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Abstract
Bridging the gap between algorithmic precision
and human-like risk nuance is essential for craft-
ing multi-agent systems that learn adaptable and
strategically intuitive behaviors. We introduce
CPT-MADDPG, an extension of the Multi-Agent
Deep Deterministic Policy Gradient algorithm,
embedding Cumulative Prospect Theory (CPT)
value and probability weight transforms into both
actor and critic updates. By replacing expected re-
turn maximization with rank-dependent Choquet
integrals over gains and losses, CPT-MADDPG
endows agents with tunable risk profiles —rang-
ing from exploratory, risk-seeking to conservative,
loss-averse behaviors—without human interven-
tion. Across competitive pursuit (Simple Tag), co-
operative coverage (Simple Spread), and strategic
bidding (first-price auctions), we show that risk-
seeking parameterized CPT speeds early learning,
extreme risk-averse parameterized CPT enforces
prudence at a performance cost, transparent util-
ity sharing preserves coordination under hetero-
geneity, and naive dynamic adaptation destabi-
lizes convergence. In auction settings, learned
CPT policies replicate documented overbidding
phenomena, with short-term gains followed by
long-term losses. Our work demonstrates a prin-
cipled framework for integrating human-like risk
attitudes toward strategic multi-agent deployment.

1. Introduction
Multi-agent reinforcement learning (MARL) has achieved
remarkable success in domains ranging from autonomous
driving to strategic game playing by training agents to max-
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imize expected cumulative rewards (Lowe et al., 2017). Yet,
such agents implicitly assume classical rationality, neglect-
ing systematic human decision biases under risk. Decades
of behavioral economics research have shown that real hu-
mans deviate from expected-utility theory in predictable
ways—exhibiting loss aversion, reference dependence, and
probability weighting—captured by Prospect Theory (Kah-
neman & Tversky, 1979) and its extension, Cumulative
Prospect Theory (CPT) (Tversky & Kahneman, 1992).

Despite its promise, naively inserting CPT into multi-agent
actor–critic frameworks poses several challenges. First, the
non-linear Choquet integrals in CPT introduce nonconvexity
into the objective, destabilizing standard gradient updates.
Second, the probability-weighting step requires empirical es-
timation of tail probabilities over returns, demanding careful
batch-based approximations to avoid bias. Third, heteroge-
neous risk profiles across agents can yield non-stationary
dynamics, complicating convergence.

In this work, we bridge the gap between rational MARL
agents and human-like risk-sensitive behavior by embed-
ding full CPT value and probability transformations into
the Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) framework. Unlike prior risk-sensitive RL approaches
that focus on single-agent settings, CPT-MADDPG applies
rank-dependent weighting directly to cumulative returns in
both critic and actor updates, enabling agents to exhibit cali-
brated risk-seeking or risk-averse behaviors without humans
in the loop. We address the above issues by (1) design-
ing a minibatch-based CPT integral approximation that is
fully differentiable, (2) integrating rank-dependent weight-
ing inside the MADDPG critic and actor updates to maintain
stability, and (3) extending the approach with observabil-
ity and adaptive-parameter modules that we show preserve
coordination and control non-stationarity.

• Observability Adjustment: Allowing agents to ac-
cess each other’s subjective CPT-adjusted utilities, and
deriving a cross-agent valuation aggregation that modi-
fies the Bellman backup.

• Adaptive Behavioral Parameters: Treating CPT pa-
rameters (α, β, λ) as learnable variables, optimized
alongside network weights to adapt risk profiles dy-
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namically during training.

We evaluate CPT-MADDPG in two multi-particle environ-
ments (MPE’s) (Lowe et al., 2017): competitive Simple Tag,
cooperative Simple Spread, and a first-price auction with
mixed CPT and non-CPT bidders. Our experiments demon-
strate that (1) moderate risk-seeking parameterized CPT val-
ues yield exploratory, risk-seeking dynamics, (2) extreme
risk-averse parameters induces conservative, low-variance
strategies, (3) transparency of utilities from rewards pre-
serves coordination, and (4) adaptive behavioral parameter
dynamics can destabilize learning if updated too frequently.
These demonstrate how human-like risk biases can be sys-
tematically tuned to enhance exploration, enforce safety, or
predictably modulate strategic behavior in richly interactive
settings.

Our contributions can be summarized as follows:

1. We introduce CPT-MADDPG, integrating full CPT
value and probability transforms into a multi-agent
actor–critic algorithm.

