
Ω⊤

x,y,k,MΩx,y,k,M=I
∥Ωx,y,k,MM−1(x; k)−M−1(y; k)∥F ,

where wk is the mass of the k-th bead divided by the mass of the molecule, ∥ · ∥F is the Frobenius
norm, and Ωx,y,k,M is obtained via solving the orthogonal Procrustes analysis [26] by first performing
a singular value decomposition: M−1(x; k)M−1(y; k)⊤ = UΣV ⊤ and letting Ωx,y,k,M = V U⊤.
Intuitively, the orthogonal projection loss is the residue of the projected atomic coordinates of each
CG bead between two frames, weighted by the mass of each bead. A smaller orthogonal projection
loss corresponds to a better rigidity within a bead, as atoms are relatively static to each other when
the loss is small.

The orthogonal projection reward of the CG mapping M is thus defined as the negative expected
orthogonal projection loss averaged over the entire trajectory T . :

Reward(M) = −Ex,y∼T
[
Lortho(x, y,M)

]
.

In practice, we used 1000 randomly sampled pairs of frames of coordinates to approximate the
expectation above. This reward (or loss) only depends on the coordinates of the atoms and accurately
reflects the quality of the mapping as shown in Supplementary Fig. S1.

2.3 The graph attention policy network

The policy network receives feature vectors of each atom in the molecule and generates two outputs:
the selection output that determines which atom’s CG assignment to change, and the decision output
that determines the selected atoms’ new CG assignment.

This design aims at explicitly decoupling from atom assignment, because not every atom needs to be
re-assigned throughout the learning process. Moreover, the assignment action is based on merging
the CG id of one atom to the other, which lends itself to the use of a graph attention network that
explicitly models the relative interaction between atoms.

Feature vector. We adopt a similar featurization strategy as in literature using graph neural networks
for molecules and graphs[22, 27]. For the i-th atom, the node feature is defined as:

F
(0)
i = one_hot(atom_type(i))

⊕
one_hot(M(i))

⊕
load(i),

where
⊕

denotes concatenation, one_hot(M(i)) is the one-hot encoding of the CG assignment, and

load(i) =
|{k : M(k) = M(i), k = 1, · · · , n}|

n

represents the proportion of CG i. The node feature includes chemical information (atom type) as
well as the mapping related information.

The edge feature between a pair of atoms i, j connected with a bond is simply:

Eij = one_hot(bond_type(i, j)).
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Intuitively, the algorithm will make grouping assignments based on the type of the atom and how
it is connected to other atoms (e.g. a carbon atom may be more likely to be assigned to the same
CG bead with the oxygen atom through their C=O bond than with another carbon atom through C-C
bond, because the former combination has a stronger bond.). Moreover, based on the loading of the
atom, the algorithm can balance the loading of each CG bead by converting the assignment of an
atom from the larger bead to that of a smaller bead. Note that additional features can be added for
more information. For example, incorporating the distance between atoms as an edge feature may
enable the network to learn the strength of atomic interactions in addition to the current bond-based
edge feature [22].

Selection layer. The selection layer consists of a graph attention network (GAT) layer:

F
(1)
i = α

(1)
i,i ΘF

(0)
i +

∑
j∈N (i)

α
(1)
i,j ΘF

(0)
j ,

where N (i) is the index set of the neighbors of atom i defined by bond connections, Θ is an MLP
and αi,j is the attention coefficient computed using Θ,F

(1)
i ,F

(1)
j , Eij , and an attention network,

a [28, 25].

The readout layer is an MLP combined with a masked softmax:

Selection = Softmax(MLP(F
(1)
i ), i ∈ bd),

where bd is the boundary set such that i ∈ bd if there exists j ∈ N (i) such that CG(i) ̸= CG(j).
In other words, the algorithm only seeks to update the assignment of atoms which has neighboring
atoms with a different CG assignment. This way the algorithm will avoid "incongruous" mapping
where non-connected atoms are assigned to the same CG group.

Decision layer. The decision layer outputs the CG assignment of each atom. This is achieved with
another GAT layer:

F
(2)
i = α

(2)
i,i ΘF

(1)
i +

∑
j∈N (i)

α
(2)
i,j ΘF

(1)
j .

