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Abstract

Diffusion models have become the de-facto approach for generating visual data, which are
trained to match the distribution of the training dataset. In addition, we also want to control
generation to fulfill desired properties such as alignment to a text description, which can be
specified with a black-box reward function. Prior works fine-tune pretrained diffusion models
to achieve this goal through reinforcement learning-based algorithms. Nonetheless, they
suffer from issues including slow credit assignment as well as low quality in their generated
samples. In this work, we explore techniques that do not directly maximize the reward but
rather generate high-reward images with relatively high probability — a natural scenario
for the framework of generative flow networks (GFlowNets). To this end, we propose the
Diffusion Alignment with GFlowNet (DAG) algorithm to post-train diffusion models with
black-box property functions. Extensive experiments on Stable Diffusion and various reward
specifications corroborate that our method could effectively align large-scale text-to-image
diffusion models with given reward information.

1 Introduction

Figure 1: Generated samples before (top) and after
(bottom) the proposed training with Aesthetic reward.

Diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020) have drawn significant attention in ma-
chine learning due to their impressive capability to
generate high-quality visual data and applicability
across a diverse range of domains, including text-to-
image synthesis (Rombach et al., 2021), 3D genera-
tion (Poole et al., 2022), material design (Yang et al.,
2023), protein conformation modeling (Abramson
et al., 2024), and continuous control (Janner et al.,
2022). These models, through a process of gradually
denoising a random distribution, learn to replicate
complex data distributions, showcasing their robust-
ness and flexibility. The traditional training of diffu-
sion models typically relies on large datasets, from which the models learn to generate new samples that
mimic and interpolate the observed examples.

However, such a dataset-dependent approach often overlooks the opportunity to control and direct the
generation process towards outputs that not only resemble the training data but also possess specific, desirable
properties (Lee et al., 2023). These properties are often defined through explicit reward functions that assess
certain properties, such as the aesthetic quality of images. Such a requirement is crucial in fields where
adherence to particular characteristics is necessary, such as alignment or drug discovery. The need to integrate
explicit guidance without relying solely on datasets presents a unique challenge for training methodologies.
Previous works have utilized methods such as reinforcement learning (RL) (Black et al., 2023; Fan et al.,
2023) to tackle this problem. Nonetheless, these methods still suffer from issues like low sample efficiency.

In this work, we propose a novel approach, diffusion alignment with GFlowNets (DAG), that fine-tunes
diffusion models to optimize black-box reward functions directly. Generative flow networks (Bengio et al., 2023,
GFlowNets), initially introduced for efficient probabilistic inference with given densities in structured spaces,
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provide a unique framework for this task. Though initially proposed for composite graph-like structures,
prior works have extended the GFlowNet framework to diffusion modeling (Zhang et al., 2022a; Lahlou et al.,
2023). This work further investigates GFlowNet-inspired algorithms for the task of text-to-image diffusion
alignment. By aligning the learning process to focus on generating samples with probability proportional
to reward functions rather than maximizing them, our method allows the diffusion model to directly target
and generate samples that are not only high in quality but also fulfill specific predefined criteria. Besides
developing a denoising diffusion probabilistic model-specific GFlowNet algorithm, we also propose a new
KL-based way to optimize our models. In summary, our contributions are as follows:

• We propose Diffusion Alignment with GFlowNet (DAG), a GFlowNet-based algorithm using the
denoising structure of diffusion models, to improve large-scale text-to-image alignment with a
black-box reward function.

• We propose a KL-based objective for optimizing GFlowNets that achieves comparable or better
sample efficiency. We further called the resulting algorithm for the alignment problem DAG-KL.

• Our methods achieve better sample efficiency than the reinforcement learning baseline within the
same number of trajectory rollouts, as well as a better reward-diversity trade-off, across a number of
different learning targets.

2 Preliminaries

2.1 Diffusion models

Denoising diffusion model (Vincent, 2011; Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) is a
class of hierarchical latent variable models. The latent variables are initialized from a white noise xT ∼ N (0, I)
and then go through a sequential denoising (reverse) process pθ(xt−1|xt). Therefore, the resulting generated
distribution takes the form of

pθ(x0) =
∫

pθ(x0:T ) dx1:T =
∫

p(xT )
T∏

t=1
pθ(xt−1|xt) dx1:T . (1)

On the other hand, the variational posterior q(x1:T |x0), also called a diffusion or forward process, can be
factorized as a Markov chain

∏T
t=1 q(xt|xt−1) composed by a series of conditional Gaussian distributions

q(xt|xt−1) = N (xt; αt/αt−1xt−1, (1 − α2
t /α2

t−1)I), where {αt, σt}t is a set of pre-defined signal-noise schedule.
Specifically, in Ho et al. (2020) we have α2

t + σ2
t = 1. The benefit of such a noising process is that its marginal

has a simple close form: q(xt|x0) =
∫

q(x1:t|x0) dx1:t−1 = N (xt; αtx0, σ2
t I).

