
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Hierarchical Graph Signal Processing for Collaborative Filtering
Anonymous Author(s)

ABSTRACT
Graph Signal Processing (GSP) has proven to be a highly effective

and efficient tool for predicting user future interactions in recom-

mender systems. However, current GSP methods recognize user

interaction patterns based on the interactions of all users, so that

the recognized interaction patterns are not fully user-matched and

easily impacted by other users with different interaction behav-

iors, resulting in sub-optimal recommendation performance. To

this end, we propose a hierarchical graph signal processing method

(HiGSP) for collaborative filtering, which consists of two key mod-

ules: 1) the cluster-wise filter module that recognizes user unique

interaction patterns merely from interactions of users with similar

preferences, making the recognized patterns able to reflect user

preference without being influenced by other users with different

interaction behaviors, and 2) the globally-aware filter module that

serves as a complementary to the cluster-wise filter module to rec-

ognize user general interaction patterns more effectively from all

user interactions. By linearly combining these two modules, HiGSP

can recognize user-matched interaction patterns, so as to model

user preference and predict user future interactions more accurately.

Extensive experiments on six real-world datasets demonstrate the

superiority of HiGSP compared to other GCN-based and GSP-based

recommendation methods in terms of efficacy and efficiency.

KEYWORDS
User preference modeling, graph signal processing

ACM Reference Format:
Anonymous Author(s). 2018. Hierarchical Graph Signal Processing for Col-

laborative Filtering. In Proceedings of Make sure to enter the correct conference
title from your rights confirmation email (Conference acronym ’XX). ACM,

New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Graph Signal Processing [7, 20], which is an extension of signal pro-

cessing theory [19] on graph data, has recently received increasing

attention and become a powerful tool in recommender systems due

to its promising accuracy and parameter-free characteristic [15, 22].

By constructing various types of filters (e.g., static filter [22], dy-

namic filter [31]) on user interaction signals, it can extract different

types of interaction patterns, i.e., item transition patterns, for user

preference modeling, and thereby accurately predict user future

interactions.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

0 0 1 1
0 0 0 1
1 1 1 0
1 1 0 0

Alice
Bob

Jim

Tom

Figure 1: A toy example of interactions between four users
and four items, where 1 indicates a user-item interaction,
and 0 otherwise.

Existing methods [15, 22] design filters over the whole user

interactions, so they mainly focus on recognizing user general

interaction patterns to model user preference. However, merely

using user general interaction patterns will lead to the deviation in

user preference modeling, since the recognized general interaction

patterns are not fully user-matched and easily impacted by other

users with different interaction behaviors, thereby resulting in sub-

optimal prediction of user future interactions. Figure 1 shows a toy

example containing the interactions of four users. We can observe

that different users have different interaction behaviors, Alice and

Bob tend to interact with items related to music, while Jim and

Tom prefer items related to electronic products. Generally, user

general interaction patterns recognized by existing methods [15,

22] integrate four users’ interaction behaviors. Therefore, when

predicting the Alice’s future interactions, her prediction results will

be affected by the interaction behaviors of all other users (such as

Jim and Tom) who have different preferences, thereby affecting the

accuracy of her future interaction predictions.

To tackle this problem, we propose a hierarchical graph signal

processing method HiGSP for collaborative filtering. User segmen-

tation theory in the marketing field [6] points out that no two users

are alike and none is entirely unique either. By segmenting users

into distinct groups based on shared characteristics, we are able

to better understand what motivates groups and users in groups.

Inspired by this, we first cluster users based on their interactions, so

that users within the same cluster have similar preferences, while

users across different clusters have different preferences. Then,

we design a cluster-wise filter module to recognize the interaction

patterns of users in their respective clusters, therebymaking the rec-

ognized interaction patterns unique, i.e., reflecting user preference

without being influenced by other users with different interaction

behaviors. In addition, we design a globally-aware filter module,

which serves as a complementary to cluster-wise filter module, to

recognize user general interaction patterns more effectively with

the carefully devised high-order low-pass filter. Finally, we use a

linear model to combine these two modules, so as to obtain user-

matched interaction patterns, thereby making the user preference

modeling and user future interactions prediction more accurate.

We conduct extensive experiments on six real-world datasets, and

the results show that HiGSP outperforms existing GCN-based and

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

GSP-based recommendation methods in terms of prediction ac-

curacy, while achieves comparable results with the most efficient

methods in terms of training efficiency. Besides, we conduct a vi-

sualization and a case study to further demonstrate the rationality

and effectiveness of HiGSP.

Our main contributions are summarized as follows:

• We propose a cluster-wise filter module to recognize user unique

interaction patterns without being influenced by other users

with different interaction behaviors.

• We propose a globally-aware filter module, as a supplement to

the cluster-wise filter module, to recognize user general interac-

tion patterns more effectively.

• We conduct extensive experiments
1
to demonstrate the superi-

ority of our proposed method compared to the state-of-the-art

GCN-based and GSP-based recommendation methods.

2 PRELIMINARIES
2.1 Graph Signal Processing
2.1.1 Graph Signal. Generally, a graph G = (V, E) with node

set V and edge set E can be represented as an adjacency matrix

A ∈ {0, 1}𝑁×𝑁
, where 𝑁 is the number of node, and if there is an

edge between node 𝑣𝑖 and 𝑣 𝑗 , then A𝑖, 𝑗 = 1, otherwise A𝑖, 𝑗 = 0. The

graph signal in essence is a mapping 𝑓 : V → R , and it can be

represented as a vector x = [𝑥1, · · · , 𝑥𝑁]𝑇 , where 𝑥𝑖 can be viewed

as the signal strength on node 𝑣𝑖 .

Graph laplacian matrix is an important and commonly used

matrix in spectral graph theory [5, 23], and it is defined as L =

D − A, where D = diag(A1) is the degree matrix of graph G. The
normalized form of graph laplacian matrix can be expressed as

L̃ = I − Ã, where Ã = D−1/2AD−1/2
.

2.1.2 Graph Filter and Graph Convolution. As the normalized lapla-

cian matrix L̃ is a real and symmetric matrix, it can be decomposed

into L̃ = UΛU𝑇
, where Λ = diag(𝜆1, · · · , 𝜆𝑛) is the eigenvalue ma-

trix and 0 = 𝜆1 ≤ · · · ≤ 𝜆𝑛 = 2, U is the eigenvector matrix. Graph

filter F is constructed upon the normalized laplacian matrix L̃ with

a frequency response function 𝑓 (·)

F = 𝑓 (L̃) = Udiag(𝑓 (𝜆1), · · · , 𝑓 (𝜆𝑛))U𝑇 . (1)

The graph convolution of a given graph signal x is defined as

y = Fx = Udiag(𝑓 (𝜆1), · · · , 𝑓 (𝜆𝑛))U𝑇 x. (2)

The graph signal x is first transformed from spatial domain to

spectral domain through Graph Fourier Transform U𝑇
, then the

undesired frequencies of the signal are removed by the filter in

frequency domain. Finally, the clean signal is transformed back to

spatial domain through inverse Graph Fourier Transform U.

