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Abstract

We train models to Predict Ego-centric Video from human Actions (PEVA), given
the past video and an action represented by the relative 3D body pose. By condi-
tioning on kinematic pose trajectories, structured by the joint hierarchy of the body,
our model learns to simulate how physical human actions shape the environment
from a first-person point of view. We train an auto-regressive conditional diffusion
transformer on Nymeria, a large-scale dataset of real-world egocentric video and
body pose capture. We further design a hierarchical evaluation protocol with in-
creasingly challenging tasks, enabling a comprehensive analysis of the model’s
embodied prediction and control abilities. Our work represents an initial attempt to
tackle the challenges of modeling complex real-world environments and embodied
agent behaviors with video prediction from the perspective of a humanﬂ

1 Introduction

Human movement is rich, continuous, and physically grounded (Rosenhahn et al., [2008; |/Aggarwal
and Cai, |1999). The way we walk, lean, turn, or reach—often subtle and coordinated—directly shapes
what we see from a first-person perspective. For embodied agents to simulate and plan like humans,
they must not only predict future observations (Von Helmholtz, |1925)), but also understand how visual
input arises from whole-body action (Craikl [1943)). This understanding is essential because many
aspects of the environment are not immediately visible-we need to move our bodies to reveal new
information and achieve our goals.

Vision serves as a natural signal for long-term planning (LeCun| [2022; Hafner et al.| 2023} Ebert
et al.||2018; Ma et al.,|2022). We look at our environment to plan and act, using our egocentric view
as a predictive goal (Sridhar et al. 2024} Bar et al.,[2025)). When we consider our body movements,
we should consider both actions of the feet (locomotion and navigation) and the actions of the hand
(manipulation), or more generally, whole-body control (Nvidia et al.,[2025;|Cheng et al., 2024} [He
et al., 2024b; Radosavovic et al., [2024; He et al.| 2024a; |[Hansen et al., [2024)). For example, when
reaching for an object, we must anticipate how our arm movement will affect what we see, even
before the object comes into view. This ability to plan based on partial visual information is crucial
for embodied agents to operate effectively in real-world environments.

Building a model that can effectively learn from and predict based on whole-body motion presents
several fundamental challenges. First, representing human actions requires capturing both global
body dynamics and fine-grained joint articulations, which involves high-dimensional, structured
data with complex temporal dependencies. Second, the relationship between body movements and
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Figure 1: Predicting Ego-centric Video from human Actions (PEVA). Given past video frames
and an action specifying a desired change in 3D pose, PEVA predicts the next video frame. Our
results show that, given the first frame and a sequence of actions, our model can generate videos of
atomic actions (a), simulate counterfactuals (b), and support long video generation (c).

visual perception is highly nonlinear and context-dependent—the same arm movement can result in
different visual outcomes depending on the environment and the agent’s current state. Third, learning
these relationships from real-world data is particularly challenging due to the inherent variability in
human motion and the subtle, often delayed visual consequences of actions.

To address these challenges, we develop a novel approach PEVA that combines several key innova-
tions. First, we design a structured action representation that preserves both global body dynamics
and local joint movements, using a hierarchical encoding that captures the kinematic tree structure of
human motion. This representation enables the model to understand both the overall body movement
and the fine-grained control of individual joints. Second, we develop a novel architecture based on
conditional diffusion transformers that can effectively model the complex, nonlinear relationship
between body movements and visual outcomes. The architecture incorporates temporal attention
mechanisms to capture long-range dependencies and a specialized action embedding component that
maintains the structured nature of human motion. Third, we leverage a large-scale dataset of syn-
chronized egocentric video and motion capture data 2024), which provides the necessary
training signal to learn these complex relationships. Our training strategy includes random timeskips
to handle the delayed visual consequences of actions and sequence-level training to maintain temporal
coherence.

For evaluation, we design a hierarchical evaluation protocol to understand PEVA’s capabilities across
different levels of complexity. First, we assess its ability to predict immediate visual consequences
through single-step predictions. Second, we decompose complex human movements into atomic
actions to test the model’s understanding of how specific joint-level movements affect the egocentric
view. Third, we examine the model’s capability to predict long-term visual consequences by evaluating
on extended time horizons, where the effects of actions may be delayed or not immediately visible.
Finally, we explore the model’s ability to serve as a world model for planning by using it to simulate
actions and choose the ones that lead to a predefined goal. This layered approach allows us to
systematically analyze the strengths and limitations of our model, revealing both its capacity to
simulate embodied perception and the open challenges that remain in bridging the gap between
physical action and visual experience.

To conclude, we introduce PEVA, a diffusion-based model that predicts future egocentric video
conditioned on whole-body motion. By grounding prediction in 3D whole-body movement, our model
captures the intricate relationship between movement and visual perception. Our comprehensive
evaluation framework demonstrates that whole-body control significantly improves video quality,
semantic consistency, and simulating counterfactuals.