Given a data distribution pdata(·), the variational lower bound of model log likelihood can be written in the
following simple denoising objective:

Ldenoising(θ) = Et,x0∼pdata,ϵ∼N (0,I)
[
∥x0 − x̂θ(αtx0 + σtϵ, t)∥2]

, (2)

where x̂θ(xt, t) is a deep neural network to predict the original clean data x0 given the noisy in-
put xt = αtx0 + σtϵ, which can be used to parameterize the denoising process pθ(xt−1|xt) =
N (xt−1;

(
σ2

t−1αtxt + (α2
t−1 − α2

t )x̂θ(xt, t)
)

/σ2
t αt−1, (1 − α2

t /α2
t−1)I). In practice, the network can also be

parameterized with noise prediction or v-prediction (Salimans & Ho, 2022). The network architecture usually
has a U-Net (Ronneberger et al., 2015) structure.

In multimodal applications such as text-to-image tasks, the denoising diffusion model would have a conditioning
c in the sense of pθ(x0; c) =

∫
p(xT )

∏T
t=1 pθ(xt−1|xt; c) dx1:T . The data prediction network, x̂θ(xt, t, c) in

this case, will also take c as a conditioning input. We ignore the notation of c without loss of generality.

2.2 GFlowNets

Generative flow network (Bengio et al., 2021, GFlowNet) is a high-level algorithmic framework of amortized
inference, also known as training generative models with a given unnormalized target density function. Let
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G = (S, A) be a directed acyclic graph, where S is the set of states and A ⊆ S × S are the set of actions.
We assume the environmental transition is deterministic, i.e., one action would only lead to one next state.
There is a unique initial state s0 ∈ S which has no incoming edges and a set of terminal states sN without
outgoing edges. A GFlowNet has a stochastic forward policy PF (s′|s) for transition (s → s′) as a conditional
distribution over the children of a given state s, which can be used to induce a distribution over trajectories via
P (τ) =

∏N−1
n=0 PF (sn+1|sn), where τ = (s0, s1, . . . , sN ). On the other hand, the backward policy PB(s|s′) is a

distribution over the parents of a given state s′. The terminating distribution defined by PT (x) =
∑

τ→x PF (τ)
is the ultimate terminal state distribution generated by the GFlowNet. The goal of training GFlowNet is to
obtain a forward policy such that PT (·) ∝ R(·), where R(·) is a black-box reward function or unnormalized
density that takes only non-negative values. Notice that we do not know the normalizing factor Z =

∑
x R(x).

We can use the trajectory flow function F (τ) = ZPF (τ) to take in the effect of the normalizing factor, and
the corresponding state flow function F (s) =

∑
τ∋s F (τ) to model the unnormalized probability flow of

intermediate state s.

Detailed balance (DB) The GFlowNet detailed balance condition provides a way to learn the above
mentioned GFlowNet modules. For any single transition (s → s′), the following DB criterion holds:

F (s)PF (s′|s) = F (s′)PB(s|s′), ∀(s → s′) ∈ A. (3)

Furthermore, for any terminating state x, we require F (x) = R(x). In practice, these constraints can be
transformed into tractable training objectives, as will be shown in Section 3. Based on GFlowNet theories in
Bengio et al. (2023), if the DB criterion is satisfied for any transition, then the terminating distribution PT (·)
will be the same desired target distribution whose density is proportional to R(·).

3 Methodology

3.1 Denoising Markov decision process

The denoising process for text-to-image diffusion models can be easily reformulated as a multi-step Markov
decision process (MDP) with finite horizon (Fan et al., 2023; Black et al., 2023) as follows:

st = (xT −t, c), p(s0) = N (xT ; 0, I) ⊗ p(c), πθ(at|st) = pθ(xT −t−1|xT −t, c), (4)
at = xT −t−1, r(st, at) = R(st+1, c) only if t = T − 1, p(st+1|st, at) = δat ⊗ δc. (5)

Here st, at is the state and action at time step t under the context of MDP. The state space is defined to be
the product space (denoted by ⊗) of x in reverse time ordering and conditional prompt c. The RL policy π
is just the denoising conditional distribution. In this MDP, when time t has not reached the terminal step,
we define the reward r(st, at) to be 0. δ here denotes the Dirac distribution.
Remark 1 (diffusion model as GFlowNet). This formulation has a direct connection to the GFlowNet
MDP definition in Section 2.2, which has been pointed out by Zhang et al. (2022a) and developed in
Lahlou et al. (2023); Zhang et al. (2023b); Venkatraman* et al. (2024). To be specific, the action transition
(st, at) → st+1 is a Dirac distribution and can be directly linked with the (st → st+1) edge transition in the
GFlowNet language. More importantly, the conditional distribution of the denoising process pθ(xT −t−1|xT −t)
corresponds to the GFlowNet forward policy PF (st+1|st), while the conditional distribution of the diffusion
process q(xT −t|xT −t−1) corresponds to the GFlowNet backward policy PB(st|st+1). Besides, xt is a GFlowNet
terminal state if and only if t = 0.