The assignment of each atom is drawn from a multinomial distribution with class probabilities
following the attention coefficients: {αij : j ∈ N (i) ∪ {i}}.
Hence, for each atom, the probability of being given the same assignment of its neighboring atom
j is given by αij . Note that the decision is only limited to the neighboring atoms, which further
reduces the undesirable scenarios where an atom is assigned with a CG bead different from any of
its neighbors. Furthermore, the assignment is "relative": an atom is not directly assigned a CG id,
but indirectly through the id of its neighboring atom. This resolves the potential "label permutation
invariance" issue as the number that represents CG assignment may change with different episodes in
the RL cycle (i.e. CG bead 1 can be bead 2 in a different episode).

2.4 The Reinforcement learning framework

The framework follows the standard REINFORCE algorithm [29]. For each episode, we use a random
backbone initialization of the mapping and consecutively make CG assignments using the policy
network until a predefined number of steps has been reached. This is listed in Algorithm 1 and
illustrated in Fig. 2.b. Therefore, as an atom-centric approach, each individual atom makes the
mapping decision based on its surrounding environment.

Note that the actual reward we use to train the policy network is the difference between the reward of
the current step and the previous one. This is a design choice to encourage the algorithm to actively
change the CG assignment of an atom as opposed to not performing any changes, as we want to
maximize "gain" in reward for each step.

3 Experiments

3.1 Experiment setup

We test the performance of RLCG on three molecules:
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Figure 2: Diagram for RLCG. (a). Illustration of the orthogonal loss. (b). GNN architecture and RL
training routine for one episode.

Algorithm 1: RLCG evaluation steps for one episode
Input: policy network πθ(· · · ), initialization method, number of steps S.
M ← initialization
R = empty set
for s← 1 to S do

r = Reward(M)

F
(0)
i ← one_hot(atom_type(i))

⊕
one_hot(M(i))

⊕
load(i),∀i

F
(1)
i = α

(1)
i,i ΘF

(0)
i +

∑
j∈N (i) α

(1)
i,j ΘF

(0)
j

η ← Softmax(MLP(F
(1)
i ), i ∈ bd)

F
(2)
i = α

(2)
i,i ΘF

(1)
i +

∑
j∈N (i) α

(2)
i,j ΘF

(1)
j

M(η)←{αij : j ∈ N (i) ∪ {i}}
F

(0)
η ← one_hot(atom_type(η))

⊕
one_hot(M(η))

⊕
load(η)

R = R ∪ {Reward(M)− r}

Alanine Dipeptide. This molecule contains 10 heavy atoms (22 atoms in total). The trajectory data
was obtained from the mdshare dataset and downloaded from https://markovmodel.github.io/
mdshare/ALA2/. We randomly selected 10, 000 frames for training and learned a CG mapping with
2 beads on this molecule.

Paracetamol. This molecule contains 11 heavy atoms (20 atoms in total). The trajectory data was
obtained from the MD17 dataset [30] and downloaded from http://www.sgdml.org/#datasets.
We randomly selected 10, 000 frames for training and learned a CG mapping with 3 beads on this
molecule.

Chignolin. Chignolin is a 10-amino acid mini-protein with 99 heavy atoms (175 atoms in total).
The trajectory data was simulated using HTMD (High-Throughput Molecular Dynamics) [31] and
downloaded from http://pub.htmd.org/Chignolin_trajectories.tar.gz. We randomly
selected 10, 000 frames for training and learned a CG mapping with 10 beads on this molecule.

The simulation details for Alanine Dipeptide and Chignolin can be found in [23]. These two datasets
have also been studied extensively as benchmark datasets in [22]. For all datasets, we only consider
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Figure 3: Training results for the three molecules. (a). Example evaluation trajectory for Alanine
Dipeptide with 2 beads. Step 0 represents the initial CG assignment. Different colors represent
different CG beads. (b). Example evaluation trajectory for Paracetamol with 3 beads. (c). Learned
CG mapping for Chignolin with 10 beads.

the heavy atoms for simplicity. To test the performance of RLCG, we trained the policy network for
1500 episodes on Alanine Dipeptide and Paracetamol, and 2500 episodes on Chignolin. Within each
episode, we ran the policy network for 5 steps on Alanine Dipeptide and Paracetamol, and 50 steps
on Chignolin with random initialization.

We also compared RLCG with CGAE. The training loss for CGAE includes the reconstruction error
and the force regularization. Note that the force label is only available in Paracetamol dataset. As
a baseline, we compared RLCG with random partition where each CG bead has at least one atom
assigned to it. We performed a 5-fold cross validation, where each algorithm was trained on 4 folds
and tested on the held-out fold. See Fig. S2 for the evolution of the testing orthogonal loss for
RLCG. Even though the algorithms compared are not supervised approaches, 5-fold cross validation
may account for potential variance during the learning and testing process and enable a more fair
comparison.