2. We derive and implement observability-adjusted CPT
updates, aggregating cross-agent utilities in the critic
target.

3. We propose a secondary optimization of CPT hyperpa-
rameters for adaptive risk profiling during training.

4. We provide extensive empirical validation across com-
petitive, cooperative, and auction tasks, highlighting
the behavioral and performance trade-offs of agents
trained to follow CPT-integrated policies.

2. Related Work
Prospect Theory and Cumulative Prospect Theory.
Prospect Theory (PT) was introduced by Kahneman & Tver-
sky (1979) to explain systematic deviations from expected-
utility theory, notably loss aversion, reference dependence,
and probability weighting. Cumulative Prospect Theory
(CPT) extends PT to multi-outcome gambles by apply-
ing rank-dependent weighting to cumulative probabilities,
which corrects several anomalies of the original formulation
and enables tractable aggregation of outcomes (Tversky &
Kahneman, 1992).

Risk-Aware Learning and CPT Integration. Utility-
based approaches, leveraging exponential or power utilities,
provide an alternate route for encoding risk attitudes (Garcı́a
& Fernández, 2015). In single-agent RL, risk-sensitive ob-
jectives have been studied extensively (Shen et al., 2014).
Conditional Value at Risk (CVaR) (Rockafellar & Urya-
sev, 2002) criteria have been incorporated into MDPs to

control downside risk (Bäuerle & Ott, 2014), with recent
works extending it to a class of policy gradients (Tamar
et al., 2015). These frameworks demonstrate that modify-
ing the reward aggregation can systematically steer agent
behavior toward risk-averse or risk-seeking policies. Addi-
tionally, CVaR-based objectives have been leveraged in both
cooperative (MARL) and single-agent tasks to model the
distribution over Q-values in the MARL setting, thereby mit-
igating collective downside risk (Qiu et al., 2021). Similar
risk-sensitive approaches have also been applied in entropy-
regularized actor–critic methods (Nachum et al., 2017). Ex-
panding on risk-sensitivity Ghaemi et al. (2024) analyzes
network-aggregative games under risk awareness. L. A. et al.
(2016) first proposed the combination of CPT and RL and
since then a large amount of work has come to bridge the
integration in the single (Jie et al., 2018; Borkar & Chandak,
2021; Ramasubramanian et al., 2021), and multi-agent set-
tings (Danis et al., 2023; Lepel & Barakat, 2024). Borkar &
Chandak (2021) analyzed a Q-learning algorithm for CPT
policies and in the MARL environment, (Danis et al., 2023)
proposed a multi-agent CPT-based Q-learning algorithm
with weight sharing. Most recently, Lepel & Barakat (2024)
proposed a policy gradient and theorem to solve the CPT
policy optimization problem, and Ethayarajh et al. (2024)
devised an approach for aligning language models driven
by CPT principles.

Multi-Agent Actor–Critic Methods. There have been a
plethora of works in MARL Actor-Critic Methods (Lowe
et al., 2017; Iqbal & Sha, 2019; Du et al., 2019; Su et al.,
2020; Pu et al., 2021; Xiao et al., 2022) Our work builds
upon Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) (Lowe et al., 2017), an actor–critic framework
tailored for mixed cooperative–competitive environments.
By employing centralized critics with access to all agents’
observations and decentralized actors for scalable execution,
MADDPG achieves stabilized learning and effective coordi-
nation. This paradigm directly informs our CPT-MADDPG
design, where CPT-driven value transformations are em-
bedded within each agent’s critic update to capture risk
preferences across strategic interactions.

3. Preliminaries
3.1. Policy Gradient Algorithms

Policy Gradient and Actor-Critic. Policy Gradient meth-
ods (Sutton et al., 1999) directly optimize the policy pa-
rameters by estimating ∇θJ(θ) and performing gradient
ascent:

J(θ) = Eτ∼pθ(τ)

[
R(τ)

]
= E

[ ∞∑
t=0

γtr(st, at)
]
,
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where τ = (s0, a0, s1, . . . ), pθ(τ) = ρ0(s0)
∏

t πθ(at |
st)P (st+1 | st, at), and 0 < γ < 1 is the discount factor.

The Policy Gradient Theorem states:

∇θJ(θ) = Es∼dπ, a∼πθ

[
∇θ log πθ(a | s)Qπ(s, a)

]
,

where dπ(s) ∝
∑∞

t=0 γ
tP (st = s | π) is the discounted

state-visitation distribution and

Qπ(s, a) = E
[ ∞∑
t=0

γtr(st, at) | s0 = s, a0 = a
]
.

