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Abstract

We study learning from user feedback for001
extractive question answering by simulating002
feedback using supervised data. We cast the003
problem as contextual bandit learning, and an-004
alyze the characteristics of several learning005
scenarios with focus on reducing data annota-006
tion. We show that systems initially trained on007
few examples can dramatically improve given008
feedback from users on model-predicted an-009
swers, and that one can use existing datasets010
to deploy systems in new domains without any011
annotation effort, but instead improving the012
system on-the-fly via user feedback.013

1 Introduction014

Explicit feedback from users of NLP systems can015

be used to continually improve system perfor-016

mance. For example, a user posing a question to017

a question-answering (QA) system can mark if a018

predicted phrase is a valid answer given the con-019

text from which it was extracted. However, the020

dominant paradigm in NLP separates model train-021

ing from deployment, leaving models static follow-022

ing learning and throughout interaction with users.023

This approach misses opportunities for learning024

during system usage, which beside several excep-025

tions we discuss in Section 8 is understudied in026

NLP. In this paper, we study the potential of learn-027

ing from explicit user feedback for extractive QA028

through simulation studies.029

Extractive QA is a popular testbed for language030

reasoning, with rich prior work on datasets (e.g.,031

Rajpurkar et al., 2016), task design (Yang et al.,032

2018; Choi et al., 2018), and model architecture de-033

velopment (Seo et al., 2017; Yu et al., 2018). Learn-034

ing from interaction with users remains relatively035

understudied, even though QA is well positioned036

to elicit user feedback. An extracted answer can be037

clearly visualized within its supporting context, and038

a language-proficient user can then easily validate039

Figure 1: Illustration of an interaction setup for learn-
ing from user feedback for QA, and its potential. Given
a user question, the system outputs an answer and high-
lights it in its context. The user validates the answer
given the context with binary feedback. We show per-
formance progression from one of our online learning
experiments on SQUAD with hand-crafted illustrative
examples at two time steps.

if the answer is supported or not.1 This allows for 040

simple binary feedback, and creates a contextual 041

bandit learning scenario (Auer et al., 2002; Lang- 042

ford and Zhang, 2007). Figure 1 illustrates this 043

learning signal and its potential. 044

We simulate user feedback using several widely 045

used QA datasets, and use it as a bandit signal for 046

learning. We study the empirical characteristics 047

of the learning process, including its performance, 048

sensitivity to initial system performance, and trade- 049

offs between online and offline learning. We also 050

simulate zero-annotation domain adaptation, where 051

we deploy a QA system trained from supervised 052

data in one domain and adapt it solely from user 053

feedback in a new domain. 054

1Answers could also come from erroneous or deceitful
contexts. This important problem is not studied by most work
in extractive QA, including ours. We leave it for future work.
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This learning scenario can mitigate fundamental055