2 Related Works

World Models. The concept of a “world model”, an internal representation of the world used for
prediction and planning, has a rich history across multiple disciplines. The idea was first proposed in
psychology by |Craik| (1943)), who hypothesized that the brain uses “small-scale models” of reality to
anticipate events. This principle found parallel development in control theory, where methods like the
Kalman Filter and Linear Quadratic Regulator (LQR) rely on an explicit model of the system to be
controlled (Kalman,|1960). The idea of internal models became central to computational neuroscience
for explaining motor control, with researchers proposing that the brain plans and executes movements
by simulating them first (Jordan, |1996} [Kawato et al., 1987} Kawatol [1999).

With the rise of deep learning, the focus shifted to learning these predictive models directly from
data. Early work in computer vision demonstrated that models could learn intuitive physics from
visual data to solve simple control tasks like playing billiards or poking objects (Fragkiadaki et al.,
2015; |Agrawal et al.l 2016). This paved the way for modern, large-scale world models that predict
future video frames conditioned on actions, enabling planning by “imagining” future outcomes (Ha
and Schmidhuber, 2018];|Hafner et al.; Liu et al., 2024; [Li et al., |2022; Zhou et al., 2024; Yang et al.,
2023|2024} |Assran et al.| 2025)). In reinforcement learning, models like Dreamer have shown that
learning a world model improves sample efficiency (Hafner et al.,|2023)). Recent approaches have
used diffusion models for more expressive generation; for example, DIAMOND generates multi-step
rollouts via autoregressive diffusion (Alonso et al., 2024). In the egocentric domain, Navigation
World Models (NWM) used conditional diffusion transformers (CDiT) to predict future frames from
a planned trajectory (Bar et al., 2025)). However, these models use low-dimensional controls and
neglect the agent’s own body dynamics. We build on this extensive line of work by conditioning
video prediction on whole-body pose, enabling a more physically-grounded simulation.

Human Motion Generation and Controllable Prediction. Human motion modeling has advanced
from recurrent and VAE-based methods (Rempe et al.| [2021}; [Petrovich et al., 2021} [Ye et al.| 2023) to
powerful diffusion-based generators (Tevet et al., 2022} |Zhang et al.,[2024). These models generate
diverse, realistic 3D pose sequences conditioned on text (Hong et al., |2024; /Guo et al., 2022} [Dabral
et al.,[2023)), audio (Ng et al.| 2024; Dabral et al., 2023; |Ao et al.| 2023)), and head pose (Li et al.|
2023; |Castillo et al., [2023; Y1 et al., 2025). Recent works like Animate Anyone (Hu et al.,|2023) and
MagicAnimate (Xu et al.| 2023) generate high-fidelity human animations from a reference image and
pose sequence. Physically-aware extensions like PhysDiff (Yuan et al., 2023)) incorporate contact
into the denoising loop. While prior works treat pose as the target, our model uses it as input for
egocentric video prediction, reversing the typical motion generation setup. This enables fine-grained
visual control, bridging pose-conditioned video generation (Wu et al.,[2023} Zhang et al., 2023)) with
embodied simulation. Unlike Make-a-Video (Singer et al.,[2022)) or Tune-A-Video (Wu et al., [2023)),
which focus on text/image prompts, we condition directly on physically realizable body motion.

Egocentric Perception and Embodied Forecasting. Egocentric video datasets such as Ego4D (Grau-
man et al., 2022)), Ego-Exo4D (Grauman et al.| 2024)) and EPIC-KITCHENS (Damen et al., 2018)
were used to study human action recognition, object anticipation (Furnari and Farinellal [2020)), future
video prediction (Girdhar and Grauman, |2021), and even animal behavior (Bar et al., 2024)). To study
pose estimation, EgoBody (Zhang et al.||2022) and Nymeria (Ma et al.}[2024) provide synchronized
egocentric video and 3D pose. Unlike these works, we treat future body motion as a control signal,
enabling visually grounded rollout. Prior works in egocentric pose forecasting (Yuan and Kitani,
2019) and visual foresight (Finn and Levinel 2017) show that predicting future perception supports
downstream planning. Our model unifies these lines by predicting future egocentric video from
detailed whole-body control, enabling first-person planning with physical and visual realism.

3 PEVA

In this section we describe our whole-body-conditioned ego-centric video prediction model. We start
by describing how to represent human actions (Section [3.T), then move on to describe the model and
the training objective (Section [3.2)). Finally, we describe the model architecture in Section
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Figure 2: Design of PEVA. To train on an input video, we choose a random subset of frames and
encode them via a fixed encoder (a). They are then fed to a CDiT that is trained autoregressively
with teacher forcing (b). During the denoising process, each token attends to same-image tokens and
cross-attends to clean tokens from past image(s). Action conditioning is done via AdaLN layers.