To reduce variance, one replaces Qπ(s, a) with the advan-
tage function

Aπ(s, a) = Qπ(s, a)−V π(s), V π(s) = Ea∼πθ

[
Qπ(s, a)

]
.

Actor–Critic methods (Konda & Tsitsiklis, 1999) maintain
the following:

• an actor πθ(a | s), with an update rule of θ ← θ +
αE[∇θ log πθ(a | s)Aπ(s, a)],

• a critic, Vw(s) or Qw(s, a), trained (e.g. by temporal-
difference learning) to approximate V π or Qπ .

This coupling yields low-variance, on-policy gradient esti-
mates while retaining exploration.

Multi-Agent Deep Deterministic Policy Gradient. The
Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) (Lowe et al., 2017) algorithm extends the Deep Deter-
ministic Policy Gradient (DDPG) framework (Lillicrap et al.,
2019) to multi-agent settings, particularly those involving
mixed cooperative-competitive interactions. A core tenet of
MADDPG is centralized training with decentralized execu-
tion. During execution, each agent i acts based on its own
local observation oi using its actor policy µi : Oi → Ai,
parameterized by θµi , which outputs a deterministic action
ai = µi(oi|θµi ).

For training, MADDPG introduces a separate centralized
critic Qi(x, a1, . . . , aN |θQi ) for each agent i. This critic is
parameterized by θQi and takes as input some representation
of the global state x (e.g., the concatenation of all agents’
observations (o1, . . . , oN ) and potentially other state infor-
mation) and the actions of all N agents a1, . . . , aN . It
outputs an estimate of the expected return for agent i. The
critic Qi for each agent i is updated by minimizing the loss:

L(θQi ) = E(x,a,r,x′)∼D

[(
Qi(x, a1, . . . , aN |θQi )− yi

)2
]
,

(1)
where a = (a1, . . . , aN ), r = (r1, . . . , rN ), and the target
value yi is computed as:

yi = ri + γQ′
i(x

′, a′1, . . . , a
′
N |θ

Q′

i )
∣∣
a′
j=µ′

j(o
′
j |θ

µ′
j )

. (2)

Here, D is an experience replay buffer storing tuples
(x,a, r, x′). Q′

i and µ′
j are target networks with parameters

θQ
′

i and θµ
′

j , which are typically updated via soft updates
(Polyak averaging) from their respective online network
parameters.

The actor policy µi for each agent i is updated using the
deterministic policy gradient, derived from the expected
return J(θµi ) = E[Ri]:

∇θµ
i
J(θµi ) = Ex,a∼D

[
∇θµ

i
µi(oi|θµi )∇aiQi(x, a|θQi )

]
.

By conditioning the critic on the actions of all agents, the
environment becomes stationary from the perspective of
each agent’s learning process, even as other agents’ policies
change. The use of separate critics for each agent allows
MADDPG to be applied in scenarios with differing reward
functions, including competitive or mixed settings. Option-
ally, if true policies of other agents are unknown during
training, they can be inferred from observations.

3.2. Cooperative-Competitive Environments

Simple Tag (Competitive MPE) In this environment,
Np = 1 predator agent (adversary) attempts to capture
a single prey agent within a bounded two-dimensional arena
with stationary obstacles. The reward is defined as follows:

• Predator: rit =

{
+10, if predator i tags prey at time t

0, otherwise

• Prey: rprey
t =

{
−10, if the prey is tagged at time t

0, otherwise

To discourage escape from a bounded area, the prey receives
a penalty defined by:

bound(x) =


0, x < 0.9,

10(x− 0.9), 0.9 ≤ x < 1.0,

min(exp(2x− 2), 10), x ≥ 1.0.

This environment is implemented practically through Pet-
tingZoo1.

Simple Spread (Cooperative MPE) N agents must cover
M fixed landmarks. Each agent’s observation oit includes
its own position and those of landmarks and other agents.
At each step, agent i receives

rit =

M∑
m=1

I[∥xi
t − ℓm∥ < dcov]︸ ︷︷ ︸

covered landmarks

−
∑
j ̸=i

I[∥xi
t − xj

t∥ < dcoll]︸ ︷︷ ︸
collision penalty

.

1https://pettingzoo.farama.org/index.html
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Here dcov is the coverage radius and dcoll the collision
threshold. All agents share identical reward functions.

First-Price Auction N agents receives a private valuation
vi ∼ Uniform(0, 100). Agents simultaneously submit bids
bi ∈ [0, 100]. The highest bidder wins and pays their bid;
all others pay nothing. Agent i’s reward is

ri =

{
vi − bi, if bi = maxj bj (tie-broken uniformly),
0, otherwise.