problems in extractive QA. It reduces data collec-056

tion costs, by delegating much of the learning to057

interaction with users. It can avoid data collection058

artifacts because the data comes from the actual059

system deployment, unlike data from an annota-060

tion effort that often involves design decisions im-061

material to the system’s use case. For example,062

sharing question-annotator and answer-annotator063

roles (Rajpurkar et al., 2016), which is detrimen-064

tal to emulate information seeking behavior (Choi065

et al., 2018). Finally, it gives systems the potential066

to evolve over time as the world changes (Lazari-067

dou et al., 2021; Zhang and Choi, 2021).068

Our simulation experiments show that user feed-069

back is an effective signal to continually improve070

QA systems across multiple benchmarks. For071

example, an initial system trained with a small072

amount of SQUAD (Rajpurkar et al., 2016) anno-073

tations (64 examples) improves from 18 to 81.6074

F1 score, and adapting a SearchQA (Dunn et al.,075

2017) system to SQUAD through user feedback076

improves it from 45 to 84 F1 score. Our study077

shows the impact of initial system performance,078

trade-offs between online and offline learning, and079

the impact of source domain on adaptation. These080

results create the base for future work that goes be-081

yond simulation to use feedback from human users082

to improve extractive QA systems. Our code will083

be made available upon publication.084

2 Learning and Interaction Scenario085

We study a scenario where a QA model learns from086

explicit user feedback. We formulate learning as a087

contextual bandit problem. The input to the learner088

is a question-context pair, where the context para-089

graph contains the answer to the question.The out-090

put is a span in the context paragraph that is the091

answer to the question.092

Given a question-context pair, the model predicts093

an answer span. The user then provides feedback094

about the model’s predicted answer, which is used095

to update the model parameters. We intentionally096

experiment with simple binary feedback and basic097

learning algorithms, to provide a baseline for what098

more advanced methods could achieve with as few099

assumptions as possible.100

Scenario Formulation Let a question q̄ be a se-101

quence of m tokens 〈q1, . . . , qm〉 and a context102

paragraph c̄ be a sequence of n tokens 〈c1, . . . , cn〉.103

An extractive QA model2 π predicts a span ŷ = 104

〈ci, . . . , cj〉 where i, j ∈ [1, n] and i ≤ j in the 105

context c̄ as an answer. When relevant, we denote 106

πθ as a QA model parameterized by θ. 107

We formalize learning as a contextual bandit 108

process: at each time step t, the model is given 109

a question-context pair (q̄(t), c̄(t)), predicts an an- 110

swer span ŷ, and receives a reward r(t) ∈ IR. 111

The learner’s goal is to maximize the total reward 112∑T
t=1 r

(t). This formulation reflects a setup where, 113

given a question-context pair, the QA system inter- 114

acts with users, who validate the model-predicted 115

answer in context, and provide feedback which is 116

mapped to a numerical reward. 117

Learning Algorithm We learn using policy gra- 118

dient. Our learner is similar to REINFORCE (Sut- 119

ton and Barto, 1998; Williams, 2004), but we use 120

arg max to predict answers instead of Monte Carlo 121

sampling from the model’s output distribution.3 122

We study online and offline learning, also re- 123

ferred to as on- and off-policy. In online learning 124

(Algorithm 1), the model identity is maintained be- 125

tween prediction and update; the parameter values 126

that are updated are the same that were used to gen- 127

erate the output receiving reward. This entails that 128

a reward is only used once, to update the model 129

after observing it. In offline learning (Algorithm 2), 130

this relation between update and prediction does 131

not hold. The learner observes reward, often across 132

many examples, and may use it to update the model 133

many times, even after the parameters drifted arbi- 134

trarily far from these that generated the prediction. 135

In practice, we observe reward for the entire length 136

of the simulation (T steps) and then update for 137

E epochs. The reward is re-weighted to provide 138

an unbiased estimation using inverse propensity 139

score (IPS; Horvitz and Thompson, 1952). We clip 140

the debiasing coefficient to avoid amplifying exam- 141

ples with large coefficients (line 10, Algorithm 2). 142

In general, offline learning is easier to implement 143

because updating the model is not integrated with 144

its deployment. Offline learning also uses a train- 145

ing loop that is similar to optimization practices in 146

supervised learning. This allows to iterate over the 147

data multiple times, albeit with the same feedback 148

2In bandit literature, the term policy is more commonly
used. We use the term model to align with the QA literature.

3Early experiments showed that sampling is not as bene-
ficial as arg max, potentially because of the relatively large
output space of extractive QA. Yao et al. (2020) made a simi-
lar observation for semantic parsing. Table 4 in Appendix A
provides experimental results with sampling.
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Algorithm 1 Online learning.
1: for t = 1 · · · do
2: Receive a question q̄(t) and context c̄(k)

3: Predict an answer ŷ(t) ← arg maxy πθ(y | q̄(t), c̄(t))
4: Observe a reward r(t)