2.2 Notations
Let the user set beU, and the item set beV , and |U| = 𝑀, |V| = 𝑁 .

The interactions between users and items can be represented by

a user interaction matrix R ∈ {0, 1}𝑀×𝑁
. If there is an inter-

action between user 𝑢 ∈ U and item 𝑣 ∈ V , then R𝑢,𝑣 = 1,

otherwise R𝑢,𝑣 = 0. The normalized interaction matrix can be

1
The code is released for review: https://anonymous.4open.science/r/HiGSP-F496/.

0.4 0.4 0.2 -0.1

0.4 0.4 0.2 -0.1

0.2 0.2 0.3 0.3

-0.1 -0.1 0.3 0.8

0.4 0.4 0.2 0.0

0.4 0.4 0.2 0.0

0.2 0.2 0.4 0.3

0.0 0.0 0.3 0.7

Linear Filter Ideal Low-pass Filter

Figure 2: The user interaction patterns, i.e., transitions be-
tween four items, recognized by linear filter and ideal low-
pass filter based on the toy example in Figure 1.

represented as R̃ = D−1/2

𝑈
RD−1/2

𝐼
, where D−1/2

𝑈
= diag(R1) and

D−1/2

𝐼
= diag(R𝑇 1) are the user and item degree matrices.

2.3 User Interaction Patterns
In this paper, we define user interaction patterns as the item transi-

tion matrices that are constructed from user historical interactions:

Definition 2.1. Given a user interaction matrix R and a mapping

𝑔 : R𝑀×𝑁 → R𝑁×𝑁
, user interaction pattern can be defined as an

item transition matrix F = 𝑔(R), where the element F𝑖 𝑗 describes
the transition between item 𝑖 and item 𝑗 , and it is proportional to

probability that user interacts with item 𝑗 after interacting with

item 𝑖 according to historical interactions.

Analogy to transition patterns of states in the system that can be

recognized by transition matrix in Markov Chain, user interaction

patterns can be recognized by graph filters in GSP, and different

graph filters can recognize different user interaction patterns. For

example, the linear filter F = R̃𝑇 R̃ recognizes the transition of items

that share directly connected users as user interaction patterns,

while the ideal low-pass filter F = D−1/2

𝐼
ŪŪ𝑇 D1/2

𝐼
recognizes the

transition of items that share directly and indirectly connected

users as user interaction patterns, since the former is equivalent to

a single-layer GCN, while the latter can be viewed as an infinite-

layer GCN [22]. Figure 2 shows the user interaction patterns of the

toy example in Figure 1, which are recognized by the linear filter

and the ideal low-pass filter. We can find that the recognized user

interaction patterns are different between different filters.

3 METHOD
3.1 Overview
In this section, we introduce ourmethodHiGSP, which aims tomore

accurately model user preference from user interactions. Specif-

ically, HiGSP consists of two important modules, a cluster-wise

filter module used to recognize user unique interaction patterns,

and a globally-aware filter module used to recognize user general

interaction patterns. Figure 3 shows the workflow of HiGSP. Next,

we introduce these modules in details and how to infer user future

interactions with these modules.

3.2 Cluster-wise Filter Module
User segmentation theory in marketing field [6] highlights that

segmenting users into different groups based on their shared char-

acteristics is beneficial to understand user characteristics, so as to

2

https://anonymous.4open.science/r/HiGSP-F496/

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Hierarchical Graph Signal Processing for Collaborative Filtering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

item

0.1 0.1 1.5 2.1

-0.1 -0.1 0.6 1.6

2.1 2.1 1.5 0.2

1.7 1.7 0.7 -0.1

Filter of Cluster 2

1

2

3
4

3

4

1

2

0 0 1 1

0 0 0 1

1 1 1 0

1 1 0 0

1

2

3

4

1 2 3 4

1
2

3
4

3 4
3 1

2

Cluster 1

Cluster 2

3

4 1 2

3

Filter of Cluster 1

1 2

3

4

Ideal Low-pass Filter

1 2

3
4

High-order Low-pass Filter

Input Model Inference Prediction

user

1

2

3 4
3

4

1

2

1

2

3

4

3 41 2

1

2

3

4

3 41 2

1

2

3

4

3 41 2

1

2

3

4

1 2 3 4

Cluster

Filter

Filter

Filter

Filter

Combine

Combine

Combine

Figure 3: The workflow of HiGSP, which adopts a cluster-wise filter module (the upper part, number of clusters 𝐶 = 2, order
𝑘1 = 2) and a globally-aware filter module(the lower part, number of primary components 𝐾 = 2, order 𝑘2 = 2) to make future
interaction predictions for users. Note that we use user interaction patterns, i.e., item-item relationship graphs, to represent
the filters. The color depth of the edges in all graphs reflects the strength of connection between nodes.

develop personalized marketing strategies for users. Inspired by

this theory, we propose to first cluster users based on their historical

interactions, so that users in the same cluster have similar interac-

tion behaviors, while users in different clusters have significantly

different behaviors. By separating unrelated users based on their

interaction behaviors before recognizing user interaction patterns,

the recognized user interaction patterns will be unique and not

be influenced by other users with different interaction behaviors,

thereby accurately modeling user preference and predicting user

future interactions.

In HiGSP, we use Mixture-of-Gaussian method [18] to cluster

users, but HiGSP is orthogonal to the clustering method, so other

clustering methods, such as BIRCH [37], can also be used to cluster.

Suppose all users are divided into 𝐶 clusters, and the user inter-

actions in the 𝑐-th (1 ≤ 𝑐 ≤ 𝐶) cluster can be represented as

R𝑐 ∈ R𝑀𝑐×𝑁
, where𝑀𝑐 is the number of users in the 𝑐-the cluster.

We design the following filter F𝑐 to recognize the user interaction

patterns in the 𝑐-the cluster

G𝑐 = R𝑇𝑐 R𝑐 , G̃𝑐 = D
− 1

2

𝑐 G𝑐D
− 1

2

𝑐 , (3)

F𝑐 = I − (I − G̃𝑐)𝑘1 , (4)

where D𝑐 is the degree matrix of G𝑐 , and 𝑘1 is the order of the

filter. Filter F𝑐 has two important properties, one is that it can

utilize information from neighbors within any order by adjusting

the order 𝑘1. When 𝑘1 = 1, F𝑐 is a linear filter that can merely

utilize information from first-order neighbors of users in cluster

𝑐 , however when 𝑘1 ≥ 2, F𝑐 can recognize information from high-

order neighbors of users. The other property is that it is a low-

pass filter as shown in Proposition 3.1, which can preserve general

information between users in that cluster, providing the big picture

for user future interaction prediction [11].

Proposition 3.1. The filter F𝑐 is a low-pass filter.

G𝑐 = R𝑇𝑐 R𝑐 , G̃𝑐 = D
− 1

2

𝑐 G𝑐D− 1

2 , (5)

F𝑐 = I − (I − G̃𝑐)𝑘1 , (6)

Proof. It is obvious that G̃𝑐 is a real and symmetric matrix,

making the normalized Laplacian matrix L̃𝑐 = I− G̃𝑐 also a real and

symmetric matrix. Thus L̃𝑐 is diagonalizable and can be represented
as L̃𝑐 = U𝑐ΛΛΛ𝑐U𝑇

𝑐 , and U𝑐U𝑇
𝑐 = U𝑇

𝑐 U𝑐 = I. Then we have

F𝑐 = I − (I − G̃𝑐)𝑘1

= U𝑐U𝑇
𝑐 − (U𝑐ΛΛΛ𝑐U𝑇

𝑐)𝑘1

= U𝑐U𝑇
𝑐 − U𝑐ΛΛΛ

𝑘1

𝑐 U𝑇
𝑐

= U𝑐 (I −ΛΛΛ𝑘1

𝑐)U𝑇
𝑐 .

