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Abstract

This paper introduces the Quotient Bayesian Learning Rule, an extension of
natural-gradient Bayesian updates to probability models that fall outside the expo-
nential family. Building on the observation that many heavy-tailed and otherwise
non-exponential distributions arise as marginals of minimal exponential families,
we prove that such marginals inherit a unique Fisher–Rao information geometry
via the quotient-manifold construction. Exploiting this geometry, we derive the
Quotient Natural Gradient algorithm, which takes steepest-descent steps in the
well-structured covering space, thereby guaranteeing parameterization-invariant
optimization in the target space. Empirical results on the Student-t distribution
confirm that our method converges more rapidly and attains higher-quality solu-
tions than previous variants of the Bayesian Learning Rule. These findings po-
sition quotient geometry as a unifying tool for efficient and principled inference
across a broad class of latent-variable models.

1 Introduction
Statistical models with heavy-tailed likelihoods are indispensable when data contain outliers or ex-
treme values that violate Gaussian assumptions. A prime example is the Student-t distribution: its
degrees-of-freedom parameter lets the tails stretch or contract, providing the robustness practitioners
require.

Fitting such models is considerably harder than specifying them. The latent-scale representation that
makes the Student-t analytically convenient also renders Expectation–Maximization painfully slow
in high dimensions, while naïve gradient methods stumble on the strong curvature induced by heavy
tails. We therefore seek an algorithm that (i) preserves the full tail flexibility of the Student-t and
(ii) exploits the well-behaved geometry enjoyed by exponential-family (EF) distributions.

The Bayesian Learning Rule (BLR) of Khan and Rue [2023] offers a natural starting point: it frames
inference as gradient ascent in distribution space and, when the candidate posterior is an EF member,
replaces ill-conditioned Euclidean steps with natural-gradient updates that follow Fisher geodesics.
In its manifold formulation [Lin et al., 2020b], the EF’s natural parameters form a Riemannian mani-
fold equipped with the Fisher information metric, yielding both elegant theory and fast convergence.
Unfortunately, Student-t distributions lie outside the exponential family, so standard BLR cannot be
applied directly.

The novel extension of the BLR, The “Lie-group BLR” [Kiral et al., 2023] addresses some non-EF
cases by using group actions, but the Lie-group BLR framework has yet to be extended to multi-
variate settings—a significant limitation that our work specifically overcomes while maintaining the
desirable information-geometric properties of the original BLR formulation.
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The central insight motivating our work comes from a fundamental property of the Student-t distri-
bution: it can be represented as the marginal of a Normal-Wishart distribution, the so-called scale-
mixture structure, first studied by Andrews and Mallows [1974], where posterior candidates are
parametrized through a latent “scale variable” that transforms an arbitrary base distribution. Normal-
Wishart is an Exponential Family distribution. Moreover, Normal-Wishart distribution possesses the
minimal exponential family parametrization. This representation has been leveraged in various con-
texts, from mixture modeling [Peel and Mclachlan, 2000] to robust regression [Lange et al., 1989],
primarily to facilitate EM-style algorithms through data augmentation.

We take this insight in a new direction by exploring its implications for the geometric structure
of the parameter space. Specifically, we observe that this marginalization relationship naturally
induces a quotient manifold structure, where the Student-t manifold can be viewed as a quotient
of the Normal-Wishart manifold under an equivalence relation defined by identical marginalized
distributions.

Our key theoretical contribution lies in showing that the Fisher-Rao metric, which defines a natural
Riemannian structure on statistical manifolds, can be extended from the Normal-Wishart manifold
to the Student-t manifold through this quotient relationship. Furthermore, by carefully choosing
a base measure and a family of scaling distributions in the scale-mixture, a wide range of non-EF
models can be captured in this unified framework [Barndorff-Nielsen et al., 1982], enabling robust
Bayesian updates generalizing our approach beyond the Student-t.

More precisely, we prove that if a distribution is a marginal of a minimal exponential family, then
its parameter space inherits a unique Fisher information metric structure as a quotient Riemannian
manifold.

Building on this theoretical foundation, we propose an extension of the BLR that leverages the scale
mixture representation and the quotient manifold structure. This insight leads us to develop the
“Quotient Natural Gradient” algorithm, which efficiently optimizes on the Student-t manifold using
horizontal lifts between manifolds. Our approach computes steps in the well-structured Normal-
Wishart space and maps them appropriately to the Student-t parameter space through the established
quotient relationship. In the remainder of this paper, we formalize these concepts, develop the nec-
essary mathematical framework, and evaluate our approach empirically. We compare the Quotient
Natural Gradient against both standard EM and naïve manifold optimization, demonstrating its ad-
vantages in terms of convergence speed and solution quality. Our results highlight the practical
value of this geometric perspective and suggest broader applications to other statistical models with
similar latent variable structures.

2 Background and problem setup
2.1 Bayesian learning rule
Given a model parameter space Z and a loss l(z), the Bayesian Learning Rule (BLR; Khan and Rue
[2023]) optimizes over distributions rather than point estimates

q∗ = argmin
q∈Q

Eq [l]− τH[q] = argmin
q∈Q
−L[q], (1)

where Q = {qξ | ξ ∈ Ξ ⊂ Rd} parametrizes candidate posteriors, H[q] denotes the Shannon
entropy, and τ > 0 is a temperature. In other words, BLR minimizes negative ELBO, or maximizes
ELBO (we stick to maximization convention); just for the re-use in the future, we will define

L[q] = τH[q]− Eq [l] . (2)

The key component of the BLR is the use of the natural gradient Amari [1998] in place of
the naïve Euclidean updates. Euclidean gradients ignore the underlying geometry of the set Q.
Natural-gradient descent Amari [1998] instead preconditions the gradient by the inverse Fisher
information F−1(ξ), yielding steps of constant KL length and trajectories that are invariant to re-
parameterization. More formally, the natural gradient update is given by

F (ξ) = Eqξ

[
∇ξ log qξ(z)∇ξ log qξ(z)

⊤] , (3a)

∇̃ξl := F (ξ)−1∇ξl(ξ), (3b)

ξt+1 = ξt − αt∇̃ξl(ξ)
∣∣
ξ=ξt

. (3c)
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The obstacle in (3b) is computing and inverting F (ξ), an O(n3) operation that quickly becomes
prohibitive (for a full d-dimensional Gaussian, n = O(d2) and the cost is O(d6)).
For the BLR objective (1), this cost disappears when qλ is a member of the minimal, regular ex-
ponential family, which means that Λ is an open subset of the Euclidean space and the sufficient
statistics maintain independence [Jordan and Sejnowski, 2001, Chapter 3]. The distribution qλ be-
longs to the exponential family if

qλ(z) = h(z) exp
(
λ⊤T (z)−A(λ)

)
(4)

holds, where h is the base measure; T is the sufficient statistic; λ are the natural parameters, and A
is the log-partition function

A(λ) = log

∫
Z
h(z) exp

(
λ⊤T (z)

)
dz , (5)

ensuring that qλ is a probability distribution. The dual (expectation) coordinate 1

θ = ∇λA(λ) (6)

yields the following gradient identity

∇̃λL(λ) = ∇θL∗(θ), (7)

where L∗(θ) = L
(
λ(θ)

)
is the objective expressed in expectation parameters [Khan and Nielsen,

2018, Thm. 1]. No matrix inversion is required: one simply computes an ordinary gradient in θ.
Unless explicitly stated otherwise, we assume that all exponential families considered in this paper
are minimal and regular.

2.2 Reparameterization through marginalization
To make the general concepts of our construction more visible to the reader, we will refer to a run-
ning example, the so-called Normal-Gamma distribution, which serves as a univariate preparation
for the multivariate Normal-Wishart that is the main example underlying our experiments. Read-
ers seeking an even simpler introduction may first consult Appendix A, where the two-dimensional
Negative Binomial example illustrates the quotient geometry with transparent visualizations.

The Normal-Gamma distribution is defined as

z | τ ∼ N
(
µ,

(
σ−1τ)−1

)
(8a)

τ ∼ G(α, β). (8b)

The Normal-Gamma distribution is a four-parameter distribution that defines a joint over two vari-
ables z and τ . This four-parameter distribution defining a joint over variables z and τ exemplifies the
broader class of scale-mixture distributions [Andrews and Mallows, 1974] that forms the foundation
of our approach. More importantly, in the current context, is that the Normal-Gamma distribution
(8) is a minimal exponential family distribution and its marginal over z is a Student-t distribution,
which lies outside of the exponential family. The mapping from the standard parametrization to the
natural parametrization is given by

λ =

(
σ−1µ,−σ

−1

2
, α− 1

2
,−β − σ−1µ2

2

)
. (9)

The complete exponential family representation of the Normal-Gamma distribution is provided in
Appendix B.5, Equation (54).

More generally, consider a joint exponential family density on zext = (z, zV ),

qλ(zext) = h(zext) exp
(
λ⊤T (zext)−A(λ)

)
, λ ∈ Λ ⊂ Rd,

where z ∈ Rd, zV ∈ RdV , d = d+ dV . Marginalizing over zV defines

qξ(z) =

∫
qλ(z, zV ) dzV , (10)

1See Amari [2016, Chap. 6] for a thorough treatment of the dual affine structure.
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and hence a surjection
π : Λ −→ Ξ, λ 7−→ ξ(λ). (11)

For the running Normal–Gamma example (8) we have a correspondence z = z and zV = τ . Writing
the natural-parameter vector as λ = (λ1, λ2, λ3, λ4) [cf. Eq. (9)], the projection π maps the four-
dimensional Normal–Gamma space onto the three Student-t parameters ξ = (µ, σ2, ν) via

ξ = π(λ) =
(

λ1

−2λ2
,

−λ4+λ2
1/(4λ2)

−2λ2 (λ3+1/2) , 2λ3 + 1
)
. (12)

Because many distinct λ’s yield the same triplet (µ, σ2, ν), this exemplifies that in general the π is
not a bijection. But we obtained a minimal exponential family reparameterization of our marginal
that lies outside of the exponential family.

3 Marginal quotient structure
Natural-gradient steps are cheap in the joint exponential-family space Λ but expensive in the
marginal coordinates Ξ, because the Fisher inverse can be avoided due to relation (7). Our plan
is therefore to run the natural gradient scheme completely in Λ and afterwards marginalize the result
of our procedure λ∗ by sending it back to π(λ) ∈ Ξ.

However, our aim is to minimize the BLR objective (1) in the marginal parameter space Ξ, rather
than in the full natural-parameter space Λ. This raises two questions:

(i) Is the outcome of the gradient scheme independent of the choice of representative λ ∈
π−1(ξ)?

(ii) Does running natural–gradient descent in Λ and marginalizing each λt (where t is the
interate of the gradient scheme) actually minimize −L(ξ) in the marginal coordinates Ξ?

The resolution hinges on quotient topology. Specifically, the marginal parameter space Ξ can be
viewed as the quotient set Λ/∼π defined by the following equivalence relation:

λ1 ∼π λ2 ⇐⇒ π(λ1) = π(λ2), λ1,λ2 ∈ Λ. (13)

The equivalence classes (elements) of Λ/ ∼π are usually called fibres. We will align with this
convention.

The quotient manifold theory ensures us that (ii) is resolved if Λ/∼π is a Riemannian quotient mani-
fold and we project the gradient on the horizontal space with respect to F (λ) [Boumal, 2023][Chap.
9.9 and Def. 9.24]. A small background on quotient manifold theory is provided in Appendix B.

Λ is an open subset of a Euclidean space, and, by the moment parametrization assumption on Ξ
(see Definition 1), Ξ is an embedded submanifold of a Euclidean space. Under this assumption, π
is a smooth map between two embedded submanifolds, so the horizontal subspace can be simply
expressed as

Hλ =
(
kerDπ(λ)

)⊥Fλ ,

where Dπ(λ) is the differential of the smooth map between two Euclidean spaces (see Boumal,
2023[Proposition 3.35]), and the orthogonal operator is taken according to the Riemannian metric
(Fisher metric) of the manifold Λ [Boumal, 2023, Def. 3.10].

Definition 1 (Moment-parametrized family). Let Q = {qξ : ξ ∈ Ξ} be a k-dimensional family
of probability densities on a measurable space Z . We call Q moment-parametrized if there exist
measurable moment functions m1, . . . ,mk : Z → R such that

(i) Ξ is an embedded k-dimensional submanifold of Rd;

(ii) For every ξ ∈ Ξ the expectations ei(ξ) = Eqξ [mi(z)] exist and are finite;

(iii) The mapping e : Ξ → Rk, ξ 7→ (e1(ξ), . . . , ek(ξ)) is a smooth bijection whose Jacobian
has full rank k everywhere on Ξ.