5: Update the model parameters θ using the gradient
r(t)∇θ log πθ(ŷ

(t) | q̄(t), c̄(t))
6: end for

Algorithm 2 Offline learning.
1: for t = 1 · · ·T do
2: Receive a question q̄(t) and context c̄(t)

3: Predict an answer ŷ(t) ← arg maxy πθ(y | q̄(t), c̄(t))
4: p(t) ← πθ(ŷ

(t) | q̄(t), c̄(t))

5: Observe a reward r(t)

6: end for
7: for E epochs do
8: for t = 1 · · ·T do
9: Compute clipped importance-weighted reward ac-

cording to the current model parameters:
10: r′ ← clip(πθ(ŷ(t)|q̄(t),c̄(t))

p(t)
, 0, 1)r(t)

11: Update the model parameters θ using the gradient
r′∇θ log πθ(ŷ

(t) | q̄(t), c̄(t))
12: end for
13: end for

signal on each example. However, online learning149

often has lower regret as the model is updated after150

each interaction. It may also lead to higher overall151

performance, because as the model improves early152

on, it may observe more positive feedback overall,153

which is generally more informative. We empiri-154

cally study these trade-offs in Sections 5 and 6.155

Evaluating Performance We evaluate model156

performance using token-level F1 on a held-out test157

set, as commonly done in the QA literature (Ra-158

jpurkar et al., 2016). We also estimate the learner159

regret, a common measure for evaluating ban-160

dit learning. Intuitively, regret is the deficit suf-161

fered by the learner relative to the optimal model162

(i.e., policy) up to a specific time step. Regret163

is calculated with respect to the optimal model164

π∗ ∈ arg maxπ∈Π E(q̄,c̄,y,r)∼D[r], where Π is the165

set of all models andD is the data distribution. The166

cumulative regret at time T is:167

RT :=

T∑
t=1

r∗(t) −
T∑
t=1

r(t) , (1)168

where r(t) is the reward observed at time t and169

r∗(t) is the reward that the optimal model π∗ would170

observe. Minimising the cumulative regret is equiv-171

alent to maximising the total reward.4 Computing172

4Equivalently, the problem is often formulated as loss min-
imization (Bietti et al., 2018).

regret requires access to the an oracle π∗. We use 173

human annotation as an estimate (Section 3).5 174

Comparison to Supervised Learning In super- 175

vised learning, the data distribution is not depen- 176

dent on the model, but on a fixed training set 177

{(q̄(t), c̄(t), y(t)}Tt=1. In contrast, bandit learners 178

are provided with reward data that depends on 179

the model itself: {(q̄(t), c̄(t), ŷ(t), r(t))}Tt=1 where 180

r is the reward for the model prediction ŷ(t) = 181

arg maxy πθ(y | q̄(t), c̄(t)) at time step t. Such 182

feedback can be freely gathered from users inter- 183

acting with the model, while building supervised 184

datasets requires costly annotation. This learning 185

signal can also reflect changing task properties 186

(e.g., world changes) to allow systems to adapt, 187

and its origin in the deployed system use makes it 188

more robust to biases introduced during annotation. 189

3 Simulation Setup 190

We initialize our model with supervised data, and 191

then simulate bandit feedback using supervised 192

data annotations. Initialization is critical so the 193

model does not return random answers, which are 194

likely to all be bad because of the large output 195

space. We use relatively little supervised data from 196

the same domain for in-domain experiments (Sec- 197

tions 5 and 6) to focus on the data annotation re- 198

duction potential of user feedback. For domain 199

adaptation, we assume access to a large amount of 200

training data in the source domain, and no anno- 201

tated data in the target domain (Section 7). 202

Reward We use supervised data annotations to 203

simulate the reward. If the predicted answer span 204

is an exact match index-wise to the annotated span, 205

the learner observes a positive reward of 1.0, and 206

negative reward -0.1 otherwise.6 This reward signal 207

is more strict than QA evaluation metrics (token- 208

level F1 or exact match after normalization).7 209

Noise Simulation We study robustness by simu- 210

lating noisy feedback via reward perturbation: ran- 211

domly flipping the binary reward with a fixed prob- 212

ability of 8% or 20% as the noise ratio.8 213

5Our oracle is an estimate because of annotation noise and
ambiguity in exact span selection.