(7)

We can observe that the frequency response function of F𝑐 is

𝑓 (𝜆𝑐,𝑖) = 1 − 𝜆
𝑘1

𝑐,𝑖
, where 𝜆𝑐,𝑖 is the 𝑖-th eigenvalue of L̃𝑐 , and

𝜆𝑐,𝑖 ∈ [0, 1]. By plotting the image of function 𝑓 (𝜆𝑐,𝑖) when 𝑘1 ≥ 2,

we can find that the low frequency components are preservedwhose

function values are close to 1, and the high frequency components

are removed whose function values are smaller than 1. Moreover,

when 𝑘1 becomes larger, more and more low frequency components

will be preserved. Therefore, we can conclude that F𝑐 is a low-pass
filter. □

These two properties makes filter F𝑐 able to extract rich and

important information, so as to recognize user interaction patterns

accurately. Then we can predict the future interactions P𝑐 ∈ R𝑚𝑐×𝑛

of users in the cluster 𝑐

P𝑐 = R𝑐F𝑐 . (8)

The final prediction result of cluster-wise filter module is a con-

catenation of the prediction results of all clusters

P(𝐶) = [P𝑇
1
| | · · · | |P𝑇𝐶]

𝑇 , (9)

where | | represents the concatenation operation. It is worth men-

tioning that the cluster-wise filter module in essence is a high-pass

filter with localized low-pass characteristics, because within the

cluster, it retains the general information from user interactions for

user interaction pattern recognition, but between clusters, retaining

the general information leads to significant differences in the user

interaction patterns recognized from different clusters. Therefore,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

it is a filter that exhibits low-pass characteristics at a local level but

possesses high-pass characteristics at a global level.

Traditional collaborative filtering methods take the whole user

interactions to recognize user interaction patterns, which will cause

the recognized interaction patterns to be influenced by users who

have different interaction behaviors, leading to sub-optimal user

future interaction prediction. For instance, ItemCF [21] takes the

whole user interactions to predict user future interactions

S𝑖, 𝑗 =
R𝑇

:,𝑖
R:, 𝑗

| |R:,𝑖 | |2 · | |R:, 𝑗 | |2
, P(𝑖𝐶𝐹) = RS (10)

where S is the item similarity matrix, and we use cosine similarity

method to calculate the similarity between items, and R:,𝑖 is the in-

teraction of the 𝑖-th item, i.e., the 𝑖-th column of interaction matrix

R. We can find that when predicting user 𝑢’s future interactions, all

other users, whether similar or different in their interaction habits,

are taken into consideration, making the recognized interaction

patterns inaccurate. In Section 4.3, we compare the performance

of ItemCF and Cluster-wise Filter Module with 1 layer to explore

whether separating users is beneficial to user future interaction pre-

diction, the results show that Cluster-wise Filter Module achieves

better performance, which demonstrate the necessity of separating

users with different interaction behaviors.

3.3 Globally-aware Filter Module
Cluster-wise filter module mainly focus on recognizing user unique

interaction patterns, while user general interaction patterns recog-

nized from all user interactions are also crucial for user preference

modeling and future interaction prediction. Therefore, we propose

a globally-aware filter module to recognize user general interaction

patterns from interactions of all users. Existing methods [15, 22]

usually adopt the ideal low-pass filter to recognize user general

interaction patterns. However, the ideal low-pass filter in essence

is equivalent to an infinite-layer spatial GCN [22], although it can

utilize rich information from direct and distant neighbors for user

general interaction patterns recognition, the over-smoothing issue

seriously hurts the performance of the filter. In order to better rec-

ognize user general interaction patterns, we carefully devise the

high-order low-pass filter F𝐻 to be used together with the ideal

low-pass filter F𝐼 for user general interaction patterns recognition

F𝐼 = D
− 1

2

𝐼
ŪŪ𝑇 D

1

2

𝐼
, F𝐻 = I − (I − R̃𝑇 R̃)𝑘2 , (11)

where Ū is the top-𝐾 singular vectors of R̃, and 𝑘2 (𝑘2 ≥ 2) is the
order of F𝐻 . Compared to the ideal low-pass filter, the high-order

low-pass filter limits the recognition of the user general interaction

patterns to a specified neighborhood range, and as the order of

the filter increases, the neighborhood range also increases, which

alleviates the over-smoothing issue and makes the filter utilize

information from nearby neighbors for user interaction pattern

recognition. Combining these two filters can fully utilize the ad-

vantages of each filter, so that HiGSP can not only focus more on

the information from the nearby neighborhood but also have ac-

cess to information from the distant neighborhood. Therefore, the

prediction of user future interaction through globally-aware filter

module is

P(𝐺1) = RF𝐼 , P(𝐺2) = RF𝐻 . (12)

Table 1: The detailed statistics of six real-world datasets.

Users # Items # Interactions Category

ML100K (MovieLens 100K) 943 1,682 100,000 Movie

Beauty (Amazon Beauty) 22,363 12,101 198,502 Product

BX (Book-Crossing) 18,964 19,998 482,153 Book

LastFM 992 10,000 571,817 Music

ML1M (MovieLens 1M) 6,040 3,706 1,000,209 Movie

Netflix 20,000 17,720 5,678,654 Movie

3.4 Model Inference
Since cluster-wise filter module and globally-aware filter module

recognize user interaction patterns from different perspectives, we

believe combining them together can make them complement each

other and make user preference modeling more accurate, thus we

propose a linear model to combine the outputs of two modules as

the final output of our proposed method

P = P(𝐶) + 𝛼1P(𝐺1) + 𝛼2P(𝐺2) , (13)

where 𝛼1 and 𝛼2 are two weight coefficients.

3.5 The Time Complexity
The time complexity of Mixture-Of-Gaussian method for clustering

is 𝑂 (𝑀𝑁 2), where we assume that the number of interactions and

the number of components in algorithm are more less than the

number of user/item. The time complexity of constructing filter

in Eq.(6) is 𝑂 (𝑘1 · 𝑁 3) ≈ 𝑂 (𝑁 3), and that of predicting user fu-

ture interactions is𝑂 (𝑀𝑁 2). Therefore, the time complexity of the

Cluster-wise Filter Module is 𝑂 (𝑀𝑁 2 + 𝑁 3). Similarly, the time

complexity for the Globally-aware Filter Module is 𝑂 (𝑁 3 +𝑀𝑁 2),
where the time complexity of SVD is 𝑂 (𝑁 3) according to GF-CF

paper [22]. To sum up, suppose𝑀 = 𝜂𝑁 , the time complexity of our

proposed method is 𝑂 (𝑀𝑁 2 + 𝑁 3) ≈ 𝑂 (𝑁 3), which is equivalent

to the time complexity of GF-CF and PGSP [15].

4 EXPERIMENT
We conduct extensive experiments to validate the effectiveness of

HiGSP, so as to answer the following seven research questions:

• RQ1: How does HiGSP perform compared to other state-of-the-

art GCN-based and GSP-based CF methods?

• RQ2: To what extent does each component affect the perfor-

mance of HiGSP?

• RQ3: What’s the impact of Cluster-wise Filter Module and

Globally-aware Filter Module on the user preference modeling?

• RQ4: Is separating users with different interaction behaviors

necessary when recognizing user interaction patterns?

• RQ5: Is high-order low-pass filter more effective than ideal low-

pass filter when predicting user future interactions?

• RQ6: Is HiGSP highly efficient compared to other state-of-the-

art CF methods?

• RQ7: How will the number of clusters, an important hyper-

parameter, impact the performance of HiGSP?

4.1 Experimental Settings
We conduct experiments on six real-world datasets to verify the

efficacy of HiGSP: ML100K, ML1M, Netflix, Beauty, BX, and
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Hierarchical Graph Signal Processing for Collaborative Filtering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: The performance comparison on six public datasets. The best performance is denoted in bold, the second best
performance is denoted with an underline. DGCF occurred the OOM problem on Netflix, so we do not report the results.