3.1 Structured Action Representation from Motion Data

To effectively capture the relationship between human motion and egocentric visual perception,
we define each action as a high-dimensional vector encoding both global body dynamics (global
translation via the root joint) and detailed joint articulations structured by the kinematic tree. We
synchronize motion capture data with egocentric video frames using timestamps and convert global
coordinates into a local frame centered at the pelvis, ensuring invariance to initial position and
orientation. Global positions are converted to local coordinates, quaternions to relative Euler angles,
and joint relationships are preserved using the kinematic hierarchy. We normalize all motion
parameters for stable learning: positions are scaled to [—1, 1] and rotations bounded within [—, 7].
Each action reflects the change between consecutive frames, allowing the model to learn how physical
movements produce visual outcomes. Our motion representation follows the Xsens skeleton (Movella,

[2021}; Ma et al.| [2024), which shares the kinematic tree of SMPL (Loper et al,[2023) but differs in

joint set and ordering, and omits body shape parameters.

3.2 Ego-Centric Video Prediction for Whole-Body Control

Next, we describe our formulation of PEVA from the perspective of an embodied agent. Intuitively,
the model is an autoregressive diffusion model that receives an input video and a corresponding
sequence of actions describing how the agent moves and acts. Given any prefix of frames and actions,
the model predicts the resulting state of the world after applying the last action and considering other
environment dynamics.

More formally, we are given a dataset D = {(xo, ao, ..., T1, ar)} 1, of agents videos from egocentric
view and their associated body controls, such that every x; € R¥*W>3 j5 a video frame and
a;j € Rt an action in the Xsens skeleton ordering for the upper body (everything
above the pelvis), representing the change in translation, together with the delta rotation of all joints
relative to the previous joint rotation. We represent motion in 3D space, thus we have 3 degrees of
freedom for root translation, 23 joints for the body and represent relative joint rotations as Euler
angles in 3D space leaving dget = 3+ 23 x 3 = 72.

We start by encoding each individual frame s; = enc(x;) into a corresponding state representation,
through a pre-trained VAE encoder (Rombach et al.| [2022)). Given a sequence of controls ag, . . . ar,
our goal is to build a generative model that captures the dynamics of the environment:

T-1

P(sr,...Solar,...a0) = P(so) H P(st11l8¢, -, 80,01, ... ap) )
t=0



To simplify the model, we factorize the distribution and make a Markov assumption that the next
state is dependent on the last k states and a single past action:

P(St+1|3t7 <o+ 80,4aT, - .- CLO) = P(St+1|3t7 s st7k+1>at71) (2)

We aim to train a model parametrized by 6 that minimizes the negative log-likelihood:

T—1
0= argmein —log Py(sg) — Z log Py(st11]8¢,- -+, St—k+1, 0t)
t=0
We model each transition Py(sy1|S¢, ..., St—k+1,a¢) using a Denoising Diffusion Probabilistic

Model (DDPM) (Ho et al.,2020), which maximizes the (reweighted) evidence lower bound (ELBO)
of the log-likelihood. For each transition, we define the forward diffusion process ¢(z; | st4+1) =
N (275 v/@rsti1, (1 — @, )I), where 2, is the noisy version of s, at noise timestep 7, and & is the
cumulative product of noise scales. The reverse process is learned by training a neural network €y to
predict the noise given z, and the conditioning context ¢; = (¢, ..., St—k+1, at).

Then denoising loss term for a transition is given by:

[fsimple,t = ]ET,€NN(O,I) |:H€ — €9 (\/ESPH +vl—aze ¢ T) H2:| )

Where Lgimple, 0 is the loss term corresponding to the unconditional generation of sg. Additionally, we
also predict the covariances of the noise, and supervise them using the full variational lower bound
loss Ly as proposed by (Nichol and Dhariwal,, 2021).

Hence the final objective yields a (weighted) version of the ELBO for each term in the sequence:

T-1

L= Z ‘Csimple,t + A‘CUlb,t (4)

t=0

Despite not being a lower bound of the log-likelihood, the reweighted ELBO works well in practice
for image generation with transformers (Nichol and Dhariwal, |2021}; |Peebles and Xiel 2023)).

The advantage of our formulation is that it allows training in parallelized fashion using causal masking.
Given a sequence of frames and actions, we can train on every prefix of the sequence in a single
forward-backward pass. Next, we elaborate on the architecture of our model.

3.3 Autoregressive Conditional Diffusion Transformer

While prior work in navigation world models (Bar et al., [2025) focuses on simple control signals like
velocity and heading, modeling whole-body human motion presacents significantly greater challenges.
Human activities involve complex, coordinated movements across multiple degrees of freedom, with
actions that are both temporally extended and physically constrained. This complexity necessitates
architectural innovations beyond standard CDiT approaches.

To address these challenges, we extend the Conditional Diffusion Transformer (CDiT) architecture
with several key modifications that enable effective modeling of whole-body motion:

Random Timeskips. Human activities often span long time horizons with actions that can take
several seconds to complete. At the same time, videos are a raw signal which requires vast amounts
of compute to process. To handle video more efficiently, we introduce random timeskips during
training (see Figure [2h), and include the timeskip as an action to inform the model’s prediction.
This allows the model to learn both short-term motion dynamics and longer-term activity patterns.
Learning long-term dynamics is particularly important for modeling activities like reaching, bending,
or walking, where the full motion unfolds over multiple seconds. In practice, we sample 16 video
frames from a 32 second window.