6We experimented with other reward values, but did not
observe a significant difference in performance (Appendix A).

7Normalization includes lowercasing, modifying spacing,
removing articles and punctuation, etc. NQ is an exception,
with an exact match measure that has similar strictness.

8Even without our noise simulation, the simulated feed-
back inherits the noise from the annotation, either from crowd-
sourcing or distant supervision.
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4 Experimental Setup214

Data We use six QA datasets that provide215

substantial amount of annotated training data216

taken from the MRQA training portion (Fisch217

et al., 2019): SQUAD (Rajpurkar et al., 2016),218

NewsQA (Trischler et al., 2017), SearchQA (Dunn219

et al., 2017), TriviaQA (Joshi et al., 2017), Hot-220

potQA (Yang et al., 2018), and NaturalQues-221

tions (NQ; Kwiatkowski et al., 2019). Table 7 in222

Appendix B provides dataset details. We compute223

performance measures and learning curves on de-224

velopment sets following prior work (Rajpurkar225

et al., 2016; Ram et al., 2021).226

Model We conduct experiments with a pretrained227

SpanBERT model (Joshi et al., 2020), which shows228

substantially better performance on QA tasks in229

contrast to comparable models. We fine-tune the230

pre-trained SpanBERT-base model during initial231

learning and our simulations.232

Implementation Details We use Hugging Face233

Transformers (Wolf et al., 2020). When training234

initial models with little in-domain supervised data235

(Section 5; Section 6), we use a learning rate of236

3e-5 with a linear schedule, batch size 10, and 10237

epochs. We obtain the sets of 64, 256, or 1024238

examples from prior work (Ram et al., 2021).9 For239

models initially trained on complete datasets (Sec-240

tion 7), we use a learning rate 2e-5 with a linear241

schedule, batch size 40, and four epochs.242

In simulation experiments, we use batch size 40.243

We turn off dropout, because all experiments simu-244

late interaction with users. For single-pass online245

learning experiments (Section 5; Section 7), we use246

a constant learning rate of 1e-5. For offline learn-247

ing experiments (Section 6), we train the model248

for three epochs on the collected feedback with a249

linear schedule learning rate of 3e-5.250

Online experiments with SQUAD, HotpotQA,251

NQ, and NewsQA take 2–4h each on one NVIDIA252

GeForce RTX 2080 Ti; 2.5–6h for offline. For253

TriviaQA and SearchQA, each online simulation254

experiment on one NVIDIA TITAN RTX takes255

4–9.5h; 9–20h for offline.256

5 Online Learning257

We simulate a scenario where only a limited258

amount of supervised data is available, and the259

model mainly learns from explicit user feedback260

9We use the seed 46 sets publicly available at https:
//github.com/oriram/splinter.