LR-GCCF LCFN DGCF LightGCN IMP-GCN SimpleX UltraGCN GF-CF PGSP HiGSP

ML100K

F1@5 0.1048 0.0972 0.1632 0.1714 0.1588 0.1683 0.1613 0.1622 0.1667 0.1732
MRR@5 0.4943 0.4852 0.6369 0.6362 0.6006 0.6397 0.6094 0.6234 0.6149 0.6629
NDCG@5 0.5587 0.5542 0.6998 0.7034 0.6764 0.6995 0.6786 0.6875 0.6851 0.7166
F1@10 0.1444 0.1393 0.2421 0.2461 0.2287 0.2466 0.2366 0.2425 0.2407 0.2522
MRR@10 0.4616 0.4142 0.6012 0.5877 0.5690 0.6064 0.5749 0.6010 0.5767 0.6384
NDCG@10 0.5603 0.5326 0.6808 0.6771 0.6605 0.6866 0.6688 0.6843 0.6722 0.7021

ML1M

F1@5 0.0618 0.0577 0.1378 0.1452 0.1309 0.1490 0.1378 0.1520 0.1510 0.1573
MRR@5 0.2997 0.2902 0.5064 0.5160 0.4934 0.5244 0.5087 0.5254 0.5313 0.5422
NDCG@5 0.3540 0.3421 0.5709 0.5845 0.5583 0.5934 0.5739 0.5935 0.5963 0.6072
F1@10 0.0930 0.0860 0.1956 0.2044 0.1837 0.2087 0.1963 0.2106 0.2090 0.2196
MRR@10 0.2946 0.2839 0.4825 0.5010 0.4685 0.5051 0.4886 0.4996 0.5063 0.5156
NDCG@10 0.3787 0.3694 0.5740 0.5873 0.5594 0.5921 0.5773 0.5897 0.5923 0.6042

Beauty

F1@5 0.0285 0.0100 0.0357 0.0359 0.0309 0.0365 0.0324 0.0362 0.0368 0.0399
MRR@5 0.0423 0.0147 0.0523 0.0530 0.0444 0.0544 0.0476 0.0523 0.0538 0.0578
NDCG@5 0.0533 0.0191 0.0663 0.0668 0.0570 0.0682 0.0599 0.0659 0.0674 0.0723
F1@10 0.0268 0.0094 0.0325 0.0327 0.0289 0.0333 0.0287 0.0330 0.0335 0.0353
MRR@10 0.0443 0.0147 0.0507 0.0519 0.0451 0.0517 0.0441 0.0517 0.0525 0.0537
NDCG@10 0.0635 0.0231 0.0750 0.0763 0.0667 0.0761 0.0649 0.0751 0.0765 0.0778

LastFM

F1@5 0.0405 0.0293 0.0487 0.0559 0.0457 0.0542 0.0463 0.0545 0.0539 0.0592
MRR@5 0.5160 0.4378 0.5769 0.6306 0.5535 0.6104 0.5666 0.6343 0.6200 0.6397
NDCG@5 0.5789 0.4984 0.6408 0.6876 0.6206 0.6701 0.6269 0.6854 0.6764 0.6962
F1@10 0.0689 0.0507 0.0867 0.0968 0.0799 0.0941 0.0811 0.0964 0.0945 0.1003
MRR@10 0.5046 0.4280 0.5706 0.6073 0.5398 0.5930 0.5529 0.6086 0.6007 0.6135
NDCG@10 0.5893 0.5171 0.6509 0.6855 0.6241 0.6690 0.6340 0.6817 0.6767 0.6861

BX

F1@5 0.0138 0.0144 0.0311 0.0333 0.0142 0.0373 0.0319 0.0288 0.0288 0.0376
MRR@5 0.0284 0.0255 0.0580 0.0620 0.0319 0.0695 0.0602 0.0566 0.0555 0.0744
NDCG@5 0.0364 0.0344 0.0725 0.0766 0.0402 0.0864 0.0743 0.0704 0.0691 0.0912
F1@10 0.0142 0.0140 0.0319 0.0334 0.0155 0.0390 0.0319 0.0309 0.0308 0.0385

MRR@10 0.0274 0.0276 0.0580 0.0601 0.0331 0.0696 0.0594 0.0576 0.0578 0.0710
NDCG@10 0.0414 0.0411 0.0839 0.0861 0.0479 0.0984 0.0847 0.0821 0.0817 0.0988

Netflix

F1@5 0.0546 0.0394 – 0.0709 0.0611 0.0658 0.0503 0.0739 0.0708 0.0764
MRR@5 0.5323 0.3982 – 0.6147 0.5528 0.5902 0.4941 0.6360 0.6127 0.6532
NDCG@5 0.6023 0.4726 – 0.6822 0.6328 0.6603 0.5680 0.7005 0.6811 0.7162
F1@10 0.0920 0.0660 – 0.1205 0.1026 0.1137 0.0835 0.1244 0.1185 0.1285
MRR@10 0.5234 0.4056 – 0.5974 0.5386 0.5839 0.4708 0.6126 0.5905 0.6275
NDCG@10 0.6134 0.5058 – 0.6814 0.6307 0.6694 0.5746 0.6928 0.6756 0.7062

LastFM. All datasets are divided into training set and test set with

the ratio of 8:2, and we take the 10% training set as validation set for

hyper-parameter tuning. Table 1 shows the statistics of six datasets.

We compare the performance of HiGSP with various state-of-

the-art baselines, including seven GCN- based CF methods and

two GSP-based CF methods: (1) LR-GCCF [4]; (2) LCFN [35];

(3) DGCF [26]; (4) LightGCN [10]; (5) IMP-GCN [14]; (6) Sim-
pleX [16]; (7) UltraGCN [17]; (8) GF-CF [22]; (9) PGSP [15].

We evaluate the performance of HiGSP with three popular used

metrics in the Top-K recommendation scenario: (1) F1; (2)Mean
Reciprocal Rank (MRR); and (3) Normalized Discounted Cu-
mulative Gain (NDCG). For each metric, we report their results

when K=5 and K=10 to comprehensively evaluate the performance

of HiGSP.

For all baselines, we use their released code and carefully tune

hyper-parameters. For HiGSP, we tune the number of clusters 𝐶

from 2 to 30, orders 𝑘1 and 𝑘2 from 2 to 12, primary components

𝑄 from 32 to 1024, and coefficients 𝛼1 and 𝛼2 from 0.1 to 1.0. Due

to the space limitation, we leave the details about experimental

settings in the Appendix.

4.2 RQ1: Performance Comparison
Table 2 shows the performance comparison results of all methods,

and we have the following observations:

1) Among all GCN-based CF methods, LightGCN and SimpleX

have achieved a leading position inmostmetrics. Because LightGCN

removes the two inefficacy components in traditional GCN, i.e.,

feature transformation and non-linear activation, to improve the

accuracy of future interaction prediction. While SimpleX designs an

appropriate loss function with negative sampling strategy, thereby

improving the accuracy of interaction prediction.

2) GF-CF and PGSP are comparable to or even better than Light-

GCN and SimpleX in most cases. This is because the ideal low-pass

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

filter they adopt is equivalent to an infinite-layer spatial GCN,which

can obtain richer information from direct and distant neighbors

compared to other GCN-based methods which can merely obtain in-

formation from nearby neighbors, thereby improving the accuracy

of user preference modeling.

3) HiGSP achieves promising results in all metrics, significantly

outperforming other methods. We attribute this to the cluster-wise

filter module and globally-aware filter module that recognize user-

matched interaction patterns, thereby modeling user preference

and predicting user future interaction prediction accurately.