We refer to ξ (or m(ξ)) as the moment coordinates of qξ.

Definition 1 can be understood as a labeling of each distribution by the values of finitely many
expectations (e.g. the mean, the variance, the skewness, . . . ) where those expectations vary smoothly
and uniquely according to Ξ.
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Many common families—including all Student-t’s with degrees of freedom ν > 1—fit the pattern
of Definition 1, but some heavy-tailed laws such as the Cauchy (ν = 1) do not because their first
moments are undefined.

Theorem 1 resolves (i) from our problem statement because the theorem states that Ξ is the quotient
manifold of Λ. A proof of Theorem 1 is given in Subsection B.3 of Appendix B.

Theorem 1 (Marginalization yields a smooth quotient manifold). Let qλ be a minimal, regular
exponential family with parameter space Λ ⊂ Rd. Suppose a partition Zext = (Z,ZV ) is chosen
so that the marginal family {qξ}ξ∈Ξ obtained via π : Λ→Ξ is moment-parametrized (Definition 1).
Then Ξ is the quotient manifold of Λ induced by π.

Point (ii) is settled by Theorem 2. Theorem 2 shows that Ξ is the Riemannian quotient manifold
of Λ under the Fisher–Rao metric and that the induced quotient metric coincides with the Fisher
information metric of the marginal family itself. Putting the pieces together, Theorem 2 shows that
running the natural gradient in Λ projected on the horizontal space Hλ is equivalent to running the
natural gradient in Ξ. The full proof is given in Subsection B.4 of Appendix B.

Theorem 2 (Induced Fisher–Rao metric). Assume the setting of Theorem 1 and equip the natural-
parameter space Λ with its Fisher information metric Fλ. Then:

(i) The map π, that project the Riemannian manifold (Λ, Fλ) on Ξ, induces a Riemannian
quotient manifold structure on Ξ;

(ii) The Riemannian quotient metric on Ξ is then the Fisher metric of Ξ.

Summarizing, our approach replaces a minimization of L by the natural gradient descent in Ξ by a
natural gradient in Λ where at each step the gradient vector is projected onto the horizontal space as
follows:

P(
kerDπ(λ)

)⊥Fλ
∇̃λL(λ), (14)

where P is the orthogonal projection for metric ⟨· ; ·⟩Fλ
. Theorems 1 and 2 ensure us of a mathe-

matical equivalence between the two approaches.

4 The quotient Bayesian learning rule
We now translate the quotient–manifold theory developed in Theorems,1–2 into a concrete opti-
mization procedure for evidence–lower–bound (ELBO) maximization. Throughout this section let
qξ(z), ξ ∈ Ξ denote the marginal variational family in which we ultimately seek an optimum, and
pick ξ0 ∈ Ξ such that the prior factor of the model can be written p(z) = qξ0(z).

Assume that the marginal distribution qξ(z) arises by marginalizing a minimal, regular exponential
family qλ(z, zV ), parameterized by natural parameters λ ∈ Λ, over the extended latent variable
zext = (z, zV ) (see partition (10)). The map π : Λ → Ξ, λ 7→ ξ, induced by this marginalization is
precisely the marginalization map defined earlier.

Choose a representative λ0 ∈ π−1(ξ0) of the prior and define

L(λ) = Eqλ

[
log qλ0

(z, zV )− log qλ(z, zV )
]
+

N∑
i=1

Eqλ

[
log p(xi | z)

]
. (15)

Because L(λ) is constant along every fibre π−1(ξ), moving within a fibre—that is, in a “vertical” di-
rection belonging to kerDπ(λ)—changes only the parameterisation, not the marginal distribution.
By projecting each gradient step onto the Fisher-orthogonal complement Hλ via the operator (16),
we ensure that every update alters λ solely through its image ξ = π(λ). Hence the optimization
trajectory produced in the joint space coincides exactly with the one obtained by running natural-
gradient ascent on L(ξ) in Ξ.

Let θ = ∇λA(λ) denote the expectation parameters of qλ. For minimal exponential families the or-
dinary gradient∇θL(λ) coincides with the natural gradient in the joint space; see Khan and Nielsen
[2018]. We therefore

(i) compute∇θL(λ),
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(ii) identify ∇̃λL = ∇θL(λ) via the duality between θ and λ,
(iii) project ∇̃λL onto the horizontal subspaceHλ = (kerDπ(λ))⊥,
(iv) take a step of size βt in that horizontal direction.

Because the horizontal space is orthogonal to the fibers π−1(ξ), each update stays within a single
equivalence class in Λ, thereby realizing the quotient–natural–gradient flow guaranteed by Theo-
rem 2. The procedure terminates when the horizontal component of the gradient falls below a tol-
erance ϵ. At convergence, the optimizer λ∗ is mapped back to the marginal space via ξ∗ = π(λ∗),
yielding the desired posterior approximation qξ∗(z). The complete routine is summarized in Algo-
rithm 1, which we call the quotient Bayesian learning rule (QBLR).

An immediate question is how to make the step (III) in the above scheme efficient. Let Vλ :=
kerDπ(λ) be the vertical sub-space and the differential of the marginalization map Jπ(λ), then its
right null-space is the vertical subspace of our quotient. Pick some matrix K(λ) that forms a basis
of the Vλ. Then the projection on the horizontal space (in the Fisher-Rao geometry) can be formed
by

PH(λ) = I−K(λ)
[
K(λ)⊤F (λ)K(λ)

]−1
K(λ)⊤F (λ). (16)

A short algebraic derivation of the identity (16) is provided in Appendix B, Subsection B.2.

Crucially, the inversion involves only the dimVλ×dimVλ matrix K⊤FK; for the Normal–Wishart
case dimVλ = 1 (Appendix C, Subsection C.2), so (16) collapses to a single scalar divide, and no
full Fisher inversion is ever required. The general computational analysis of the expression (16) is
given in Appendix E.1.

Algorithm 1 The Quotient Bayesian Learning Rule

Input: lifted prior parameters λ0, canonical projection π : Λ→Ξ, data set D = {xi}Ni=1, ELBO
defined in the lifted space L(λ) (15), step–size schedule {βt}t≥0, tolerance ϵ

1: λ← λ0 ▷ initialize in the lifted (joint) space
2: repeat
3: gθ ← ∇θL(λ) ▷ compute natural gradient through the dual coordinates Eq. (6)
4: g⊥λ ← Projkerπ⊥

(
gθ) ▷ project onto the horizontal space, defined in Eq. (16)

5: λ← λ+ βt g
⊥
λ ▷ natural-gradient ascent step

6: until ∥g⊥λ ∥2 < ϵ
7: ξ∗ ← π(λ)
8: return marginal variational posterior qξ∗(·)

5 Student-t via Normal-Wishart representation
In this section, we present an alternative approach to heavy-tailed posterior approximation using
the Normal-Wishart scale mixture representation. While Lin et al. [2020a] developed updates for
Student-t distributions through a curved exponential family formulation using the Normal-Inverse
Gamma scale mixture, our approach leverages the quotient manifold structure induced by the
marginalization map from the Normal-Wishart to the Student-t manifold. We first introduce the
Normal-Wishart parameterization and derive the explicit marginalization mapping to the Student-t
distribution. Then, we develop natural gradient updates that exploit the geometric structure of this
mapping, avoiding the need for reparameterization tricks. We demonstrate how our method retains
the computational efficiency of exponential family updates while capturing the heavy-tailed nature
of the Student-t distribution, comparing our approach with Lin’s Normal-Inverse Gamma formula-
tion both theoretically and empirically.

5.1 Comparing parameterization approaches

The fundamental difference between our approach and that of Lin et al. [2020a] lies in how we
represent the Student-t distribution. Lin’s approach reparameterizes the Student-t as a curved ex-
ponential family, ensuring a one-to-one correspondence between the scale mixture parameter space
and the distribution space. Their key insight was finding a specific parameterization that maintains
this one-to-one correspondence, but at the cost of working with a curved (non-minimal) exponential
family.
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In contrast, our approach begins with the Normal-Wishart distribution, which is a minimal exponen-
tial family distribution (see Appendix C). When marginalized, this yields the multivariate Student-t
distribution through a many-to-one mapping, creating a quotient manifold structure. We can work
directly in the unconstrained minimal exponential family space, leveraging its well-understood ge-
ometric properties. The quotient structure allows us to handle the redundancy in parameterization
through the horizontal space projection.

The critical trade-off between these approaches can be summarized as follows:

Lin et al. [2020a] : Curved Exponential Family↔ Student-t (17a)

Ours : Minimal Exponential Family
quotient−−−−→ Student-t (17b)

Mathematically, these approaches are represented as

Lin (NIG):
{
p(x|w) ∼ N (µ,wΣ)

p(w) ∼ InvGamma(ν, ν)
one-to-one←−−−−→ T

(
x|µ,Σ, ν) (18)

Ours (NW):
{
p(x|S) ∼ N (µ, (κS)−1)

p(S) ∼Wishart(ν′,Ψ)

quotient−−−−→ T
(
x
∣∣∣µ, Ψ−1

κ(ν′ − d+ 1)
, ν′ − d+ 1

)
(19)

Instantiating the generic QNG-VI template (Algorithm 1) with the Normal–Wishart lift yields Al-
gorithm 2, the algorithm is provided in Appendix C. Following the scalar-NIG construction of Lin
et al. [2020a], we apply the Bonnet- and Price-theorem analogues developed in Appendix C.4 to
the parameters µ, κ, and Ψ, obtaining an unbiased stochastic natural gradient on the corresponding
quotient manifold. For the shape parameter ν, we construct an unbiased gradient estimator with the
Implicit Reparameterization Trick of Figurnov et al. [2018].

For each sample zn we draw an auxiliary scale matrix Λn ∼ Wd(ν,Ψ), couple it with the latent
vector zn, accumulate the data-fit gradients in the natural parameters (λ1:4), add the analytic prior
terms, and convert the result to expectation-space via the chain-rule identities in Eqs. (70a)–(70d).
The stochastic natural gradient is then projected onto the horizontal subspace (Alg. 2, Step 3) before
a single ascent step in (λ1:4) is back-transformed to (µ,Ψ, κ, ν).

Because every intermediate quantity depends on Ψ and κ only through the quotient-invariants

S̃ :=
Ψ−1

κ
+ µµ⊤, γ := µ⊤ S̃−1µ,

the update is representation-invariant: any smooth reparameterization that preserves the marginal
Student-t—e.g. the joint rescaling (Ψ, κ) 7→ (Ψ/c, cκ) with c > 0—produces the identical step
on the Student-t manifold. The resulting trade-offs vis-à-vis the curved-NIG scheme of Lin et al.
[2020a] are summarised in Table 1.

6 Experimental validation
The full, version-pinned codebase that recreates every number in Table 2 is archived at https://
anonymous.4open.science/r/MIRWB-C735. A line-by-line description of the training pipeline,
hardware, and hyper-parameters is given in Appendix D; all information needed for exact re-
execution therefore lives in one place and does not clutter the main text. All experiments were
conducted on a MacBook Pro (2021) equipped with an Apple M1 Pro chip and 32 GB of memory.

We benchmark three variational-inference (VI) optimisers that operate on the same Bayesian
logistic-regression model:

1. BBVI-NS – the score-function-free black-box VI variant of Roeder et al. [2017];
2. NG-LIN – the natural-gradient approach of Lin et al. [2020a];
3. NG-Ours – the quotient natural-gradient optimizer introduced in this work, using a Nor-

mal–Wishart marginal representation.

. We run the methods for four different datasets that are taken from the UCI/OpenML repository:

• Breast Cancer Wisconsin (Diagnostic) – 569 samples, 30 features [Wolberg et al., 1993].
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Aspect Lin et al. (scalar NIG) Ours (quotient-NG, NW)

Scale-mixture lift N (z |µ,wΣ) IG(w|ν, ν) N (z |µ, (κS)−1)W(ν, S)

Minimality of joint EF curved, rank-3 minimal, rank-4
Parameter-invariance only to linear re-labelling of

same coords
any smooth parametrisation
(log-scale, NG, etc.)

Tail expressiveness one scalar w ⇒ isotropic kurto-
sis

per-direction (matrix) kurtosis

Need explicit F−1 no (mean-grad trick) no (mean-grad trick + 2-scalar
projection)

Extra work vs. Lin – one outer-product (O(d2))
Limit ν→∞ behavior unknown smoothly becomes Gaussian

NG
Table 1: Compact comparison of Lin’s Student-t update and our representation-invariant quotient natural-
gradient step.