on predicted answers. We use 64, 256, or 1,024 261

in-domain annotated examples to train an initial 262

model. This section focuses on online learning, 263

where the learner updates the model parameters 264

after each feedback collection (Algorithm 1). 265

Figure 2 presents the performance of in-domain 266

simulation with online learning. The performance 267

pattern varies across different datasets. Bandit 268

learning consistently improves performance on 269

SQUAD, HotpotQA, and NQ across different 270

amounts of supervised data used to train the initial 271

model. The performance gain is larger with weaker 272

initial models (i.e., trained on 64 supervised exam- 273

ples): 63.6 on SQUAD, 42.7 on HotpotQA, and 274

40.0 on NQ. Bandit learning is not always effective 275

on NewsQA, TriviaQA, and SearchQA, especially 276

with weaker initial models. The may be attributed 277

to the quality of training set annotations, which 278

determines the accuracy of reward in our setup. 279

SearchQA and TriviaQA use distant supervision 280

to match questions and relevant contexts from the 281

web, likely decreasing reward quality in our setup. 282

While NewsQA is crowdsourced, Trischler et al. 283

(2017) report relatively low human performance 284

(69.4 F1), possibly indicating data challenges that 285

also decrease our reward quality. 286

Feedback Noise Simulation Figure 3 shows 287

learning curves with simulated noise via differ- 288

ent amounts of feedback perturbation (0%, 8%, 289

or 20%). When perturbation-free simulation is ef- 290

fective, models remain robust to noise: 8% noise re- 291

sults in small fluctuations of the learning curve, but 292

the final performance degrades minimally. Start- 293

ing with weaker initial models and learning with a 294

higher noise ratio may cause learning to fail (e.g., 295

simulation on SQUAD with 64 initial examples 296

and 20% noise). When online perturbation-free 297

simulation fails, online learning with noisy feed- 298

back fails too. Learning progression across datasets 299

shows that initial models trained with 1,024 exam- 300

ples can achieve peak performance with one third 301

or even one quarter of feedback provided. 302

Sensitivity Analysis Training Transformer- 303

based models has been shown to have stability 304

issues, especially when training with limited 305

amount of data (Zhang et al., 2021). Our 306

non-standard training procedure (i.e., one epoch 307

with a fixed learning rate) may further increase 308

instability. We study the stability of the learning 309

process using the challenging settings of using 310

initial models trained on 64 in-domain supervised 311

4
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Figure 2: Online in-domain simulation development F1 performance. Horizontal grey lines represent the super-
vised training performance on each dataset. Data labels in red are performance of initial models trained on 64, 256,
or 1024 examples (i.e., lighter bars). Darker bars and black data labels represent simulation performance. Lower
simulation performance (e.g., NewsQA 64+sim) indicate degradation in performance following simulation.
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Figure 3: Online in-domain simulation development F1 learning curves. X-axis is the number of examples with
feedback observed. “x w y” denotes initially training with x supervised in-domain examples and simulating with
y amount of feedback noise.

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

78.2(-3.4) 66.3(-1.2) 51.3(-10.5) 3.1(+2.0) 0.4(-17.1) 1.3(-1.8)

86.2(+4.2) 70.9(+3.3) 65.2(+0.7) 54.3(+1.2) 12.3(-8.3) 0.3(-68.1)

86.5(+1.3) 73.2(+2.7) 71.8(+3.9) 55.7(-0.6) 7.5(-54.6) 4.1(-66.2)

Table 1: Offline in-domain simulation development F1 performance. Numbers in parenthesis show the perfor-
mance gain (green) or decrease (red) of offline learning compared to online learning (Figure 2).

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

0.63 / 1.04 0.51 / 0.94 0.74 / 0.91 1.07 / 0.86 0.77 / 0.77 1.09 / 0.77

0.56 / 0.75 0.36 / 0.58 0.71 / 0.83 0.84 / 0.85 0.76 / 0.72 0.73 / 0.69

0.48 / 0.55 0.27 / 0.33 0.65 / 0.67 0.73 / 0.71 0.71 / 0.64 0.69 / 0.65

Table 2: Regret averaged by the number of simulation feedback examples in online/offline in-domain simulations.
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examples on HotpotQA and TriviaQA: the former312

