
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RAG KNOWLEDGE ONLINE CORRECTION WITH
CONVERSATION-BASED USER FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-Augmented Generation (RAG) is a promising way to enhance LLMs
by integrating external knowledge. However, its performance degrades when the
knowledge contains errors. When users encounter such errors, the typical cor-
rection process involves users reporting the errors, after which server providers
investigate the knowledge base to identify and fix the issues. This process is often
time-consuming, and in the meantime, other users continue to encounter the same
errors, leading to poor user experience. To address this challenge, we propose
a new task, Knowledge Online Correction, which focuses on correcting errors
immediately after they are pointed out by users through conversation-based feed-
back. To evaluate this task, we conducted a preliminary user study and developed
a new benchmark, ConvCorrect. To address this task, we propose a Multi-step
Knowledge Online Correction method(MT-KOC), an online knowledge correction
method that automatically corrects errors in real time based on a dynamic action
search algorithm. Empirical results shows that MT-KOC outperforms baseline
methods, achieving higher accuracy in the knowledge online correction task.

1 INTRODUCTION

Bobby Kotick is the CEO of Activision
Blizzard, which is an independent publisher.

...Activision Blizzard is now ... Former CEO Bobby Kotick
has stepped down, its leadership reports to Matt Booty...

Who is the CEO of Activision Blizzard?

Chunk :

Response :

...Activision Blizzard is an independent video
game publisher, led by its CEO, Bobby Kotick...

Query :

Updated
 Chunk:

KOC
Seconds

Minutes
~

Hours

Days
~

“Is that true? I heard the
Microsoft acquisition of
Activision was finalized.”

Feedback

Service

Identify error

Correct error

Verify correction

provider

Other users
are affected
meanwhile

···

 Bobby Kotick stepped down as CEO
post-acquisition. The division now reports to Matt Booty.
New Response :

A

B

Steps

Figure 1: Comparison between slow manual correction
(left) and rapid knowledge online correction (right).

Large Language Models (LLMs) have
achieved remarkable success in real world
applications, but still face challenges
such as hallucination and outdated knowl-
edge (Huang et al., 2025; Zhang et al.,
2023). Retrieval-Augmented Generation
(RAG) has emerged as a promising solution
by integrating external knowledge to miti-
gate these issues (Lewis et al., 2020; Gao
et al., 2023b). However, its performance
degrades when the underlying knowledge
base contains errors (e.g., Fig. 1A). When
users encounter such errors, the typical
correction process involves tedious man-
ual intervention: users report the issue,
and server providers investigate the knowl-
edge base to identify and correct the er-
rors (Fig. 1B). This process is often time-
consuming, potentially taking several hours
to multiple working days (McGraw, 2025).
During this period, the knowledge errors
persist and continue to mislead users, re-
sulting in a poor overall experience. To
address the issue of inefficiency, some re-
cent studies have proposed to automatically correct the errors in real time through internet retrieval
(e.g., Wikipedia) (Yan et al., 2024). However, the effectiveness of these methods depends on the
accuracy of the internet retrieval results. If the internet retrieval results are incorrect, these methods
have no alternative mechanism to resolve the errors.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To tackle this issue, we drew inspiration from the Formative Assessment with Feedback model in
education (McKenzie et al., 2017). In this model, teachers provide real-time, conversation-based
feedback during discussions, enabling students to quickly identify and correct misconceptions and
thereby accelerate learning. Motivated by this model, we propose a new strategy, where users act as
teachers, offering conversation-based feedback when they identify errors. For example, users can
indicate whether an error exists and suggest how it should be corrected. Such feedback can serve as
additional guidance for error correction, helping to overcome the limitations of existing methods that
rely solely on internet retrieval results. Based on this new strategy, we define a new task, Knowledge
Online Correction (KOC), which leverages conversation-based user feedback to correct knowledge
errors in real time.

While this new strategy has the potential to help correct knowledge errors in real time, how to
effectively leverage user feedback is still unclear, presenting two major challenges. Challenge
1: There are no established benchmarks for this task. History has demonstrated that high-quality
benchmarks (e.g., ImageNet (Deng et al., 2009), GLUE (Wang et al., 2019)) can effectively advance
the development of models for specific tasks. However, developing benchmarks for the KOC task is
non-trivial due to the diverse and open-ended nature of conversation-based feedback. Therefore, how
to ensure that the benchmark is both comprehensive and representative remains an open question.
Challenge 2: It is unclear how to effectively leverage the conversation-based user feedback for
error correction. Conversation-based feedback can take many forms, from precise, well-structured
corrections to vague hints that an error exists. Effectively distinguishing useful feedback from noisy
or misleading input is critical, as is determining how to integrate this feedback into model updates in
a way that effectively improves performance.

In this paper, we first developed a new benchmark, ConvCorrect (Challenge 1). To construct this
benchmark, we first conducted a preliminary user study. From this preliminary study, we summarized
five error types in the knowledge bases and how users provide feedback for these errors. Based on this
summarization, we synthesize errors in the knowledge bases and the conversation-based feedback,
which was further verified by humans to ensure quality. Based on this benchmark, we developed
MT-KOC for the KOC task (Challenge 2). MT-KOC uses a dynamic action search algorithm to
identify an optimal sequence of edits for progressive correction, ensuring better alignment with
conversation-based feedback. The experiments show that our method outperforms the existing SOTA
methods by 5.88% on average in terms of F1-score.

In summary, our contributions are threefold:

1. We develop ConvCorrect, the first benchmark designed and supported by a preliminary user study
to evaluate knowledge online correction methods.

2. We propose MT-KOC, a method based on a dynamic action search algorithm to address the
challenges of online knowledge base correction.

3. We validate our approach through empirical experiments, demonstrating the effectiveness of
MT-KOC, and through a user study that confirms the rational design of our benchmark.

2 RELATED WORK

2.1 RETRIEVAL-AUGMENTED GENERATION

Retrieval-Augmented Generation (RAG) has been established as an effective paradigm for mitigating
hallucinations in Large Language Models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022;
Touvron et al., 2023) by grounding them in external knowledge (Lewis et al., 2020; Gao et al., 2023b;
Guu et al., 2020; Izacard & Grave, 2021). Extensive research has focused on optimizing the RAG
pipeline, with significant advancements in query formulation (Zheng et al., 2024; Ma et al., 2023),
dynamic and adaptive retrieval strategies (Asai et al., 2024; Jeong et al., 2024), and post-retrieval
context refinement (Yu et al., 2024; Li et al., 2025; Xu et al., 2024).