• Pima Indians Diabetes – 442 samples, 10 features [Smith et al., 1988].
• Sonar (Mines vs. Rocks) – 208 samples, 60 features [Gorman and Sejnowski, 1988].
• Spambase – 4 601 samples, 57 features [Hopkins et al., 1999].

Each dataset is split 80:20 (stratified) and feature-standardized using training statistics only.

For every (dataset, method) pair we report test-set accuracy of the posterior mean together with the
empirical standard deviation estimated from ten posterior samples; see Table 2.

NG-Ours matches or surpasses BBVI-NS on three of the four benchmarks while requiring roughly
one-tenth as many optimization iterations. The advantage is most striking on Sonar, where the richer
Normal–Wishart marginal representation lifts accuracy significantly higher over BBVI-NS and NG-
LIN, confirming the benefit of a geometry-aware update coupled with a more expressive variational
family. Moreover, BBVI-NS marginals collapsed, so we do not benefit from the Bayesian procedure;
we did obtain a collapsed estimate.

Method Metric Breast cancer Diabetes Sonar Spambase

BBVI-NS
Mean 0.9314 ± 0.0210 0.7494 ± 0.0473 0.7951 ± 0.1760 0.8894 ± 0.0078
Sample 0.9314 ± 0.0210 0.7494 ± 0.0473 0.7951 ± 0.1760 0.8894 ± 0.0078
Entropy 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000

NG-LIN
Mean 0.8919 ± 0.0391 0.7022 ± 0.0356 0.7476 ± 0.0502 0.8904 ± 0.0089
Sample 0.9214 ± 0.0209 0.7526 ± 0.0260 0.8150 ± 0.0116 0.8906 ± 0.0090
Entropy 0.0696 ± 0.0021 0.0026 ± 0.0040 0.0905 ± 0.0010 0.0112 ± 0.0019

NG-Ours
Mean 0.9711 ± 0.0194 0.7292 ± 0.0432 0.9095 ± 0.0417 0.8891 ± 0.0124
Sample 0.9599 ± 0.0110 0.7791 ± 0.0232 0.9142 ± 0.0178 0.9057 ± 0.0076
Entropy 0.1751 ± 0.0153 0.1490 ± 0.0100 0.1863 ± 0.0011 0.1046 ± 0.0060

Table 2: Comprehensive evaluation of Bayesian logistic regression performance on four UCI/OpenML
datasets. Each entry shows mean ± standard error across 10 train-test splits with adaptive learning rates.
Mean: test accuracy using posterior-mean weights (MAP estimation); Sample: test accuracy averaged over
100 posterior weight samples (capturing parameter uncertainty); Entropy: predictive entropy over test outputs
in nats (higher values indicate greater prediction uncertainty). BBVI-NS is the score-function-free black-box
VI of Roeder et al. [2017]; NG-LIN is the natural-gradient method of Lin et al. [2020a]; NG-Ours is the quo-
tient natural-gradient optimizer introduced in this work. Note that BBVI-NS collapses to near-point posteriors
(entropy ≈ 0), while NG-Ours maintains the highest uncertainty quantification and achieves superior sample-
based accuracy.

7 Discussion
Why horizontal-space projection matters. Properly removing the vertical component of the
stochastic natural gradient stabilizes training: with projection, the ELBO converges to higher ELBO
values, whereas without it the optimization drifts and eventually blows up (Fig. 1). This empirical
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Figure 1: Comparison of lifted ELBO convergence with and without Fisher-orthogonal projection in the
Poisson–Gamma lift of a Negative–Binomial target (detailed in Appendix A). We initialize five different repre-
sentatives on the same fiber and optimize for 2000 iterations, estimating the lifted ELBO (15) with 5000 Monte
Carlo samples at each step. Curves display the across-representative mean with a ±1 standard deviation ribbon;
the y-axis is clipped to the 2–98% quantile range to suppress rare outliers. With horizontal projection (blue),
optimization remains stable and attains higher ELBO values; without projection (red), the flow drifts along the
fiber and eventually becomes unstable. The step-size schedule follows the Riemannian distance-over-gradients
optimizer Dodd et al. [2024] with initial distance estimate 0.005.

result matches the theoretical analysis of §5: staying in the horizontal subspace keeps every iterate
inside a single marginal equivalence class, preventing spurious motion along the gauge orbit.

Position within the BLR landscape. Conditional-EF methods of Lin et al. [2020a] rely on non-
minimal embeddings and bespoke per-family updates, whereas our quotient Bayesian learning rule
(QBLR; see §4) uses a minimal embedding and a single closed-form natural gradient for all Nor-
mal–Wishart scale mixtures. Lie-group BLR [Kiral et al., 2023] enforces manifold constraints
through group actions while keeping the Fisher geometry implicit; the published instantiation han-
dles diagonal covariances, although a full-covariance extension is, in principle, conceivable but has
not yet been demonstrated.

Toward mixture models. Student-t mixtures (GST-MMs) handle multimodal or heterogeneous
data [Meitz et al., 2018, Revillon et al., 2017]. A drop-in combination of our horizontal projection
with the variational mixture update of Minh et al. [2025] would yield a fully natural-gradient GST-
MM: per-component Normal–Wishart factors follow our update, while the mixing weights use Minh
et al.’s rule. Derivations and large-scale experiments are deferred to future work.

Breadth of applicability and open challenge. Scale mixtures, first systematised by Andrews
and Mallows [1974] and greatly expanded by Barndorff-Nielsen et al. [1982], include the Laplace,
exponential-power, and many other heavy-tailed families [West, 1987]. Whenever the scale kernel
admits a regular, minimal exponential-family lift, the quotient structure of Eq. (13) emerges and
QBLR applies unchanged. The principal remaining challenge is to construct such lifts for exotic
priors—e.g. skewed or asymmetric heavy-tailed laws—so that our template can be used out of the
box.
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Concluding remarks. A single geometric ingredient—the Fisher-orthogonal projection onto the
horizontal space—turns natural-gradient BLR into a stable, representation-free optimiser for a broad
class of heavy-tailed Bayesian models. Respecting the quotient structure is therefore not a pedantic
luxury but a practical necessity for reliable optimisation.

8 Conclusions
We introduced the Quotient Bayesian Learning Rule (QBLR), which extends natural-gradient vari-
ational updates to distributions that fall outside the exponential family yet arise as marginals of
minimal exponential families. By casting the marginal parameter space as a Riemannian quotient,
we showed that it inherits a unique Fisher–Rao metric and derived the associated quotient nat-
ural gradient (QNG). The algorithm performs steepest descent in the well-conditioned covering
space, projects the update horizontally, and thereby preserves parameterization invariance. A closed-
form Normal–Gamma/Student-t example makes the construction concrete, and empirical results
on Bayesian logistic regression demonstrate faster convergence and superior predictive calibration
compared with earlier BLR variants. The same geometric template is readily transferrable to a wide
class of scale-mixture priors and their mixture extensions, opening a path toward robust, heavy-tailed
Bayesian learning at scale. While our method demonstrates strong geometric properties, its main
limitation is computational complexity in high dimensions, which we suggest addressing through
structured covariance proposals in Appendix E.2 and see as valuable future work.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The abstract asserts that (i) heavy-tailed marginals of minimal exponen-
tial families inherit a Fisher–Rao geometry via a quotient manifold, (ii) this yields the
parameterisation-invariant QBLR update, and (iii) QBLR outperforms prior BLR variants
on Student-t tasks. Claim (i) is proved in §3; (ii) is implemented in §4 and exemplified in
§5; (iii) is confirmed experimentally in §6. Assumptions and limits are stated with Def-
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scope and results.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The scope and limitations of our method follow directly from Definition 1
and are examined in greater detail in the Discussion (Section 7).
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• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
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resolution is low or images are taken in low lighting. Or a speech-to-text system might
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• If applicable, the authors should discuss possible limitations of their approach to ad-
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Justification: This paper presents two main theorems (Theorems 1 and 2), with proofs
provided in their respective subsections of Appendix B. Additionally, we introduce several
auxiliary theorems that establish the gradients forms of the Algorithm (1) as applied to the
Normal-Wishart distribution. These auxiliary results are proven in Appendix C.4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The complete experimental setup is detailed in Section 6; the accompanying
code link is provided there, and implementation specifics appear in Appendix D.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The paper provides the link to the anonymous repository at the beginning of
Section 6.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All required information to reproduce experimental results reported in Section
6 is provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Table 2 validates our approach and reports error bars, which are explained in
its caption.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 6 specifies that we conducted all experiments on a MacBook Pro
(2021) equipped with an Apple M1 Pro chip and 32 GB of memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors declare to have done their best to adhere to the NeurIPS Code of
Ethics. The research does not include human subjects, sensitive data, or societal dangers.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,

17

https://neurips.cc/public/EthicsGuidelines


mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such a risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our paper are properly cited in Section 6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The concept of the reasearch does not involve LLMs as the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Illustrative Example
We illustrate the QBLR algorithm with a low-dimensional example: negative binomial distribution
family lifted to a (3)-dimensional scale-mixture distribution family, the so-called Poisson–Gamma
distribution. The exponential hierarchical lifts for non-exponential family distributions like the Neg-
ative Binomial distribution are plentiful in the literature (see Section 7), but they are often curved
(non-minimal) in their form: the classical Poisson–Gamma parameterization in (r, p) ties together
two natural coordinates and thereby lives on a 2D submanifold of a 3D joint. In this section, we
present an ad-hoc—yet fully constructive—way to uncurve that representation by introducing one
free scale, yielding a minimal 3-parameter exponential-family lift in natural coordinates. This is
exactly the setting required by our quotient-manifold theory.

We first show how to build a minimal marginal exponential representation lift for the Negative
Binomial distribution from the Poisson–Gamma distribution in Subsection A.1 and then we show
how to use the established lift to instantiate Algorithm 1 for this specific scenario in Subsection A.2.
Finally, we discuss the limitations of the same uncurving trick for the Laplace case in Appendix A.3.

We thank the anonymous reviewer (bBHv) who proposed this section.

Note (erratum). In our rebuttal we incorrectly stated that the Laplace distribution could also be re-
covered using this construction technique. However, the resulting marginal family is actually richer
than the Laplace family alone. Whether the Laplace distribution can be obtained as a minimal lift
through a different non-minimal representation, or requires a fundamentally different construction,
remains an open question. We apologize for this oversight; see Appendix A.3 for details.

A.1 Building the minimal marginal lift
The framework of application of QBLR is quite general as many non-exponential family distribu-
tions have some joint exponential family representation. However, our work is limited by an even
stronger assumption: the existence of a minimal parameterization of these joint exponential family
representations. While we assume that at least some lift to a joint exponential family is given, such
representations are often curved (non-minimal) in their standard form. Whether or not a lift can be
found is then a crucial question for us.

By investigating this point, this section enables us to understand where and why our QBLR Algo-
rithm should be applied.

The heavy-tailed distributions families that have an exponential family scale mixture representation
are well documented in the literature. Regarding the particular case of being a scale mixture of
normal distributions, Andrews and Mallows [1974] provides necessary and sufficient conditions in
their paper which is applied to Student-t, Laplace, and Logistic distributions. More examples can
be found in Coelho and Chen [2024].

Many scale-mixture joints found in the literature come in a curved form—that is, their sufficient
statistics are linearly dependent, so the family is not minimal. The textbook parameterisations of
both the Normal–Wishart and the Normal–Exponential joints fall into this category. (By contrast,
the Normal–Wishart lift we use—see Appendix C—is explicitly minimal; the distinction is made
concrete in the Laplace example that follows.) Discrete over-dispersed families admit analogous
lifts; in particular, the Negative–Binomial (NB) arises as a Poisson–Gamma mixture.

Because a curved exponential family violates the minimal-regular assumption, it cannot serve as
a lift for QBLR unless one first “uncurves” it by adding extra, independent natural parameters.
We now explain why this step is necessary and how those additional degrees of freedom restore
minimality.