Sequence-Level Training. Unlike NWM which predicts single frames, we model the entire sequence
of motion by applying the loss over each prefix of frames following Eq.[d We include an example of
this in Figure 2. This is crucial because human activities exhibit strong temporal dependencies - the
way someone moves their arm depends on their previous posture and motion. We enable efficient
training by parallelizing across sequence prefixes through spatial-only attention in the current frame



and past-frame-only attention for historical context (Figure [2k). In practice we train models with
sequences of 16 frames.

Action Embeddings. The high-dimensional nature of whole-body motion (joint positions, rotations,
velocities) requires careful handling of the action space. We take the most simple strategy: we con-
catenate all actions in time ¢ into a 1.D tensor which is fed to each AdaLLN layer for conditioning (see

Figure [2c).

These architectural innovations are essential for modeling the rich dynamics of human motion. By
training on sequence prefixes and incorporating timeskips, our model learns to generate temporally
coherent motion sequences that respect both short-term dynamics and longer-term activity patterns.
The specialized action embeddings further enable precise control over the full range of human
movement, from subtle adjustments to complex coordinated actions.

3.4 Inference and Planning with PEVA

Sampling procedure at test time. Given a set of context frames (¢, ..., Tt—+1), we encode these
frames to get (sy, ..., S;—x+1) and pass the encoded context as the clean tokens in Figure and pass
in randomly sampled noise as the last frame. We then follow the DPPM sampling process to denoise
the last frame conditioning on our action. For faster inference time, we employ special attention
masks where we change the mask in Figure |2 for within image attention to only be applied on the
tokens of the last frame and change the mask for cross attention to context so that cross attention is
only applied for the last frame.

Autoregressive rollout strategy. To follow a set of actions we use an autoregressive rollout strategy.
Given an initial set of context frames we (z, ..., Zs—r4+1) we start by encoding each individual
frame to get (s¢, ..., St—x+1) and add the current action to create the conditioning context ¢; =
(Sty -, St—k+1, at). We then sample from our model parameterized by 6 to generate the next state:
St+1 = Py(st41|ct). We then discard the first encoding and append the generated s;1; and add
the next action to produce the next context c;+1 = (S¢41, Sty -y St—k+1, Gt+1). We then repeat the
process for our entire set of actions. Finally, to visualize the predictions, we decode the latent states
to pixels using the VAE decoder (Rombach et al., [2022).

4 Experiments and Results

4.1 Experiment Setting

Dataset. We use the Nymeria dataset (Ma et al.,|2024), which contains synchronized egocentric video
and full-body motion capture, recorded in diverse real-world settings using an XSens system (Movellal
2021). Each sequence includes RGB frames and 3D body poses in the XSens skeleton format,
covering global translation and rotations of body joints. We sample body motions at 4 FPS. Videos
are center-cropped and resized to 224 x224. We split the dataset 80/20 for training and evaluation,
and report all metrics on the validation set.

Training Details. We train variants of Conditional Diffusion Transformer (CDiT-S to CDiT-XXL, up
to 32 layers) using a context window of 3—15 frames and predicting 64-frame trajectories. Models
operate on 2x 2 patches and are conditioned on both pose and temporal embeddings. We use AdamW
(Ir=8e—5, betas=(0.9, 0.95), grad clip=10.0) and batch size 512. Action inputs are normalized to
[—1, 1] for translation and [—, 7] for rotation. All experiments use Stable Diffusion VAE tokenizer
and follow NWM’s hardware and evaluation setup. Metrics are averaged over 5 samples per sequence.

4.2 Comparison with Baselines

To comprehensively evaluate our model, we compare PEVA with CDiT (Bar et al.| 2025) and
Diffusion Forcing (Chen et al.| 2024) along two key dimensions. First, to assess whether the
model faithfully simulates future observations conditioned on actions, we evaluate the perceptual and
semantic similarity, and action consistency of the generated frames. We use LPIPS (Zhang et al.,
2018a) and DreamSim (Fu et al.,[2023]), to measure perceptual and semantic similarity. To assess
action consistency, we evaluate how faithfully the model follows the intended actions by measuring
camera motion, using Absolute Trajectory Error (ATE) and Relative Pose Error (RPE) (Sturm
et al.| 2012), and 2D wrist keypoints, using Percentage of Correct Keypoints (PCK@0.2), precision,



recall, and accuracy. More details on the camera pose estimation and wrist position evaluation are
in Supplementary Section|/| Second, to evaluate the overall quality and realism of the generated
samples, we report FID (Heusel et al., 2017).

As shown in Table[I] our model achieves better results on both action consistency and generative
quality. Furthermore, Figure |3| shows that our models tend to maintain lower FID scores than the
baselines as the prediction horizon increases, suggesting improved visual quality and temporal
consistency over longer rollouts. Qualitative results for 16 second rollouts can be seen in Figure|[Tk,
Figure [5] and Supplementary Figures We implement Diffusion Forcing (DF*) on top of
PEVA by applying the diffusion forward process to the entire sequence of encoded latents, then
predicting the next state given the previous (noisy) latents. At test time, we autoregressively predict
the next state as in PEVA, without injecting noise into previously predicted frames, like|Chen et al.
(2024).