Denoising diffusion GFlowNet

(xT −t, c) st

p(xT −t−1|xT −t, c) PF (st+1|st)
q(xT −t|xT −t−1) PB(st|st+1)

The above discussion could be summarized in the right table. In the fol-
lowing text, we use the denoising diffusion notation instead of GFlowNet
notation as it is familiar to more broad audience. What’s more, we
ignore conditioning c for the sake of simplicity.

3.2 Diffusion alignment with GFlowNets

In this section, we describe our proposed algorithm, diffusion alignment with GFlowNets (DAG). Rather
than directly optimizing the reward targets as in RL, we aim to train the generative models so that in the
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end they could generate objects with a probability proportional to the reward function: pθ(x0) ∝ R(x0). To
achieve this, we construct the following DB-based training objective based on Equation 3, by regressing its
one side to another in the logarithm scale for any diffusion step transition (xt, xt−1).

ℓDB(xt, xt−1) = (log Fϕ(xt, t) + log pθ(xt−1|xt, t) − log Fϕ(xt−1, t − 1) − log q(xt|xt−1))2 (6)

We additionally force Fϕ(xt, t = 0) = R(x0) to introduce the reward signal. Here θ, ϕ are the parameters
of the diffusion U-Net model and the GFlowNet state flow function (which is another neural network),
respectively. One can prove that if the optimization is perfect, the resulting model will generate a distribution
whose density value is proportional to the reward function R(·) (Bengio et al., 2023; Zhang et al., 2023b).

Algorithm 1 Diffusion alignment with
GFlowNets (DAG-DB & DAG-KL)
Require: Denoising policy pθ(xt−1|xt, t), nois-

ing policy q(xt|xt−1), flow function
Fϕ(xt, t), black-box reward function R(·)

1: repeat
2: Rollout τ = {xt}t with pθ(xt−1|xt, t)
3: For each transition (xt, xt−1) ∈ τ :
4: if algorithm is DAG-DB then
5: # normal DB-based update
6: Update θ and ϕ with Equation 8
7: else if algorithm is DAG-KL then
8: # KL-based update
9: Update ϕ with Equation 8

10: Update θ with Equation 14
11: end if
12: until some convergence condition

One way to parameterize the state flow function F is through
the so-called forward-looking (Pan et al., 2023b, FL) tech-
nique in the way of Fϕ(xt, t) = F̃ϕ(xt, t)R(xt), where F̃ϕ is
the actual neural network to be learned. Intuitively, this is
equivalent to initializing the state flow function to be the
reward function in a functional way; therefore, learning of
the state flow would become an easier task. Note that to
ensure Fϕ(x0, 0) = R(x0), we need to force F̃ϕ(x0, 0) = 1
for all x0 at the terminal step.

Incorporating denoising diffusion-specific structure
However, the intermediate state xt is noisy under our context,
and thus not appropriate for being evaluated by the given
reward function, which would give noisy result. What’s
more, what we are interested here is to “foresee” the reward
of the terminal state x0 taken from the (partial) trajectory
xt:0 starting from given xt. As a result, we can do the FL
technique utilizing the particular structure of diffusion model
as in Fϕ(xt, t) = F̃ϕ(xt, t)R(x̂θ(xt, t)), where x̂θ is the data
prediction network. We notice that a similar technique has
been used to improve classifier guidance (Bansal et al., 2023). In short, our innovation in FL technique is

Fϕ(xt, t) = F̃ϕ(xt, t)R(xt) =⇒ Fϕ(xt, t) = F̃ϕ(xt, t)R(x̂θ(xt, t)). (7)

Then the FL-DB training objective becomes

ℓFL(xt, xt−1) =
(

log F̃ϕ(xt, t)R(x̂θ(xt, t))pθ(xt−1|xt)
F̃ϕ(xt−1, t − 1)R(x̂θ(xt−1, t − 1))q(xt|xt−1)

)2

. (8)