Curved vs. minimal lift for the Negative–Binomial distribution. The textbook Poisson–Gamma
mixture

NB(k | r, p) =

∫ ∞

0

Poisson
(
k | λ

)︸ ︷︷ ︸
Poisson

Gamma
(
λ

∣∣∣ r, β = p
1−p

)
︸ ︷︷ ︸

Gamma (rate)

dλ (NB-curved)

is curved when viewed as a joint EF in (k, λ): the joint density has three sufficient statistics, T1 =
log λ, T2 = λ, T3 = k, but only two free parameters (r, p) (equivalently, T3’s natural parameter is
fixed at zero). Hence the Jacobian of the sufficient-statistics map has rank 2 and Brown’s minimality
criterion fails [Brown, 1986, Prop. 1.5].
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Uncurving with one extra degree of freedom. Introduce an independent positive scale c > 0 on
the Poisson mean:

NB(k | r, p) =

∫ ∞

0

Poisson
(
k | c λ

)︸ ︷︷ ︸
scaled Poisson

Gamma
(
λ

∣∣∣ r, β > 0
)

︸ ︷︷ ︸
Gamma (rate)

dλ. (NB-minimal)

Now the joint admits a minimal EF representation with three independent natural parameters

η = (η1, η2, η3) =
(
r − 1, −(β + c), log c

)
,

sufficient statistics T = (log λ, λ, k), base measure h(k, λ) = 1{λ>0}λ
k/k!, and log-partition

A(η) = log Γ(η1 + 1)− (η1 + 1) log
(
−η2 − eη3

)
, D = {η1 > −1, η2 + eη3 < 0}.

Crucially, integrating out λ gives, for every η ∈ D, the Negative–Binomial marginal with parameters

r = η1 + 1 > 0, p =
eη3

−η2
∈ (0, 1), qη(k) =

(
k + r − 1

k

)
(1− p)rpk.

Equivalently, the marginalisation map written in natural coordinates is the smooth surjection

π : D → R>0 × (0, 1), π(η1, η2, η3) =
(
r = η1 + 1, p = eη3/(−η2)

)
,

so Ξ ∼= D/∼π forms a quotient manifold with a one-dimensional fibre and the rank-one projector
used in Algorithm 1 (see Appendix A.2).

Open question. We do not know whether every curved exponential family can be “uncurved” by
judiciously adding degrees of freedom; establishing necessary and sufficient conditions remains,
to our knowledge, an open problem in exponential-family theory. In particular, applying the same
uncurving strategy to the Laplace family via a Normal–Exponential lift restores minimality in the
joint but yields a marginal family that is strictly richer than Laplace and therefore does not reproduce
Laplace globally across the natural domain. We thus present our “add-a-free-hyperparameter” trick
as an empirical recipe, not a theorem; see Subsection A.3 for details.

A.2 Instantiation of the QBLR
Let (k, λ) ∈ {0, 1, 2, . . . } × R>0 and define the minimal, regular exponential family

qη(k, λ) = h(k, λ) exp
{
η1 log λ + η2λ + η3k − A(η)

}
, h(k, λ) =

λk

k!
1{λ>0}. (20)

Minimality is immediate: if a1 log λ+a2λ+a3k ≡ const on {(k, λ)}, then varying k forces a3 = 0
and varying λ forces a1 = a2 = 0. Summing over k and integrating in λ gives the log-partition

Z(η) =

∫ ∞

0

∞∑
k=0

λk

k!
exp

{
η1 log λ+ η2λ+ η3k

}
dλ =

∫ ∞

0

λη1 exp
{
(η2 + eη3)λ

}
dλ

= Γ(η1 + 1) [−(η2 + eη3)]−(η1+1), (21)

which converges on the open domain

Λ̃η =
{
η ∈ R3 : η1 > −1, η2 + eη3 < 0

}
.

Hence
A(η) = log Γ(η1 + 1) − (η1 + 1) log

(
−η2 − eη3

)
. (22)

Marginalization map. For each fixed k, integrate out λ:

qη(k) =

∫ ∞

0

qη(k, λ) dλ = e−A(η) e
η3k

k!

∫ ∞

0

λk+η1eη2λ dλ

=
Γ(k + η1 + 1)

Γ(η1 + 1) k!

(−η2 − eη3

−η2

)η1+1( eη3

−η2

)k

. (23)

Writing

r = η1 + 1 > 0, p =
eη3

−η2
∈ (0, 1),
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(where p ∈ (0, 1) follows from η2 + eη3 < 0), we obtain

qη(k) =

(
k + r − 1

k

)
(1− p)r pk, k = 0, 1, 2, . . . , (24)

i.e. the Negative–Binomial NB(r, p) for every η ∈ Λ̃η . Thus the marginalization map in natural
coordinates is the smooth surjection

π : Λ̃η −→ Ξ := R>0 × (0, 1), π(η1, η2, η3) =
(
r = η1 + 1, p = eη3/(−η2)

)
. (25)

It is visibly surjective: given any (r, p) ∈ Ξ, take η1 = r − 1 and, for arbitrary c > 0, set η2 = −c
and η3 = log(pc)—then η ∈ Λ̃η and π(η) = (r, p).

Fibres and rank-one projector in natural coordinates. The Jacobian of (25) is

Dπ(η) =

1 0 0

0
eη3

η 2
2

eη3

−η2

 ,

so kerDπ(η) = span{ kη(η) } with the vertical vector

kη(η) =
(
0, η2, 1

)⊤
, Dπ(η) kη(η) = 0. (26)

Hence each fibre is the smooth 1D curve

Fη =
{
(η1, e

tη2, η3 + t) : t ∈ R
}
,

which leaves (r, p) invariant because r = η1 + 1 and p = eη3/(−η2). Equipping the lift with its
Fisher metric F (η) = ∇2A(η), the horizontal projector is rank–one:

PH(η) g = g − kη(η)
⊤F (η) g

kη(η)⊤F (η) kη(η)
kη(η), (27)

matching the quotient geometry used throughout (Theorems 1 and 2).

Figure 2 illustrates the practical benefit of using the QBLR algorithm. Panel (a) shows the Euclidean
gradient field −∇(r,p)KL(qr,p∥qtrue) computed via finite differences in the marginal coordinates
(r, p); these directions ignore the Fisher–Rao geometry and can yield poorly conditioned trajectories.
Panel (b) displays the quotient natural gradient: at each (r, p) we lift to an arbitrary representative
η ∈ π−1(r, p), compute the natural gradient∇ηA(η)(η− ηtrue) in the 3-parameter Poisson–Gamma
space, project it horizontally, and push it forward through Dπ(η). The resulting arrows respect
the quotient manifold structure and are invariant to the choice of lift within each fibre, thereby
guaranteeing parameterization-free optimization on the Negative–Binomial manifold itself.

A.3 When does the uncurving trick fails?
The Negative–Binomial example showed that introducing a free scale parameter can uncurve a
Poisson–Gamma mixture and enable QBLR. Does the same strategy work for the Laplace distri-
bution’s Normal–Exponential representation? As we demonstrate below, adding a variance-scaling
parameter κ > 0 does restore minimality, but the resulting marginal family is strictly richer than
the standard two-parameter Laplace: the uncurved lift introduces degrees of freedom that survive
marginalization. This cautionary example illustrates that uncurving is an empirical recipe whose
validity must be verified case by case, not a universal construction.

Let2
λ = (λ1, λ2, λ3) ∈ Λ :=

{
(λ1, λ2, λ3) ∈ R3 : λ3 < 0, λ2 +

1
2λ

2
1 < 0

}
parameterize the (minimal) Normal–Exponential variance–mixture lift with latent variance τ ∈
R>0:

qλ(z, τ) =
exp

(
− z2

2τ

)
√
2π τ

exp
{
λ1

z

τ
+ λ2

1

τ
+ λ3 τ − A(λ)

}
, τ > 0. (28)

2Erratum: In the rebuttal response we mistakenly wrote the joint without the Gaussian base factor
(2πτ)−1/2 exp{−z2/(2τ)}, which makes the z-integral non-normalizable. The corrected minimal EF is given
by Eqs. (28)–(29).
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(a) (b)

Figure 2: Comparison of gradient flows on the Negative Binomial parameter space (r, p) toward the true
distribution (red dot at r = 5.0, p = 0.7). (a) Euclidean gradient field: arrows show the naive gradi-
ent −∇(r,p)KL(qr,p∥qtrue) computed via finite differences. This approach ignores the underlying statistical
geometry and can lead to inefficient trajectories. (b) Quotient natural gradient field: arrows represent the
horizontally-projected natural gradient obtained by lifting to the Poisson–Gamma representation, computing
the natural gradient in the 3-parameter exponential family, and projecting onto the horizontal space. The quo-
tient natural gradient respects the Fisher–Rao geometry of the marginal Negative Binomial manifold, yielding
parameterization-invariant descent directions that follow geodesics in the information-geometric sense. Both
fields converge to the same optimum, but the quotient approach provides more stable and geometry-aware up-
dates.

The log-partition function is

A(λ) = log
(
2
√

γ
β K1

(
2
√
βγ

))
, β := −λ3 > 0, γ := −

(
λ2 +

1
2λ

2
1

)
> 0, (29)

with the continuous boundary extension A(λ) = − log β at γ = 0. Here K1 denotes the modified
Bessel function of the second kind [noa, (10.32.10)] defined by the integral representation

K1(z) =
z

4

∫ ∞

0

exp

(
−t− z2

4t

)
dt

t2
, z > 0. (30)

Note that the form of A(λ) trivially follows from the integral identity [Moll, 2015, 7.2.12].

Equation (28) is a minimal, regular exponential family: the sufficient statistics
(
z/τ, 1/τ, τ

)
are

linearly independent, and Λ is an open subset of R3.

Why the marginal is not Laplace. To see why the uncurved lift fails, we compute the z-marginal
by integrating out τ from (28). Completing the square in the exponent gives z2 − 2λ1z − 2λ2 =
(z − λ1)2 − 2γ, where γ := −(λ2 + 1

2λ
2
1) > 0. The Bessel integral then yields

qλ(z) ∝
1√

(z − λ1)2 + 2γ
exp

{
−
√
−2λ3

√
(z − λ1)2 + 2γ

}
. (31)

This is not a Laplace distribution. The standard two-parameter Laplace has the form

Lap(z | µ, b) =
1

2b
exp

(
−|z − µ|/b

)
=

1

2b
exp

(
−
√
(z − µ)2/b

)
,

involving only
√
(z − µ)2. By contrast, (31) includes an additional constant 2γ under the square

root. This extra degree of freedom survives marginalization, producing a three-parameter family
strictly richer than Laplace.

The uncurved Normal–Exponential lift does define a valid quotient manifold via Theorems 1–2, but
the marginal family overshoots the target: we obtain a generalized symmetric distribution rather than
Laplace. The standard Laplace embeds as a constrained two-dimensional submanifold (requiring
γ = const) within this richer structure. Consequently, while the geometry is correct, the probabilistic
target is wrong—illustrating that uncurving is a case-by-case recipe, not a universal construction.

B Marginal quotient manifold theory
This appendix gathers the differential-geometric material needed for Sections 2–4 of the main text.
We first recall just enough quotient-manifold theory to set notation (Subsection B.1), derive the hor-
izontal projector used in Algorithm 1, and then give the proofs of Theorems 1–2 (Sections B.3–B.4).
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Prerequisite. The exposition assumes familiarity with embedded submanifolds and the basic vo-
cabulary of Riemannian geometry. Readers new to this topic may find Boumal [2023, Chapter 3] a
concise primer before diving in.

B.1 Quotient manifold theory

A quotient manifold arises when we identify points in a manifold M according to an equivalence
relation ∼. However, not every equivalence relation on M defines a quotient manifold. The con-
ditions under which an equivalence relation yields a quotient manifold structure have been studied
extensively in differential geometry [Absil et al., 2008][Section 3.4 Quotient manifolds].

Formally, the quotient space M/∼ consists of equivalence classes [x] = {y ∈ M : y ∼ x}. The
canonical projection π : M→ M/∼ sends each point to its class, π(x) = [x]. The fibre3 through
x—the pre-image of that class—is defined as

Fx := π−1
(
[x]

)
:= { y ∈M : π(y) = π(x)} = { y ∈M : y ∼ x}. (32)

Throughout we work with an embedded submanifold M ⊂ Rn and a projection π :M → N whose
image N ⊂ Rm is itself embedded. In this context, the general quotient manifold criterion reduces
to a simple test:

π is smooth and rankDπ(x) = dimN ∀x ∈M. (∗)

If condition (∗) holds, then π is called a smooth submersion; every fibre π−1([x]) is an embedded
submanifold, and the quotient inherits a unique d-dimensional smooth structure. Consequently, we
can define

dim(M/∼) := dimN,

secure in the knowledge that this integer is well-defined by the constant–rank condition.

Under condition (∗), each fibre π−1([x]) is an embedded submanifold and there is a unique smooth
structure on M/∼ that makes π a smooth submersion into M/∼ [Absil et al., 2008, Prop. 3.4.2].
Moreover, the quotient M/∼ is automatically Hausdorff and second–countable.

Vertical space. The tangent space of Fx is the kernel of the differential

TxFx = kerDπ(x) ⊆ TxM. (33)

We call this subspace the vertical space and write Vx := kerDπ(x).