4.3 RQ2: Ablation Study
We conduct the ablation study on BX, ML1M and Netflix to analyze

the impacts of cluster-wise filter module(CwFilter), ideal low-pass

filter and high-order low-pass filter in globally-aware filter module

(GaFilter-i and GaFilter-h), and different clustering methods (K-

means/KMS, Agglomerative Clustering/AGG and Birch/BIRCH) on

the performance of HiGSP. We also analyse the performance of

ItemCF and CwFilter. Table 7 shows the results. Due to the space

limitation, we only report the results at 𝐾=5, and the results at

𝐾=10 are presented in the Appendix. From the results, we have the

following findings:

1) Comparing settings (a) and (b), we find that the performance

of HiGSP decreases when removing cluster-wise filter module. This

is because this module can recognize user unique interaction pat-

terns that reflect user preference without being influenced by other

unrelated users from user interactions, which is beneficial to user

preference modeling, thus predicting accurate interactions.

2) Comparing settings (a) and (e), we find that globally-aware

filter module contributes to user future interaction prediction, since

it can recognize user general interaction patterns to improve the

accuracy of user preference modeling. We further observe that

separately removing ideal low-pass filter and high-order filter from

globally-aware filter module reduces the model performance by

comparing setting (c)–(e), since the user general interaction patterns

recognized by these two filters are complementary, and combining

them can make user preference modeling more accurate.

3) Comparing settings (a) and (f)–(h), we find that Mixture-Of-

Gaussian method (setting (a)) achieves better performance in most

cases, which indicates that compared to AGG, BIRCH and KMS, the

Mixture-Of-Gaussian method can more accurately recognize the

similarity of user interaction patterns, thereby accurately clustering

users based on their preference.

4) Comparing settings (i) and (j), we can find that CwFilter

achieves better results than ItemCF, which demonstrates the neces-

sity of separating users with different interaction behaviors into

different clusters when predicting user future interactions, making

the recognized interaction patterns more accurate, thereby obtain-

ing more accurate interaction prediction.

4.4 RQ3: Case study
We study the impacts of cluster-wise filter module and globally-

aware filter module on the performance of HiGSP by analyzing the

matching degree of user historical preference distribution (calcu-

lated from training data) and user predicted preference distribution

(calculated from model prediction) on ML100K. Specifically, we

define user 𝑢’s historical preference distribution 𝑝𝑢 according to

the categories (e.g., Comedy) of items that user has interacted with:

𝑝𝑢 (category = 𝑙) = 𝐶𝑢𝑙/
∑𝐿
𝑘=1

𝐶𝑢𝑘 , (14)

where 𝐶𝑢𝑙 (𝑢 = 1, · · · , 𝑀, 𝑙 = 1, · · · , 𝐿) is the number of appear-

ances of the 𝑙-th category in user 𝑢’s interacted items, 𝑀 is the

number of users, and 𝐿 is the number of categories.

Similarly, we can define user 𝑢’s predicted preference distribu-

tions from his/her predicted items in test using CwFilter, GaFilter

and CwFilter+GaFilter (HiGSP) as 𝑞
(1)
𝑢 , 𝑞

(2)
𝑢 and 𝑞

(3)
𝑢 respectively.

Then we use the Kullback–Leibler (KL) divergence to evaluate the

matching degree of the historical preference distribution and the

predicted preference distribution, where the smaller the value of KL

divergence, the more consistent historical preference and predicted

preference are. The KL divergence between 𝑝 and 𝑞 is:

KL(𝑝, 𝑞 (𝑤)) = 1

𝑀

∑︁
𝑢,𝑙

𝑝𝑢 (𝑙) ln

𝑝𝑢 (𝑙)
𝑞
(𝑤)
𝑢 (𝑙)

, 𝑤 = 1, 2, 3. (15)

Figure 4 shows the results of KL divergence with respect to

𝐾 (𝐾 ∈ [8, 18]) most popular categories, we find that the KL diver-

gence of CwFilter+GaFilter is smaller than that of CwFilter and

GaFilter in all setting of 𝐾 , which implies both cluster-wise filter

module and globally-aware filter module are beneficial to user pref-

erence modeling. The former can recognize user unique interaction

patterns and the latter can recognize user general interaction pat-

terns, thereby making the user preference modeling more accurate.

It is noted that the KL divergence increases when 𝐾 becomes larger,

it is because a movie may be associated with multiple categories and

a user’s viewing behavior may not necessarily reflect an interest in

all of those categories, several categories at the tail are considered

as noisy, and taking them into account will affect the analysis of

preference matching degree.

We take user 368 as an example to show that with CwFilter

and GaFilter, HiGSP can recommend items more suitable for user

preference, indicating the effectiveness of CwFilter and GaFilter.

Figure 5 shows the user historical preference distribution of user

368 with respect to Top-8 preferred categories, and Table 4—6 show

the categories of Top-5 recommended items predicted by CwFilter,

GaFilter and HiGSP respectively. Comparing three tables, we can

find that HiGSP recommends more items related to user’s favorite

category, i.e., Drama, and places those items at the top of the rec-

ommendation list compared to CwFilter and GaFilter. Moreover,

8 10 12 14 16 18
K

14

15

16

17

18

K
L
D
iv
er
ge
nc
e

only CwFilter
only GaFilter
CwFilter + GaFilter

Figure 4: The user prefer-
ence matching degree of
HiGSP under different mod-
ules on ML100K dataset.

Drama

Action

Sci-Fi

Adventure

Comedy Thriller

Romance

Crime

Figure 5: The user histori-
cal preference distribution of
user 368 with respect to Top-8
his/her preferred categories.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Hierarchical Graph Signal Processing for Collaborative Filtering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: The ablation study of HiGSP on BX, ML1M and Netflix datasets.

BX ML1M Netflix

F1@5 MRR@5 NDCG@5 F1@5 MRR@5 NDCG@5 F1@5 MRR@5 NDCG@5

(a) HiGSP 0.0376 0.0744 0.0912 0.1573 0.5422 0.6072 0.0764 0.6532 0.7162

(b) HiGSP w/o CwFilter 0.0291 0.0578 0.0714 0.1561 0.5374 0.6052 0.0756 0.6490 0.7126

(c) HiGSP w/o GaFilter-i 0.0371 0.0740 0.0900 0.1497 0.5263 0.5943 0.0764 0.6526 0.7162

(d) HiGSP w/o GaFilter-h 0.0336 0.0673 0.0828 0.1539 0.5327 0.5991 0.0759 0.6493 0.7131

(e) HiGSP w/o GaFilter-i+GaFilter-h 0.0324 0.0649 0.0797 0.1439 0.5128 0.5807 0.0753 0.6456 0.7105

(f) HiGSP w/ KMS 0.0324 0.0630 0.0781 0.1573 0.5421 0.6070 0.0765 0.6539 0.7173

(g) HiGSP w/ AGG 0.0311 0.0616 0.0765 0.1568 0.5411 0.6073 0.0761 0.6508 0.7146

(h) HiGSP w/ BIRCH 0.0375 0.0728 0.0893 0.1549 0.5375 0.6037 0.0762 0.6505 0.7143

(i) Item CF 0.0275 0.0568 0.0692 0.1190 0.4544 0.5197 0.0552 0.5265 0.6009

(j) CwFilter (1 Layer, i.e., 𝑘1 = 1) 0.0331 0.0639 0.0791 0.1282 0.4750 0.5412 0.0600 0.5568 0.6260

Table 4: The categories of Top-5 recommended
items predicted by CwFilter.

ItemID Categories

474 Drama

257 Drama Sci-Fi

170 Comedy Sci-Fi

895 Drama

180 Action Adventure Romance Sci-Fi War

Table 5: The categories of Top-5 recom-
mended items predicted by GaFilter.