Since in this work the reward function is a black-box, the gradient flow would not go through x̂θ(xt, t) when
we take the gradient of θ. We summarize the algorithm in Algorithm 1 and refer to it as DAG-DB.
Remark 2 (GPU memory and the choice of GFlowNet objectives). Similar to the temporal difference-λ in
RL (Sutton, 1988), it is possible to use multiple connected transition steps rather than a single transition step
to construct the learning objective. Other GFlowNet objectives such as Malkin et al. (2022); Madan et al.
(2022) use partial trajectories with a series of transition steps to construct the training loss and provide a
different trade-off between variance and bias in credit assignment. However, for large-scale setups, this is not
easy to implement, as computing policy probabilities for multiple transitions would correspondingly increase
the GPU memory and computation multiple times. For example, in the Stable Diffusion setting, we could
only use a batch size of 8 on each GPU for single transition computation. If we want to use a two transition
based training loss, we would need to decrease the batch size by half to 4. Similarly, we will have to shorten
the trajectory length by a large margin if we want to use trajectory balance. This may influence the image
generation quality and also make it tricky to compare with the RL baseline, which can be implemented with
single transitions and does not need to decrease batch size or increase gradient accumulation. In practice, we
find that single transition algorithms (such as our RL baseline) perform reasonably well.
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3.3 A KL-based GFlowNet algorithm with REINFORCE gradient

GFlowNet detailed balance is an off-policy algorithm that uses training data from arbitrary distributions.
In this section, we derive a different KL-based on-policy objective, which has been rarely investigated in
GFlowNet literature. We can reformulate DB (Equation 6) from a square loss form to a KL divergence form

min
θ

DKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t − 1)q(xt|xt−1)
Fϕ(xt, t)

)
. (9)

In theory, when DB is perfectly satisfied, the right term Fϕ(xt−1, t − 1)q(xt|xt−1)/Fϕ(xt, t) is a normalized
density; in practice, it could be an unnormalized one but does not affect the optimization. Next, define

b(xt, xt−1) = stop-gradient
(

log Fϕ(xt, t)pθ(xt−1|xt)
Fϕ(xt−1, t − 1)q(xt|xt−1)

)
, (10)

then the KL value of Equation 9 becomes Epθ(xt−1|xt) [b(xt, xt−1)]. We have the following result for deriving
a practical REINFORCE-style objective.
Proposition 3. The KL term in Equation 9 has the same expected gradient with b(xt, xt−1) log pθ(xt−1|xt):

∇θDKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t − 1)q(xt|xt−1)
Fϕ(xt, t)

)
= Ext−1∼pθ(·|xt) [b(xt, xt−1)∇θ log pθ(xt−1|xt)] . (11)

We defer its proof to Section A.1 and make the following remarks:.
Remark 4 (gradient equivalence to detailed balance). Recalling Equation 6, since we have ∇θℓDB(xt, xt−1) =
b(xt, xt−1)∇θ log pθ(xt−1|xt), it is clear that this KL-based objective would lead to the same expected gradient
on θ with Equation 6, if xt−1 ∼ pθ(·|xt) (i.e., samples being on-policy). Nonetheless, this on-policy property
may not be true in practice since the current model is usually not the same as the model used for rollout
trajectories after a few optimization steps.
Remark 5 (analysis of b(xt, xt−1)). The term b(xt, xt−1) seems to serve as the traditional “reward” in the
RL framework. Previous works (Tiapkin et al., 2024; Mohammadpour et al., 2024; Deleu et al., 2024) have
shown that GFlowNet could be interpreted as solving a maximum entropy RL problem in a modified MDP,
where any intermediate transition is modified to have an extra non-zero reward that equals the logarithm
of GFlowNet backward policy: rmod(xt, xt−1) = log q(xt|xt−1), t > 0. What’s more, the logarithm of the
transition flow function (i.e., either side of the detailed balance constraint of Equation 3) could be interpreted
as the Q-function of this maximum entropy RL problem on the modified MDP. Therefore, we could take a
more in-depth analysis of −b(xt, xt−1):

log Fϕ(xt−1, t − 1)q(xt|xt−1)︸ ︷︷ ︸
modified Q−function

+ (− log pθ(xt−1|xt))︸ ︷︷ ︸
entropy

− log Fϕ(xt, t)︸ ︷︷ ︸
constant

. (12)

The last term Fϕ(xt, t) is a constant for the xt−1 ∼ pθ(·|xt) process. Consequently, we can see that min-
imizing this KL is effectively equivalent to having a REINFORCE gradient with the modified Q-function
plus an entropy regularization (Haarnoja et al., 2018). What’s more, the entropy of forward policy
Ext−1∼pθ(·|xt) [− log pθ(xt−1|xt)] is actually also a constant (the diffusion model’s noise schedule is fixed),
which does not affect the learning.