Horizontal space. Let ⟨·, ·⟩x be a Riemannian metric on M . The orthogonal complement of Vx is
the horizontal space

Hx :=
{
v ∈ TxM : ⟨v, w⟩x = 0 ∀w ∈ Vx

}
. (34)

A key property of quotient manifolds is that a Riemannian metric on M induces a unique metric
on M/∼ if it is invariant along fibers. Specifically, if for any x ∼ y and any horizontal vectors
u ∈ Hx and v ∈ Hy with Dπ(x)[u] = Dπ(y)[v], we have ⟨u, u⟩x = ⟨v, v⟩y , then we can define a
well-posed metric on the quotient

⟨ξ, ζ⟩[x] = ⟨ξ̂, ζ̂⟩x , (35)

where ξ̂ and ζ̂ are the horizontal lifts of tangent vectors ξ, ζ ∈ T[x](M/∼). This makes M/ ∼ a
Riemannian quotient manifold.

Readers seeking a more concrete treatment of these abstract concepts may refer to Appendix B.5,
where we examine them in the context of the Normal-Gamma distribution.

3Throughout, we treat the equivalence class [x] as a point of the quotient manifold M/∼; the fibre is the
full pre-image of that point. We write T[x](M/ ∼) (with parentheses) only to emphasise that the tangent is
taken after the quotient, not the quotient of the tangent space at point x. The shorter T[x] or T[x]M/∼ can be
used whenever no confusion arises.
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B.2 Orthogonal projection onto the horizontal space

At every point λ ∈ Λ the tangent space splits as TλΛ = Hλ ⊕ Vλ, where Vλ := kerDπ(λ) is
the vertical subspace (directions that leave the marginal unchanged) and Hλ is its F (λ)-orthogonal
complement (horizontal directions that do change the marginal). For gradient–based optimisation
we need a fast way to remove the vertical component of an arbitrary vector g ∈ TλΛ.

To do so, let K(λ) ∈ Rd×r be any matrix whose columns span Vλ (where dimVλ = r). Write
the desired horizontal part as g⊥λ = g −Kα for some coefficient vector α ∈ Rr. Imposing F (λ)-
orthogonality to every vertical vector Kv gives the normal equations

K⊤F (λ)
(
g −Kα

)
= 0 =⇒ α =

[
K⊤F (λ)K

]−1
K⊤F (λ)g.

Substituting this α yields the explicit projector

PH(λ) = I − K(λ)
[
K(λ)⊤F (λ)K(λ)

]−1
K(λ)⊤F (λ), (36)

so that g⊥λ = PH(λ) g.

The matrix to be inverted is only r × r with r = dimVλ. In our Normal–Wishart example r = 1;
(36) then reduces to a single scalar division, completely sidestepping theO(d3) cost of inverting the
full Fisher matrix.

B.3 Proof of Theorem 1

This section is devoted to the proof of Theorem 1. Before proceeding with the proof, we recall the
notation established in the main text.

Theorem 3 (Induced Fisher–Rao metric). Assume the setting of Theorem 1 and equip the natural-
parameter space Λ with its Fisher information metric Fλ. Then:

(i) The map π, that project the Riemannian manifold (Λ, Fλ) on Ξ, induces a Riemannian
quotient manifold structure on Ξ;

(ii) The Riemannian quotient metric on Ξ is then the Fisher metric of Ξ.

Setting and notation. In this paragraph, we restate the symbols used in the main text, all in one
place. We work on a measurable product space Zext = ZU × ZV and write zext = (zU , zV ) for a
generic element. The block zU collects the coordinates whose distribution we ultimately care about,
whereas zV will be integrated out. Therefore, to shorten our notation, we refer to ZU and zU as Z
and z, respectively.

The marginal family that defines a distribution overZ is parametrized by Ξ. Its ambient “parent” is a
minimal, regular exponential family with open natural–parameter space Λ that defines a distribution
over Zext.

The key connection between Ξ and Λ is a marginal relation

qξ(z) =

∫
qλ(z, zV ) dzV . (37)

This relation naturally defines a function π : Λ → Ξ.. And the function π naturally defines the
corresponding equivalence relation ∼π on Λ in the following way:

λ1 ∼ λ2 ⇔ π(λ1) = π(λ2). (38)

That is, two points in Λ are equivalent if they yield the same marginal distribution.

Note that, for a minimal regular exponential family, the log-partition function A(λ) is infinitely dif-
ferentiable, and its derivatives correspond to the moments of the sufficient statistics. The marginal-
ization can be expressed in terms of these moments, which inherit the smoothness properties of
A(λ).

We remind the reader that in our setting to prove Theorem 1 it suffices to show that π is a smooth
submersion (see the condition (∗)). For convenience, we quote the theorem we are about to prove in
the notation fixed above.

25



Theorem 1 (Marginalization yields a smooth quotient manifold). Let qλ be a minimal, regular
exponential family with parameter space Λ ⊂ Rd. Suppose a partition Zext = (Z,ZV ) is chosen so
that the marginal family {qξ}ξ∈Ξ obtained via π : Λ→Ξ is moment-parametrized (with dimΞ = k)
(Definition 1). Then Ξ is the quotient manifold of Λ induced by π.

Proof. Recall the marginal relation

qξ(z) =

∫
ZV

qλ(zU , zV ) dzV , zU ∈ ZU .

Step 0. Set-up and notation. Write T = (T1, . . . , Td) and λ = (λ1, . . . , λd). For any bounded
measurable φ : ZU → R set

⟨φ ; qξ⟩ :=
∫
ZU

φ(zU )qξ(zU ) dzU .

Step 1. A finite-dimensional probe of the marginals. Because the marginal family is moment-
parameterized with dimΞ = k, it is attached to k integrable functions m1, . . . ,mk ∈ L∞(ZU ):

e : Λ −→ Rk, ei(λ) := ⟨mi ; qπ(λ)⟩ (i = 1, . . . , k).

Writing the marginal as a single integral gives the equivalent form

ei(λ) =

∫
Zext

mi(zU )qλ(zext) dzext.

The goal is to show that e is a smooth submersion of constant rank r = rankDπ(λ) (the same r for
every λ). Once established, each fibre e−1(y) is automatically an embedded submanifold of Λ.

Step 2. Computing the derivative of e. Fix λ ∈ Λ and a tangent vector v = (v1, . . . , vd) ∈ TλΛ.
Differentiate under the integral (dominated convergence allows this):

Dve
i(λ) =

d∑
j=1

vj
∂

∂λj

∫
Zext

φi(zU )qλ(zext) dzext

=

d∑
j=1

vj
∫
Zext

φi(zU )
∂

∂λj
qλ(zext) dzext.

Because ∂
∂λj qλ(x) =

(
Tj(zext)− ∂A(λ)

∂λj

)
qλ(x), we obtain the exact Jacobian entry

Jij(λ) :=
∂ei

∂λj
(λ) (39)

=

∫
Zext

mi(zU )

Tj(zext)−
∂A(λ)

∂λj︸ ︷︷ ︸
=Eqλ

[Tj ]

 qλ(zext) dzext. (40)

Note, that from (39) smoothness trivially follows from the fact that A(λ) ∈ C∞(Λ).

A convenient way to rewrite equation (40) is with covariances (up to additive constant which does
not change the rank):

Jij(λ) = Covqλ [mi(zU ), Tj(zext)]. (41)

So each column j of J(λ) stores the k covariances between the function mi and the statistic Tj
under the joint distribution qλ.

Step 3. Why the rank is constant. Minimality of our exponential family guarantees that the d× d
covariance matrix F (λ) := Covqλ [Ti(zext), Tj(zext)] is positive definite for every λ [Brown, 1986,
Theorem 4.1]. Denote by

H(λ) := J(λ)F (λ)−1 J(λ)⊤ ∈ Rk×k.
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Because Fλ ≻ 0, H(λ) is positive semidefinite for every λ and satisfies

detH(λ) = 0 ⇐⇒ rank J(λ) < k.

Suppose that detH(λ0) > 0 at some point λ0. Then the matrix H(λ0) = J(λ0)F (λ0)
−1J(λ0)

⊤

is positive definite, and in particular, the Jacobian matrix J(λ0) has full rank k. This means the
map λ 7→ e(λ) has full rank at λ0. Since both F (λ) and J(λ) are real-analytic functions of λ,
the composition H(λ) = J(λ)F (λ)−1J(λ)⊤ is also real-analytic. Consequently, detH(λ) is a
real-analytic scalar function on the parameter space. By a basic property of real-analytic functions,
if detH(λ) is not identically zero, then its zero set has empty interior. Since detH(λ0) > 0,
the function cannot be identically zero, and hence there exists an open neighborhood of λ0 where
detH(λ) > 0. Thus, rank(J(λ)) = k in a neighborhood of λ0. Therefore, the rank of J(λ)
cannot drop in any open neighborhood where detH(λ) is positive. If rank were to drop at some
point, this would force detH(λ) = 0 at that point, contradicting the real-analyticity and strict
positivity nearby. Hence, the rank remains full wherever it is full once.

Step 4. Submersion⇒ embedded fibres. We now consider the smooth map e : Λ → Rk, which
we have shown to have constant rank k. By the finite-dimensional constant-rank theorem [Lee,
2012][Theorem 5.12], it follows that each fibre e−1(y) is an embedded submanifold of Λ of codi-
mension k (i.e., of dimension d − k) and these fibres vary smoothly with y, forming a regular
foliation of Λ. Moreover, since e(λ) depends on λ only through the marginal distribution qξ, we
have:

e−1(e(λ)) = {λ′ ∈ Λ : qπ(λ′) = qπ(λ)} = π−1(qπ(λ)),

where π : Λ → QΞ denotes the map sending λ to its marginal distribution qπ(λ). Therefore, each
marginal pre-image is an embedded submanifold of Λ, and the space of parameters decomposes
smoothly according to level sets of the marginal.

B.4 Proof of Theorem 2

This section is devoted to the proof of Theorem 2. Before proceeding with the proof, we recall the
statement of the theorem from the main text. We use the notation established in the previous section.

Theorem 2 (Induced Fisher–Rao metric). Assume the setting of Theorem 1 and equip the natural-
parameter space Λ with its Fisher information metric Fλ. Then:

(i) The map π, that project the Riemannian manifold (Λ, Fλ) on Ξ, induces a Riemannian
quotient manifold structure on Ξ;

(ii) The Riemannian quotient metric on Ξ is then the Fisher metric of Ξ.

Proof. Consider ξ ∈ Ξ and λ ∈ π−1(ξ), then let f(z, ξ) denote the log-density of the distribution
qξ(z), and let f̃(zext,λ) be the log-density of the distribution qλ(zext).

Because π : Λ → Ξ is a smooth submersion of constant rank (proved in Theorem 1), the Local
Section Theorem [Lee, 2012, Theorem 4.26] guarantees that for every ξ ∈ Ξ and every λ ∈ π−1(ξ)
there exists an open neighbourhood U ⊂ Ξ of ξ and a smooth map σ : U → Λ such that π◦σ = idU
and σ(ξ) = λ. Patching these local sections with a smooth partition of unity yields a smooth global
section σ : Ξ→ Λ satisfying π◦ σ = idΞ.

The log-density of the distribution qξ(z) can be related to f(zext, λ) in the following way:

f(z, ξ) = log

∫
ZV

exp
(
f̃(zext, σ(ξ))

)
dzV . (42)

Consider the following helpful function

Φ(z,λ) :=

∫
ZV

exp
(
f̃(z, zV ,λ)

)
dzV . (43)
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Then we can express f(z, ξ) in the following way:

f(z, ξ) = log Φ(z, σ(ξ)). (44)

Now, we differentiate both sides of the identity (44) with respect to ξ and we get the following:

∂ξif(z, ξ) =
1

qξ(z)

∫
ZV

exp
(
f̃
)
∂ξ f̃(z, zV , σ(ξ))dzV (Leibniz + dominated convergence)

=
1

qξ(z)

∫
ZV

exp
(
f̃
) d∑

j=1

∂λj f̃(z, zV ,λ)∂ξiσ
j(ξ)dzV (chain rule)

= EzV |z

 d∑
j=1

∂λj f̃(z, zV ,λ)∂ξiσ
j(ξ)

 (recognize conditional density).

The last identity can be re-written in a vector form in the following way:

∇ξf(z, ξ) = Dσ(ξ)⊤Ezv|z

[
∇λf̃(z, zv, σ(ξ)

]
. (46)

Introduce the conditional joint score

s(z, zV ,λ) := ∇λf̃(z, zV ,λ), g(z,λ) := Eqλ

[
s | z

]
.