We additionally, compare PEVA against Cosmos (Agarwal et al.,[2025) on wrist position accuracy
with PCK@0.2. We find that whole-body actions as a control signal leads to significantly finer
control compared to text conditioning, with PEVA achieving an accuracy of 0.85 compared to 0.22
for Cosmos.

Table 1: Baseline Metrics. Comparison of baselines on single-step prediction 2 seconds ahead.
Model | LPIPS|  DreamSim | | ATE| RPE (Trans)| RPE(Rot)| | PCK@0.21 Precision? Recallt Accuracy? | FID |

DF* 0.3520-00 0.244°903 | (.464 0.422 36.514 0.750 0.914 0.592 0.679 73.052'101
CDiT | 0.313%%°"  0.202°9°% | 0.386 0.367 26.057 0.755 0.865 0.833 0.794 63.7140-491
PEVA | 0.303°%"  0.193°°°% | 0.274 0.266 13.527 0.791 0.923 0.888 0.871 62.293%-671

4.3 Atom Actions Control

To evaluate PEVA'’s ability to follow structured
physical control, we decompose complex mo-

tions into atomic actions. We extract video seg- _'®

ments exhibiting fundamental movements—such = s

as hand motions (up, down, left, right) and whole- 4, e o
body actions (forward, rotate)—based on thresh- = e Ours (XXL)
olded positional deltas. We sample 100 exam- o b2 ol w8 t+16

ples per action type, and evaluate single-step pre-
diction 2 seconds ahead. Qualitative results are
shown in Figure[Th and Figure[d] and quantitative

Figure 3: Video Quality Across Time (FID).
Comparison of generation accuracy and quality as

results in Table @ See Supplementary Figure @ a function of time (up to 16s). Quali.tativ.e results
for more qualitative examples of interaction rich fgr 16-second rollouts can be seen in Figure [Tk,
atomic actions. Figure 5} and Supplementary Figures

Table 2: Atomic Action Performance. Comparison of models in generating videos of atomic actions
evaluated on LPIPS.

Model | Navigation | Left Hand | Right Hand

| Forward Rot.L RotR |  Left Right Up Down |  Left Right Up Down
DF* 0.3930-011 0,3140-006 2790-005|9 9920-009 ¢ 3060-005 5 3320-008 5 3930-006]9 3040.006 ¢ 3150.007 ¢ 3050-005( 2960-008
CDiT 0.3480:004(,2840-003 9 9490-004|5 9580-005 9650-009 o 9790008 2670.004|g 9860007 5 2730.004( 9770.004 9680.002

Ours (XL) |0.3370:006( 2770-006 4 2420.007|g 2440-005( 9570.004§ 5790.008 5 9530.003|5 9710005 9670.003 4 9580.004 9550-009
Ours (XXL)|0.3250:006 9.2690-005 ( 2340-004|g 2360-003 9 94710.003 g 2510-004 9470.005/5 9560.007 g 2540-005 9520004 9450.005

4.4 Ablation Studies

We first conduct ablation studies to assess the impact of context length, action representation, and
model size in PEVA summarized in Table E} First, increasing the context window from 3 to 15
frames consistently improves performance across all metrics, highlighting the importance of temporal
context for egocentric prediction. Second, we compare two action embedding strategies—MLP-based
encoding versus simple concatenation—and find that the latter performs competitively despite its
simplicity, suggesting that our structured action representation already captures sufficient motion
information. Third, model scale plays a significant role: larger variants from PEVA-S to PEVA-XXL
show steady gains in perceptual and semantic fidelity. The gray-highlighted row denotes the default
configuration in main experiments. See Supplementary Sections [8.1] [8.2] and [8.3]for additional
ablations on action type, timeskips, and action conditioning.



Mve Forward

|8 ‘!f,‘

Move Le

4 pre

f 2 £ . & P [ & 4 { & £ 4 s
e i T Tl P e e e e

Figure 4: Atom Actions Generation. We include video generation examples of different atomic
actions specified by 3D-body poses.



o <) <

&??????????9ﬂ‘
nannﬁﬂn‘QQQQl%‘\ﬁ

Score: 0.575

B s s

Figure 6: Planning with Counterfactuals. We demonstrate a planning example by simulating
multiple action candidates using PEVA and scoring them based on their perceptual similarity to the
goal, as measured by LPIPS (Zhang et al., 2018b). We show that PEVA enables us to rule out action
sequences that leads us to the sink in the top row, and outdoors in the second row.




Table 3: Model Ablations. We evaluate the impact of different context lengths, action embedding
methods, and model sizes on single-step prediction performance (2 seconds into the future).