In competitive mode, each agent maximizes its own payoff;
in cooperative mode, the group reward is

∑
i ri and is shared

equally.

4. Methods
4.1. Problem Formulation

We study an N -agent Markov game represented by the tu-
ple (S, {Ai}Ni=1, P, {ri}Ni=1, γ), where S denotes the global
state space and Ai is the action space of agent i. The state
transition probability P (s′ | s,a) defines dynamics from
state s ∈ S under joint action a = (a1, . . . , aN ). Each
agent i receives reward ri(s,a), and future rewards are dis-
counted by γ ∈ [0, 1). Agent i employs a stochastic policy
πθi(ai | oi) parameterized by θi, mapping its local observa-
tion oi to action probabilities. The objective in Multi-Agent
Reinforcement Learning (MARL) for each agent i is to
maximize the expected discounted cumulative return:

J(θi) = Eτ∼Πθ

[
T∑

t=0

γtri(st,at)

]
, (3)

where τ is a trajectory (s0,a0, r0, . . . , sT ,aT , rT ) and
Πθ =

∏N
j=1 πθj is the joint policy.

4.2. Cumulative Prospect Theory Adjustments

To capture human-like decision-making biases and risk at-
titudes, we integrate Cumulative Prospect Theory (CPT)
(Tversky & Kahneman, 1992) into the agents’ objectives.
Rather than maximizing the standard expected return Ri =∑T

t=0 γ
tri(st,at) directly, agents maximize its CPT value

C(Ri), defined via Choquet integrals with gains and losses
relative to a reference point.

C(Ri) =

∫ ∞

0

w+
(
P (u(Ri) > z)

)
dz

+

∫ 0

−∞
w−(P (u(Ri) > z)− 1

)
dz (4)

where u(x) denotes a subjective utility function reflecting
diminishing sensitivity and loss aversion, typically modeled

by a power-law form:

u(x) =

{
xα, x ≥ 0,

−λ(−x)β , x < 0,
(5)

with parameters α, β ∈ (0, 1] controlling curvature for gains
and losses, respectively, and λ ≥ 1 quantifying loss aversion.
The functions w±(p) are non-linear probability weighting
transformations, typically inverse-S-shaped, overweighting
small probabilities and underweighting large ones. We ap-
proximate these functions using a piecewise-linear form for
efficient gradient estimation during training.

Consequently, the CPT-adjusted objective for agent i is:

JCPT(θi) = Eτ∼Πθ
[C(Ri)]. (6)

4.3. Approximation of the CPT Integral

Direct computation of the CPT value C(Ri) is intractable
in RL, as the return distribution P (u(Ri) > z) depends
on the agent’s evolving policy and complex environment
dynamics, and is rarely available in closed form. Moreover,
estimating these probabilities and evaluating the integrals
for each state-action pair or trajectory during training is
computationally prohibitive.

To make CPT tractable in our RL framework, we approxi-
mate C(Ri) using empirical estimates from batches of sam-
pled trajectory returns. Given a batch of B trajectories from
the replay buffer, with returns {R(k)

i }Bk=1 for agent i, we es-
timate the CPT value Ĉ(Ri) using the following procedure,
implemented as the compute cpt integral function:

1. Utility Transformation: Transform each sampled re-
turn R

(k)
i into its subjective utility uk = u(R

(k)
i ) (see

Eq. 5).

2. Empirical Probability Estimation: For any threshold
z, estimate P (u(Ri) > z) for gains and P (u(Ri) ≤
z) for losses empirically from {uk}Bk=1. For gains,
the empirical tail probability is P̂ (u(Ri) > z) ≈
1
B

∑B
k=1 I(uk > z).

3. Probability Weighting: Apply the piecewise lin-
ear weighting functions w+(p) and w−(p) via
w approx(L, p).

4. Numerical Integration: Approximate the Choquet
integrals by summing over sorted unique utility values
(including 0) to define integration segments. For gains
(z ≥ 0), compute

∑
j w

+(P̂ (u(Ri) > zj))(zj+1−zj),
and similarly for losses (z < 0) using w−(P̂ (u(Ri) ≤
zj)).
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This empirical, batch-based approach yields a tractable es-
timate Ĉ(Ri) and its gradient with respect to input returns,
enabling integration with gradient-based RL algorithms.
While the quality of the estimate depends on batch rep-
resentativeness, this method allows practical incorporation
of CPT-based risk preferences in RL.