However, a majority of these methods operate under the assumption that the knowledge source itself
is accurate. Their objective is to better utilize existing knowledge, not to correct the knowledge base.
While a parallel line of research explores editing the model’s internal, parametric knowledge (Meng
et al., 2023; Zhang et al., 2024), this is distinct from correcting external, non-parametric knowledge

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sources. Advanced frameworks (Yan et al., 2024; Wang et al., 2025) focus on rectifying the answer
for a single turn, rather than propagating the fix back to the underlying source. To address this critical
gap, we introduce the novel task of Knowledge Online Correction (KOC), which aims to rectify
the knowledge source in real-time, driven by user feedback.

2.2 MULTI-AGENT SYSTEMS

Multi-Agent Systems (MAS), wherein complex tasks are decomposed and solved by multiple
collaborative agents, have demonstrated significant efficacy and have been widely explored (Wang
et al., 2024; Xi et al., 2025). Recent advancements in MAS have progressed along two main
fronts: developing increasingly sophisticated collaborative frameworks, evolving from structured
workflows to large-scale engineering platforms (Hong et al., 2024; Qian et al., 2024), and enhancing
the individual agent’s capabilities with mechanisms for complex reasoning, reflection, and self-
correction (Yao et al., 2023b; Shinn et al., 2023; Gou et al., 2024; Madaan et al., 2023).

Our approach is inspired by the core MAS principle of solving problems via a sequence of planned
actions. However, our work introduces key innovations. Most MAS are generative, tasked with
creating content like code or reports. While some agents exhibit self-correction, this is typically
aimed at refining their own generated output. We, in contrast, use this paradigm for a corrective
task—our KOC, which targets an external knowledge source. Furthermore, our system is designed to
be feedback-driven, specifically for the purpose of dynamic knowledge correction in RAG systems.

3 BENCHMARK

3.1 PROBLEM FORMULATION

The KOC task is formally defined as follows. Given a user query Q, a knowledge chunk K is
retrieved first, which includes errors. Based on the chunk K, an answer A is generated by an LLM:
A = LLM(Q,K). After receiving the answer, the user responds with conversation-based feedback
F . Then, the goal of the KOC task is to find a transformation function T such that the answer
generated based on the correct version Koracle is similar to the answer generated based on the chunk
transformed by T :

T ∗ = argmin
T

Diff{LLM(Q,K∗),LLM(Q,Koracle)}

s.t. K∗ = T (K,F)
(1)

Diff{·, ·} measures the difference between two answers generated by the LLM.

3.2 PRELIMINARY USER STUDY

A key challenge in constructing the benchmarks for the KOC task lies in ensuring their comprehensive-
ness and representativeness. To achieve this, it is essential to understand how users typically provide
conversation-based feedback when they encounter errors in LLM-generated answers. Therefore, we
conducted a preliminary user study. Based on this study, we identified five common types of errors in
LLM answers and further summarized typical conversation-based feedback corresponding to each
error type.

Study setup. We recruited 12 graduate students majoring in Computer Science for the user study,
aged from 21 to 29 years (mean = 24.25, SD = 2.60). All of them have more than one year of
experience in developing or using RAG systems. Upon completion, each participant received a $10
compensation, independent of their performance.

Datasets. The study was constructed on 1,200 samples randomly selected from the Neural-Bridge
Dataset (Neural Bridge AI, 2024b;a). Each sample contains a query Q and a correct knowledge
chunk Koracle. Then, the chunk of each sample was perturbed to contain errors. To ensure the
errors encompass most real-world scenarios, the perturbations are capable of generating any type
of error. In the field of databases, updating, adding, and removing are used to cover all types of
modifications. Motivated by this, we also include three types of perturbations Silberschatz et al.
(2002). (1) Update: A key entity (e.g., date, name, location) in the relevant section is updated to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

an incorrect but plausible entity of the same type. (2) Add: A contextually coherent but factually
incorrect or misleading sentence is added after the sentence containing the relevant information.
(3) Delete: A critical phrase or sentence required to answer the query is removed from the relevant
section. The chunk of each sample was randomly applied one of the three types of perturbations,
resulting in an erroneous knowledge chunk (K).F Based on K, an answer (A) was generated by an
LLM.

Procedure. The 1,200 samples were randomly distributed to the 12 participants, with each participant
receiving 100 samples. For each sample, the participants were asked to assume the role of a user who
had received an erroneous answer (A) from a conversational AI system after posing a query. Their
task was to write a single conversation-based feedback message (F) in response to the erroneous
answer, reflecting what they would realistically provide in such a scenario.

Error type. After the user study, two researchers from our team were tasked with classifying the
error type of the answer (A) in each of the 1200 samples. Each annotator was responsible for half
of the data, and a cross-review was conducted upon completion to ensure consistency. This process
resulted in the classification of all samples into five primary error types: Fully Incorrect, Partially
Incorrect, Fully Missing, Partially Missing, and Mixed. For illustrative examples of each error
type, please refer to Appendix A.

Typical conversation-based feedback styles. After the user study was completed, the same two
expert annotators analyzed the feedback (F) provided by the participants. Following a similar process
of independent annotation and cross-review, they categorized the collected feedback into seven
distinct styles. Our analysis revealed that different error types elicited different distributions of
feedback styles, as summarized in Table 1.

Error type Associated feedback styles
Fully incorrect Direct correction, Error indication
Partially incorrect Direct correction, Error indication, Error localization
Fully missing Direct completion, Missing indication
Partially missing Direct completion, Missing indication
Mixed Direct correction and completion, Error and missing indication

Table 1: Mapping from Error Types to Feedback Styles derived from the user study.

A key finding is that the relationship between error types and feedback styles is a complex one-
to-many mapping. This discovery highlights a fundamental challenge: a simple, low-level textual
perturbation can manifest as a wide spectrum of high-level, user-perceived semantic errors. This
non-trivial mapping proves that a simplistic approach—mechanically generating feedback based on
the perturbation type—would be unrealistic and fail to capture the task’s true complexity. Therefore,
this empirically derived taxonomy not only reveals the task’s difficulty but also serves as the principled
blueprint for our benchmark construction.

3.3 BENCHMARK CONSTRUCTION

Based on the error types and typical conversation-based feedback styles identified in the preliminary
user study, we developed the first benchmark for the KOC task, ConvCorrect.