Configuration ‘ Metrics
| LPIPS| DreamSim]  PSNR? FID |
Context Length
3 frames 0.304%-992  (.1999:903  16.469°-04  63.966%42
7 frames 0.304°99t  0.195%-002  16.4430-068  §2.5400-314
15 frames 0.303°%99t  0.193%:002  16.5110-061  §2.2930-671

Action Representation
Action Embedding (d = 512) | 0.317%°0%  0.202-902  16.195%%%1  63.101%-34!

Action Concatenation 0.3030°-001 0.1930-002 16.511%-961  §92.2930-671
Model Size

PEVA-S 0.3700-002  (.3279:002 15 7430-060 101 380450

PEVA-B 0.3379991  0.246%902  16.013%-091  74.3381-057

PEVA-L 0.3089:002  (.2020:001  16.4170-937  64.4020-4%6

PEVA-XL 0.303%99t  0.193%:002  16.5110-061  §2.2930-671

PEVA-XXL 0.298%-992  0.186°9%%  16.556°-°%°  61.100°-517

4.5 Long-Term Prediction Quality

We evaluate the model’s ability to maintain visual and semantic consistency over extended prediction
horizons. As shown in Figure [5] and Supplementary Figures 22} [34] PEVA generates coherent
16-second rollouts conditioned on full-body motion. Table [3]reports DreamSim scores at increasing
time steps, showing a gradual degradation from 0.178 (1s) to 0.390 (16s), indicating that predictions
remain semantically plausible even far into the future. PEVA also demonstrates physical realism over
longer sequences, as seen in Supplementary Figure

4.6 Planning with Multiple Action Candidates.

We first test localized head and hand counterfactuals in Supplementary Figure[I5] We then demon-
strate samples where PEVA enables planning with multiple action candidates in Figure [Ib, Figure 6]
and Supplementary Figures[T8}-[20] We start by sampling multiple action candidates and simulate
each action candidate using PEVA via autoregressive rollout. Finally, we rank each action candidate’s
final prediction by measuring LPIPS similarity with the goal image. We find that PEVA is effective
in enabling planning through simulating action candidates.

5 Failure Cases, Limitations and Future Directions

While PEVA shows strong results in predicting egocentric video from whole-body motion, several
limitations remain. First, our planning evaluation is preliminary, we only perform simulation-
based selection over single-arm actions (see Supplementary Section [9). This demonstrates early
planning capability but not full trajectory optimization. Extending PEVA to closed-loop or interactive
environments is an important next step. Second, the model lacks explicit conditioning on task intent
or semantic goals, instead relying on image similarity. Third, long-horizon degradation arises from
error accumulation in open-loop generation. We plan to address this through feedback in interactive
environments, or by incorporating text-conditioned supervision supervision to anchor predictions.

6 Conclusion

We introduced PEVA, a diffusion-based model that predicts egocentric video from detailed 3D
human motion. Unlike prior work that use low-dimensional control, PEVA leverages full-body pose
sequences to simulate realistic and controllable visual outcomes. Trained on Nymeria, it captures the
link between movement and egocentric perception. Experiments show improvements in prediction
quality, semantic consistency, and fine-grained control over strong baselines. Our hierarchical
evaluation highlights the value of whole-body conditioning across short-term, long-horizon, and
atomic action tasks. While preliminary, our planning results demonstrate the potential for simulating
embodied action consequences, moving toward more grounded models of perception and action.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that we trained a model to perform whole-
body-conditioned ego-centric video prediction, and evaluate it accordingly. The paper covers
exactly those topics.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Section [3
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theorems, formulas, and proofs are numbered. Sectionmechanisms for
action conditioned video generation.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All model configurations and hyper-parameters for training are detailed in the
main body. Fixed seeds are used for all runs.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open datasets for evaluations which can be downloaded from their
respective websites.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification:These details are provided in Section{.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we report the standard error for all of our experimental results in Section[d]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section[d]and Section[IT} we detail the necessary GPUs needed to reproduce
our experiments

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our research conforms to the NeurIPS Code of Ethics completely.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work has neither positive nor negative societal impacts as it is foundational
research. There is no direct path to any negative applications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper presents foundational research and as such does not present a high
risk for misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We appropriately cite the original papers for Nymeria.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper did not involve any crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper was not subject to IRB/HSR as it did not involve any crowdsourcing
or research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only utilized for writing and editing. None of the core methods
were derived from any LLMs.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

The structure of the Appendix is as follows: we start by providing additional details for our Camera
Pose estimation evaluation and Wrist Position evaluation in Section[7} then provide additional ablation
studies in Section 8] then some additional planning attempts with PEVA in Section 9] then include
additional qualitative results in Section[I0] and then include details about training and inference time
in Section

7 Camera Pose Estimation and Wrist Position Evaluation

We assess how faithfully PEVA follows head and hand motion using two evaluations. Camera Pose
Estimation: we extract egocentric camera poses from generated frames using VGGT (Wang et al.|
2025) and compare them with ground truth using Absolute Trajectory Error (ATE) and Relative Pose
Error (RPE) for translation and rotation (Sturm et al.| [2012]). Wrist Pose Evaluation: we extract
2D wrist keypoints and compute PCK@0.2, precision, recall, and accuracy. These metrics jointly
measure whether the generated videos accurately reflect the conditioned action signals, both globally
(head-driven motion) and locally (hand alignment).