5. CPT-MADDPG Algorithm
We propose CPT-MADDPG, which extends Multi-Agent
Deep Deterministic Policy Gradient (MADDPG; (Lowe
et al., 2017)) to incorporate risk preferences from Cumu-
lative Prospect Theory (CPT). MADDPG uses centralized
training with decentralized execution: each agent i learns
a deterministic policy µθi(oi) from its local observation oi
and a centralized critic Qϕi

(s,a) that evaluates joint actions
a in state s.

In CPT-MADDPG, the critic is trained with the standard
temporal-difference loss:

L(ϕi) = E(s,a,r,s′)∼D

[
(Qϕi(s,a)− yi)

2
]
, (7)

for replay buffer D, and target value

yi = ri + γQ′
ϕ̄i
(s′,a′)

∣∣∣
a′
j=µ′

θ̄j
(o′j)

using target networks Q′
ϕ̄i

and µ′
θ̄j

as in MADDPG.

The actor update incorporates a CPT-based scaling factor
Φi, computed from terminal returns in the batch using our
compute cpt integral function. Specifically, the ac-
tor is updated with:

L(θi) = −E [exp(νΦi)Qϕi
(s, µθi(oi),a−i)] , (8)

where ν controls the influence of CPT. The corresponding
policy gradient is:

∇θiJCPT(θi) ≈ E [exp(νΦi)∇θiµθi(oi)∇ai
Qϕi

(s,a)] .
(9)

This formulation implies that actions leading to higher (CPT-
valued) terminal returns are more strongly reinforced if
Φi > 0, and actions leading to lower CPT-valued termi-
nal returns are less reinforced or more strongly penalized
if Φi < 0. If insufficient terminal returns are available
in a batch to reliably compute Φi, it defaults to a neutral
value (e.g., Φi = 0, resulting in exp(0) = 1). The overall
algorithm is presented in 5.

.

Algorithm 1 CPT-MADDPG Algorithm
1: Initialize actors µθi , critics Qϕi , and target networks
2: Initialize replay buffer D
3: for episode = 1, . . . ,M do
4: Collect trajectory using policies {µθi} and store in

D
5: for update step = 1, . . . ,K do
6: Sample minibatch from D
7: Compute CPT values C(Ri) using

compute cpt integral
8: Update critics ϕi ← ϕi − ηϕ∇ϕi

L(ϕi)
9: Update actors θi ← θi − ηθ∇θiJCPT(θi)

10: Soft-update target networks
11: end for
12: end for

5.1. Observability-Adjusted CPT Transformation

When an agent is granted access to other agents’ utility
functions, we replace the single-agent CPT transform C(R)
with a cross-agent aggregation. Let A be the set of agents
whose parameters are visible, and for each agent j ∈ A let

u+
j (x) = xαj , u−

j (x) = λj (−x)αj ,

and define constant weights w′
j,+, w

′
j,−. For a (flattened)

return R, we compute

ϕcross(R) =
1

|A|
∑
j∈A

{
w′

j,+ u+
j (R), R ≥ 0,

−w′
j,− u−

j (R), R < 0.

This replaces the usual CPT wrapper in the critic target:

yi = ui(ri) + γ Ea′∼µθ̄

[
ϕcross(R

′
i)
]
.

By averaging each visible agent’s subjective valuation, the
update incorporates observed risk biases directly into the
Bellman backup.

5.2. Adaptive Behavioral Parameter Dynamics

To allow each agent’s CPT parameters to evolve during
training, we parameterize αi, λi, γ+

i , and γ−
i as learnable

variables and optimize them via a secondary loss. Let Θi =
{αi, λi, γ

+
i , γ−

i } and write the usual CPT-adjusted target
for agent i as

yCPT
i = ui(ri) + γ Ea′∼µθ̄

[
CΘi

(R′
i)
]
,

and the standard Bellman target as yi. We define the base
loss for the adaptive parameters as

L
(t)
b = E(s,a,r,s′)∼D

[ (
yCPT
i − yi

)2]
.

To make the parameter updates sensitive to recent changes
in this loss, we introduce a dynamic scaling factor

d(t) = 1 +
∣∣L(t)

b − L
(t−1)
b

∣∣.
5
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We also include an ℓ2 regularization term that penalizes
deviation from the initial parameter values Θi,0:

Lr =
∑
p∈Θi

(p− pi,0)
2.