With this notation (46) reads

∇ξf(z, ξ) = Dσ(ξ)⊤ g
(
z, σ(ξ)

)
.

Taking the outer product and integrating over z ∼ qξ,

FΞ(ξ) := Ez

[
∇ξf ∇ξf

⊤] = Dσ(ξ)⊤ Ez

[
g g⊤

]︸ ︷︷ ︸
=:M(λ)

Dσ(ξ), λ = σ(ξ). (47)

Write F (λ) = E[ss⊤] for the Fisher matrix in Λ and C(λ) = Ez[Var[s | z]] for the average
conditional covariance. Then using the total variance decomposition, we obtain the following:

F (λ) = C(λ) +M(λ) =⇒ M(λ) = F (λ)− C(λ). (48)

Let
R(λ) := J(λ)⊤

[
J(λ)J(λ)⊤

]−1
, J(λ) := Dπ(λ). (49)

Because every residual score s⊥ := s− E[s | z] satisfies Js⊥ = 0, the matrix C(λ) acts entirely in
the vertical space ker J ; consequently

R⊤C(λ)R = 0. (50)

Inserting the facts(48)-(50) into the pullback formula (47), we obtain the following:

FΞ(ξ) = R(λ)⊤ F (λ)R(λ), J(λ)F (λ)J(λ)⊤ = FΞ(ξ). (51)

Hence the Fisher information of the marginal family {qξ} is obtained from the full Fisher on Λ
simply by pushing it forward—equivalently, pulling it back—through the Jacobian J = Dπ(λ).
This metric compatibility (51) fulfills exactly the hypotheses of the Riemannian-quotient theorem, so
all conditions of [Boumal, 2023, Theorem 9.35] are satisfied: Λ/∼π inherits the unique Riemannian
metric that turns π into a Riemannian submersion, that is compatible with relation (51).
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B.5 Univariate Student-t as a quotient manifold of Normal-Gamma
This section is dedicated to a concrete example of a Riemannian quotient manifold theory applied
to marginalization. Even if the formal derivation of the mathematical objects introduced in Sec-
tions B.1 and B.2 is not required to implement our main result: Algorithm 1 ; it offers intuition on
how a quotient manifold and QBLR work.

A Normal-Gamma distribution is a joint distribution q(µ,σ−1,α,β)(x, τ) over a random variable (x, τ)
defined by the following relationship:

x|τ ∼ N (µ,
(
σ−1τ

)−1
), (52a)

τ ∼ Gamma(α, β). (52b)

It is straightforward to rewrite q(µ,σ−1,α,β)(x, τ) into the minimal exponential family representation

qλ(x, τ) =
1√
2π

exp
(
T (x, τ)⊤λ−A(λ)

)
, (53)

where the natural parameters, sufficient statistics, and the logpartition are:

λ =

(
σ−1µ,−σ

−1

2
, α− 1

2
,−β − σ−1µ2

2

)
∈ Λ = R× R− ×

(
R+ −

1

2

)
× R− , (54a)

T (x, τ) = (xτ, x2τ, log τ, τ), (54b)

A(λ) = log Γ

(
λ3 +

1

2

)
− 1

2
log(−2λ2)−

(
λ3 +

1

2

)
log

(
−λ4 +

λ21
4λ2

)
. (54c)

The marginalization over τ defines a mapping from the Normal-Gamma parameter space λ =
(λ1, λ2, λ3, λ4) to the Student-t parameter space ξ = (µ, σ2, ν) via the following marginalization
(quotient) map:

π(λ) =

(
λ1
−2λ2

,
−λ4 + λ21/(4λ2)

−2λ2(λ3 + 1/2)
, 2λ3 + 1

)
. (55)

Our construction starts with Vλ = kerDπ(λ) the vertical space; to obtain it, we need to compute
the differential of our quotient map. Then we are left to computeHλ = (Vλ)⊥ .

Differential of the quotient map. The Jacobian J(λ) = Dπ(λ) ∈ R3×4 is

J(λ) =

 − 1
2λ2

λ1

2λ2
2

0 0

− λ1

4λ2
2(λ3+1/2)

λ2
1−4λ2λ4

8λ3
2(λ3+1/2)

− λ2
1−4λ2λ4

2λ2(2λ3+1)2
1

2λ2(λ3+1/2)

0 0 2 0

. (56)

Vertical space. With the Jacobian of the quotient map in natural coordinates (Eq. (56)), the vertical
space at λ is simply its kernel:

Vλ = kerDπ(λ) = span
{
k(λ)

}
, k(λ) :=

(
4λ1λ2, 4λ

2
2, 0, λ

2
1 + 4λ2λ4

)⊤
.

A direct row–by–row multiplication shows Dπ(λ) k(λ) = 0, so k(λ) lies in the kernel. Since
Dπ(λ) has full row rank 3 for every λ ∈ Λ, the kernel is one–dimensional and dimVλ = 1. At this
stage, no Riemannian metric is needed—the vertical space is determined purely by the quotient map
π.

Horizontal space. To define the horizontal space, we must specify a Riemannian metric, as differ-
ent metrics generally yield different horizontal spaces. In our case, we employ the Fisher-Rao metric,
which for regular minimal exponential families equals the Hessian of the logpartition function. For
the Normal-Gamma distribution specifically, the Fisher information matrix takes the following form

F (λ) =



b
2λ2a

− λ2
1b

4λ2
2a

2 − λ1b
2λ2

2a
+

λ3
1b

8λ3
2a

2 − λ1

2λ2a
λ1b

2λ2a2

− λ1b
2λ2

2a
+

λ3
1b

8λ3
2a

2
1

2λ2
2
− λ4

1b

16λ4
2a

2 +
λ2
1b

2λ3
2a

λ2
1

4λ2
2a

− λ2
1b

4λ2
2a

2

− λ1

2λ2a
λ2
1

4λ2
2a

ψ1

(
1
2 + λ3

)
1
a

λ1b
2λ2a2 − λ2

1b

4λ2
2a

2
1
a

1
2+λ3

a2


, (57)
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where a =
λ2
1

4λ2
− λ4, b = − 1

2 − λ3, and ψ1 is the trigamma function. Equipped with the Fisher in-
formation matrix in natural coordinates (57), the horizontal space is defined as the F (λ)-orthogonal
complement of the vertical line Vλ = span{k(λ)}: a tangent vector v = (v1, v2, v3, v4)

⊤ is hori-
zontal iff

⟨v, k(λ)⟩F = k(λ)⊤F (λ) v = 0.

The F (λ)-orthogonality condition k(λ)⊤F (λ) v = 0 is equivalent to requiring v to be orthogonal
(in the Euclidean sense) to the single vector

n(λ) := F (λ) k(λ).

A short calculation with the entries of F (λ) in (57) gives

n1 =
2λ1bλ4
a2

, n3 =
4λ2λ4
a

,

n2 = 2− λ21bλ4
λ2a2

, n4 = − 4bλ2λ4
a2

,

Provided λ4 ̸= 0 (true on the admissible domain Λ), we have n4 ̸= 0, so the linear constraint
n⊤v = 0 can be solved explicitly:

v4 = −n1
n4

v1 −
n2
n4

v2 −
n3
n4

v3.

Choosing v1, v2, v3 successively as the standard basis vectors produces an F -orthogonal basis of the
horizontal space:

h(1)(λ) = (1, 0, 0, −n1/n4),
h(2)(λ) = (0, 1, 0, −n2/n4),
h(3)(λ) = (0, 0, 1, −n3/n4).

Any natural gradient g can now be decomposed as g = g∥ + g⊥ with

g∥ =
(
g ·n

) k(λ)

k(λ)⊤n(λ)
and g⊥ = g − g∥,

so that g⊥ ∈ Hλ is the direction used in Algorithm 1.

C Normal-Wishart
C.1 Definition and properties
A random variable (z, S) follows a multivariate Normal-Wishart distribution with parameters
(µ,Ψ, κ, ν) if

z|S ∼ N (µ, (κS)−1) (58)
S ∼ W(ν,Ψ) (59)

where µ ∈ Rd is the location parameter, Ψ ∈ Rd×d is a positive definite scale matrix, κ > 0 is a
scaling parameter, and ν > d− 1 is the degree of freedom parameter.

The joint probability density function of the Normal-Wishart distribution is given by

p(z, S|µ,Ψ, κ, ν) = p(z|S, µ, κ)p(S|Ψ, ν). (60)

C.2 Marginalization and the Multivariate Student-t

A Normal–Wishart distribution S ∼ Wd(ν,Ψ), z | S ∼ N
(
µ, (κS)−1

)
marginalizes to a multivari-

ate Student-t (see [Murphy, 2007, Section 9])

p(z | µ,Ψ, κ, ν) =
∫
p(z, S | µ,Ψ, κ, ν) dS = Td

(
z | µ,Σ, ν′

)
, (61)

where Σ = Ψ−1

κ(ν−d+1) , ν
′ = ν − d+ 1. Hence the mapping

(µ,Ψ, κ, ν) 7−→ Td
(
µ,Ψ−1/[κ(ν − d+ 1)], ν − d+ 1

)
is many-to-one: a fixed (µ, ν) and a fixed product κΨ determines a unique Student-t. So by changing
(κ,Ψ) while keeping their product fixed, we yield the same Student-t.
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C.2.1 Canonical exponential family form

The Normal-Wishart distribution can be written in exponential family form in the following way:

p(z, S | λ) = exp
(
λTT (z, S)−A(λ)

)
, (62)

where the sufficient statistics are

T (z, S) =

 Sz
S

zTSz
log detS

 , (63)

and the natural parameters are defined trough the standard parameters (µ,Ψ, κ, ν) in the following
way:

λ =

λ1λ2λ3
λ4

 =


κµ

− 1
2 (Ψ

−1 + κµµT)
−κ

2
ν−d
2

 . (64)

Then the log-partition function is

A(λ) =− d

2
log(−2λ3)−

d+ 2λ4
2

log detS (65)

+
d(d+ 2λ4)

2
log(2) + log Γd

(
d+ 2λ4

2

)
+
d

2
log(2π) .

As established in equation (7), the mean parameters are given by the gradient of the log-partition
function

θ = ∇λA(λ) . (66)

For the Normal-Wishart distribution, these parameters are

θ1 =
dA(λ)

dλ1
= E [Sz] = νΨµ,

θ2 =
dA(λ)

dλ2
= E [S] = νΨ,

θ3 =
dA(λ)

dλ3
= E

[
zTSz

]
= νµTΨµ+

d

κ
,

θ4 =
dA(λ)

dλ4
= E [log detS] = log detΨ + d log 2 + ψd

(ν
2

)
,

(67)

where ψd is the multivariate digamma function.

Proof. θ1 is computed using conditional expectation,

E(ν,S) [Sν] = ES [SEν [ν]] = ES [Sµ] = νΨµ . (68)

The value of θ2 is directly the moments of the Wishart distribution Eaton [2007][Proposition 8.3]
and θ3 can be derived from them as follows:
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E
[
zTSz

]
=

∑
i,j

E [ziSi,jzj ] (69a)

=
∑
i,j

ES

[
Si,jEz|S [zizj ]

]
(69b)

=
∑
i,j

ES

[
Si,j(Cov(zizj) + Ez|S [zi]Ez|S [zj ])

]
(69c)

=
∑
i,j

ES

[
Si,j((κS)

−1
i,j + µiµj)

]
(69d)

= κ−1
∑
i,j

ES

[
Si,j(S)

−1
i,j

]
+

∑
i,j

ES [Si,jµiµj ] (69e)

= κ−1ES

[
tr
(
S(S)−1

)]
+

∑
i,j

νΨi,jµiµj as S ∈ S (69f)

=
d

κ
+ νµTΨµ . (69g)

θ4 is direcly the log-expectation of a Wishart distribution given by Penny [2001].

C.3 Derivation of the NGD update

Let’s consider q(S) =Wd(S|ν,Ψ) and q(z|S) = N (z|µ, (κS)−1).

We denote the log-likelihood for the n’th data point by fn(z) := − log p(Dn|z) with a Normal-
Wishart prior with parameters µ = 0,Ψ = I, κ = 1, and the degree of freedom parameter ν0.

We use the lower bound defined in the joint distribution, p(D, z, S)

L(λ) = Eq(z,S) [log p(D, z, S)− log q(D, z, S)]

= Eq(z,S)

 N∑
n=1

log p(Dn|z)︸ ︷︷ ︸
:=−fn(z)

+ log
N

(
z|0d, S−1

)
N (z|µ, (κS)−1)

+ log
Wd(S|ν0, Id)
Wd(S|ν,Ψ)

 .