Data Source and Pre-processing. We construct ConvCorrect upon two diverse RAG benchmarks:
SQuAD (Rajpurkar et al., 2016) and Neural-Bridge (Neural Bridge AI, 2024b;a), resulting in two
splits: ConvCorrect-SQ and ConvCorrect-NB. We first pre-processed these source datasets to create a
clean base for perturbation. For SQuAD, which features multiple questions per context, we retained
only one unique sample per context, merging the training and test sets to yield 20,958 initial samples.
For Neural-Bridge, we combined its two versions (RAG Dataset 12000 & RAG Dataset 1200) and
de-duplicated them to obtain 12,893 unique samples. Finally, both datasets underwent sensitive
content filtering. This resulted in a final set of 19,903 pristine samples from SQuAD and 12,000 from
Neural-Bridge, which formed the basis for our benchmark construction.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Construction pipeline. Based on the pre-processed datasets, we constructed ConvCorrect in two
main steps: error generation and feedback generation.

• Error generation. Since the knowledge chunks in the source datasets contain no errors, we
first perturbed the chunks to contain errors. Similar to the preliminary user study, we consider
three types of perturbations here. For each chunk, all three types of perturbations were
applied using LLMs (Ding et al., 2024), resulting in three distinct perturbed versions. These
perturbed chunks were then classified into the five error types identified in the preliminary
user study, also using LLMs. Finally, both the perturbed chunks and their corresponding
error classifications were verified by two human evaluators.

• Feedback generation. Finally, to comprehensively model the diversity of user responses,
we exhaustively generate all applicable feedback styles for each classified error. An LLM
acting as a User Simulator takes the error type label from Stage 2 and, based on the
one-to-many mapping from our user study (Table 1), generates multiple feedback messages
(F) in different styles. For instance, for an error classified as Partially incorrect, the system
generates separate samples with Direct Correction, Error Indication, and Error Localization
feedback styles.

Statistics. The three-stage simulation pipeline, particularly the exhaustive generation strategy in
Stage 1 and Stage 3, culminates in the final ConvCorrect benchmark, comprising 124,531 samples
for ConvCorrect-SQ and 80,772 for ConvCorrect-NB. This strategy ensures our benchmark has high
coverage and diversity in its error-feedback pairings. The detailed statistics of the Benchmark’s scale
and type distribution are presented in Appendix Table 5.

4 METHOD

4.1 FRAMEWORK OVERVIEW

To tackle the KOC task, we introduce the MulTi-step KOC (MT-KOC) framework. The design
of MT-KOC is inspired by the typical correction process followed by humans. Generally, humans
first retrieve relevant information from reliable sources, then use this information to correct specific
chunks, and finally verify the accuracy of the corrected chunks. Since errors may be diverse and
cannot always be resolved in a single step in practice, this process may be repeated multiple times.
Therefore, we design a multi-agent system within MT-KOC to address the KOC task through multiple
steps. Leveraging this system, we propose a dynamic action search algorithm that identifies the
optimal sequence of corrective actions to accurately correct the chunks.

4.2 MULTI-AGENT SYSTEM

The multi-agent system consists of four collaborative agents: a Knowledge Distillation Agent, an
Action Recommendation Agent, a Correction Agent, and a Reward Evaluation Agent.

Knowledge Distillation Agent. The correction of knowledge chunks relies on retrieval results,
such as those from the Internet. Therefore, the agent retrieves relevant information for the chunks
to be corrected. It takes a user query (Q) and the initial Knowledge Chunk (K0 = K) as input to
extract information (I). This process is represented by the function fdistill:

I = fdistill(Q,K0) (2)

The function fdistill is realized by the agent, which is an LLM guided by the prompt detailed in
Appendix B.1. It is important to note that this agent is not limited to retrieving information from the
Internet; it can also retrieve from LLMs, also known as knowledge distillation.

Action Recommendation Agent. As pointed out in a recent survey (Tran et al., 2025), the per-
formance of LLMs would be improved if a complex action is decomposed into several sub-actions.
Therefore, we also decompose the correction action into three commonly used sub-actions: ADD,
DELETE, and REVISE, which are called actions. ADD: Complete missing information in Knowledge
Chunk, where the agent specifies the exact information and insertion position. DELETE: Remove

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4

2

��������������������� ����������

�����������
���������������
�	���������

Update

Finalize

Shortcut

Score

MT-KOC

Correction Strategy

Reference Info

ADD
REVISE
DELETE

Backpropagation

A
ction Execution M

odules

Inputs

Knowledge
chunk

User
query

Current
answer

User
feedback

3

1 Explore

Figure 2: Overview of the MT-KOC framework, illustrating the collaboration across four key agents.
The process iteratively explores a search space of possible edits to find an optimal correction path for
the Knowledge Chunk, guided by user feedback and a reward-driven mechanism.

redundant or misleading information in the Knowledge Chunk that could interfere with generating
the correct answer, with the agent explicitly identifying the target. REVISE: Modify inaccurate or
poorly phrased information in the Knowledge Chunk, where the agent provides a revised version. Ac-
cordingly, the correction can be represented by a sequence of actions {C1, ..., Ck}. Therefore, action
recommendation agents recommend suitable actions given the user query (Q), current knowledge
chunk (K), user feedback (F), and reference information (I). The agent’s recommendation logic is
implemented using an LLM, its specific prompt is provided in Appendix B.2.

Correction Agent. This agent acts as the executor. It is a composite of three specialized modules
corresponding to the action types (ADD, DELETE, REVISE). When a single correction action Ci

is selected by the Recommendation Agent, this agent dispatches it to the appropriate module for
execution, producing the next Knowledge Chunk state, Ki+1:

Ki+1 = fcorrect(Ki, Ci) (3)
The function fcorrect represents this execution, each module within this agent is also guided by an
LLM prompt, as detailed in Appendix B.3.

Reward Evaluation Agent. This agent evaluate the corrections based on the conversation-based
user feedback (F) and reference information (I) (Zheng et al., 2023). It takes the new Knowledge
Chunk state Ki+1 and generates the answer Ai+1 by using LLMs. It then assesses this answer based
on the query (Q), feedback (F), and reference information (I) to produce a numerical score, Si+1:

Si+1 = feval(Ki+1, Q, F, I) (4)
The evaluation function feval is implemented by the agent, which is prompted to act as an impartial
judge. The full prompt, which specifies the scoring criteria and scale, can be found in Appendix B.4.

4.3 DYNAMIC ACTION SEARCH

Based on the multi-agent system, it is required to identify the optimal sequence of corrective actions
to accurately correct the chunks. Therefore, the transformation T is realized by finding an optimal
sequence of discrete correction actions, which we denote as C∗. Let Apply(K0,C) be the function
that returns the final Knowledge Chunk after applying the entire sequence C to the initial chunk K0.
The optimal sequence C∗ is the one that maximizes the expected reward of this final chunk:

C∗ = argmax
C

E [feval (Apply(K0,C))] (5)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1. Initialization. The process begins with the initial erroneous Knowledge Chunk, K0, which forms
the root node of the search tree. The Knowledge Distillation Agent is invoked once to generate a
global Reference Information (I). Subsequently, the Action Recommendation Agent generates the
first set of candidate corrections from this root node.