Putting these together, the total loss for the adaptive param-
eters at iteration t is

L
(t)
adapt = d(t) κL

(t)
b + ρLr,

where κ = 10−3 (scale factor) and ρ = 10−3 (reg lambda).
We then update Θi by gradient descent:

Θi ← Θi − ηadapt∇ΘiL
(t)
adapt.

In practice, we freeze these updates for the first 20 iterations
and then apply them every 10 iterations thereafter. This
scheme allows the CPT parameters to adapt to the evolving
reward landscape while avoiding instability from overly
rapid changes.

6. Results
6.1. Experimental Setup

We explore the performance of our CPT-MADDPG algo-
rithm on the environments described in Section 3.2 – namely,
the Simple Tag competitive MPE, the Simple Spread cooper-
ative MPE, and a first-price auction scenario. We implement
CPT-MADDPG in PyTorch (Paszke et al., 2019) using the
TorchRL (Bou et al., 2023) and Vmas (Bettini et al., 2022) li-
braries. Each actor and critic is a 3-layer MLP (hidden sizes
128–128), with ReLU activations and tanh outputs on ac-
tions. Key hyperparameters are ηθ = 1× 10−4, ηϕ = 1×
10−3, γ = 0.99, τ = 0.01, α = β = 0.88, λ = 2.25.
CPT components (u plus, u minus, w approx) and the
compute cpt integral routine are implemented as
differentiable PyTorch modules, enabling end-to-end train-
ing with Adam.

6.2. Competitive Environment: Simple Tag

In the Simple Tag predator–prey scenario, our goal is to
evaluate how wrapping cumulative returns in CPT trans-
forms influences pursuit strategies in a continuous 2D ac-
tion space; by comparing moderate (risk-seeking) and ex-
treme (risk-averse) CPT settings against the risk-neutral
baseline, we gain insight into how risk preferences trade
off exploration versus safety. Figure 1 shows that moder-
ate CPT induces intermittent spikes in episodic predator re-
ward—reflecting willingness to risk zero payoff for potential
large gains—whereas extreme CPT dramatically suppresses
variance, delays convergence, and lowers mean reward rela-
tive to baseline, illustrating pronounced loss aversion and
diminished risk tolerance.

(a) Baseline MADDPG (b) Moderate CPT

(c) Extreme CPT

Figure 1. Predator average episodic rewards in Simple Tag under
baseline, moderate, and extreme CPT.

6.3. Cooperative Environment: Simple Spread

In the Simple Spread cooperative landmark-coverage task,
we investigate whether CPT-based risk sensitivity can ac-
celerate coordination without sacrificing stability; by ap-
plying moderate and extreme CPT to joint rewards, we
gain an understanding of how agents hedge collision risk
against coverage gains. As depicted in Figure 2, moderate
(risk-seeking) CPT hyperparameter choices accelerate early
convergence—agents explore varied positions to balance
coverage and collision avoidance—yet stabilizes at similar
asymptotic coverage to the baseline, while extreme CPT’s
strong loss-aversion leads to overly cautious movements and
a large reduction in final coverage, highlighting the perfor-
mance cost of excessive loss sensitivity. Visual comparisons
of the MPE environment of the baseline and extreme cases
can be found in Figure 7 (Appendix B). In the baseline,
agents conduct exploration with limited fear of the nega-
tive rewards from losses realized from the distance between
them, resulting in a positioning of each agent close to a
unique landmark. In the risk-averse case, the agents start
exploration but quickly struggle to find a risk-reward trade-
off for optimal positioning near a landmark. The risk-averse
agents find themselves unable to take the risk of moving
forward closer to a landmark due to the loss-aversion of
a change in position from another agent, leading to both
agents being unable to position themselves as close to a
landmark as in the base case.

6
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(a) Baseline (b) Moderate CPT

(c) Extreme CPT

Figure 2. Landmark mean coverage rewards in Simple Spread un-
der baseline, moderate, and extreme CPT.

6.4. Transparent Utility Sharing

Extending Simple Spread with full visibility of peers’ CPT
utilities, we ask whether transparency of subjective evalu-
ations aligns expectations and preserves cooperative equi-
libria; this allows us to gain insight into the interplay be-
tween heterogeneous risk profiles under shared informa-
tion. Figure 3 shows that both purely risk-averse pairs and
mixed risk-averse/risk-seeking teams converge to the same
landmark-coverage trajectory as in opaque training, indicat-
ing that observing each other’s utility functions mitigates
strategic uncertainty without disrupting coordination.

(a) Risk-Averse Seeing (b) Mixed Risk Profiles Seeing

Figure 3. Coverage rewards when agents observe each other’s CPT
utilities.