Our goal is to compute the gradient of this ELBO with respect to the expectation parameters θ (de-
fined in (67)). Because θ is an invertible re-parameterization of the standard parameters (µ,Ψ, κ, ν),
their gradients are related by the chain rule as follows:

∇θ3L = −κ
2

d
∇κL , (70a)

∇θ1L =
1

ν
Ψ−1∇µL − 2µ∇θ3L , (70b)

∇θ4L =
tr(Ψ∇ΨL)− ν∇νL
d− 1

2ν ψ
′
d(ν/2)

, (70c)

∇θ2L =
1

ν

[
∇ΨL − ν(∇θ1L)µ⊤ − ν(∇θ3L)µµ⊤ − (∇θ4L)Ψ−1

]
, (70d)

note that by ψ′
d we denote the multivariate trigamma function.
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The ELBO gradients for the standard parameterization can be obtained as follows

∇µL(λ) = −
N∑
i=1

∇µEq(z,S) [fn(z)]− νΨµ, (71a)

∇κL(λ) = −
N∑
i=1

∇κEq(z,S) [fn(z)]−
d

2

κ− 1

κ
, (71b)

∇ΨL(λ) = −
N∑
i=1

∇ΨEq(z,S) [fn(z)]−
ν

2
µ⊤µ+

1

2
Ψ, (71c)

∇νL(λ) = −
N∑
i=1

∇νEq(z,S) [fn(z)] +
d

2
− 1

2
µ⊤Ψµ− ν − d− 1

4
ψ

′

d

(ν
2

)
, (71d)

where ψ
′

d is the multivariate trigamma function.

The last thing to instantiate Algorithm 1 for the Normal-Wishart is to implement the projection
onto the horizontal space (see Appendix B.2). For the Normal–Wishart lift, the vertical space is
one–dimensional, so the vertical subspace at any λ is Vλ = span{k(λ)} with

k(λ) = (λ1, vec(λ2), λ3, 0)
⊤,

the last natural coordinate λ4 always effect the marginal. Given the natural gradient g = ∇̃λL, its
Fisher–orthogonal projection is obtained by removing the component along k(λ)

g⊥λ = g − k(λ)⊤F (λ) g

k(λ)⊤F (λ)k(λ)
k(λ). (72)

Because k(λ) is a single vector, the denominator is a scalar; evaluating (72) therefore requires only
one call to the Fisher-matrix–vector product and one scalar division; no inversion of the full Fisher
matrix is ever needed.

Using the derivations in this section, we can now summarize our algorithm. Specializing the
generic quotient–natural–gradient loop (Algorithm 1) to the Normal–Wishart lift (µ,Ψ, κ, ν) gives
a fully explicit routine:

1. computes the stochastic data–fit gradients in the standard parameter space
(gdata

µ , gdata
κ , gdata

Ψ , gdata
ν );

2. adds the analytic prior terms (71a)–(71d);
3. converts the result to the expectation coordinates (gθ1 , . . . , gθ4) via the chain rule

(70a)–(70d);
4. removes the vertical component with the rank-one projector (72);
5. performs a natural-gradient ascent step of size βt in the horizontal direction and back-

transforms to (µ,Ψ, κ, ν).

The whole procedure, including the projection (72), is collected in Algorithm 2 below.
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Algorithm 2 One step of the quotient natural-gradient update for Normal–Wishart parameters

Input: current standard parameters (µ,Ψ, κ, ν), minibatch Bt, dataset size N , step size βt
▷ Data–fit contribution(

gdata
µ , gdata

κ , gdata
Ψ , gdata

ν

)
← − N

|Bt|
∑
n∈Bt

∇(µ,κ,Ψ,ν)Eq

[
fn(z)

]
▷ Add prior terms (Eqs. (71a)–(71d))

gµ ← gdata
µ − νΨµ,

gκ ← gdata
κ − d

2

κ− 1

κ
,

gΨ ← gdata
Ψ +

ν

2

(
Ψ−1 − µµ⊤

)
,

gν ← gdata
ν +

d

2
− 1

2
µ⊤Ψµ− ν − d− 1

4
ψ′
d

(
ν/2

)
.

▷ Chain rule (Eqs. (70a)–(70d))(
gθ1 , gθ2 , gθ3 , gθ4

)
← ChainRule(gµ, gκ, gΨ, gν)

▷ Horizontal projection (rank–one) (Eq. (72))

α ← k(λ)⊤F (λ) gθ
k(λ)⊤F (λ) k(λ)

, g⊥θ ← gθ − αk(λ)

▷ Natural-gradient update in λ–space

λi ← λi + βt g
⊥
θ,i, i = 1:4

▷ Back-transform to standard parameters (Eq. (64))

κ←−2λ3, µ←λ1/κ, Ψ
−1←−2λ2 − κµµ⊤, ν←2λ4 + d.

C.4 Path-gradients for Normal-Wishart

In Section 5, we implement Algorithm 1 for Student-t distribution through the Normal-Wishart
marginal representation. For a concise implementation of the algorithm, refer to Appendix C.3. This
implementation requires unbiased gradient estimators ∇̂µL, ; ∂̂κL; ∇̂ΦL. For the Normal–Wishart
variational family, these estimators can be obtained from the general gradient form provided in
Theorem 4 for a function f : Rd → R.

In the following statements, we will use the so-called Lyapunov operator

TA[Y ] : Sd → Sd : TA[Y ] = AY + Y A . (73)

We denote with T −1 the inverse Lyapunov operator, defined by:

T −1
A [B] = Y , (74a)

with AY + Y A = B , A ∈ Sd++ , B ∈ Sd . (74b)

According to Bartels and Stewart [1972], A ≻ 0 is a sufficient condition for T −1 to be correctly
defined. We will also refer to the operator Sym that associates a matrix to the sum of its transpose
and itself as follow:

Sym : A ∈ Rk×k −→ A+A⊤ , ∀k ∈ N⋆ . (75)

Theorem 4 (Gradient Identities for the Normal-Wishart Distribution). For a dimension d ≥ 1 and
parameters µ ∈ Rd, κ > 0, Ψ ∈ Sd++, ν > d+ 1, consider the joint density of the Normal-Wishart
distribution
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qµ,κ,Ψ,ν(z, S) = N
(
z | µ, (κS)−1

)︸ ︷︷ ︸
ϕµ,S(z)

Wd

(
S | ν,Ψ

)︸ ︷︷ ︸
ων,Ψ(S)

.

Let f : Rd → R be a twice-differentiable function that is integrable with respect to qµ,κ,Ψ,νdz, and
whose first and second derivatives are also integrable. The ensuing gradient identities are valid:

1. Gradient with respect to µ (Bonnet identity):
∇µ Eq [f(z)] = Eq [∇zf(z)]

2. Gradient with respect to κ (Price identity):
∂

∂κ
Eq [f(z)] = −

1

2κ2
Eq

[
tr(S−1∇2

zf(z))]
]

3. Gradient with respect to Φ = Ψ−1 (Price identity):

∇Φ Eq[ f(z) ] = −
1

2κ
Ez,B

[
T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2∇2

zf(z)Φ
1
2B−1)

]]
,

where B ∼ W(ν, I) and z|B ∼ N (µ, (κΦ−1/2BΦ−1/2)−1) .

The gradient of any real function in the mean parametrization (including ELBO) can be straightfor-
wardly deduced from the equations of Theorem 4. Detailed proofs for each identity are provided in
Lemmas 1, 2, and 4, respectively.

Lemma 1 (Bonnet identity for the Normal–Wishart lift). Under the conditions of the theorem 4, the
following identity holds

∇µ Eq

[
f(z)

]
= Eq

[
∇zf(z)

]
. (76)

Proof.

∇µEq [f(z)] = Eων,Ψ(S)

[
∇µEϕµ,S(z) [f(z)]

]
(dominated convergence + Fubini) (77)

= Eων,Ψ(S)

[
Eϕµ,S(z) [∇zf(z)]

]
(by Lin et al. [2025, Theorem 1]) (78)

= Eq[∇zf(z)] . (79)

The proof above employs the vanishing surface term, mirroring the classical Bonnet proof (in
French) [Bonnet, 1964]. A more contemporary explanation of the same finding is provided in Lin
et al. [2025, Theorem 1]).

Lemma 2 (κ–Price identity for the Normal–Wishart lift). Under the conditions of the theorem 4 the
following identity holds

∂

∂κ
Eq[f(z)] = − 1

2κ2
Eq

[
tr
(
S−1∇2

zf(z)
)]
. (80)

Proof. Let ϕµ,S(z) = N (z | µ,Σ) with Σ = (κS)−1 then

∂κEq[f ] = Eων,Ψ

[
∂κEϕµ,S

[f ]
]

(Fubini’s theorem)

= Eων,Ψ

[〈
∂κΣ,∇ΣEϕµ,S

[f ]
〉]

(chain rule)

= Eων,Ψ

[〈
−κ−2S−1, 12Eϕµ,S

[∇2
zf ]

〉]
(by [Lin et al., 2025, Theorem 4])

= − 1

2κ2
Eq

[
tr(S−1∇2

zf(z))
]

The first line exchanges the differentiation operator and integration operator, which is possible be-
cause the derivative of qµ,κ,Ψ,ν can be bounded from above by an integrable function. The second
applies the chain rule. The third uses two facts: (1) Σ = κ−1S−1 implies ∂κΣ = −κ−2S−1, and
(2) the classical Price formula [Lin et al., 2025, Theorem 4] ∇ΣEϕ[f ] =

1
2Eϕ[∇2

zf ]. The final line
simplifies using the trace inner product, the linearity of the trace, and the expectation.
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Sd
++ Sd

++

Sd Sd

h(Φ) = Φ−1/2

+X Dh(Φ)[X]

T −1

Φ1/2 [−Φ−1/2XΦ−1/2]

Figure 3: Commutativity diagram for Lemma 3. The following commutative diagram illustrates the Fréchet
differentiability of the inverse square-root map h : Φ 7→ Φ−1/2 on the space of symmetric positive-definite
matrices Sd

++. The vertical arrows represent perturbations in the input space and the corresponding linearized
response in the output space via the derivative Dh(Φ). This diagram expresses the fact that applying a small
symmetric perturbation X ∈ Sd to the input Φ corresponds, under the linearization of h, to a symmetric output
given by the Lyapunov operator. The bottom arrow represents this linear transformation. Commutativity of
the diagram means that the effect of first perturbing Φ and then applying h, versus first applying h and then
differentiating, yields the same result to first order in X .

Lemma 3 (Fréchet differential of the inverse square-root). Let Φ ∈ Sd++. The map h : Φ 7→ Φ− 1
2

is Fréchet differentiable with:

Dh(Φ) : X ∈ Sd −→ T −1

Φ
1
2
[−Φ− 1

2XΦ− 1
2 ] ∈ Sd . (81)

Figure 3 illustrates the commutative structure of the differential relationship provided in the Lemma
3.

Proof. The Fréchet differentiability of the square root in Sd++ is a direct implication of Moral and
Niclas [2018, Theorem 1.1]. In

Φ− 1
2ΦΦ− 1

2 = Id , (82)

we substitute the functions with their respective Taylor expansion at point Φ in a direction X ∈ Sd.
With that substitution, we get the following:(

Φ− 1
2 +Dh(Φ)[X] + o(∥X∥)

)
(Φ +X)

(
Φ− 1

2 +Dh(Φ)[X] + o(∥X∥)
)
= Id (83a)

Φ− 1
2ΦΦ− 1

2 +Φ− 1
2XΦ− 1

2 +Φ− 1
2ΦDh(Φ)[X] + Dh(Φ)[X]ΦΦ− 1

2 + o(∥X∥) = Id (83b)

Φ− 1
2XΦ− 1

2 +Φ
1
2Dh(Φ)[X] + Dh(Φ)[X]Φ

1
2 + o(∥X∥) = 0 . (83c)

Given that Φ ≻ 0, equation (83c) implies that we can define Dh(Φ)[X] as T −1

Φ
1
2
[−Φ− 1

2XΦ− 1
2 ],

which is precisely the statement of the lemma.

Lemma 4 (Φ–Price identity, Lyapunov version). Under the conditions of the theorem 4 the follow-
ing identity holds

∇Φ Eq[ f(z) ] = −
1

2κ
Ez,B

[
T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2∇2

zf(z)Φ
1
2B−1)

]]
, (84)

where B ∼ W(ν, I), z|B ∼ N (µ, (κΦ−1/2BΦ−1/2)−1) and Sym(A) := 1
2 (A+A⊤).
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Proof. We compute the gradient of Φ 7→ EN (z|µ,(κΦ−1/2BΦ−1/2)−1)[f(z)] by treating it as the
composition of two functions: first, ϕ : Φ 7→ (κΦ−1/2BΦ−1/2)−1, and second, σ : Σ 7→
EN (z|µ,Σ)[f(z)].