2. Iterative Search. For a predefined number of Search Epochs, the framework executes a search
loop consisting of the following steps:

Exploration: In each iteration, the Action Recommendation Agent recommends a set of candidate

actions, C(Ki), based on the current Knowledge Chunk state, represented by the current node Ki

in the search tree. An action is then selected from the children using the Upper Confidence Bound
applied to Trees (UCT) policy (Kocsis & Szepesvári, 2006; Yao et al., 2023a):

Ci+1 = argmax
C∈C(Ki)

(
R(C)

N(C)
+ c

√
lnN(Ki)

N(C)

)
(6)

Here, argmax
C∈C(Ki)

selects the action Ci+1 from the candidate set C(Ki) that maximizes the UCT score.

The UCT score balances exploitation and exploration: the term R(C)
N(C) represents the average reward

of action C, encouraging the selection of actions with historically high rewards, while c
√

lnN(Ki)
N(C)

promotes exploration of less-visited actions, where R(C) is the total reward accumulated for action
C, N(C) is the number of times action C has been selected, N(Ki) is the number of visits to the
parent node Ki, and c is an exploration constant.

Updating: Once an action Ci is selected, the Correction Agent executes it to produce the next
Knowledge Chunk state, Ki+1, which corresponds to a new node in the search tree.

Evaluation: The Reward Evaluation Agent then evaluates this new state to obtain a score Si+1.

Backpropagation: This score is backpropagated up the search tree, updating the reward and visit
counts for all actions along the path from the current node back to the root. Specifically, for each
action C on the path: R(C)← R(C) + Si+1 and N(C)← N(C) + 1.

3. Final Selection. The search process terminates, and an optimal corrected Knowledge Chunk (K∗)
is selected based on one of two conditions:

Shortcut Mechanism: If at any point during the iterative search the Reward Evaluation Agent outputs
a maximum score, the search is immediately terminated. The Knowledge Chunk corresponding to
this high-reward path, represented by the corresponding node in the search tree, is directly returned
as the optimal solution (K∗).

Default Selection: If the Shortcut is not triggered after all Search Epochs are completed, the system

then determines the optimal correction sequence C∗ = (C∗
0 , C

∗
1 , ..., C

∗
L). This sequence is con-

structed by starting from the root node (K∗
0 = K0) and iteratively selecting the correction with the

highest average reward. At each step ‘i‘, the selection of the next correction C∗
i+1 is made from the

children of the current optimal state K∗
i :

C∗
i+1 = argmax

C∈C(K∗
i)

(
R(C)

N(C)

)
(7)

Here, argmax
C∈C(K∗

i)

selects the action C∗
i+1 with the highest average reward, ensuring a greedy selection

of the best-performing actions to construct the optimal sequence. The final corrected Knowledge
Chunk (K∗) is then obtained by applying this sequence C∗ to K0.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our method on ConvCorrect, a benchmark we developed for interactive
knowledge correction, consisting of two splits: ConvCorrect-SQ and ConvCorrect-NB (see Section 3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ConvCorrect-SQ ConvCorrect-NB
Method F1 Precision Recall F1 Precision Recall
Perturbed 5.5 3.6 11.4 36.0 35.0 37.0

CRAG 23.1 13.8 71.6 52.0 50.3 53.8
RARR 23.0 13.8 68.3 52.2 50.4 54.2
Astute 23.5 14.0 72.8 53.0 50.2 56.2
MT-KOC 24.8 14.9 73.6 56.3 54.1 58.7
Oracle 30.3 18.2 89.8 64.7 61.3 68.6

Table 2: Aggregated F1-Scores, Precision, and Recall on the ConvCorrect-SQ and ConvCorrect-NB
test sets. Comparison methods are framed by the performance bounds.

for details). Each sample includes the original knowledge chunk (Koracle), a perturbed version (K0),
the query (Q), the erroneous answer (A0), and user feedback (F).

Comparison Methods. To situate the performance of MT-KOC, we compare it against a diverse
set of baselines, along with theoretical upper and lower bounds.

• Lower Bound (Perturbed) uses the initial, erroneous knowledge chunk (K0) directly, establishing
a performance floor.

• Upper Bound (Oracle) uses the ground-truth correct knowledge chunk (Koracle), representing the
theoretical performance ceiling.

• CRAG (Yan et al., 2024) employs a self-correction paradigm, using a lightweight retrieval
evaluator to judge the necessity of refinement.

• RARR (Gao et al., 2023a) utilizes a multi-step reasoning approach, prompting the LLM to
explicitly "research and revise" its outputs in a verifiable manner.

• Astute (Wang et al., 2025) tackles the problem via knowledge conflict resolution, identifying and
resolving discrepancies between parametric and retrieved knowledge.

Evaluation Metrics. We evaluate performance from two perspectives:

• Downstream Task Performance: The primary metric, measuring the quality of the final answer.
We compute token-level F1-Score, Precision, and Recall between the generated answer (A∗) and
the oracle answer (Aoracle).

• Knowledge Chunk Editing Quality: A secondary metric assessing the precision of the edit itself.
We use ROUGE-L (Y., 2004) to measure the similarity between the corrected chunk (K∗) and the
original perturbed chunk (K0), where a higher score indicates a more minimal, surgical correction.

Implementation Details. To ensure a fair comparison, all methods are powered by the same base
model. We provide detailed hyperparameters and further implementation specifics in Appendix C.

5.2 RESULTS AND ANALYSIS

5.2.1 MAIN PERFORMANCE COMPARISON

The aggregated results on both test sets are reported in Table 2. The data clearly indicate that MT-
KOC achieves the best performance across all downstream task metrics on both Benchmarks. The
consistent performance hierarchy validates the superiority of our multi-step, adaptive search strategy
over other structured refinement methods, significantly closing the gap to the Oracle performance.