3.2 Simulation results

As an illustrative example, we plotted the evolution of the CG mapping using RLCG on Alanine
dipeptide within one episode (Fig. 3.a). As can be seen (Fig. 3.a), RLCG automatically balances the
CG loading by stopping further updates after step 3 (step 4 is not shown because it is the same as
step 3). On Paracetamal, RLCG also yields congruous mappings within 3 steps (Fig. 3.b). Note that
RLCG will group the C atom with the one on the benzene ring instead of the N atom (step 2 to 3,
red bead), indicating the algorithm has learned the correct relative bond information between atoms.
RLCG also learns congruent mapping with reasonably balanced CG loadings for Chignolin (Fig. 3.c).

RLCG achieves a competitive orthogonal loss across all the algorithms compared (Table 1). Note
that for Alanine Dipeptide, the slight higher loss of RLCG than CGAE is due to the randomness in
initialization for RLCG, which can be further improved.

Table 1: Orthogonal projection loss on three molecules, mean ± SD

Algorithm Alanine Dipeptide Paracetamol Chignolin
random partition 0.428± 0.038 0.543± 0.045 68.59± 2.20

CGAE 0.332± 0.002 0.257± 0.123 43.326± 7.652
CGAE w/ force regularization / 0.208± 0.081 /

RLCG 0.361± 0.03 0.161± 0.011 20.145± 0.312
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4 Conclusions & Discussions

4.1 Conclusions

In this paper, we present RLCG, a reinforcement learning framework that is designed to efficiently
learn the coarse-grained mapping of a molecule. RLCG adopts an atom-centric decision mechanism
and uses GAT to generate CG assignments, which is capable of fast simulations even on large
molecules. Our algorithm has the potential to expedite the scientific discovery cycle if further
extended to large molecules.

The RLCG framework has connections to other RL-based graph partitioning algorithms, but pos-
sesses distinct advantages. For example, several vertex-centric methods are proposed for graph
partitioning [32, 33]. However, these algorithms do not use a standard RL framework and partition a
graph "on the go", which may not generalize to different datasets. GNN-based RL algorithms have
also been proposed [27]. However, such methods only consider graphs without chemical information,
and only apply to bi-partitions. There are also algorithms that fragment a molecule by breaking their
SMILES strings [34] or chemical bonds [35]. However, these methods are mainly designed for
decomposing a large molecule into motifs and hence may only result in larger fragments and may not
be directly applicable to coarse graining.

4.2 Discussions and future work

Multiple improvements can be made to speed up the RLCG framework. First, the computation of the
orthogonal projection reward is local: changing the assignment of one atom will only affect the CG
partition of two CG beads. This property may enable a much faster computation of the orthogonal
projection reward. Second, adding more layers to the policy network may enable the network to
handle more complicated structures. For example, more GNN layers would allow the policy network
to see more hops away, and consequently handle rings of different numbers of atoms. Third, the RL
framework is flexible and can process chemical information, such as the rotation angle, as well as
the designer’s preference for the downstream task, e.g., using more CG beads for a benzene ring to
preserve its planar property which will potentially improve the training of the CG force field. Lastly,
future work also includes experimenting on larger molecules and also testing the generality of the
trained policy network on new and unseen molecules.
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Figure S1: Example orthogonal projection loss on different CG mappings of Alanine dipeptide.
We selected three CG mappings and we computed their orthogonal projection loss based on coor-
dinates of Alanine dipeptide of 100 randomly sampled times. Each dot represents the orthogonal
projection loss of two mappings (illustrated with the icons) on a given time point. It can be seen that
the better mapping (represented by the x-axis) has a smaller orthogonal projection loss than the other
two mappings. Note that there is variance in the loss under the same CG mapping (dots are scattered),
hence we computed the loss based on 1000 randomly selected time points in practice, to reduce the
effect of this variance.

Alanine dipeptide Paracetamol Chignolin

Figure S2: RLCG training validation error. Orthogonal loss of the CG mapping returned by RLCG
during training process per episode (grey traces). Black traces are 50-episode moving averages. For
Chignolin we only show the first 800 episodes since the training process already converges within
800 episodes.
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