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Abstract

Linear temporal logic (LTL) is a compelling
framework for specifying complex, structured
tasks for reinforcement learning (RL) agents. Re-
cent work has shown that interpreting LTL in-
structions as finite automata, which can be seen
as high-level programs monitoring task progress,
enables learning a single generalist policy capa-
ble of executing arbitrary instructions at test time.
However, existing approaches fall short in envi-
ronments where multiple high-level events (i.e.,
atomic propositions) can be true at the same time
and potentially interact in complicated ways. In
this work, we propose a novel approach to learn-
ing a multi-task policy for following arbitrary LTL
instructions that addresses this shortcoming. Our
method conditions the policy on sequences of sim-
ple Boolean formulae, which directly align with
transitions in the automaton, and are encoded via
a graph neural network (GNN) to yield structured
task representations. Experiments in a complex
chess-based environment demonstrate the advan-
tages of our approach.

1. Introduction

In recent years, we have seen remarkable progress in training
artificial intelligence (AI) agents to follow arbitrary instruc-
tions (Luketina et al., 2019; Liu et al., 2022; Paglieri et al.,
2025; Klissarov et al., 2025). One of the central considera-
tions in this line of work is which type of instruction should
be provided to the agent; while many works focus on tasks
expressed in natural language (Goyal et al., 2019; Hill et al.,
2020; Carta et al., 2023), there recently has been increased
interest in training agents to follow instructions specified
in formal language (Jothimurugan et al., 2021; Vaezipoor
etal.,, 2021; Qiu et al., 2023; Yalcinkaya et al., 2024; Jack-
ermeier & Abate, 2025). As a type of programmatic task
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representation, formal specification languages offer several
desirable properties, such as well-defined semantics and
compositionality. This makes formal instructions especially
appealing in safety-critical settings, in which we want to
define precise tasks with a well-defined meaning, rather
than giving ambiguous natural language commands to the
agent (Leon et al., 2021).

One particular formal language that has proven to be a
powerful and expressive tool for specifying tasks in rein-
forcement learning (RL) settings is linear temporal logic
(LTL; Pnueli, 1977) (Hasanbeig et al., 2018; Hahn et al.,
2019; Kuo et al., 2020; Vaezipoor et al., 2021; Le6n et al.,
2022; Liu et al., 2024). LTL instructions are defined over
a set of atomic propositions, corresponding to high-level
events that can hold true or false at each state of the environ-
ment. These atomic propositions are combined using logical
and temporal operators, which allow for the specification of
complex, non-Markovian behavior in a compositional man-
ner, naturally incorporating aspects like safety constraints
and long-term goals. Recent work has exploited the connec-
tion between LTL and corresponding automata structures
(typically variants of Biichi automata; Biichi, 1966), which
provide a programmatic way to monitor task progress, to
train generalist policies capable of executing arbitrary LTL
instructions at test time (Qiu et al., 2023; Jackermeier &
Abate, 2025).

However, existing approaches often struggle in scenarios
where multiple atomic propositions can hold true simulta-
neously. This is due to the fact that current methods treat
possible assignments of propositions in isolation, and do
not explicitly model the complex interactions that may oc-
cur between different high-level events. In this paper, we
develop a novel approach that addresses these limitations.
Our approach translates transitions in the automaton into
equivalent Boolean formulae, which provide succinct, struc-
tured representations of the propositions that are relevant
for making progress towards the given task, and explicitly
capture the logical conditions for the transition. We show
that encoding these formulae via a graph neural network
(GNN) yields meaningful representations that can be used
to train a policy conditioned on different ways of achiev-
ing a given task, enabling zero-shot generalization to novel
LTL instructions at test time. Our main contributions are as
follows:
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* we develop a novel approach to learning policies for fol-
lowing arbitrary LTL instructions that can effectively
handle complex interactions between atomic proposi-
tions;

* we propose representing LTL instructions as sequences
of Boolean formulae, and show how existing policy
learning approaches can be augmented with GNNs to
improve representation learning;

¢ we introduce a novel, chess-like environment where
many different propositions can be true simultaneously,
which allows us to study the performance of existing
approaches in this challenging setting;

* lastly, we conduct an extensive empirical evaluation of
our proposed method on this challenging environment,
and show that it achieves state-of-the art results and
outperforms existing methods.

2. Related Work

While significant research effort has explored the use of
LTL to specify tasks in RL (Fu & Topcu, 2014; De Giacomo
et al., 2018; Hasanbeig et al., 2018; Camacho et al., 2019;
Hahn et al., 2019; Bozkurt et al., 2020; Cai et al., 2021;
Shao & Kwiatkowska, 2023; Voloshin et al., 2023; Le et al.,
2024; Shah et al., 2025), most approaches are limited to
training agents to satisfy a single specification that is fixed
throughout training and evaluation. In contrast, we aim to
learn a general policy that can zero-shot execute arbitrary
LTL instructions at test time.