ItemID Categories

314 Drama Thriller

749 Drama

894 Horror Thriller

312 Action Drama Romance

895 Drama

Table 6: The categories of Top-5 rec-
ommended items predicted by HiGSP.

ItemID Categories

314 Drama Thriller

749 Drama

895 Drama

312 Action Drama Romance

342 Action Horror Sci-Fi

HiGSP also recommends more items related to Action, which is

the second preferred category for user 368. Therefore, combining

CwFilter and GaFilter can model user preference more accurately.

4.5 RQ4: Visualization
We analyze the necessity of separating users with different inter-

action behaviors when recognizing user interaction patterns by

plotting the heat maps of the filters in the cluster-wise filter mod-

ule on ML100K . Figure 6 shows the heat maps of the filters of 3

randomly selected clusters (out of total 25 clusters), and we leave

the heat maps of other filters in the Appendix due to the space lim-

itation. As a comparison, Figure 7 shows the heat map of the filter

corresponding to the cluster that contains all users, i.e., no cluster-

ing in the cluster-wise filter module. Note that we only show the

relationship between item 1—30 in the filter for better presentation.

From the results, it is obvious that the relationships between

items change across different clusters, and each relationship is sig-

nificantly different from that in the case of no clustering, which

indicates that different clusters contains different user interaction

patterns. Compared to mixing them to model user preference, sep-

arately modeling user preference is better since each interaction

pattern can be easily recognized and will not influence others,

thereby predicting user future interactions accurately.

4.6 RQ5: High-order Low-pass Filter Analysis
As describe in Section 3.3, ideal low-pass filter can extract informa-

tion from infinite-order neighbors since it is equal to an infinite-

layer GCN, while over-smoothing issue limits its performance.

High-order low-pass filter focuses on the information from nearby

neighbors, thus will not be easily influenced by the over-smoothing

issue, and it can extract information from any order neighbors by

adjusting the layer number/order 𝑘2, thus the latter is more effec-

tive than the former when modeling user preference and predicting

future interactions. To demonstrate this claim, we compare the

performance of GaFilter-i and GaFilter-h on ML100K and ML1M.

Figure 8 shows the results of ML1M, and we leave the results of

ML100K in the Appendix due to the space limitation.

From the results, we can find that when the number of layer of

GaFilter-h increases, the performance also increases and exceeds

GaFilter-i when the number of layer is larger than 6. This is because

more and more information from neighbors can be used to model

user preference, making future interaction prediction more accu-

rate. However, when the number of layers continues to increase,

the performance of GaFilter-h decreases because it is also affected

by the over-smoothing issue. In our empirical study, the perfor-

mance of GaFilter-h and GaFilter-i is roughly equivalent when layer

number is 60. In practice, we need to balance the performance of

GaFilter-h and the time cost of building GaFilter-h, thus we will

choose an appropriate value for layer number, such as 10, 15. In this

case, GaFilter-h is more efficient than GaFilter-i when modeling

user preference and predicting user future interactions.

4.7 RQ6: Efficiency Analysis
We conduct the efficiency analysis on ML1M by comparing the

training time of HiGSP and other CF methods. For LightGCN, Sim-

pleX and UltraGCNwhich need back propagation to train themodel,

we accumulate the training time until we obtain the optimal valida-

tion results. For GF-CF, PGSP and HiGSP, we directly calculate its

training time, including time for SVD. Figure 9 shows the results,

we can find that HiGSP is comparable to GSP-based methods and

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 3-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 12-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 21-th cluster

0.000

0.005

0.010

0.015

0.020

Figure 6: The heat maps of the filters of 3 randomly selected clusters (out of total 25 clusters)
in the cluster-wise filter module on ML100K.

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of cluster containing all users

0.000

0.005

0.010

0.015

0.020

Figure 7: The heat map of filter
of cluster containing all users.

1 2 3 4 5 6 10 15 20 25 30 35 40
Number of Layers in GaFilter-h

0.12
0.14
0.16
0.18
0.20
0.22

GaFilter-i-F1@5
GaFilter-h-F1@5

GaFilter-i-F1@10
GaFilter-h-F1@10

Figure 8: The performance comparison between GaFilter-i
and GaFilter-h on ML1M.

0 20 40 60 80 100120140
Average Running Time (min)

0.138

0.142

0.146

0.150

0.154

0.158

F1
@

5

LightGCN
SimpleX
UltraGCN

GF-CF
PGSP
HiGSP

Figure 9: The average running
time (5 times) vs. F1@5 of
HiGSP and other state-of-the-
art methods on ML1M.

1 2 4 6 8 10 15 20 25
Number of Clusters C

0.16
0.17
0.18
0.19
0.20
0.21
0.22

F1@5
F1@10

Figure 10: The sensitivity re-
sults of the number of clus-
ters in cluster-wise filter mod-
ule on ML1M dataset.

more efficient than the GCN-based methods, while achieving the

best performance. Therefore, we can conclude that HiGSP is highly

efficient and highly effective.

4.8 RQ7: Sensitivity Analysis
We analyze the impact of the number of clusters on the perfor-

mance of HiGSP when it varies from 1 to 25 on ML100K dataset.

Figure 10 shows the results of F1@5 and F1@10 for better pre-

sentation. From the results, we can find that the performance of

HiGSP first increases and then decreases, it is because separately

recognizing user interaction patterns can prevent them from influ-

encing each other, thereby making user preference modeling more

accurately. However, too many clusters will further divided users

with similar preference into different clusters, result in insufficient

user preference modeling and poor model performance. Note that

the performance of HiGSP when 𝐶 ≥ 2 is better than that when

𝐶 = 1, indicating the necessity of cluster-wise filter module.

5 RELATEDWORK
5.1 GCN-based Recommendation
Nowadays, graph convolutional networks (GCNs) [12, 29] arewidely

used in the realm of recommendation algorithms [8, 13, 24, 26–

28, 30, 32, 34]. By leveraging the powerful structural feature extrac-

tion ability of GCN [33, 36], rich user preference information can

be extracted from a bipartite graph composed of user interactions.

GC-MC [2] proposed an auto-encoder framework that combined

GCN with matrix completion to predict missing values in user-item

interaction matrices. NGCF [25] proposed a GCN-based recommen-

dation framework that explicitly encodes the collaborative signal

in the form of high-order connectivities by performing embedding

propagation. LightGCN [10] removed two common designs in GCN,

i.e., feature transformation and nonlinear activation, and proposed

a lightweight framework that only preserved the most essential

component in GCN—neighborhood aggregation—for GCN-based

collaborative filtering. IMPGCN [14] proposed to extract features

from sub-graphs which consist of users with similar interests and

their interacted items to make recommendation.

5.2 GSP-based Recommendation
GSP-based recommendationmethods have attracted more andmore

researchers’ attention due to its excellent prediction performance

and high training and inference efficiency [11, 15, 22]. GF-CF [22]

developed a unified graph convolution-based framework and ex-

plored the connections between the collaborative filtering methods

(e.g., neighborhood-based methods [1], low-rank matrix factoriza-

tion [3]) and the low-pass filters, and proposed a simple yet effective

collaborative filtering method that equipped with a linear filter and

an ideal low-pass filter to model user preference and make recom-

mendation. PGSP [15] proposed a mixed-frequency low-pass filter

over the personalized graph signal to model user preference and

predict user interactions.