6.5. Dynamic CPT Parameters

As an extension to the ability of beeing able to observe
their cooperative agents utility, we enable agents to update
their CPT hyperparameters every ten episodes in the Simple
Spread task, aiming to learn whether dynamic profiling
can improve performance or introduce instability. Figure 4
illustrates that dynamic risk-seeking, moderate, and high-
aversion schedules all produce large oscillations in coverage
reward and fail to converge—reward variance exceeds the

baseline by over 50%—demonstrating that rapidly shifting
risk parameters destabilize multi-agent learning.

(a) Dynamic Risk Seeking (b) Dynamic Moderate CPT

(c) Dynamic Extreme CPT

Figure 4. Mean Reward trajectories under dynamic CPT hyperpa-
rameters.

6.6. First-Price Auction

Building on the empirical findings of Josheski & Apos-
tolov (2023), who demonstrate that CPT-modeled bidders
systematically overbid in first-price auctions, we evaluate
whether our CPT-MADDPG agents replicate this behavior
and its payoff consequences. Each agent’s private valuation
vi is drawn uniformly from [0, 100], and we compare three
CPT-trained bidders against three risk-neutral agents.

Figure 5 overlays the empirical bid distributions after con-
vergence. Consistent with Josheski & Apostolov’s results,
the CPT histogram is clearly shifted to the right: modal bids
for CPT agents lie around the maximum possible, whereas
non-CPT bids cluster either between the lower end and the
upper end of the possibel bid spectrum. This shift visually
confirms the overbidding effect driven by loss aversion and
probability weighting under CPT.

Figure 5. Empirical bid distributions for non-CPT vs. CPT agents
(valuations uniform in [0,100]).

Figure 6 shows the average reward over iterations. CPT
agents begin with higher payoffs—reflecting frequent wins
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from aggressive bids—but rewards decline below zero over
time as the cost of overbidding outweighs gains. This
turnaround closely matches the long-run loss effects de-
scribed in Josheski & Apostolov, illustrating the CPT trade-
off between short-term advantage and eventual negative
returns.

Figure 6. Average episodic reward trajectories for CPT vs. non-
CPT agents in the first-price auction.

6.7. Summary of Findings

Across competitive, cooperative, transparency, dynamic,
and auction settings, CPT-MADDPG produces rich,
parameter-dependent behaviors: moderate (risk-seeking)
CPT enhances exploratory learning, extreme (risk-averse)
CPT enforces prudence at a performance cost, shared util-
ities preserve coordination despite risk heterogeneity, and
adaptive parameter updates destabilize convergence. Auc-
tion results validate that CPT imparts human-like risk biases,
granting strategic advantage through overbidding. Detailed
hyperparameters for each variant are listed in Table 1 (Ap-
pendix A).

7. Discussion
Our empirical evaluation of CPT-MADDPG across compet-
itive, cooperative, and auction domains demonstrates that
embedding human-like risk preferences into multi-agent
learning yields rich and interpretable behavioral variations.
In Simple Tag, risk-seeking CPT drives predators to adopt
more aggressive, exploratory tactics—risk-seeking “spikes”
in reward—whereas risk-averse driven CPT produces con-
servative strategies marked by delayed convergence and
lower overall payoff. In Simple Spread, moderate risk sensi-
tivity accelerates early coordination at the cost of increased
fluctuation, while extreme loss aversion impairs final cov-
erage due to overly cautious movement. Allowing agents
to observe each other’s CPT utility rewards, assuming that
they would adjust their own outcomes in the context of the
rewards, shows that transparency of subjective evaluations
preserves cooperative equilibria even under heterogeneous
risk profiles. Conversely, dynamically adapting CPT pa-
rameters on the fly destabilizes learning, suggesting that

introducing non-stationarity in risk attitudes undermines
policy convergence. Finally, in first-price auctions, CPT-
trained bidders systematically overbid—right-shifted bid
distributions and an initial reward advantage followed by
long-term losses— replicating the expected overbidding
phenomenon documented by Josheski & Apostolov (2023).

These results highlight several key insights. First, rank-
dependent probability weighting and loss aversion can be
effectively integrated into actor–critic updates, endowing
agents with tunable risk profiles that mirror human decision
biases. Second, while moderate levels of CPT hyperparame-
ters in a risk-seeking setting can enhance exploration and
initial learning speed, extreme aversion or overly frequent
adaptation of risk parameters imposes tangible performance
penalties. Third, transparency of risk preferences between
agents need not harm coordination; indeed, shared utility
information can align expectations and stabilize behavior.
Fourth, CPT-induced overbidding confers short-term auc-
tion success but risks eventual negative returns, illustrating
the classic “prospect” trade-off in learned policies.