Several works have begun to tackle this challenge of learn-
ing generalist policies. Early methods, such as that of Kuo
et al. (2020), propose composing recurrent neural networks
(RNNSs) that mirror the structure of LTL formulae, but this
approach requires learning a non-stationary policy, which
is generally challenging (Vaezipoor et al., 2021). Other
approaches decompose LTL tasks into subtasks, which are
then completed sequentially by a goal-conditioned policy
(Araki et al., 2021; Leodn et al., 2022; Liu et al., 2024; Xu &
Fekri, 2024). However, such methods can exhibit myopic
behavior, leading to globally suboptimal solutions because
they do not consider the full specification structure during
subtask execution. In contrast, our method conditions the
policy on the entire sequence of Boolean formulae that need
to be satisfied in order to complete the task.

Vaezipoor et al. (2021) introduce LTL2Action, which di-
rectly encodes the LTL formula’s syntax tree using a GNN
and employs LTL progression (Bacchus & Kabanza, 2000)
to update the task representation. While this allows for
generalization to some extent, the primary drawback of this
method is that it requires the policy to learn the semantics of
temporal operators. Instead, we construct Biichi automata

to explicitly capture the temporal structure of tasks, and con-
dition the policy on sequences of simple Boolean formulae.

Our work builds upon recent approaches that introduced
the idea of exploiting the structure of Biichi automata for
training a general LTL-conditioned policy (Qiu et al., 2023;
Jackermeier & Abate, 2025). However, our work differs
in how the task is represented and processed. Instead of
learning a policy conditioned directly on atomic proposi-
tions (Qiu et al., 2023), or on sequences of sets of assign-
ments (Jackermeier & Abate, 2025), we propose to translate
the transitions in the automaton into equivalent Boolean for-
mulae and learn a policy conditioned on sequences thereof.
This provides a more explicit and structured representation
of the task transition dynamics, especially when multiple
propositions can be simultaneously true and interact in com-
plex ways, leading to better generalization and performance.

3. Background
3.1. Reinforcement Learning

We consider a standard reinforcement learning (RL) setup
where an agent interacts with an environment, modeled as a
Markov decision process (MDP). An MDP is defined as a tu-
ple M = (S, A, p,r,7, po), where S is the state space, A is
the action space, p : SxAXS — [0, 1] is the transition prob-
ability function, r : S X A x § — R is the reward function,
v € [0, 1) is the discount factor, and py is the initial state
distribution. The agent’s goal is to learn a policy 7 : S —
A(A) (a mapping from states to probability distributions
over actions) that maximizes the expected discounted return
J(m) = Err[> oo y're), where T = (so,a0,70, 51, .. )
is a trajectory generated by following policy 7 starting
from sg ~ po, i.e., ar ~ w(-|8t), Se41 ~ (|t ar),
and r; = r(s¢, a4, Se+1). The value function of a policy
is defined as V™ (s) = E, o[> oo ¥'7¢ | S0 = 8], Le., the
expected discounted return of policy 7 starting in state s.

3.2. Linear Temporal Logic

Linear temporal logic (LTL; Pnueli, 1977) is a modal logic
used to specify properties of infinite sequences of states,
serving as a formal programmatic specification language.
LTL formulae are defined over a set of atomic propositions
(AP), which represent basic properties of the environment
(e.g., “object A is at location X ). The syntax of LTL is

pu=T|p|l@leAY [ Xp|pUy

where T denotes true, p € AP is an atomic proposition,
— (negation) and A (conjunction) are standard Boolean con-
nectives (from which others like \V, —, <+ can be derived),
and X (next) and U (until) are temporal operators. Common
derived temporal operators include F o = T U ¢ (eventu-
ally or finally) and G ¢ = —F —¢ (globally or always).
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Figure 1. LDBA for the formula (FGa) V F (b A Fc).

LTL semantics are defined over infinite traces o =
000103 ..., Where each o; C AP is an assignment, i.e.,
a set of atomic propositions true at time ¢. For an MDP, we
assume a labeling function L : S — 24 that maps each
environment state s € S to the set of atomic propositions
true in that state. A trajectory T = (sg, ag, 7o, S1, - - - ) satis-
fies an LTL formula ¢, denoted 7 = ¢, if its corresponding
trace L(sg)L(s1) ... satisfies ¢ according to LTL seman-
tics. For example, the LTL formula —a U b is satisfied by
exactly the traces where eventually b is true at some time
t, and a is false at all timesteps before. See Appendix A
for a formal definition of LTL satisfaction semantics. LTL
provides a formal and structured way to define complex
tasks to RL agents, such as “eventually reach region A, and
if region B is entered, then eventually reach region C while
avoiding region D.”

3.3. Biichi Automata for LTL

The semantics of LTL formulae can be captured by Biichi au-
tomata (Biichi, 1966), which serve as explicit, programmatic
structures encoding a particular task. We here focus on
limit-deterministic Biichi automata (LDBAs; Sickert et al.,
2016), which are defined as tuples B = (Q, qo, 2, 0, F, ).
Q = Qn W Op is a finite set of states partitioned into two
subsets, gy € Q is the initial state, ¥ = 247 is a finite al-
phabet, : Q x (X UE) — Q is the transition function, and
F is the set of accepting states. We require that ¥ C Qp
and §(q, ) € Qp forallg € Qp and a € 3. The only way
to transition from Qy to Qp is by taking a jump transition
€ € &£, which does not consume any input. Given an input
trace o, a run of B is an infinite sequence of states in Q
respecting the transition function J. A trace is accepted by
B if there exists a run that infinitely often visits accepting
states.