8 Additional Abalation Studies

We conduct two additional ablation studies. First, we ablate our Whole-Body actions against actions
that only include the Head and Hands in Section [8.1] Second, we ablate our Random Timeskips
against fixed frame rates in Section[8.2] Third, we ablate the impact of our action conditioning in
Section[8.3]

8.1 Action Type Ablation

We conduct ablation studies on the action type. We compare our 72D whole-body actions with
only the 6-DoF poses of the head, left hand, and right hand relative to their previous states leaving
daet = 3 X 6 = 18 summarized in Table E]for the camera pose and wrist position evaluation. Our
Whole-Body actions perform better than only using the Head and Hands across almost all metrics.
These results indicate that non-visible body joints, such as those in the torso and legs, meaningfully
affect egocentric visual dynamics, such as through head stabilization, balance, and intent. We find
that full-body conditioning improves both spatial grounding and long-term consistency.

Table 4: Action Type Ablations. We evaluate the impact of different Action Types on single-step
prediction performance (2 seconds into the future) on the camera pose and wrist positions.

Action Type | ATE| RPE (Translation) | RPE (Rotation) | | PCK@0.21 Precisiont Recall T  Accuracy 1

Head + Hands | 0.381 0.412 38.425 0.692 0.906 0.722 0.756
Whole-Body 0.351 0.346 26.578 0.877 0.890 0.907 0.858

8.2 Random Timeskip Ablation

We ablate our random timeskips against fixed frame rates summarized in Table [5] The results
demonstrate that fixed-rate models tend to overfit to sepcific temporal patterns and degrade at longer
horizons. In contrast, random timeskips encourage temporally invariant learning, improving both
short and long term prediction quality.

8.3 Influence of Action Conditioning on Visual Prediction

We examine how the action signal influences vision prediction in Figure[7] We find that the further
we deviate from the ground-truth action, the further the visual prediction is from ground truth. This
demonstrates the the model meaningfully conditions on the action for visual prediction, as opposed
to simply relying solely on the visual context.
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Table 5: Random Timeskips Ablation. We evaluate the impact of our Random Timeskips compared
to various fixed frame rates measured on DreamSim |.

Method | 1s 2s 4s 8s 165 Avg
4 Hz 0.175 0.218 0.279 0.343 0.434 0.290
2 Hz 0.167 0.198 0.240 0.291 0.358 0.251
0.5 Hz 0.175 0.200 0.235 0.265 0.319 0.239

Random Skips | 0.169 0.198 0.236 0.268 0.293 0.233
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Figure 7: Visual Quality Across Noise Levels. Evaluation of the visual quality as we add noise the
to the action. 0% is just the action whereas 100% is pure gaussian noise.

9 Some planning attempts with PEVA

Here we describe how to use a trained PEVA to plan action sequences to achieve a visual target. We
formulate planning as an energy minimization problem and perform standalone planning in the same
way as NWM (Bar et al., |2025) using the Cross-Entropy Method (CEM) (Rubinstein, |1997) besides
minor modifications in the representation and initialization of the action.

For simplicity, we conduct two experiments where we only predict moving either the left or right
arm controlled by predicting the relative joint rotations represented as euler angles. For each re-
spective arm we control only the shoulder, upper arm, forearm, and hand leaving our actions space
as 4 x 3 = 12 where we have (A(bshouldera Aeshouldera A’(/}shoulcler; ceey A(bforearm7 Aeforearmz Awforearm)~
We initialize mean (ILI’A¢>houldcr7 HAOhoutder » HAWshoutder s 5 A Brorearm » A Oforearm 3 ILLAwfnrcurm) and variance
(TR e T Aot T Athionaer? T A brneam? T A @ Atpnenry) 45 the mean and variance of the next
action across the training dataset for these segments.

Table 6: Mean and Variance of relative rotation as euler angles (¢, 8, ¢) for arm segments computed
across the training dataset.

Segment Statistic Right Arm Left Arm
Shoulder Mean (0.0027, —0.0012, —0.0015) (0.0624, 0.0687, 0.1494)
Variance (0.0010, —0.0006, 0.0003) (0.0625, 0.0697, 0.1496)
Upper Arm Mean (0.0107, —0.0011, —0.0020) (0.1119, 0.1647, 0.1791)
pp Variance  (—0.0062, —0.0004, —0.0013)  (0.0991, 0.1593, 0.1611)
Forearm Mean (0.0068, —0.0035, 0.0077) (0.1937, 0.2107, 0.2261)
Variance ~ (—0.0036, —0.0063, 0.0002) (0.1791, 0.2012, 0.2186)
Hand Mean (0.0065, 0.0001, 0.004,) (0.2417, 0.229, 0.2631)

Variance  (—0.0024, —0.0032, —0.0001)  (0.2126, 0.2237, 0.2475)
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We assume the action is a straight continuous motion. Thus we repeat this action for our sequence
length, in our case T' = 8 and optimize the delta actions. The time interval between steps is fixed at
k = 0.25 seconds. All other hyperparameters remain the same as in NWM (Bar et al.| [2025).