∇Φ(σ ◦ ϕ)) = (Dϕ(Φ))∗[∇ϕ(Φ)σ] , (85)

where (Dϕ(Φ))∗ represents the adjoint operator of Dϕ(Φ).

Under the conditions on f from Theorem 1, we can apply Lin et al. [2025][Theorem 4] to obtain the
following: ∇ϕ(Φ)σ = 1

2EN (z|µ,ϕ(Φ))

[
∇2

zf(z)
]
.

We express ϕ as the composition of three functions:

ϕ1 : Φ ∈ S++ 7→ Φ− 1
2 with differential Dϕ1(Φ) : X ∈ S 7→ T −1

Φ
1
2

[
Φ− 1

2XΦ− 1
2

]
, (86a)

ϕ2 : A ∈ S++ 7→ ABA with differential Dϕ2(A) : X ∈ S 7→ ABX +XBA , (86b)

ϕ3 : S ∈ S++ 7→ (κS)−1 with differential Dϕ3(S) : X ∈ S 7→ −κ−1S−1XS−1 . (86c)

We recall that any Riemannian metric on the manifold S++ can be expressed as ⟨X , Y ⟩ 7→
tr(Φ−1XΦ−1Y ) where S is isomorphic to the tangent space of S++ at Φ and X,Y ∈ S (see Ohara
et al. [1996]). Based on the form of the Riemannian metric on the tangent space of S++, we can
state that for any A,Λ ∈ S++ the differentials of Dϕ2(A) and Dϕ3(Λ) are self-adjoint. According
to [Tippett et al., 2000], T −1 is also self-adjoint, making Dϕ1(Φ) self-adjoint for any Φ ∈ S++.
The differential Dϕ(Φ) , Φ ∈ S++ is then self-adjoint as the composition of self-adjoint operators.
The gradient of σ ◦ ϕ can be expressed using the formula (85) as follows:

∇Φ(σ ◦ ϕ)) = (Dϕ3 ◦ ϕ2 ◦ ϕ1(Φ))∗[∇ϕ(Φ)σ] (87a)

=
(
Dϕ3(Φ

− 1
2BΦ− 1

2 ) ◦Dϕ2(Φ− 1
2 ) ◦Dϕ1(Φ)

)∗
[∇ϕ(Φ)σ] (87b)

= Dϕ1(Φ)
∗ ◦Dϕ2(Φ− 1

2 )∗ ◦Dϕ3(Φ− 1
2BΦ− 1

2 )∗[∇ϕ(Φ)σ] (87c)

= −κ−1T −1

Φ
1
2

[
Sym(Φ−1BΛ−1∇ϕ(Φ)σΛ

−1Φ− 1
2 )
]

(87d)

= −κ−1T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2∇ϕ(Φ)σΦ

1
2B−1)

]
(87e)

= −κ
−1

2
T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2EN (z|µ,ϕ(Φ))

[
∇2

zf(z)
]
Φ

1
2B−1)

]
(87f)

We can apply our formula (87f) directly under the expectation over B ∼ W(Id, ν) and under the
linear operator T −1 to obtain our final gradient as follows:

∇ΦEz,B [f(z)] = EB

[
∇ΦEz|B [f(z)]

]
(88a)

= EB [∇Φ∇Φ(σ ◦ ϕ))] (88b)

= EB

[
−κ

−1

2
T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2Ez|B

[
∇2

zf(z)
]
Φ

1
2B−1)

]]
(88c)

= −κ
−1

2
Ez,B

[
T −1

Φ
1
2

[
Sym(Φ−1BΦ

1
2B−1Φ

1
2∇2

zf(z)Φ
1
2B−1)

]]
. (88d)

D Experimental setup and reproducibility protocol

Benchmarks.

Pre-processing and splits. (1) 80/20 stratified train–test split with random_state=42; (2)
feature-wise standardisation using training means/variances only.
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Models and inference schemes. All tasks use Bayesian logistic regression (BLR). We compare
three variational-inference schemes:

Abbrev. Variational family Optimiser

BBVI∗ Student-t Black-box VI [Roeder et al., 2017]
NG-LIN Student-t Natural-gradient VI of Lin et al. [2020a]
NG-Ours Normal–Wishart (lift) Quotient Natural Gradient (Alg. 1)

Optimisation schedules (parameter-free). To eliminate hand-tuned learning rates, we use the
Distance-over-Gradients (DoG) rule of Ivgi et al. [2023] and its Riemannian generalisation (RDoG)
[Dodd et al., 2024]. Both schedules set the step size adaptively from quantities the algorithm can
measure on-the-fly.

Euclidean DoG (for BBVI∗). Let xt be the parameters and gt the Euclidean gradient. Maintain

r̄t = max
(
ϵ, max

s≤t
∥xs − x0∥2

)
, Gt =

∑
i≤t

∥gi∥22,

and set
ηt =

r̄t√
Gt

, xt+1 = xt − ηt gt.

We use ϵ = 10−3.

Riemannian DoG (for NG-LIN and NG-Ours). Replace Euclidean norms by natural-gradient norms
and the Euclidean distance by the geodesic distance d(·, ·) associated with the Fisher–Rao metric:

r̄t = max
(
ϵ, max

s≤t
d(xs, x0)

)
, Gt =

∑
i≤t

∥gi∥2g,xi
, ηt =

r̄t√
ζκ(r̄t)Gt

,

xt+1 = expxt

(
−ηt gt

)
.

We set ϵ = 10−3 and, unless noted, use the non-positive curvature correction ζκ ≡ 1 (i.e. κ =
0). For NG-LIN, d(·, ·) is approximated by the symmetric KL between two Student-t distributions,
estimated with a fixed set of 64 Monte-Carlo draws anchored at the start point to reduce variance.
For NG-Ours, d(·, ·) is the exact KL in the lifted minimal exponential family (Normal–Wishart),
available in closed form.

Safety of the lift-based distance. Let π : Λ → Ξ be the marginalisation map from the lift to
the marginal parameters. The quotient-metric result (Theorem 2) implies that, for λi ∈ Λ with
ξi = π(λi),

KL
(
qλ1
∥ qλ2

)
≥ KL

(
qξ1 ∥ qξ2

)
.

Thus the lifted KL we plug into RDoG is an upper bound on the (unknown) marginal KL. Be-
cause DoG/RDoG chooses ηt = r̄t/

√
ζκ(r̄t)Gt, a larger distance yields a (mildly optimistic) larger

step. A tighter, future alternative is the fibre-minimised lift distance, infλi∈π−1(ξi) KL(qλ1∥qλ2) =
KL(qξ1∥qξ2), i.e. the true quotient metric.

Hyper-parameters (shared).

• Epochs = 8,000; mini-batch size = 32.
• Step sizes: no hand-tuned learning rate. DoG/RDoG schedules determine ηt with ϵ =
10−3; curvature correction disabled by default (κ = 0).

• Monte-Carlo samples: 10 per update for BBVI∗; 1 for NG variants (gradients), plus 64
fixed draws for the NG-LIN symmetric-KL distance used by RDoG.

Software environment. Python 3.11 (CPU-only); jax 0.6.0, numpy 2.2.4, scikit-learn
1.6.1, torch 2.6.0, pandas 2.2.3. A version-pinned pyproject.toml is included in the
repository.

Hardware and runtime. All experiments run on a single CPU-only machine (no GPU/TPU).
End-to-end wall-clock time to regenerate Table 2 is 2 hours.
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Reporting. For every (method, dataset) pair we report: (1) posterior-mean accuracy (accµ), (2) its
standard error of the mean (SEM). Results are produced by python run_vi_comparison.py.

Reproducibility assets.

• Code (MIT): https://github.com/biaslab/QBLR. One command reproduces all num-
bers and figures.

• Determinism. NumPy, JAX and scikit-learn PRNGs fixed to 42; JAX in deterministic
mode.

• Environment capture. pyproject.toml and a generated requirements-lock.txt
freeze packages; a Markdown “compute card” records CPU model, cores, OS, and energy
draw.

E Complexity Analysis
In Algorithm 1, two operations have a non-trivial computational complexity: the natural gradient
computation and its projection onto the horizontal space. Based on the current literature, we analyze
these complexities. In Appendix E.1, we explain why projecting the natural gradient is negligible
compared to its estimation. In Appendix E.2, in the context of the Normal-Wishart example, we
propose a methodology to reduce the complexity of the natural gradient estimation.

We thank anonymous reviewers for raising this question.

E.1 Complexity Analysis

Projection computational cost. The projection operator PH(λ) defined in Equation (16) is used
to compute the horizontal component of the natural gradient. For clarity, we denote the projection
of the natural gradient gθ ∈ RdimΛ as follows:

gH = PH(λ)[gθ].

A naïve approach to compute gH includes the inversion of the symmetric positive definite matrix

RV (λ) := K(λ)⊤F (λ)K(λ) ∈ Rdv×dv ,

where K(λ) is the matrix representation of a basis of the vertical space kerDπ(λ) (33) (with π :
Λ → Ξ is the marginalization map (10)), F (λ) the Fisher information matrix (3a), dv = dimVλ
(with Vλ the vertical space). This approach would require computing the matrix inverse, with cost
O(d3v). However, we avoid materializing the inverse. Instead, we solve the linear system

RV (λ)v = K(λ)⊤F (λ) gθ , (89)
using a small dense linear solver: due to the fact that RV (λ) is symmetric positive definite, the
conjugate gradient solver by Hestenes et al. [1952] is applicable. This reduces the computational
cost to O(d2v).
In practice, a well-constructed lifting ensures that dv ≪ dimΛ, making the cost of projection
negligible relative to the Fisher–vector product F (λ) gθ, which has cost O(dimΛ2).

In our main Normal–Wishart case, the vertical space is one-dimensional (dv = 1), so the projection
reduces to a single scalar division.

E.2 Future Improvement
Quadratic time is acceptable up to a few hundred dimensions on commodity hardware, but larger
problems call for additional structure. In the following, we propose our plan to reduce computational
complexity.

Let us denote by d the dimension of a sample. We propose two different factorization methods to
reduce theO(d2) computational cost of the natural gradient while preserving its geometric property.

Structured covariances

Restrict the scale to B blocks Ψ = diag(Ψ1, . . . ,ΨB) with sizes db.

• Sampling:
∑

bO(d2b); purely diagonal Ψ needs only O(d) Gamma draws.
• Fisher products & Hessian trace both factor block-wise, yielding the same

∑
bO(d2b)

and O(d) in the diagonal case.
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Low-rank with diagonal factorization

Decompose the scale matrix as

Ψ = LL⊤ + diag(v), L ∈ Rd×k, k ≪ d,

so that only kd+ d free parameters are stored instead of 1
2d(d+ 1).

• Sampling. Each column of L is drawn from a matrix-normal and the diagonal entries of v
from independent Gammas. The two draws require kd and d random numbers, respectively,
hence O(kd) time and memory.

• Fisher–vector products. In the horizontal projector we need y =
(
diag(v)+LL⊤

)
x.

Compute it as
y = diag(v)x︸ ︷︷ ︸

O(d)

+ L
(
L⊤x

)︸ ︷︷ ︸
2 O(kd)

.

Both multiplies with L cost O(kd), so the total is O(kd) per Fisher product—linear in d
for any fixed rank k.

• Hessian trace (two Price identities). Both the κ-Price and the Φ-Price terms require
tr(S−1∇2

zf). Rather than forming the dense Hessian, we use the Hutchinson estimator
[Hutchinson, 1989]

tr(S−1∇2f) = 1
R

R∑
r=1

u⊤r
(
S−1∇2f

)
ur, ur ∼ {±1}d.

Each term needs one Hessian–vector product (HVP) and one multiplication with S−1. The
HVP is model-specific; the S−1–vector multiply uses the Woodbury identity:

S−1x = D−1x − D−1L
(
Ik + L⊤D−1L

)−1
L⊤D−1x, D = diag(v),

which is again O(kd). Choosing R ≤ k probes keeps the overall trace cost bounded by
O(k2d).

Both variants leave the vertical space one-dimensional, so the horizontal projection stays a single
scalar divide.

Summary

Dense QBLR is O(d2); with a diagonal or block-diagonal scale it drops to O(d), and with rank-k
plus diagonal it is O(k2d) (linear in d for fixed k). These paths scale QBLR to far larger latent
spaces without sacrificing its geometry or requiring matrix inversions.
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