Theorem 3.1 (Sickert et al., 2016). Given an LTL formula
@, it is possible to automatically construct an LDBA B,
such that B, accepts exactly the traces o for which o |= .

Example 3.1. Figure 1 shows an LDBA that accepts traces
satisfying (F Ga) V F (b A F c). Accepting runs either reach
q1 from qq via b and then ¢ via c, or use the jump transition
to reach qs, after which a must hold true indefinitely.

Biichi automata are appealing structures to represent LTL
instructions, since they explicitly capture the memory re-
quired to execute a given task. In RL settings, it is hence
common to consider policies 7: S x Q@ — A(A) condi-
tioned not only on the current MDP state s, but also on the
current LDBA state ¢ (Hasanbeig et al., 2018; Hahn et al.,
2019). After each environment interaction, the automaton
state is updated according to the transition function ¢ and
the currently true propositions L(s). Over the course of a
trajectory, updates to the LDBA state affect the behavior
of the policy. For example, in Figure 1 the policy initially
might aim to make b true (following the upper branch), but
once it has transition to state ¢, it would aim to make c true
instead.

4. Method

We leverage goal-conditioned RL (Liu et al., 2022) to learn a
generalist policy capable of executing arbitrary instructions
specified in LTL. Our approach follows a standard frame-
work (Hasanbeig et al., 2018; Vaezipoor et al., 2021; Jacker-
meier & Abate, 2025): during training, we sample random
LTL specifications ¢ at the beginning of each episode, and
generate a trajectory by repeatedly sampling a; ~ 7(s; | ¢).
We simultaneously keep track of the current state of the
LDBA B,, constructed from ¢, assigning positive rewards
to actions that lead to accepting states in B, and giving a
reward of 0 otherwise. Optimizing these rewards amounts
to solving the following optimization problem:

7 =argmax E
™ Tl

where 14 is the indicator function of set A. Intuitively,
given an LTL instruction ¢, the reward-optimal policy will
visit accepting states in B, as often as possible, and hence
satisfy the given specification. For a detailed discussion of
how the reward-optimal policy relates to the optimal policy
w.r.t. the probability of satisfying a given specification, see
(Hahn et al., 2019; Voloshin et al., 2023; Jackermeier &
Abate, 2025).

A key challenge in the above framework is how to condition
the policy on a given LTL instruction ¢. Prior work has
shown that directly encoding ¢, for example using a recur-
rent or graph neural network, tends to be ineffective, since
this requires learning a complex non-stationary policy due
to the non-Markovian nature of LTL tasks (Vaezipoor et al.,
2021). Instead, we build on recent approaches that exploit
the information contained in B, to learn a stationary policy
m: S x @ — A(A) conditioned on both the MDP state s
and current LDBA state ¢ (Qiu et al., 2023; Jackermeier &
Abate, 2025).
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Figure 2. Given an LTL specification ¢, we first construct an LDBA 3, to represent the task structure and memory. We then extract a
sequence of Boolean formulae from an accepting run in B, to condition our policy. If the LDBA state changes due to progress or external
events, we recompute the accepting run from the new state ¢’ and re-condition the policy.

4.1. High-level Overview

Figure 2 illustrates our approach. We first construct an
LDBA B, from a given LTL instruction ¢, which captures
the task structure and the memory required to execute it.
From the LDBA, we extract a sequence of Boolean formulae
corresponding to an accepting run from the initial state
go. Each formula is associated with an edge in B, and
succinctly represents the conditions that must hold true in
order to make progress towards satisfying the task. We then
execute a policy conditioned on this sequence of formulae in
the environment. If the LDBA state changes to a new state
q', either because the policy has made progress towards
the task or because of an external event, we recompute
an accepting run from ¢’ and condition the policy on the
corresponding new sequence of Boolean formulae.

4.2. Extracting Accepting Runs

Given an LDBA B, constructed from a specification ¢, and
a state g, we use Algorithm 1 of (Jackermeier & Abate,
2025) to identify accepting runs starting in g (see Ap-
pendix B). This performs a simple depth-first search from ¢
to cycles in the automaton containing at least one accepting
state. Each accepting run corresponds to one possible way
of achieving the LTL instruction ¢.

4.3. Representing Runs via Boolean Formulae

From an accepting run p = (¢, ¢1,...) we construct a se-
quence of Boolean formulae capturing the high-level goals
the agent must achieve in order to follow the run, and hence
satisfy the LTL task. Specifically, in order to transition
from g; to ¢;4+1, the agent must achieve an assignment a;
of atomic propositions that satisfies the transition condition
5(¢iya;) = qi+1, while avoiding any transitions to other
states (excluding self-loops). We represent this with two
Boolean formulae ﬂj and 3; that satisfy

Va€A.a B < 0(q,a) = g1,
VacA.al B < 6(g,a) & {¢, ¢}

where A = {L(s) : s € 8} C 247 is the set of possible
assignments in the MDP. Intuitively, 3;" is a succint repre-
sentation of the assignments that allow transitioning from

gi to g;4+1, while 3;” captures the assignments that must not
hold true in order to avoid transitioning to other states.