Note that this REINFORCE style objective in Equation 11 is on-policy; the data has to come from the same
distribution as the current model. In practice, the model would become not exactly on-policy after a few
optimization steps, under which scenario we need to introduce the probability ratio pθ(xt−1|xt)/pθold(xt−1|xt)
via importance sampling:

Ext−1∼pθold (·|xt)

[
b(xt, xt−1)∇θpθ(xt−1|xt)

pθold(xt−1|xt)

]
. (13)

Therefore, we can define a new objective to be

ℓKL(xt, xt−1) = b(xt, xt−1) clip
(

pθ(xt−1|xt)
pθold(xt−1|xt)

, 1 − ϵ, 1 + ϵ

)
, (14)
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Figure 2: Top: samples from the original Stable Diffusion model. Middle: the proposed method trained with
compressibility reward; these images have very smooth texture. Down: the proposed method trained with
incompressibility reward; the texture part of images contains high frequency noise.

where xt−1 ∼ pθold(·|xt). Here we also introduce a clip operation to remove too drastic update, following
PPO (Schulman et al., 2017). In this way, the overall gradient along a trajectory becomes

Epθold (x0:T )

[
T∑

t=1
b(xt, xt−1)∇θ clip

(
pθ(xt−1|xt)

pθold(xt−1|xt)
, 1 − ϵ, 1 + ϵ

)]
. (15)

We use this to update the policy parameter θ and use FL-DB to only update ϕ. We call this “diffusion
alignment with GFlowNet and REINFORCE gradient” method to be DAG-KL. Note that when calculating
b(xt, xt−1), we also adopt the diffusion-specific FL technique developed in Section 3.2. We also put the
algorithmic pipeline of DAG-KL in Algorithm 1.

4 Related Works

Diffusion alignment People have been modeling human values to a reward function in areas such as
game (Ibarz et al., 2018) and language modeling (Bai et al., 2022) to make the model more aligned. In
diffusion models, early researchers used various kinds of guidance (Dhariwal & Nichol, 2021; Ho & Salimans,
2022; Kong et al., 2024) to achieve the goal of steerable generation under the reward. This approach is
as simple as plug-and-play but requires querying the reward function during inference time. Another way
is to post-train the model to incorporate the information from the reward function, which has a different
setup from guidance methods; there is also work showing that this outperforms guidance methods (Uehara
et al., 2024). Lee et al. (2023); Dong et al. (2023) achieve this through maximum likelihood estimation on
model-generated samples, which are reweighted by the reward function. These works could be thought of
as doing RL in one-step MDPs. Black et al. (2023); Fan et al. (2023) design RL algorithm by taking the
diffusion generation process as a MDP (Section 3.1). In this work, we focus on black-box rewards where it is
appropriate to use RL or GFlowNet methods. Furthermore, there are methods developed specifically for
differentiable rewards setting (Clark et al., 2023; Wallace et al., 2023b; Prabhudesai et al., 2023; Wu et al.,
2024; Xu et al., 2023; Uehara et al., 2024; Marion et al., 2024). Besides, Chen et al. (2023) study the effect of
finetuning text encoder rather than diffusion U-Net. There is also work that relies on preference data rather
than an explicit reward function (Wallace et al., 2023a; Yang et al., 2024). Kim et al. (2024a) investigate how
to obtain a robust reward based on multiple different reward functions.

GFlowNets GFlowNet is a family of generalized variational inference algorithms that treats the data
sampling process as a sequential decision-making one. It is useful for generating diverse and high-quality
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Figure 3: Sample efficiency results of our proposed methods and our RL baseline (DDPO). The number of
training steps is proportional to the number of sampled trajectories. The experiments are conducted on
reward functions including aesthetic score, ImageReward, and HPSv2.

samples in structured scientific domains (Jain et al., 2022; 2023b; Liu et al., 2022; Jain et al., 2023a; Shen
et al., 2023; Zhang et al., 2023e; Pan et al., 2023a; Kim et al., 2023; 2024b). A series of works have studied
the connection between GFlowNets and probabilistic modeling methods (Zhang et al., 2022b; Zimmermann
et al., 2022; Malkin et al., 2023; Zhang et al., 2022a; Ma et al.; Zhang et al., 2024a), and between GFlowNets
and control methods (Pan et al., 2023c;d;b; Zhang et al., 2024b; Tiapkin et al., 2024). GFlowNets also have
wide application in causal discovery Deleu et al. (2022), phylogenetic inference (Zhou et al., 2024), and
combinatorial optimization (Zhang et al., 2023a;d). A concurrent work (Venkatraman* et al., 2024) also
studies GFlowNet on diffusion alignment which is similar to this work but has different scope and different
developed algorithm. Specifically, this work is aiming for posterior approximate inference that the reward
function is treated as likelihood information, and develops a trajectory balance (Malkin et al., 2022) based
algorithm on length modified trajectories.

5 Experiments
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Figure 4: Sample efficiency results of our proposed methods
and our RL baseline (DDPO) on learning from compressibil-
ity and incompressibility rewards.