Analysis of the Gap to Oracle. Despite MT-KOC’s strong performance, a discernible gap to the
Oracle upper bound persists. Our analysis attributes this gap to two primary challenges: 1) the inherent
ambiguity of vague user feedback (F), which could be mitigated by multi-turn clarification dialogues;
2) scenarios where Knowledge Chunks (K0) contain specialized or lesser-known information. Both
cases compel the framework to fall back upon the base model’s own parametric knowledge (Lewis
et al., 2020). This indicates that the primary performance bottleneck lies not with the MT-KOC

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ConvCorrect-SQ ConvCorrect-NB
Method v.s. Perturbed v.s. Oracle v.s. Perturbed v.s. Oracle
CRAG 62.1 59.1 56.0 44.9
RARR 60.1 59.6 47.8 39.8
Astute 59.2 59.2 54.2 46.0
MT-KOC 79.7 78.4 63.1 53.4

Table 3: ROUGE-L similarity scores on the ConvCorrect-SQ and ConvCorrect-NB test sets.

framework itself, but with the knowledge breadth of the underlying LLM, a limitation that could be
addressed by integrating real-time web search capabilities.

5.2.2 KNOWLEDGE CHUNK EDITING RESULTS ANALYSIS

To understand how each method edits the Knowledge Chunk, we analyze the ROUGE-L scores, shown
in Table 3. Firstly, MT-KOC achieves the highest ROUGE-L score against the Oracle knowledge
chunk. This directly measures the accuracy of the correction, demonstrating that the final edited
chunk (K∗) is semantically closest to the ground-truth correct version. Secondly, and equally
important, it also achieves the highest score against the original Perturbed chunk. This metric reflects
edit retention, indicating that our method preserves the maximum amount of correct, unchanged
information from the original chunk (K0).

5.3 ABLATION STUDY

We conducted an ablation study to validate the contributions of MT-KOC’s key components, with
results shown in Table 4.

Method Metric SQ NB

MT-KOC
F1 24.8 56.3
P 14.9 54.1
R 73.6 58.7

w/o M-P Search
F1 24.6 (↓ 0.2) 55.9 (↓ 0.4)
P 14.8 (↓ 0.1) 53.6 (↓ 0.5)
R 72.6 (↓ 1.0) 58.3 (↓ 0.4)

w/o Shortcut
F1 23.3 (↓ 1.5) 55.5 (↓ 0.8)
P 14.0 (↓ 0.9) 53.2 (↓ 0.9)
R 69.3 (↓ 4.3) 57.9 (↓ 0.8)

Table 4: Ablation study of MT-KOC. SQ and NB refer to the
ConvCorrect-SQ and ConvCorrect-NB datasets, respectively.
P/R denotes Precision/Recall.

Ablation on Multi-Path Search.
Removing multi-path exploration by
degenerating the process into a lin-
ear, greedy search leads to a consis-
tent degradation in performance. This
confirms that the search mechanism is
crucial for escaping local optima and
finding a globally superior correction
path.

Ablation on Shortcut Mechanism.
Disabling the Shortcut mechanism
also causes a clear drop in F1-score,
which suggests that the model be-
comes prone to performing superflu-
ous, harmful edits without an effective
early termination signal.

6 CONCLUSION

In this paper, we introduced the task of KOC to correct errors in RAG knowledge bases in real-time
using conversation-based user feedback. To address this task, we developed ConvCorrect, the first
comprehensive benchmark that incorporates diverse error types and feedback styles derived from
a preliminary user study. Furthermore, we proposed MT-KOC, a multi-step correction framework
leveraging a multi-agent system and dynamic action search algorithm to identify and apply optimal
sequences of corrective actions. Empirical evaluations on ConvCorrect demonstrate that MT-KOC
significantly outperforms existing baselines, achieving higher correction accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement Our research includes a preliminary user study involving human participants. All
participants were informed of the study’s objectives and procedures before providing their consent to
participate. The data collected, which consists of conversation-based feedback, was fully anonymized
to protect the privacy of the participants. Each participant received fair compensation for their time,
independent of their performance. The datasets used as the foundation for our benchmark, SQuAD
and Neural-Bridge, are established public resources, and we have taken additional steps to filter them
for any potentially sensitive content.

Reproducibility Statement To ensure the reproducibility of our results, we provide detailed
descriptions of our benchmark, methodology, and experimental setup. The construction process
of our ConvCorrect benchmark, including data sources and processing pipelines, is detailed in
Section 3. The architecture and the dynamic action search algorithm of our proposed MT-KOC
method are described in Section 4. Full implementation details, including the base model used and
hyperparameters, are provided in Appendix C. The source code and benchmark data will be made
publicly available upon publication of this work.

REFERENCES

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection. In The Twelfth International Conference on
Learning Representations, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, et al. Palm: Scaling language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia,
Junjie Hu, Anh Tuan Luu, and Shafiq Joty. Data augmentation using large language models: Data
perspectives, learning paradigms and challenges. arXiv preprint arXiv:2403.02990, 2024.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: researching
and revising what language models say, using language models. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
16477–16508. Association for Computational Linguistics, 2023a.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Han. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2023b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
CRITIC: large language models can self-correct with tool-interactive critiquing. In The Twelfth
International Conference on Learning Representations, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training. arXiv preprint arXiv:2002.08909, 2020.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Jinlin Wang, Ceyao
Zhang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for A multi-agent

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

collaborative framework. In The Twelfth International Conference on Learning Representations,
2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in large
language models: Principles, taxonomy, challenges, and open questions. ACM Trans. Inf. Syst., 43
(2):42:1–42:55, 2025.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

Soyeong Jeong, Jinheon Baek, Sukmin Cho, Sung Ju Hwang, and Jong Park. Adaptive-rag: Learning
to adapt retrieval-augmented large language models through question complexity. In Proceedings
of the Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), pp. 7036–7050, 2024.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In 17th European
Conference on Machine Learning, volume 4212 of Lecture Notes in Computer Science, pp. 282–
293, 2006.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems,
2020.

Yongjian Li, HaoCheng Chu, Yukun Yan, Zhenghao Liu, Shi Yu, Zheni Zeng, Ruobing Wang, Sen
Song, Zhiyuan Liu, and Maosong Sun. Kare-rag: Knowledge-aware refinement and enhancement
for rag. arXiv preprint arXiv:2506.02503, 2025.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao, and Nan Duan. Query rewriting in retrieval-
augmented large language models. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 5303–5315, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative
refinement with self-feedback. In Advances in Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Systems, 2023.

Zachary McGraw. What triggered the google cloud outage
in june 2025? https://www.vcsolutions.com/blog/
google-cloud-outage-causes-behind-the-june-2025-incident/, 2025.
Last accessed: 2025-09-15.

S McKenzie, A Burgess, and C Mellis. Interns reflect: the effect of formative assessment with
feedback during pre-internship. Advances in Medical Education and Practice, 8:51–56, 2017.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. In The Eleventh International Conference on Learning Representations,
2023.