Example 4.1. Consider an MDP with propositions AP =
{a,b,¢,d} in which all combinations of propositions can
hold true at the same time. Assume we have an LDBA in
which we can transition from state gy to ¢; via any of the
assignments in the set

A= {{a},{a,b}, {a.d}, {a.b,d}}.

A succinct representation of the transition from ¢q to g7 is
the formula BS‘ =a A -c

Constructing the formulae. To construct one of the for-
mulae ﬁj and 3, , we first identify the set of assignments
A for which it must hold true, i.e., the set of assignments
corresponding to the relevant LDBA transitions. From this,
we can trivially construct a disjunctive normal form (DNF)
formula that captures the assignments in A. However, this
representation is often not very informative, as it can be
large and complex. Instead, we aim to find a small, seman-
tically meaningful formula that captures the essence of the
assignments in A while enabling generalization at test time.

In general, this problem of finding a minimal Boolean for-
mula for a given set of assignments is known to be in-
tractable (assuming that P # NP) (Masek, 1979; Allender
et al., 2006). We hence employ the following approximate
procedure: we initially construct a set of well-structured
candidate formulae by combining elementary formula tem-
plates such as disjunctions of propositions, conjunctions of
propositions, conjunctions with negated disjunctions, and
combinations thereof. For each formula we construct, we
compute its set of satisfying assignments A C A, and finally
for a given set of assignments we choose the associated can-
didate formula of minimal length. If we encounter a set of
assignments for which no precomputed candidate formula
exists, we fall back to using the DNF as described above.
For further details on constructing candidate formulae, see
Appendix D.

4.4. Learning Structured LTL Representations

Having extracted sequences of Boolean formulae from the
LDBA, we use a combination of GNNs and RNNs to obtain
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Figure 3. A sequence of Boolean formulae is processed via a GNN to produce a sequence of embeddings, which are passed through an
RNN to obtain a representation of an accepting run. The MDP state is encoded via a state encoder. Both embeddings are fed into the

policy network, which produces an action.

a meaningful task embedding for the policy. We first trans-
form each formula into an abstract syntax tree (AST), where
leaf nodes are propositions and internal nodes are logical
operators. We interpret the AST as a directed graph with
edges from children to parent nodes. Finally, we associate
with each node in the AST a learnable embedding and ap-
ply a graph convolutional network (GCN; Kipf & Welling,
2017), which updates the node representations as follows:

1
WORO
Z \% d'udu “ ’

weN (v)U{v}

hg]lJrl) _ f

where AV (v) denotes the set of neighbors of node v, d,, is
the degree of node v in the graph with added self-loops,
th) is the representation of node v at layer [, WO is a
learnable weight matrix, and f(-) is a nonlinearity such as
ReLU. The final embedding of the root node is the learned
representation of the entire Boolean formula.

To obtain a meaningful representation of an accepting run
p in the LDBA, we concatenate the embeddings of B;F and
B; at each transition and produce an overall embedding by
applying a gated recurrent neural network (GRU; Cho et al.,
2014). Since p is generally an infinite sequence, we consider
only a finite prefix of transitions as an approximation.

Policy Architecture. See Figure 3 for an illustration of
our overall policy architecture. Given an accepting run in
the LDBA, we obtain an embedding from the GNN and
RNN as discussed above. We simultaneously encode the
current MDP state s using either a multilayer perceptron
(MLP) or convolutional neural network (CNN). The pol-
icy is instantiated as another MLP that maps from these
embeddings to a distribution over actions, i.e., returns the
parameters of a categorical or Gaussian distribution.

To handle jump transitions in the LDBA, we follow the
standard procedure of augmenting the action space of the
policy with designated e-actions that take the jump transition
without performing an action in the MDP (Hasanbeig et al.,

2018; Voloshin et al., 2023; Jackermeier & Abate, 2025).
In the discrete case, we add an additional output logit to
the policy network, and in the continuous case the policy
network represents a mixture of a Gaussian distribution for
the MDP action space, and a discrete distribution modelling
the probability of taking an e-action.

4.5. Training

We optimize the parameters of our model end-to-end via
goal-conditioned RL. Instead of directly sampling LTL
formulae during training, we design a training curriculum
consisting of increasingly challenging sequences of Boolean
formulae to satisfy. Jackermeier & Abate (2025) have previ-
ously shown that curriculum learning is an effective method
for improving the training of LTL-conditioned policies in
practice.

Let {(8;],57)}, c[) be a training sequence sampled from
the curriculum. We assign a reward of 1 to an episode if the
agent successfully satisfies the formulae 3;" in sequence,
and assign a negative reward of —1 if the agent instead
satisfies the currently active 5; . We jointly optimise the
policy and learn a value function V™ using proximal policy

optimization (PPO; Schulman et al., 2017).