Experimental setups We choose Stable Dif-
fusion v1.5 (Rombach et al., 2021) as our base
generative model. For training, we use low-
rank adaptation (Hu et al., 2021, LoRA) for
parameter efficient computation. As for the
reward functions, we do experiments with the
LAION Aesthetics predictor, a neural aesthetic
score trained from human feedback to give
an input image an aesthetic rating. For text-
image alignment rewards, we choose ImageRe-
ward (Xu et al., 2023) and human preference
score (HPSv2) (Wu et al., 2023). They are both CLIP (Radford et al., 2021)-type models, taking a text-image
pair as input and output a scalar score about to what extent the image follows the text description. We
also test with the (in)compressibility reward, which computes the file size if the input image is stored in
hardware storage. As for the prompt distribution, we use a set of 45 simple animal prompts from Black et al.
(2023) for the Aesthetics task; we use the whole imagenet classes for the (in)compressibility task; we use
the DrawBench (Saharia et al., 2022) prompt set for the ImageReward task; we use the photo and painting
prompts from the human preference dataset (HPDv2) (Wu et al., 2023) for the HPSv2 task. We notice that
in our experiments, we use prompt set containing hundreds of prompts which is more than some previous
work such as Black et al. (2023).

Effectiveness of the proposed methods We first demonstrate that our proposed methods could generated
images that have meaningful improvements corresponding to the rewards being used. In Figure 1, we compare
the images from the original Stable Diffusion pretrained model and our proposed method. After our post-
training, the generated images become more vibrant and vivid; we also notice that these images have slightly
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Figure 5: Text-image alignment results. We display four prompts and the corresponding generation visualiza-
tion from the original Stable Diffusion (1st row), DDPO (2nd row), DAG-DB (3rd row), and DAG-KL (4th
row) models to compare their alignment abilities. See Figure 10 for more results.

higher saturation, which we believe is aligned with the human preference on good-looking pictures. We
also visualize the experiment results on compressibility and incompressibility tasks in Figure 2. The second
row shows the generated images from the model trained with the compressibility reward, which have low
details and smooth textures, and also have very limited colors. On the other hand, the model trained with
incompressibility reward would generate images with high frequency texture, as shown in the third row. These
results indicate that our method could effectively incorporate the reward characteristics into the generative
models. We defer more experimental details to Section B.2.

Algorithmic comparisons The main baseline we compare with is denoising diffusion policy optimiza-
tion (Black et al., 2023, DDPO), an RL algorithm that is specifically designed for denoising diffusion alignment
and has been shown to outperform other align-from-black-box-reward methods including (Lee et al., 2023;
Fan et al., 2023). We show the reward curves w.r.t. the training steps of the aesthetic, ImageReward,
and HPSv2 rewards in Figure 3. Here, the number of training steps corresponds proportionally to the
number of trajectories collected (see appendix for more details). Both our proposed methods, DAG-DB and
DAG-KL, achieve faster credit assignment than the DDPO baseline by a large margin. We additionally
put corresponding curve plots for compressibility and incompressibility rewards in Figure 4, which also
demonstrate the advantages of our proposed methods.

What’s more, we provide a diversity comparison in Table 1. For the RL baseline, we take the last checkpoint;
for our proposed methods, we take the earliest checkpoint with a larger reward value than the chosen RL
algorithm checkpoint. This is to show that our methods could achieve results with both better reward
and diversity performance. For diversity measurement, we calculate the FID score between two batches of
independently generated samples from that model. We use this as a diversity metric, so the larger the better.

8



Under review as submission to TMLR

Task Compressibility Incompressibility Aesthetic ImageReward HPSv2

Metric Reward↑ Div.↑ Reward↑ Div.↑ Reward↑ Div.↑ Reward↑ Div.↑ Reward↑ Div.↑

DDPO −44.74 27.32 197.83 25.72 6.33 13.59 0.29 26.04 0.29 19.49
DAG-DB −37.23 38.94 294.68 35.25 6.63 14.09 0.51 44.91 0.30 17.95
DAG-KL −34.67 41.30 218.93 27.68 6.50 13.63 0.48 30.37 0.30 21.85

Table 1: Comparison on average reward and diversity metrics across a variety of tasks. Our methods
consistently achieve better trade-offs between these two directions. See Section 5 and Section B.2 for details.

— “A helmet-wearing monkey skating” −→ DDPO samples

— “Anthropomorphic Virginia opossum playing guitar” −→ DDPO samples

Figure 6: Visualization of alignment with regard to training progress. Left: the generated images from the
proposed method become more aligned to the text prompt over the course of training. Right: samples from
the DDPO baseline.

The results indicate that GFlowNet-based methods achieve a better reward-diversity trade-off due to their
distribution matching (rather than reward maximizing) formulation. We defer related details to Section B.2.