However, our approach has limitations. The empirical ap-
proximation of the CPT integral relies on batch-based esti-
mates of tail probabilities, which may introduce bias when
returns are sparse or highly skewed. Dynamic hyperpa-
rameter adaptation, while conceptually appealing, proved
difficult to stabilize and would benefit from more principled
schedules or meta-learning frameworks. There may also be
an alternative form of providing this hyperparameter adap-
tation in settings with asymmetric or perfect information.
Computational overhead from computing CPT integrals in
large multi-agent systems remains non-trivial, suggesting
the need for more efficient approximation or hierarchical
risk modeling.

Looking forward, several avenues for future work arise. Ex-
tending CPT-MADDPG to high-dimensional, continuous
control tasks and real-world domains (e.g., autonomous driv-
ing or energy management) could validate scalability and
practical utility. Incorporating theory-guided meta-learning
to tune CPT parameters online may overcome the instabil-
ity of naı̈ve dynamic schedules. Finally, integrating CPT-
based agents with large language models or other human-
interactive systems offers a promising path toward more
psychologically realistic and interpretable AI agents, capa-
ble of anticipating and adapting to human risk behavior in
complex multi-agent environments.

In sum, CPT-MADDPG offers a principled framework
for endowing reinforcement learning agents with human-
aligned risk attitudes, opening new opportunities for inter-
pretable, risk-aware multi-agent systems that bridge the gap
between rational optimization and realistic decision-making
under uncertainty.
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Impact Statement
This work develops CPT-MADDPG, a framework for em-
bedding human-like risk attitudes into multi-agent reinforce-
ment learning. On the positive side, CPT-MADDPG can pro-
duce agents whose exploration–exploitation trade-offs more
closely mirror human decision patterns, improving safety
and interpretability in applications such as autonomous driv-
ing, robotic coordination in disaster response, and adaptive
traffic management.

However, risk-tuned agents could also be repurposed for
adversarial or manipulative ends: for example, algorith-
mic trading systems that exploit human loss aversion or
risk-seeking biases in high-frequency markets. We there-
fore recommend incorporating human-in-the-loop oversight,
transparent reporting of CPT parameters and safeguards to
prevent misuse.
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A. CPT Function Hyperparameters

Table 1. Hyperparameters for the CPT value and probability-weighting functions across model variants.

Environment Variant α β λ γ δ (w+)′ (w−)′

Simple Tag Baseline N/A N/A N/A N/A N/A N/A N/A
Moderate CPT (risk-seeking) 0.9 0.6 1.5 0.69 0.61 0.8 0.2
Extreme CPT (risk-averse) 0.88 0.88 2.25 0.61 0.69 0.2 0.8

Simple Spread Baseline N/A N/A N/A N/A N/A N/A N/A
Moderate CPT (risk-averse) 0.88 0.88 2.25 0.61 0.69 0.2 0.8
Extreme CPT (risk-averse) 0.7 0.95 2.5 0.61 0.69 0.2 0.8
Observability CPT (Seeing - RS Agent) 0.7 0.7 0.8 0.61 0.69 0.8 0.2
Observability CPT (Seeing - RA Agent) 0.65 0.65 2.8 0.61 0.69 0.25 0.75
Dynamic (Agent 1) 0.7 0.7 2.5 0.61 0.69 0.8 0.2
Dynamic (Agent 2) 0.65 0.65 2.8 0.61 0.69 0.8 0.2
Dynamic Moderate (Agent 1) 0.6 0.6 1 0.5 0.55 0.2 0.8
Dynamic Moderate (Agent 2) 0.3 0.3 1.5 0.5 0.55 0.2 0.8
Dynamic Extreme (Agent 1) 1.2 1.2 1.2 0.5 0.69 0.2 0.8
Dynamic Extreme (Agent 2) 0.3 0.3 1.5 0.5 0.69 0.2 0.8

Auction CPT Agents 0.88 0.88 2.25 0.61 0.69 N/A N/A
Non-CPT Agents N/A N/A N/A N/A N/A N/A N/A

B. MPE Visualizations in Cooperative Setting

Baseline

Risk-Averse

Figure 7. Simple Spread MPE steady state approach observed in Baseline (no risk profile) and Risk Averse (Extreme CPT) cases.
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