4.6. Selecting an Accepting Run

In order to execute a new LTL instruction ¢ with our trained
model, we extract an accepting run of the Biichi automaton
B, to condition the policy as described previously. However,
in general there are multiple possible accepting runs for any
given state of B,,. Similar to previous work (Qiu et al., 2023;
Jackermeier & Abate, 2025) we use the value function of
the policy to select the best accepting run, i.e., the accepting
run we are most likely to be able to complete and hence
satisfy the task.

Specifically, let s be the current MDP state, ¢ the current
LDBA state, AR = {p; };c[n] be the set of accepting runs
computed via Algorithm 1, and ¢ be the function mapping
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a run to a sequence of Boolean formulae. We select the
accepting run

p" = argmax V" (s,5(p;))
pEAR

to condition the policy each time the LDBA state is updated.

4.7. Discussion

Representing LTL instructions as sequences of Boolean for-
mulae allows us to learn structured task embeddings that are
useful for learning a generalist policy. In particular, Boolean
formulae succinctly capture the meaning of a (sub-)task and
allow the policy to effectively generalize. This is especially
true in settings where many atomic propositions can be true
at the same time. For example, if the policy has learned how
to achieve the formula a and how to achieve the formula
b, it can exploit what is has learned about the semantics of
Boolean operators to also achieve the formula a A b. Previ-
ous methods (Qiu et al., 2023; Jackermeier & Abate, 2025)
do not support this type of generalization, and instead treat
different assignments as completely separate goals for the
policy.

5. Experiments

We conduct experiments to answer the following questions':
(1) Can our approach effectively zero-shot generalize to un-
seen LTL instructions? (2) How does our method compare
to recent state-of-the-art approaches for training multi-task
LTL-conditioned policies? (3) How does the performance
of our method behave with increasing task difficulty?

5.1. Experimental Setup

ChessWorld. We conduct our experiments in the Chess-
World environment, in which states correspond to posi-
tions on an 8 X 8 chessboard. In the beginning of an
episode, the agent — the white king — is randomly placed
on an empty square. It then needs to navigate the board by
moving along the 8§ compass directions in order to reach
squares that specific black pieces can move to, while avoid-
ing squares attacked by other pieces. In particular, the
atomic propositions correspond to the black pieces, i.e.,
AP = {queen, rook, knight, bishop, pawn}, and a proposi-
tion is true in a square if the corresponding piece is either
located on that square or attacks it. Due to the different
movement patterns of the pieces, many squares can be at-
tacked by multiple pieces at the same time, leading to a large
number of possible assignments and complex interactions
between propositions. For an illustration of the environment,
see Figure 4. More details about the environment can be
found in Appendix C.1.

'Our code is available at
mattiagiuri/ltl_gnn

https://github.com/

Figure 4. In the ChessWorld environment, the agent (the white
king) must navigate the chessboard while avoiding certain squares
attacked by black pieces. The agent can move along the 8 compass
directions. Blue shading indicates squares attacked by at least one
piece.

Tasks. We consider a number of tasks of varying difficulty
to evaluate our method. We differentiate between finite-
horizon tasks, which can be solved in a finite number of
steps, and infinite-horizon tasks, which specify recurrent
behavior that the agent must execute indefinitely. For exam-
ple, the finite-horizon task F (queen A (—knight U rook))
requires the agent to reach a square attacked by the queen
and subsequently avoid squares attacked by the knight until
it reaches a square attacked by the rook. In contrast, the
infinite-horizon task F G queen requires the agent to reach
squares attacked by the queen and stay there indefinitely.
We provide further details on the tasks used in our evaluation
in Appendix C.4.

Baselines. We compare our method to DeepLTL (Jack-
ermeier & Abate, 2025), a state-of-the-art approach for
learning a generalist policy for following LTL instructions.
Similarly to our method, DeepLTL exploits the structure
provided by Biichi automata for policy learning. However, it
conditions the policy on sets of assignments without explic-
itly modelling their interactions. In contrast, our method rep-
resents the task as a sequence of Boolean formulae, which
allows us to learn structured representations with GNNs.

We furthermore compare our approach to a novel base-
line that augments DeepLTL with a Transformer encoder
(Vaswani et al., 2017) to learn meaningful representations of
the sets of assignments. In theory, the attention mechanism
of the Transformer should allow this model to learn interac-
tions between the assignments, providing similar advantages
as our approach.

Evaluation protocol. All methods are trained with the
same training curriculum (see Appendix C.3) for 15M in-
teraction steps. Hyperparameter details are provided in
Appendix C.2. We report performance in terms of success
rate (SR) and average discounted return J (7). All results
are averaged over 5 random seeds.
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Table 1. Success rates (SR) and average discounted returns .J () on finite-horizon tasks with standard deviations over 5 seeds.