6 CONCLUSION
We propose a hierarchical graph signal processing method (HiGSP)

for collaborative filtering, which consists of a cluster-wise filter

module and a globally-aware filter module to recognize user unique

and general interaction patterns respectively for user preference

modeling. Extensive experiments demonstrate the superiority of

HiGSP compared to other GCN-based and GSP-based recommen-

dation methods in terms of efficacy and efficiency.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Hierarchical Graph Signal Processing for Collaborative Filtering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Fabio Aiolli. 2013. Efficient top-n recommendation for very large scale binary

rated datasets. In Proceedings of the 7th ACM conference on Recommender systems.
273–280.

[2] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2018. Graph convolu-

tional matrix completion. In KDD Workshop on Deep Learning Day.
[3] Chao Chen, Dongsheng Li, Junchi Yan, Hanchi Huang, and Xiaokang Yang. 2021.

Scalable and explainable 1-bit matrix completion via graph signal learning. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 7011–7019.
[4] Lei Chen, Le Wu, Richang Hong, Kun Zhang, and Meng Wang. 2020. Revisiting

graph based collaborative filtering: A linear residual graph convolutional network

approach. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
27–34.

[5] Fan RK Chung. 1997. Spectral graph theory. Vol. 92. American Mathematical

Soc.

[6] Lawrence A Crosby. 2002. Exploding some myths about customer relationship

management. Managing Service Quality: An International Journal 12, 5 (2002),
271–277.

[7] Xiaowen Dong, Dorina Thanou, Laura Toni, Michael Bronstein, and Pascal

Frossard. 2020. Graph signal processing for machine learning: A review and new

perspectives. IEEE Signal processing magazine 37, 6 (2020), 117–127.
[8] Kaiqi Gong, Xiao Song, Senzhang Wang, Songsong Liu, and Yong Li. 2022. ITSM-

GCN: Informative Training Sample Mining for Graph Convolutional Network-

based Collaborative Filtering. In Proceedings of the 31st ACM International Con-
ference on Information & Knowledge Management. 614–623.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[10] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[11] Weiyu Huang, Antonio G. Marques, and Alejandro Ribeiro. 2017. Collaborative

filtering via graph signal processing. In 2017 25th European Signal Processing Con-
ference (EUSIPCO). 1094–1098. https://doi.org/10.23919/EUSIPCO.2017.8081498

[12] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[13] Zihan Lin, Changxin Tian, Yupeng Hou, and Wayne Xin Zhao. 2022. Improving

graph collaborative filtering with neighborhood-enriched contrastive learning.

In Proceedings of the ACM Web Conference 2022. 2320–2329.
[14] Fan Liu, Zhiyong Cheng, Lei Zhu, Zan Gao, and Liqiang Nie. 2021. Interest-aware

message-passing gcn for recommendation. In Proceedings of the Web Conference
2021. 1296–1305.

[15] Jiahao Liu, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, Li Shang, and Ning

Gu. 2023. Personalized Graph Signal Processing for Collaborative Filtering. In

Proceedings of the ACM Web Conference 2023. 1264–1272.
[16] Kelong Mao, Jieming Zhu, Jinpeng Wang, Quanyu Dai, Zhenhua Dong, Xi Xiao,

and Xiuqiang He. 2021. SimpleX: A simple and strong baseline for collaborative

filtering. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management. 1243–1252.

[17] Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, and Xiuqiang

He. 2021. UltraGCN: ultra simplification of graph convolutional networks for

recommendation. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management. 1253–1262.

[18] Todd K Moon. 1996. The expectation-maximization algorithm. IEEE Signal
processing magazine 13, 6 (1996), 47–60.

[19] Sophocles J Orfanidis. 1995. Introduction to signal processing. Prentice-Hall, Inc.
[20] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre

Vandergheynst. 2018. Graph signal processing: Overview, challenges, and appli-

cations. Proc. IEEE 106, 5 (2018), 808–828.

[21] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based

collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. 285–295.

[22] Yifei Shen, Yongji Wu, Yao Zhang, Caihua Shan, Jun Zhang, B Khaled Letaief, and

Dongsheng Li. 2021. How powerful is graph convolution for recommendation?. In

Proceedings of the 30th ACM international conference on information & knowledge
management. 1619–1629.

[23] Daniel A Spielman. 2007. Spectral graph theory and its applications. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07). IEEE,
29–38.

[24] Jianing Sun, Zhaoyue Cheng, Saba Zuberi, Felipe Pérez, and Maksims Volkovs.

2021. Hgcf: Hyperbolic graph convolution networks for collaborative filtering.

In Proceedings of the Web Conference 2021. 593–601.
[25] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[26] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng

Chua. 2020. Disentangled graph collaborative filtering. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval. 1001–1010.

[27] Xiao Wang, Ruijia Wang, Chuan Shi, Guojie Song, and Qingyong Li. 2020. Multi-

component graph convolutional collaborative filtering. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 34. 6267–6274.

[28] Zhenyi Wang, Huan Zhao, and Chuan Shi. 2022. Profiling the design space for

graph neural networks based collaborative filtering. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining. 1109–1119.

[29] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[30] JiancanWu, XiangWang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and

Xing Xie. 2021. Self-supervised graph learning for recommendation. In Proceed-
ings of the 44th international ACM SIGIR conference on research and development
in information retrieval. 726–735.

[31] JiafengXia, Dongsheng Li, HansuGu, Jiahao Liu, Tun Lu, andNingGu. 2022. FIRE:

Fast incremental recommendation with graph signal processing. In Proceedings
of the ACM Web Conference 2022. 2360–2369.

[32] Lianghao Xia, Chao Huang, Jiao Shi, and Yong Xu. 2023. Graph-less collaborative

filtering. In Proceedings of the ACM Web Conference 2023. 17–27.
[33] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[34] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[35] Wenhui Yu and Zheng Qin. 2020. Graph convolutional network for recommen-

dation with low-pass collaborative filters. In International Conference on Machine
Learning. PMLR, 10936–10945.

[36] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. Advances in neural information processing systems 31 (2018).
[37] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 1996. BIRCH: an efficient

data clustering method for very large databases. ACM sigmod record 25, 2 (1996),

103–114.

A DETAILS OF EXPERIMENTAL SETTINGS
A.1 Experimental Settings
A.1.1 Datasets. We conduct experiments on six real-world datasets

from four domains to verify the efficacy of HiGSP: (1) ML100K,
ML1M, Netflix (three movie datasets); (2) Beauty (a product

dataset); (3)BX (a book dataset), and (4)LastFM (a music dataset).

All datasets are divided into training set and test set with the ra-

tio of 8:2, and we take the 10% training set as validation set for

hyper-parameter tuning.

A.1.2 Baselines. We compare the performance of HiGSP with var-

ious state-of-the-art baselines, including seven GCN- based CF

methods and two GSP-based CF methods: (1) LR-GCCF [4] is

a GCN-based CF method that removes non-linear activation and

introduces the skip connection [9] to ease the model training and al-

leviate the over-smoothing problem. (2) LCFN [35] is a GCN-based

method that leverages the original graph convolution in GCN [12]

and proposes a Low-pass Collaborative Filter to remove the noise

in the data. (3)DGCF [26] is a GCN-based CF method that models a

distribution over intents for each user-item interaction to iteratively

refine the intent-aware interaction graphs, and encourages inde-

pendence of different intents to yield disentangled representations.

(4) LightGCN [10] is a simple yet effective GCN-based CF method

that removes feature transformation and non-linear activation to

improve both efficiency and accuracy. (5) IMP-GCN [14] is a GCN

based method that propagates information in the user sub-graphs

to reduce the impact of noise or negative information and alleviate

the over-smoothing problem.(6) SimpleX [16] is a GCN-based CF

9

https://doi.org/10.23919/EUSIPCO.2017.8081498

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: The ablation study of HiGSP on BX, ML1M and Netflix datasets.