shows significant performance gain while the313

latter shows the opposite. We experiment with314

five initial models trained on different sets of315

64 supervised examples, each used to initiate a316

separate simulation experiment. Four out of five317

experiments on HotpotQA show performance gains318

similar to what we observed so far, except one319

experiment that starts with very low initialization320

performance. In contrast, nearly all experiments321

on TriviaQA collapse (mean F1 of 7.3). We also322

conduct sensitivity analysis with stronger initial323

models trained with 1,024 examples, and observe324

that the final performance is stable across runs on325

both HotpotQA and TriviaQA (standard deviations326

are 0.5 and 2.6). Table 5 in Appendix B provides327

detailed performance numbers.328

6 Offline Learning329

We simulate offline bandit learning (Algorithm 2),330

where feedback is collected all at once with the331

initial model. The learning scenario follows the332

previous section: only a limited amount of super-333

vised data is available (64, 256, or 1,024 in-domain334

examples) to train initial models.335

Table 1 shows the performance of offline simu-336

lation experiments compared to online simulations.337

We observe mixed results. On SQUAD, HotpotQA,338

NQ, and NewsQA, offline learning outperforms339

online learning when using stronger initial mod-340

els (i.e., models trained on 256 and 1,024 exam-341

ples). This illustrates the benefit of the more stan-342

dard training loop, especially with our Transformer-343

based model that is best optimized with a linear344

learning rate schedule and multiple epochs, both345

incompatible with the online setup. On TriviaQA346

and SearchQA, offline simulation is ineffective re-347

gardless of the performance of initial models. This348

result echoes the learning challenges in the online349

counterparts on these two datasets.350

Online vs. Offline Regret Table 2 compares on-351

line and offline regret. Regret numbers are aver-352

aged over the number of feedback examples.10 On-353

line learning generally displays lower regret for354

similar initial models on SQUAD, HotpotQA, and355

NQ. This is expected because later interactions in356

the simulation can benefit from early feedback in357

online learning. In contrast, in our offline scenario,358

we only update after seeing all examples, so regret359

10Table 8 in Appendix B lists the percentage of positive
feedback in online and offline in-domain simulation.

numbers depend on the initial model only. Re- 360

gret results on NewsQA, TriviaQA, and SearchQA 361

are counterintuitive, generally showing that online 362

learning has similar or higher regret. The cases 363

showing significantly higher online regret (64+sim 364

on NewsQA and SearchQA) can be explained by 365

the learning failing, which impacts online regret, 366

but not our offline regret. The others are more com- 367

plex, and we hypothesize that they may be because 368

of combination of (a) inherent noise in the data;11 369

and (b) in cases where online learning is effective, 370

the gap between the strictly-defined reward that is 371

used to compute regret and the relaxed F1 evalua- 372

tion metric. Further analysis is required for a more 373

conclusive conclusion. 374

7 Domain Adaptation 375

Learning from user feedback creates a compelling 376

avenue to deploy systems that target domains not 377

addressed by existing datasets. The scenario we 378

simulate in this section starts with training a QA 379

model on a complete existing annotated dataset, 380

and deploying it to interact with users and learn 381

from their feedback in a new domain. We do not 382

assume access to any annotated training data in 383

the target domain. We report experiments with 384

online learning. Offline adaptation experiments are 385

discussed in Appendix B.3. 386

Figure 4 shows online domain adaptation perfor- 387

mance. On 22/30 configurations, online adaptation 388

introduces significant performance gains (>2 F1 389

score). For example, adapting from TriviaQA and 390

SearchQA to the other four domains improves per- 391

formance by 27–72.8 F1. On HotpotQA, the model 392

initially trained on TriviaQA shows an impressive 393

adaptation, improving from 0.2 F1 to 73 F1.12 394

Our simulations show reduced effectiveness 395

when the target domain is either TriviaQA or 396

SearchQA, likely because the simulated feedback 397

is based on noisy distantly supervised data. For 398

SearchQA, the low performance of initial mod- 399

els from other domains may also contribute to the 400

adaptation failure. As expected, this indicates the 401

effectiveness of the process depends on the relation 402

between the source and target domains. SearchQA 403

seems farthest from the other domains, mirroring 404

observations from prior work (Su et al., 2019). 405

11TriviaQA and SearchQA use distant supervision for data
collection. While NewsQA is crowdsourced, Trischler et al.
(2017) report relatively low human performance.