Apart from quantitative comparisons, we also visualize the alignment improvement for models trained in
the HPSv2 task. In Figure 5 and Figure 10 in Appendix, we exhibit generation results for different prompts
across the original Stable Diffusion, DDPO, DAG-DB, and DAG-KL models. For example, in the first “a
counter top with food sitting on some towels” example, images from the original Stable Diffusion either do not
have food or the food is not on towels, which is also the case for DDPO generation. This is improved for both
DAG-DB and DAG-KL generation in that they capture the location relationship correctly. In the “personal
computer desk room with large glass double doors” example, both the original and DDPO models cannot
generate any double doors in the image, and DAG-DB model sometimes also fails. In contrast, the DAG-KL
model seems to understand the concept well. Generation with other prompts also has similar results.

In Figure 6, we visualize the gradual alignment improvement of our DAG-KL method with regard to the
training progress for the HPSv2 task. We show the images of our methods at 0%, 25%, 50%, 75%, and 100%
training progress. In the example of “a helmet-wearing monkey skating”, the DDPO baseline could generate a
skating monkey but seems to fail to generate a helmet. For the proposed method, the model gradually learns
to handle the concept of a helmet over the course of training. In the “anthropomorphic Virginia opossum
playing guitar” example, the baseline understands the concept of guitar well, but the generated images are
not anthropomorphic, while our method manages to generate anthropomorphic opossums decently.

6 Conclusion

We propose Diffusion Alignment GFlowNet (DAG), a family of algorithms designed to fine-tune pretrained
diffusion models based on external reward functions. Our approach advances the GFlowNet framework to

9
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accommodate the specific properties of text-to-image diffusion models. We introduce two variants, DAG-DB
and DAG-KL, each tailored to optimize the model’s performance with respect to different objectives. Through
extensive experiments on Stable Diffusion models, we demonstrate that DAG achieves a more effective balance
between maximizing reward values and maintaining output diversity than previous methods.
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A Proof

A.1 Proof of Proposition 3

Proof. Recalling that b(xt, xt−1) = stop-gradient
(

log Fϕ(xt,t)pθ(xt−1|xt)
Fϕ(xt−1,t−1)q(xt|xt−1)

)
,

∇θDKL

(
pθ(xt−1|xt)∥

Fϕ(xt−1, t − 1)q(xt|xt−1)
Fϕ(xt, t)

)
=∇θ

∫
pθ(xt−1|xt) log Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t − 1)q(xt|xt−1) dxt−1

=
∫

∇θpθ(xt−1|xt) log Fϕ(xt, t)pθ(xt−1|xt)
Fϕ(xt−1, t − 1)q(xt|xt−1) dxt−1 +

∫
pθ(xt−1|xt)∇θ log Fϕ(xt, t)pθ(xt−1|xt)

Fϕ(xt−1, t − 1)q(xt|xt−1) dxt−1

=
∫

pθ(xt−1|xt)∇θ log pθ(xt−1|xt)b(xt, xt−1) dxt−1 +
∫

pθ(xt−1|xt)∇θ log pθ(xt−1|xt) dxt−1︸ ︷︷ ︸
=∇θ

∫
pθ(xt−1|xt) dxt−1=∇θ1=0

=Ext−1∼pθ(·|xt) [b(xt, xt−1)∇θ log pθ(xt−1|xt)] .

B More about DAG

B.1 RL optimal solutions of the denoising MDP

Training a standard RL algorithm within this diffusion MDP in Section 3.1 to perfection means the model
would only generate a single trajectory with the largest reward value. This usually comes with the disadvantage
of mode collapse in generated samples in practice. One direct solution is soft / maximum entropy RL (Ziebart
et al., 2008; Fox et al., 2017; Haarnoja et al., 2017; Zhang et al., 2023c), whose optimal solution is a trajectory-
level distribution and the probability of generating each trajectory is proportional to its trajectory cumulative
reward, i.e., pθ(x0:T ) ∝

∑
t Rt(xt) = R(x0). However, in theory this means pθ(x0) =

∫
pθ(x0:T ) dx1:T ∝∫

R(x0) dx1:T = R(x0) ·
∫

1 dx1:T , which is not a well-defined finite term for unbounded continuous spaces.
In contrast, the optimal solution of GFlowNet is pθ(x0) ∝ R(x0).

B.2 Experimental details

Regarding training hyperparameters, we follow the DDPO github repository implementation and describe
them below for completeness. We use classifier-free guidance (Ho & Salimans, 2022, CFG) with guidance
weight being 5. We use a 50-step DDIM schedule. We use NVIDIA 8×A100 80GB GPUs for each task,
and use a batch size of 8 per single GPU. We do 4 step gradient accumulation, which makes the essential
batch size to be 256. For each “epoch”, we sample 512 trajectories during the rollout phase and perform 8
optimization steps during the training phase. We train for 100 epochs. We use a 3 × 10−4 learning rate for
both the diffusion model and the flow function model without further tuning. We use the AdamW optimizer
and gradient clip with the norm being 1. We set ϵ = 1 × 10−4 in Equation 14. We use bfloat16 precision.