DeepLTL Transformer LTL-GNN
Task Set SR J(m) SR J(m) SR J(r)
®1 9914184 090640017 70.64209 0.64240.187 9931092 0.91540.009
®2 9234377 0.88640.037 57.64164 0.55440.150 9524324 0.913.0.029
¢3 68.843.06 0.65810.030 51.7+21.0 049410200 8264660 0.785:¢.061
o 9124974 088640027 77.0+154 0.74640.153 9274387 0.902410.036
®s 6714531 0.64240050 41. 74181 039840171 7431852  0.70940.078
ol 9154232 0.87340.023 76.6417.1 0.72440.162 93.61195 0.89240016
o7 9194134 0.89710.014 8081111 078540110 91.04324 0.88810.031

Table 2. Success rates on infinite-horizon tasks with standard devi-
ations over 5 seeds.

Task Set DeepLTL Transformer LTL-GNN

¢(O}% 95'7i01.7 67.6108 5 92.849.3

o7° 40.0+49.0 4311422 86.0_250

¢3° 357 +44.0 33.6+33.9 76.7136.7
5.2. Results

Tables 1 and 2 show the results of evaluating the trained poli-
cies on finite-horizon and infinite-horizon tasks, respectively.
We furhermore show the discounted return on finite-horizon
tasks over training in Figure 5. We see that our method,
denoted as LTL-GNN, is able to effectively generalize to
unseen LTL instructions and significantly outperforms the
baselines on most tasks, achieving higher success rates and
discounted returns. This is particularly evident in the chal-
lenging infinite-horizon tasks, where both baselines fail to
learn a policy that can consistently satisfy tasks in ¢ and
b3

The results demonstrate the advantages of our structured
learned task representations based on sequences of Boolean
formulae. In particular, the GNN-based representation al-
lows us to learn meaningful task embeddings that capture the
interactions between the assignments in the LTL tasks. This
is in contrast to the Transformer baseline, which struggles
to learn effective representations of the sets of assignments.

Varying the Task Difficulty. We further evaluate the per-
formance of our method and the baselines on tasks of vary-
ing difficulty, in which we increase the number of pieces
that the agent must avoid in order to complete a task. We
consider reach-avoid tasks of the form —a U b and vary the
number of pieces that must be avoided from 1 to 5. The
results are shown in Figure 6.

As expected, we see that the success rates of all methods
decrease with increasing task difficulty, i.e., as the number

of pieces to avoid increases. However, our method is able to
maintain higher success rates than the baselines even for the
most difficult tasks, demonstrating its strong performance
on challenging LTL instructions.

6. Conclusion and Future Work

We have presented a novel approach for learning general-
ist policies for following LTL tasks based on structured
task representations. Our method exploits the structure of
Biichi automata constructed from a given specification, and
extracts sequences of Boolean formulae that succinctly rep-
resent different ways of achieving the task. These formulae
are encoded by a combination of GNNs and RNNs to con-
dition the policy on the LTL instruction. In contrast to
previous methods, this allows us to effectively model in-
teractions between different assignments, and to generalize
from simpler to more complicated tasks. We have shown
that our approach is able to effectively zero-shot generalize
to unseen LTL instructions and outperforms state-of-the-art
methods in terms of success rate and discounted return.

There are several interesting directions for future work. It
would be interesting to apply our method to larger, more
realistic environments with high-dimensional observation
and action spaces. In some environments, especially vision-
based, the labeling function mapping from observations to
atomic propositions may not be known. Future work could
explore jointly learning the labeling function or incorpo-
rating pre-trained foundation models as high-level event
detectors. Generally, these advances could lead to better
generalist models capable of following well-defined instruc-
tions.
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A. Semantics of LTL

The satisfaction semantics of LTL are specified by the satisfaction relation o = ¢, which is recursively defined as
follows (Baier & Katoen, 2008):

cET

ocEa iffa € o9

cEeAY iffeoEpANoEY

o= e iffo = @

oE=Xyp iffoll..]=¢

s Uy i35 > 0.0[j.. ] EYAYO<i<ijofi..]Ee.

B. Algorithm to Identify Accepting Runs

Algorithm 1 Computing paths to accepting cycles (Jackermeier & Abate, 2025)
Require:
AnLDBA B = (Q, qo, %, d, F, £) and current state q.
0: procedure DFS(q, p, ){7 is in the index of the last seen accepting state, or —1 otherwise}
0: P+ 0
0: if g € F then
0 i< Ipl
0 end if
0: foralla € 247 U {c} do
0 p' <+ [p,d|
0: q' + d(g,a)
0: if ¢’ € p then
O.
0
0
0
0
0
0
0

if index of ¢’ in p < i then
P=PuU{p}
end if
else
P = PUDFS(¢,p, 1)
end if
end for
return P
0: end procedure
0: 1+ 0ifge Felsei < —1
0: return DFS(q, [], %) =0

C. Experimental Details
C.1. ChessWorld

The ChessWorld environment cosists of an 8 x 8 chessboard. Each state (z,y) € [8]? corresponds to a square on the board.
The atomic propositions correspond to the black pieces on the chessboard. If piece p is located on square s = (x, y) or p
attacks square s, then p is active in s, i.e., p € L(s). Table 3 lists all combinations of propositions that hold true at some
state in ChessWorld. The action space consists of 9 possible actions: the possible 8§ moves of a king in chess (i.e., move one
square orthogonally or diagonally), and a “stay” action that does nothing.