Neural Bridge AI. Retrieval-augmented generation (rag) dataset 1200. https://huggingface.
co/datasets/neural-bridge/rag-dataset-1200, 2024a.

Neural Bridge AI. Retrieval-augmented generation (rag) dataset 12000. https://huggingface.
co/datasets/neural-bridge/rag-dataset-12000, 2024b.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize
Chen, Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev:
Communicative agents for software development. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15174–15186, 2024.

11

https://www.vcsolutions.com/blog/google-cloud-outage-causes-behind-the-june-2025-incident/
https://www.vcsolutions.com/blog/google-cloud-outage-causes-behind-the-june-2025-incident/
https://huggingface.co/datasets/neural-bridge/rag-dataset-1200
https://huggingface.co/datasets/neural-bridge/rag-dataset-1200
https://huggingface.co/datasets/neural-bridge/rag-dataset-12000
https://huggingface.co/datasets/neural-bridge/rag-dataset-12000

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 2383–2392, 2016.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
language agents with verbal reinforcement learning. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems, 2023.

Abraham Silberschatz, F. Korth Henry, and Shashank Sudarshan. Database system concepts. McGraw-
Hill, New York, USA, 2002.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, et al. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288, 2023.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In 7th
International Conference on Learning Representations, 2019.

Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, and Sercan Ö. Arik. Astute RAG: overcoming
imperfect retrieval augmentation and knowledge conflicts for large language models. In Proceed-
ings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics, 2025.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai
Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on large
language model based autonomous agents. Frontiers Comput. Sci., 18(6):186345, 2024.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao Zhou,
Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou, Rongxi-
ang Weng, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuanjing Huang, Qi Zhang, and Tao Gui.
The rise and potential of large language model based agents: a survey. Sci. China Inf. Sci., 68(2),
2025.

Fangyuan Xu, Weijia Shi, and Eunsol Choi. RECOMP: improving retrieval-augmented lms with
context compression and selective augmentation. In The Twelfth International Conference on
Learning Representations, 2024.

LIN C. Y. Rouge : A package for automatic evaluation of summaries. Proc. Workshop on Text
Summariation Branches Out, Post-Conference Workshop of ACL 2004, 2004.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling. Corrective retrieval augmented generation.
arXiv preprint arXiv:2401.15884, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems,
2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R. Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023b.

Wenhao Yu, Hongming Zhang, Xiaoman Pan, Peixin Cao, Kaixin Ma, Jian Li, Hongwei Wang,
and Dong Yu. Chain-of-note: Enhancing robustness in retrieval-augmented language models. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
14672–14685, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models. arXiv
preprint arXiv:2401.01286, 2024.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, and Shuming Shi.
Siren’s song in the AI ocean: A survey on hallucination in large language models. arXiv preprint
arXiv:2309.01219, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V. Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models.
In The Twelfth International Conference on Learning Representations, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A SAMPLE WITH EACH ERROR TYPE

Shared Context for All Examples

• User Query (Q): Please describe the key identifying features of the Death Cap mushroom.

• Oracle Knowledge Chunk (Koracle): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes. It contains α-amanitin, which causes fatal liver and kidney
damage. The species typically grows in summer and autumn in deciduous and mixed forests,
forming mycorrhizal relationships with broadleaf trees like oaks. Its key identifying features
include: a cap that is typically pale grey, yellowish-green, or olive-green, and smooth. The gills are
white and free (i.e., not attached directly to the stipe). The most important feature is that the base
of its stipe has a distinct, cup-like volva, and the upper part of the stipe usually has an annulus
(ring)...

• Correct Answer (Aoracle): The key features of the Death Cap are: 1) A cap color of pale grey,
yellowish-green, or olive-green; 2) Gills that are white and free; and 3) A cup-like volva structure
at the base of the stipe.

FULLY INCORRECT

• Erroneous Knowledge Chunk (K): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes. It contains α-amanitin, which causes fatal liver and kidney
damage. The species typically grows in summer and autumn in deciduous and mixed forests. Its
key identifying features include: a cap that is typically bright red with white warts. The gills are
yellow and decurrent (i.e., running down the stipe). The base of its stipe lacks any special cup-like
structure, simply tapering at the base, and the upper part of the stipe usually has an annulus
(ring)...

• Generated Answer from K (A): The key features of the Death Cap include: 1) A cap that is bright
red with white warts; 2) Gills that are yellow and decurrent; and 3) No cup-like structure at the
base of its stipe.

PARTIALLY INCORRECT

• Erroneous Knowledge Chunk (K): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes. It contains α-amanitin, which causes fatal liver and kidney
damage. The species typically grows in summer and autumn in deciduous and mixed forests. Its
key identifying features include: a cap that is typically pure white or light brown, and smooth. The
gills are white and free (i.e., not attached directly to the stipe). The most important feature is that
the base of its stipe has a distinct, cup-like volva, and the upper part of the stipe usually has an
annulus (ring)...

• Generated Answer from K (A): The key features of the Death Cap include: 1) A cap color of
pure white or light brown; 2) Gills that are white and free; and 3) A cup-like volva structure at the
base of the stipe.

FULLY MISSING

• Erroneous Knowledge Chunk (K): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes and is responsible for the vast majority of fatal mushroom poi-
sonings worldwide. Its primary toxin is α-amanitin, a heat-stable cyclopeptide that cannot be
destroyed by cooking. Symptoms of poisoning typically do not appear until 6 to 12 hours after
consumption, starting with severe abdominal pain and vomiting. This is followed by a brief period
of false recovery, which ultimately leads to catastrophic liver and kidney failure...

• Generated Answer from K (A): Regarding the Death Cap mushroom, the provided information
indicates that it is extremely toxic and causes the majority of fatal mushroom poisonings. Its toxin,
α-amanitin, is heat-stable, and symptoms of poisoning are delayed, leading to severe liver and
kidney failure.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

PARTIALLY MISSING

• Erroneous Knowledge Chunk (K): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes. It contains α-amanitin, which causes fatal liver and kidney
damage. The species typically grows in summer and autumn in deciduous and mixed forests. Its
key identifying features include: a cap that is typically pale grey, yellowish-green, or olive-green,
and smooth. The gills are light brown and decurrent (i.e., running down the stipe). The upper part
of the stipe usually has an annulus (ring)...

• Generated Answer from K (A): The key features of the Death Cap include: 1) A cap color of
pale grey, yellowish-green, or olive-green; and 2) Gills that are white and free.