The GFlowNet framework requires the reward function to be always non-negative, so we just take the
exponential of the reward to be used as the GFlowNet reward. We also set the reward exponential to β = 100
(i.e., setting the distribution temperature to be 1/100). Therefore, log R(·) = βRoriginal(·). Note that in
GFlowNet training practice, we only need to use the logarithm of the reward rather than the original reward
value. We linearly anneal β from 0 to its maximal value in the first half of the training. We found that this
almost does not change the final result but is helpful for training stability.For DAG-KL, we put the final β
coefficient on the KL gradient term. We also find using a KL regularization DKL (pθ(xt−1|xt)∥pθold(xt−1|xt))
to be helpful for stability (this is also mentioned in Fan et al. (2023)). In practice, it is essentially adding a
ℓ2 regularization term on the output of the U-Net after CFG between the current model and previous rollout
model. We simply use a coefficient 1 on this term without further tuning.
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DDPO DAG

Figure 8: Samples on CIFAR-10 diffusion alignment experiments.
The reward function is the probability of the generated image
falling into the categories of car, truck, ship, and plane calculated
by a pretrained classifier. The RL baseline shows mode collapse
behaviors while the target distribution is actually multimodal.
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Figure 9: Ablation study for the
forward-looking (FL) usage in Sec-
tion 3.2 on the Aesthetic reward task.

We use Stable Diffusion v1.5 as base model and use LoRA for post-training, following Black et al. (2023). For
the architecture of the state flow function, we take a similar structure to the downsample part of the U-Net.
The implementation is based on the hugging face diffusers package. We use 3 “CrossAttnDownBlock2D”
blocks and 1 “DownBlock2D” and do downsampling on all of them. We set the layers per block to be 1, and
set their block out channels to be 64, 128, 256, 256. We use a final average pooling layer with kernel and stride
size 4 to output a scalar given inputs including latent image, time step, and prompt embedding. We do not
report diversity metric as in previous GFlowNet literature, as the average pairwise Euclidean distance in high
dimensional space (64 × 64 × 4 > 10, 000 dim.) is not a meaningful metric.

For computing diversity in Table 1, we take a trained model and independently generate two batches of
images based on corresponding prompts, with the batch size being 2048. For our proposed methods, we
choose the earliest checkpoint with a reward larger than the DDPO final rewards. We save our checkpoints
for every 10 epochs. We use an Inception network to compute the mean and covariance features and calculate
the Frechet distance; then we use the resulting FID as the diversity metric. Additionally, we show in Figure 7
that DAG-KL achieves a better Pareto frontier on the reward-diversity trade-off on the HPSv2 task.

B.3 CIFAR-10 toy example
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Figure 7: Scatter plot about model diversity
and reward when they have been trained for
different number of epochs (shown beside
each of the points). It can be seen that
our method (DAG-KL) achieves a better
reward-diversity trade-off.

We also include a toy experiment on a CIFAR-10 pretrained
DDPM1. We train a ResNet18 classifier and set the reward
function to be the probability of the generated image falling
into the categories of car, truck, ship, and plane. We use the
same hyperparameters with the Stable Diffusion setting, except
we only use 1 GPU with a 256 batch size for each run without
gradient accumulation. We illustrate the generation results in
Figure 8. We use DAG-DB here, and the DAG-KL generation
is similar and non-distinguishable with it. We can see that
in this relative toy task, the RL baseline easily optimizes the
problem to extremes and behaves mode collapse to some extent
(only generating samples of a particular plane). While for our
methods, the generation results are diverse and cover different
classes of vehicles. Both methods achieve average log probability
larger than −0.01, which means the probability of falling into
target categories are very close to 1.

1https://huggingface.co/google/ddpm-cifar10-32
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The clock on the side of the
metal building is gold and
black

Kitchen with a wooden
kitchen island and checkered
floor

A pink bicycle leaning against
a fence near a river

An empty kitchen with lots of
tile blue counter top space

Figure 10: More text-image alignment results. We display four different prompts and the corresponding
generation visualization from the original Stable Diffusion (1st row), DDPO (2nd row), DAG-DB (3rd row),
and DAG-KL (4th row) models to compare their alignment ability.

B.4 More results

In Figure 9, we perform an ablation study on the proposed denoising diffusion-specific way of forward-looking
technique for the Aesthetic score task. Specifically, we compare the left and right hand sides of Equation 7,
where we use “naive FL” to refer to the left hand side, and “ours” for the right hand side, as it is just the
DAG-DB method in the main text. We also show the performance of not using the forward-looking technique
and call it “without FL” in the figure. We can see that both the variants cannot achieve effective learning
compared to our proposed method.

In Figure 10, we put more visualization comparisons about the text-image alignment performance from the
models trained on the HPSv2 reward, with a similar form to Figure 5.
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