C.2. Hyperparameters

Neural Networks. In all experiments, our policy is instantiated with a fully connected neural network with dimensions of
[128, 64, 64] and ReLU activations. Its output is a categorical distribution, modeled by a softmax layer. The critic network
has [128, 64] units with ReLLU activations.
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Table 3. Possible assignments in ChessWorld.

{queen} {rook} {knight}
{bishop} {pawn} {queen, rook}
{queen, bishop}  {queen, pawn, bishop}  {queen, pawn, rook}
{knight, rook} {bishop, rook} {knight, bishop}

Table 4. PPO hyperparameters.

Parameter Value
Number of processes 16
Steps per process per update 2048
Epochs 10
Batch size 4096
Discount factor 0.98
GAE-\ 0.95
Entropy coefficient 0.003
Value loss coefficient 0.5
Max gradient norm 0.5
Clipping (€) 0.2
Adam learning rate 0.0003
Adam epsilon le-08

We employ a GCN with hidden dimension d = 32 and 3 layers. The DeepSets unit in DeepLTL uses a [32, 32] feed-
forward network with ReLU activations. The Transformer encoder for the baseline has the following structure: pre-layer
normalization, multi-head self-attention with 2 heads and dimension 32, residual connection and layer normalization,
residual connection and a [32, 32] feed-forward network.

PPO. The hyperparameters for PPO (Schulman et al., 2017) are listed in Table 4. We use Adam (Kingma & Ba, 2015) for
all experiments.

C.3. Training Curriculum

The curriculum consists of three stages, each characterised by a distribution over sequences of Boolean formulae with task
difficulty increasing over time. Tasks involve logical combinations (i.e., conjunctions/disjunctions) of atomic propositions,
e.g., bishop A queen, rook V pawn, or knight A —bishop. In the first stage, the focus is on simple reach-only tasks and
reach-avoid tasks with at most one piece to avoid. In the second stage, the avoid formulae expand to include up to three
pieces, and we introduce more complex finite tasks (e.g., ”avoid being attacked until reaching a piece”) as well as reach-stay
specifications. The third stage further increases the challenge by requiring longer persistence in reach-stay tasks, while
keeping the same finite-horizon tasks as the previous stage. For DeepLTL and the Transformer baseline we translate the
sequence of Boolean formulae back to a sequence of assignments.

C.4. Experiment Tasks

Tables 5 and 6 list the LTL tasks used in our evaluation.

D. Mapping Sets of Assignments to Boolean Formulae

The construction of the mapping begins with a curated dataset of desirable formulae, denoted as F'D. Each formula ¢ € F.D
is translated into a set of assignments G, using a mapping that replaces logical operators with set-theoretic counterparts
(e.g. A — N). The collection FA = {Gy : ¥ € FD} constitutes the assignment space corresponding to the formula
dataset.
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Table 5. ChessWorld finite-horizon LTL specifications.

Task Set  Specifications

®1 F (pawn A F (rook A F knight))
F ((rook A queen) A F bishop)
F (bishop A rook) A F (bishop A knight)

J

o pawn V bishop) U (bishop A rook)
queen V pawn) U (rook A queen)
bishop V pawn) U (rook A knight)
knight V rook) U bishop

bishop V knight) U queen

rook V bishop) U pawn

J

-

J

—

-

J

o3 bishop V knight V pawn) U (rook A queen)

knight V rook V bishop) U (rook A bishop)
bishop V pawn V rook) U (rook A queen)
bishop V knight \VV queen) U (rook A queen)

-

-

J

D4 —(bishop V rook V knight V pawn) U queen

(
(
(
(
(
(
(
(
(
(
(
(
(
(bishop V rook V knight V queen) U pawn
(
(
(
(
(
(
(
(
(
(
(
(
(

J

—(bishop V rook V pawn V queen) U knight
bishop V knight VV pawn V queen) U rook

rook V knight VV pawn V queen) U bishop

—

J

o5 —(bishop V rook V knight \V pawn V queen queen A pawn)
bishop V rook V knight V queen V pawn pawn A rook)

) U (
) U (
bishop V rook V pawn V queen V knight) U (knight A bishop)
) U (
) U (
) U (

J

-

J

bishop V knight V pawn V queen V rook
rook V knight V pawn V queen V bishop
rook V knight V pawn V queen V bishop

rook A knight)
bishop A queen)
rook A queen)

J

jl

b6 F (queen A (—knight U rook))

pawn V knight) U (queen A rook) A F pawn

bishop V rook) U pawn A F knight

F (rook A (—bishop U pawn))

(—queen U pawn) A (—bishop U knight)

(—queen U rook) A (—knight U queen)

(—queen U pawn) A (—bishop U knight) A (—knight U rook)

—

J

o7 —(rook V bishop V pawn) U (knight A —rook)
—queen U (bishop A —pawn)
—(bishop V knight) U (queen A —knight)
—(rook V knight \V queen V pawn) U (bishop A —queen)
—(pawn V queen V rook V knight V bishop) U (rook A —bishop)

An injective mapping F'C' : FA — F D is then established, ensuring each assignment set is uniquely linked to an optimal
formula under a chosen metric. The mapping is designed to include typical LTL-derived assignments; unseen sets during
deployment are processed by generating their DNF.