BX ML1M Netflix
F1@10 MRR@10 NDCG@10 F1@10 MRR@10 NDCG@10 F1@10 MRR@10 NDCG@10

(1) HiGSP 0.0385 0.0710 0.0988 0.2196 0.5156 0.6042 0.1285 0.6275 0.7062

(2) HiGSP w/o CwFilter 0.0305 0.0575 0.0815 0.2169 0.5112 0.5999 0.1275 0.6245 0.7035

(3) HiGSP w/o GaFilter-i 0.0366 0.0676 0.0936 0.2130 0.5092 0.5979 0.1281 0.6260 0.7051

(4) HiGSP w/o GaFilter-h 0.0353 0.0661 0.0926 0.2162 0.5108 0.5990 0.1278 0.6256 0.7044

(5) HiGSP w/o GaFilter-i+GaFilter-h 0.0335 0.0615 0.0863 0.2045 0.4954 0.5853 0.1266 0.6204 0.7012

(6) HiGSP w/o KMS 0.0324 0.0576 0.0824 0.2196 0.5154 0.6041 0.1285 0.6277 0.7065

(7) HiGSP w/o AGG 0.0311 0.0565 0.0801 0.2191 0.5125 0.6023 0.1284 0.6251 0.7053

(8) HiGSP w/o BIRCH 0.0373 0.0666 0.0939 0.2187 0.5187 0.6056 0.1280 0.6244 0.7047

(9) ItemCF 0.0298 0.0545 0.0763 0.1601 0.4126 0.5111 0.0916 0.5187 0.6132

(10) CwFilter (1 Layer, i.e., 𝑘1 = 1) 0.0335 0.0610 0.0871 0.1771 0.4444 0.5392 0.0993 0.5323 0.6261

method that focuses on the choice of loss function and negative

sampling ratio, forming a simple but strong baseline with the pro-

posed cosine contrastive loss and large negative sampling ratio. (7)

UltraGCN [17] is a GCN-based CF method which can approximate

the limit of infinite-layer graph convolutions via a constraint loss

and allows for more appropriate edge weight assignments and flex-

ible adjustment of the relative importance among different types of

relationships. (8) GF-CF [22] is a simple yet effective GSP-based

CF method that integrates a linear filter and an ideal low-pass fil-

ter to model user preference. Note that GF-CF is a parameter-free

method and does not suffer from time-consuming training phase. (9)

PGSP [15] is a GSP-based CF method that uses a mixed-frequency

low-pass filter over the personalized graph signal to predict user

future interactions. PGSP is also a parameter-free method and does

not suffer from time-consuming training phase.

A.1.3 Metrics. We evaluate the performance of HiGSP with three

popular used metrics in the Top-K recommendation scenario: (1) F1,
which balances between precision and recall by harmonic mean; (2)

Mean Reciprocal Rank (MRR), which evaluates the performance

of ranking according to the harmonic mean of the ranks; and (3)

Normalized Discounted Cumulative Gain (NDCG), which ac-

cumulate the gains from ranking list with the discounted gains at

lower ranks. For each metric, we report their results when K=5 and

K=10 to comprehensively evaluate the performance of HiGSP.

A.1.4 Hyper-parameter Settings. For all baselines, we use their

released code and carefully tune hyper-parameters. For HiGSP, we

tune the number of clusters𝐶 from 2 to 30, orders 𝑘1 and 𝑘2 from 2

to 12, primary components 𝑄 from 32 to 1024, and coefficients 𝛼1

and 𝛼2 from 0.1 to 1.0.

B ADDITIONAL RESULTS ABOUT ABLATION
STUDY

Table 7 shows the additional results of ablation studywith respect to

the metrics at𝐾 = 10 on BX, ML1M and Netflix datasets, we can find

that both cluster-wise filter module and global-aware filter module

are beneficial to user preference modeling and future interaction

prediction, and HiGSP achieves better results when equipped with

1 2 3 4 5 6 7 8 9 10 11 13 15
Number of Layers in GaFilter-h

0.16
0.18
0.20
0.22
0.24

GaFilter-i-F1@5
GaFilter-h-F1@5

GaFilter-i-F1@10
GaFilter-h-F1@10

Figure 11: The performance comparison between GaFilter-i
and GaFilter-h on ML100K.

Mix-of-Gaussian method compare with other clustering methods.

Moreover, separating users into different clusters is necessary.

C ADDITIONAL RESULTS ABOUT
VISUALIZATION

Figure 12 shows the results of all 25 heat maps of filters, and as a

comparison, Figure 7 shows the heat map of the filter corresponding

to the cluster that contains all users, i.e., no clustering in cluster-

wise filter module. It is noted that to ease of the presentation, we

only show the relationship between item 1–30 in the filter.

From the results, it is obvious that the relationships between

items change with different clusters, and each relationship is dif-

ferent from that in the case of no clustering, which indicates that

different clusters contains different user preference, which can be

seen as the interactive transfer measurement between items. Com-

pared to mixing them together when modeling user preference,

separately modeling user preference is better since user unique

interaction patterns can be easily recognized, thereby improving

the accuracy of future interaction prediction.

D ADDITIONAL RESULTS ABOUT
HIGH-ORDER LOW-PASS FILTER ANALYSIS

Figure 11 shows the additional results of ML100K. From the results,

we can find that when the number of layer of GaFilter-h increase, the

performance also increases and exceeds GaFilter-i when the number

of layers is larger than 2. This is because more and more informa-

tion from neighbors can be used to model user preference, making

interaction prediction more accurate. However, when the number

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Hierarchical Graph Signal Processing for Collaborative Filtering Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 1-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 2-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 3-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 4-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 5-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 6-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 7-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 8-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 9-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 10-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 11-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 12-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 13-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 14-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 15-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 16-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 17-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 18-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 19-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 20-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 21-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 22-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 23-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 24-th cluster

0.000

0.005

0.010

0.015

0.020

1 4 7 10 13 16 19 22 25 28

1
4
7

10
13
16
19
22
25
28

Filter of 25-th cluster

0.000

0.005

0.010

0.015

0.020

Figure 12: The heat maps of 25 clusters in the cluster-wise filter module on ML100K dataset.

of layers continues to increase, the performance of GaFilter-h de-

creases because it is also affected by the over-smoothing problem.

In our empirical study, the performance of GaFilter-h and GaFilter-i

is roughly equivalent when layer number is 35. In practice, we

need to balance the performance of GaFilter-h and the time cost of

building GaFilter-h, thus we will choose an appropriate value for

layer number, such as 8, 10. In this case, GaFilter-h is more efficient

than GaFilter-i when predicting user future interactions.

11

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graph Signal Processing
	2.2 Notations
	2.3 User Interaction Patterns

	3 Method
	3.1 Overview
	3.2 Cluster-wise Filter Module
	3.3 Globally-aware Filter Module
	3.4 Model Inference
	3.5 The Time Complexity

	4 Experiment
	4.1 Experimental Settings
	4.2 RQ1: Performance Comparison
	4.3 RQ2: Ablation Study
	4.4 RQ3: Case study
	4.5 RQ4: Visualization
	4.6 RQ5: High-order Low-pass Filter Analysis
	4.7 RQ6: Efficiency Analysis
	4.8 RQ7: Sensitivity Analysis

	5 Related Work
	5.1 GCN-based Recommendation
	5.2 GSP-based Recommendation

	6 Conclusion
	References
	A Details of Experimental Settings
	A.1 Experimental Settings

	B Additional Results about Ablation Study
	C Additional Results about Visualization
	D Additional Results about High-order Low-pass Filter Analysis