MIXED

• Erroneous Knowledge Chunk (K): ...The Death Cap (Amanita phalloides) is one of the world’s
most poisonous basidiomycetes. It contains α-amanitin, which causes fatal liver and kidney
damage. The species typically grows in summer and autumn in deciduous and mixed forests. Its
key identifying features include: a cap that is typically pale grey, yellowish-green, or olive-green,
and smooth. The gills are light brown and decurrent (i.e., running down the stipe). The upper part
of the stipe usually has an annulus (ring)...

• Generated Answer from K (A): The key features of the Death Cap include: 1) A cap color of
pale grey, yellowish-green, or olive-green; and 2) Gills that are light brown and decurrent.

ConvCorrect-SQ ConvCorrect-NB
Statistic Value Statistic Value
Total Samples 124,531 Total Samples 80,772

Perturbation Type Distribution Perturbation Type Distribution
Replace 32.8% Replace 31.8%
Add 33.5% Add 34.8%
Delete 33.7% Delete 33.4%

Error Type Distribution Error Type Distribution
Fully incorrect 77.4% Fully incorrect 55.5%
Partially incorrect 11.9% Partially incorrect 29.7%
Fully missing 0.2% Fully missing 0.5%
Partially missing 10.1% Partially missing 11.4%
Mixed 0.4% Mixed 2.9%

Table 5: Key statistics of the ConvCorrect Benchmark, detailing the scale and distribution of types
across both splits.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B PROMPTS FOR MULTI-AGENT SYSTEM

This section provides the detailed prompts used for each agent in the MT-KOC framework. These
prompts are presented with maximum fidelity to the implementation code to ensure reproducibility.
Each major prompt is presented on a separate page for clarity. Placeholders are denoted with angle
brackets (e.g., <query>).

B.1 PROMPT FOR KNOWLEDGE DISTILLATION AGENT

The agent is prompted to act as a "Factual Extractor." It uses the user’s query and the erroneous
Knowledge Chunk as a hint to find a minimal, direct, and factual piece of reference information.

You are a hyper-focused Factual Extractor. You will be
given a [Query] and an [Erroneous Knowledge Chunk]. The
[Erroneous Knowledge Chunk] is a previous, flawed attempt to
answer the query. Your task is to use this erroneous chunk
as a crucial hint to disambiguate the user’s true intent.
You must adhere to the following strict rules:

1. Use Knowledge Chunk for Disambiguation: Analyze the
[Erroneous Knowledge Chunk] to understand the specific
angle or meaning the user is interested in, especially
for ambiguous queries.

2. Direct Answer First: Primary goal is to find a
direct, minimal, and factual answer to the [Query],
informed by the hint from the [Erroneous Knowledge
Chunk]. Extract only the core piece of information
needed. For example, if asked for a capital city,
provide only the city’s name. If asked for a date,
provide only the date.

3. Strict Relevance Filter: Aggressively filter out
any information that is not essential to answering
the query. Ignore historical context, biographical
details, related trivia, or explanations unless the
query explicitly asks for them.

4. Mandatory Generative Fallback: If, and only if, no
verifiable information is found, you must generate a
plausible and concise answer, prefaced with: "The
following information is generated for reference only
and may not be accurate, as no verified data was found
in the internal knowledge base."

5. No Empty Responses: You must always provide a
response.

6. Format: Return the information as plain text.

Examples:
[Query]: Who was the first person to walk on the moon?
[Erroneous Knowledge Chunk]: The first person to walk on
the moon was Yuri Gagarin.
[Output]: Neil Armstrong.
[Query]: What is Java?
[Erroneous Knowledge Chunk]: Java is a popular caffeinated
beverage made from roasted coffee beans.
[Output]: Java is a large island in Indonesia.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.2 PROMPT FOR ACTION RECOMMENDATION AGENT

The agent is prompted to analyze the user feedback, the potentially erroneous Knowledge Chunk,
and the reference information to generate a set of structured correction hypotheses (actions).

You are a brilliant AI Recommendation Generator. Your
task is to analyze user feedback and a potentially flawed
[Knowledge Chunk] to generate plausible correction
hypotheses. You will be given [Reference Information] to
assist you, but you must use it critically.
Analysis Protocol:

1. Prioritize User Feedback: Your primary guide is
always the user’s [Feedback].

• Specific Feedback: If the [Feedback] is direct and
clear (e.g., "The capital is Paris, not Berlin"),
your main goal is to create a recommendation that
directly implements this feedback. The [Reference
Information] should be considered secondary, used
only to verify or add minor, consistent details.
The user’s explicit correction takes precedence.

• Vague Feedback: If the [Feedback] is vague (e.g.,
"That’s wrong," "It’s incomplete"), you must
critically use the [Reference Information] as your
main tool to deduce the user’s intent. Compare the
[Knowledge Chunk] with the [Reference Information]
to find likely errors or omissions. Generate
2-4 distinct hypotheses based on these potential
discrepancies. Treat the reference as a strong
hint, not an absolute truth.

2. Recommendation Structure: Each recommendation
must be a self-contained object with two keys:
‘"description"‘ and ‘"action"‘.

3. Action Mapping: The "action" object must contain:
‘"action_type"‘ (one of ["REVISE", "ADD", "DELETE"])
and ‘"recommendation"‘.

4. Output Format: Return ONLY a valid JSON array of
recommendation objects. If no corrections seem
necessary, return an empty JSON array ‘[]‘.

Input Format:
[Query]: The user’s original question.
[Previous response]: The model’s previous answer.
[Knowledge Chunk]: The original Knowledge Chunk that needs
correction.
[Feedback]: The user’s feedback.
[Reference Information]: Factual information provided for
inspiration and guidance. Note: This information is for
reference only and is not guaranteed to be the absolute
truth.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 PROMPTS FOR CORRECTION AGENT

The agent acts as a precise text editor, executing a single action provided by the Action Recommen-
dation Agent. The following pages detail the prompts for each of its modules.

ADD MODULE

You are a precise AI text editor. Your sole task is to
add information to the [Knowledge Chunk] based on a single,
clear [ADD Instruction].
Instructions:

1. Identify Information: Read the [ADD Instruction] to
understand what new information needs to be added.

2. Execute Insertion: Insert the new information into
the most logical and natural position within the
[Knowledge Chunk].