D.1. Notation and Conventions

Let the set of environment variables be denoted by V. We define P (V') as the power set of V', excluding the empty set and
V itself. For fixed cardinality, P(V")j, refers to the subset of P(V') containing only sets of size k, i.e., (‘2) More generally,

we define P(V')¥ as the collection of sets of size y drawn from P(V),, i.e., (P(;/)’). Each element in P(V')Y is thus a set

of y subsets of V, each of cardinality x.
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Table 6. ChessWorld infinite-horizon LTL specifications.

Task Set  Specifications

forarn G F knight A G F queen
G F pawn A G F rook
G F bishop A G F knight A G —rook
G F rook A GF pawn A G —knight

o F G bishop

F G queen

F G rook

F G pawn

F Gknight

F G (queen V bishop)
rook V queen)
knight V pawn)
bishop V knight)
rook \ pawn)

FG(
FG(
FG(
FG(
° F G (bishop A —rook)
FG(
FG(
FG(

knight A —bishop)
queen A pawn)
rook A queen)

The mapping is built by composing unions, intersections, and differences of sets G, = {a|a € A,a € o}, where a € AP.
It is implemented as a dictionary that maps sets of assignments to logical formulae. The core strategy is to define and insert a
curated sequence of templates—canonical forms of formulae—into the mapping. Since multiple formulae ); may represent
the same set of assignments G, the insertion order of templates reflects increasing syntactic complexity, ensuring that G is
represented by the simplest possible formula.

Importantly, for every formula added to the mapping, a corresponding complement formula (representing A \ G) is also
inserted. Throughout, range(a, b) denotes the set of integers in [a, b—1]. Each of the following subsections defines a specific
template in the order in which they are added to the mapping.

D.2. No Assignments

The empty set of assignments is added at the start, in order to prevent edge cases (i.e., formulae representing empty
assignment sets are not added).

D.3. Or Formulae

These formulae are of the form

Vv vVePV) k=12.,[V]-1
veEY

with corresponding complement formulae

- (\/ v) VyePWV), k=1,2,.|V|-1

veY

These are added to the mapping in increasing order of k, i.e. for k = 1,2, .., |[V| — 1.
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D.4. And Formulae

These formulae are of the form
Nv YVePV) k=12.,[V]-1
veEY

with corresponding complement formulae

ﬁ</\v> VVeP(V), k=12.,|V|-1

veY

These are added to the mapping in increasing order of &, i.e. for k = 1,2,..,|V| — 1.

D.5. Or-x-and-y Formulae
Here = and y are parameters to be chosen, in our experiments x = 4,y = 2. The formulae are
\/ o) A /\ w YV, € P(V),, for z" € range(2,z + 1)
vew, NS VVoe P(V);stVonVy =0, forj € range(l,y+ 1),
added to the mapping in lexicographical order of (¢, j). The complement formulae are
= ( \/ v) N /\ w
veV; weV;
D.6. And-x-and-not-y Formulae
Here x and y are parameters to be chosen, in our experiments x = 2,y = 3. The formulae are
/\ o) Ao \/ w VYV e P(V),, fori.Erange(Z,aerl)
vev, wevs VVye P(V);jstVonNVy =0, forj e range(l,y+1),

added to the mapping in lexicographical order of (4, j). The complement formulae are
veEV: weVa2

Here x and y are parameters to be chosen, in our experiments x = 4, y = 4. The formulae are

\/ o) A \/ w VYV € P(V),, for i € range(1,x + 1)
VVoe P(V);stVonNVy =0, forj e range(l,y+ 1),

vEVL wEVs

D.7. Or-x-and-not-y Formulae

added to the mapping in lexicographical order of (4, j). The complement formulae have the form
veEVY weVa

Here z, y andz are parameters to be chosen, in our experiments x = 4,y = 3,2 = 2.

\/ oA \/ /\ w VYV, € P(V);, forié€range(l,z+1)
Ve VYV, € P(V)¥, forj €range(2,y + 1),k € range(1,z + 1),

vEV VzeP( wEVs J’

D.8. Or-x-and-not-zy Formulae
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added to the mapping in lexicographical order of (4, j, k). The complement formulae are

B} ( v ) vy ( A w>
vEV] VzEP(V);’ wEVs

D.9. Choosing a Formula

In general there may be sets of assignments with multiple matching formulae, that is, the mapping F'C' need not be injective.
In this case, we select the first matching formula added to the mapping, which implicitly corresponds to selecting the
minimal formula in terms of number of operators, i.e., we select

v = arg min c(v),

€Fg

where ¢(1)) measures the complexity of formula 1.
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