9.1 Qualitative Results

Due to time constraints, we focus our investigation on arm movements—arguably the most complex
among body actions. While this remains an open problem, we present preliminary results using
PEVA with CEM for standalone planning. This setting simplifies the high-dimensional control space
while still capturing key challenges of full-body coordination.

Observation Goal GT Act Pred Act Rollout

Figure 8: In this case, we are able to predict a sequence of actions that pulls our left arm in, similar to
the goal.

GT Act Pred Act

Observation

Rollout
T

Figure 9: In this case, we are able to predict a sequence of actions that lowers our left arm, but not
the same amount as the groundtruth sequence as we can see in the pose and hand at the bottom of our
rollout.

GT Act Pred Act

Observation Rollout

Figure 10: In this case, we are able to predict a sequence of actions that lowers our left arm that
lowers the tissue. However, the goal image still has the tissue visible.

GT Act Pred Act

Observation Rollout

Figure 11: In this case, we are able to predict a sequence of actions that raises our right arm to the
mixing stick. We see a limitation with our method as we only predict the right arm so we do not
predict to move the left arm down accordingly.

10 More Qualitative Results

In this section, we present additional qualitative results following the same settings in the main paper.
These results are organized into three parts: counterfactual simulations in Section [T0.1} atomic action
generation in Section[I0.2] and long-horizon video generation in Section[10.3]
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Figure 12: In this case, we are able to predict a sequence of actions that moves our right arm toward
the left but not quite enough. We see a limitation with our method as we only predict the right arm so
we do not predict any necessary additional body rotations.

GT Act Pred Act

Observation Rollout

Figure 13: In this case, we are able to predict a sequence of actions that reaches toward the kettle but
does not quite grab it as in the goal.

10.1 Additional Counterfactual Qualitative Results

In this section, we include additional counterfactual qualitative results. First, demonstrate that our
model is able to capture the physical realism through a counterfactual example of continuing to
pull on an open drawer and correctly follow real world physical constraints in Figure[T4] Second,

we include counterfactual examples of head and movement in Figure Third, we include more
examples of using counterfactuals for visual planning in Figures[T6-

10.2 Additional Atomic Actions

We provide additional atomic action rollouts that are more interaction rich in Figure 21}
10.3 Additional Long Video Generation

We provide additional examples of long video generation in Figures 22}-[34]

11 Training and Inference Time

The model was trained for a total of 57.9 hours on 16 H100 nodes, each equipped with 8 GPUs. For
inference, the average time per frame is 23728 £ 207 ms, measured on a single A6000 GPU.

g M B MY LY g gy g g O e de

(-

l. 3 i { t f. 1 t { {. i t t t t 1.
L L L L L 9% L L L L L L L L L

Figure 14: Physical Realism. When we repeatedly prompt the model to keep opening a drawer, it
correctly predicts that the drawer stays in its fully opened position. This demonstrates an understand-
ing of physical constraints.
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Figure 15: Counterfactuals. We include counterfactuals on head movement and hand movement.
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Figure 16: Planning with Counterfactuals. PEVA allows us to find a reasonable sequence of actions
to open the refrigerator in the third row. PEVA enables us to rule out action sequences that grab the
nearby plants and go to the kitchen and mix ingredients. PEVA allows us to choose the most correct
action sequences that grab the box from the shelf.

Input gen. (t=4) gen. (t=8) gen. (t=12) gen. (t=16)
Score: 0.564

J-

e e e

ﬂ (t=4) i gen. (t=8) gen. (t=12) gen. (t=16)

\\U \\P‘ } <

Score: 0.542

Score: 0.413

Qe e

Figure 17: Planning with Counterfactuals. PEVA allows us to rule out action sequences that lead to
the light switch in the first row and the counter in the second row. PEVA allows us to find a reasonable
sequence of actions that opens the trash can and throws trash away in the third row.
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Figure 18: Planning with Counterfactuals. PEVA allows us to rule out action sequences that lead

to the counter in the first row and the kitchen utensils in the second row. PEVA allows us to find a
reasonable sequence of actions that opens the cabinet and reach in the third row.
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Figure 19: Planning with Counterfactuals. PEVA allows us to rule out action sequences that lead to
the reaching into the sink in the first row and opening the cabinet in the third row. PEVA allows us to
find a reasonable sequence of actions that opens the fridge in the second row.
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Figure 20: Planning with Counterfactuals. PEVA allows us to rule out action sequences that lead to
the grabbing the curtains in the first row and grabbing the cabinet in the third row. PEVA allows us to
find a reasonable sequence of actions that grabs the pillow in the second row.
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Figure 21: Interactions. We include video generation of interaction rich actions specified by 3D-body
poses.
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Figure 34: Generation Over Long-Horizons. We include 16-second video generation examples.
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