3. Strict Adherence: You MUST add the information
exactly as provided in the instruction. Do not alter
it.

4. Preserve Everything Else: All other parts of the
original Knowledge Chunk must be retained exactly.

5. Output Plain Text: Output only the complete, modified
Knowledge Chunk as plain text.

Example:
[Knowledge Chunk]: Japan is an island nation in East Asia.
[ADD Instruction]: Add ’with a population of approximately
125 million’ to the description of Japan.
[Output]: Japan is an island nation in East Asia with a
population of approximately 125 million.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

REVISE MODULE

You are a precise AI text editor. Your sole task is to
modify the [Knowledge Chunk] based on a single, clear
[REVISE Instruction].
Instructions:

1. Identify Target: Read the [REVISE Instruction] to
understand which part of the [Knowledge Chunk] is
incorrect.

2. Execute Correction: Revise the incorrect part
with the new information provided in the [REVISE
Instruction].

3. Strict Adherence: You MUST use the information
exactly as given in the instruction. Do not add,
infer, or hallucinate any information not present in
the instruction.

4. Preserve Everything Else: All other parts of the
Knowledge Chunk must be retained exactly.

5. Output Plain Text: Output only the complete, modified
Knowledge Chunk as plain text.

Example:
[Knowledge Chunk]: The capital of France is Florida, a
vibrant city known for its art museums. France is in
Europe.
[REVISE Instruction]: In the Knowledge Chunk, change the
capital of France from ’Florida’ to ’Paris’.
[Output]: The capital of France is Paris, a vibrant city
known for its art museums. France is in Europe.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

DELETE MODULE

You are a precise AI text editor. Your sole task is to
remove a misleading segment from the [Knowledge Chunk] based
on a single, clear [DELETE Instruction].
Instructions:

1. Identify Target: Read the [DELETE Instruction] to
understand which specific part of the Knowledge Chunk
is misleading and should be removed.

2. Execute Deletion: Remove only the identified
misleading segment from the [Knowledge Chunk].

3. Preserve Everything Else: All other parts of the
Knowledge Chunk must be retained exactly.

4. Ensure Coherence: The remaining text must be
grammatically correct and coherent.

5. Output Plain Text: Output only the complete, modified
Knowledge Chunk as plain text.

Example:
[Knowledge Chunk]: The largest planet is Jupiter, which is
a star and has many moons. It orbits the Sun.
[DELETE Instruction]: Remove the phrase ’, which is a
star,’ as it incorrectly describes Jupiter.
[Output]: The largest planet is Jupiter, which has many
moons. It orbits the Sun.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4 PROMPTS FOR REWARD EVALUATION AGENT

The agent is composed of two modules: one for generating an answer and one for scoring it. The
following pages detail the prompts for each module.

ANSWER GENERATION MODULE

You are a knowledgeable AI assistant that interacts
with users through natural conversation. Follow these
guidelines:

1. Treat the provided Knowledge Chunk as normal and
complete, and base your responses strictly on it.
If the Knowledge Chunk lacks relevant details or is
contradictory, generate a natural and concise answer
using available information or reasonable inference.

2. Use accurate terminology and proper names from the
Knowledge Chunk, paraphrasing naturally for clear and
conversational responses.

3. Keep responses concise, addressing the core of the
question in 1-2 sentences, focusing only on the most
relevant information.

4. Present information in a fluent, natural conversation
style, avoiding phrases like ’the information
provided’ or references to external sources. For
missing information, provide a plausible answer based
on the Knowledge Chunk or inference.

5. If the Knowledge Chunk contains contradictory
information, include all relevant details in the
answer while maintaining natural expression.

6. Always attempt to answer the question, even if
the Knowledge Chunk lacks direct information, by
leveraging related content or reasonable assumptions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

SCORING MODULE

You are a strict and objective Answer Evaluator. Your
sole purpose is to score a new answer based on its precise
alignment with a ground truth. Your evaluation must be
rigorous and prioritize factual accuracy over stylistic
qualities.
Evaluation Protocol (Strict Priority Order):

1. Determine the Ground Truth: You must determine the
ground truth by following this hierarchy:

• Tier 1: Clear Feedback: If the [User Feedback] is
specific and provides a clear correction (e.g.,
"it should be Paris"), that feedback is the
absolute and sole ground truth. You MUST ignore
the [Reference Information], even if it contains
additional or conflicting details.

• Tier 2: Vague Feedback with Reference: If the
[User Feedback] is vague (e.g., "it’s wrong") AND
the [Reference Information] is available, then the
[Reference Information] becomes the ground truth.

• Tier 3: Vague Feedback, No Reference (Inference):
If the [User Feedback] is vague AND the [Reference
Information] is empty or unavailable, you must
first use your own general knowledge to determine
what a perfect answer to the [Query] would be.
This inferred ideal answer then becomes your ground
truth for the evaluation.

2. Score based on Ground Truth Alignment (0-10):

• 10 (Perfect Match): The new answer perfectly
incorporates the ground truth. All key entities,
facts, and numbers from the ground truth are
present and correct.

• 7-9 (High Alignment): The new answer correctly
incorporates the main point of the ground truth but
may miss a minor detail.

• 4-6 (Partial Alignment): The new answer addresses
the ground truth partially (e.g., corrects one
error but misses another).

• 0-3 (Low Alignment): The new answer attempts to
address the ground truth but fails significantly,
containing major inaccuracies.

Scoring Rules:

• Precision is Key: Focus entirely on the presence and
correctness of key information from the ground truth
you determined in Step 1.

• Output ONLY the numerical score (0-10).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C IMPLEMENTATION DETAILS

To ensure a fair and controlled comparison, all methods evaluated in our experiments, including all
baselines and every agent within the MT-KOC framework, are powered by the same underlying large
language model.

Base Model and Environment. We use DeepSeek-R1-Distill-Qwen-32B as the base model for
all experiments. The model is deployed on 8 H100 GPUs using the VLLM framework for efficient
inference.

MT-KOC Hyperparameters. For our proposed MT-KOC framework, the number of search epochs
is set to 8. The exploration coefficient E in the UCT-based selection metric (Eq. 6) is set to 1.3. The
Shortcut mechanism is triggered when an evaluation score Si from the Reward Evaluation Agent
reaches the maximum value of 10.0.

23

	Introduction
	Related Work
	Retrieval-Augmented Generation
	Multi-Agent Systems

	Benchmark
	Problem Formulation
	Preliminary User Study
	Benchmark Construction

	Method
	Framework Overview
	Multi-Agent System
	Dynamic Action Search

	Experiments
	Experimental Setup
	Results and Analysis
	Main Performance Comparison
	Knowledge Chunk Editing Results Analysis

	Ablation Study

	Conclusion
	Sample with Each Error Type
	Prompts for Multi-Agent System
	Prompt for Knowledge Distillation Agent
	Prompt for Action Recommendation Agent
	Prompts for Correction Agent
	Prompts for Reward Evaluation Agent

	Implementation Details