12We replicate this result with different model initializations
to confirm it is not random.
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Figure 5: Online domain adaptation simulation development F1 learning curves. X-axis is the number of examples
with feedback observed. Colors denote the source domain.

Figure 5 shows learning curves for our simula-406

tion experiments. Generally, we observe the choice407

of source and target domains influences adapta-408

tion rates. Models quickly adapt to SQUAD, Hot-409

potQA, and NQ, reaching near final performance410

with a quarter of the total feedback provided. On411

NewsQA, models initially trained on TriviaQA412

and SearchQA adapt slower than those initially413

trained on other three datasets. On TriviaQA, we414

observe little change in performance throughout415

simulation. On SearchQA, only the model initially416

trained on TriviaQA shows a performance gain.417

Both SearchQA and TriviaQA include context para-418

graphs from the web, potentially making domain 419

adaptation from one to the other easier. 420

Lastly, we compare bandit learning with initial 421

models trained on a small amount of in-domain 422

data (Section 5) and initial models trained on a 423

large amount of out-of-domain data. Table 3 com- 424

pares online learning with initial models trained 425

on 1,024 in-domain supervised examples and on- 426

line domain adaptation with a SQUAD-initialized 427

model. SQUAD initialization provides a robust 428

starting point for all datasets except SearchQA. On 429

four out of five datasets, the final performance is 430

better with SQUAD-initialized model. This is po- 431
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Dataset In-domain SQUAD-initialized

HotpotQA 66.2→ 70.5 66.7→ 75.9
NQ 61.8→ 67.9 61.0→ 71.8
NewsQA 55.1→ 56.3 60.4→ 62.0
TriviaQA 34.2→ 62.1 67.6→ 67.9
SearchQA 65.0→ 70.3 23.5→ 4.2

Table 3: Online learning development F1 Comparison
between in-domain with initial models trained on 1,024
supervised examples, and adaptation with SQUAD as
the source domain. Each entry provide performance be-
fore (right-side of arrow) and after (left-side) feedback
simulation. Higher before/after performance is in bold.

tentially because the model is exposed to different432

signals from two datasets and overall sees more433

data, either as supervised examples or through434

feedback. However, on SearchQA, learning with435

SQUAD-initialized model performs much worse436

than learning with the initial model trained on 1,024437

in-domain examples, potentially because of the gap438

in initial model performance (23.5 vs. 65 F1).439

8 Related Work440

Bandit learning has been applied to a variety of441

NLP problems including neural machine transla-442

tion (NMT; Sokolov et al., 2017; Kreutzer et al.,443

2018a,b; Mendoncca et al., 2021), structured pre-444

diction (Sokolov et al., 2016), semantic pars-445

ing (Lawrence and Riezler, 2018), intent recog-446

nition (Falke and Lehnen, 2021), and summariza-447

tion (Gunasekara et al., 2021). Human feedback448

has been studied as a direct learning signal for449

NMT (Kreutzer et al., 2018b; Mendoncca et al.,450

2021), semantic parsing (Lawrence and Riezler,451

2018), summarization (Stiennon et al., 2020), and452

dialogue (Jaques et al., 2020). Nguyen et al. (2017)453

simulates bandit feedback to improve an MT sys-454

tem fully trained on a large annotated dataset, in-455

cluding analyzing robustness to feedback pertur-456

bations. Our work shows that simulated bandit457

feedback is an effective learning signal for extrac-458

tive question answering tasks. Our work differs459

in focus on reducing annotation costs by relying460

on few annotated examples only to train the initial461

model, or by eliminating the need for in-domain462

annotation completely by relying on data in other463

domains to train initial models.464

Alternative forms of supervision for QA have465

been explored in prior work, such as explicitly pro-466

viding fine-grained information (Dua et al., 2020;467

Khashabi et al., 2020a). Kratzwald et al. (2020)468

resembles our setting in that it seeks binary feed-469

back to replace span annotation, but their goal is 470

to create supervised data more economically. Do- 471

main adaptation for QA has been studied in prior 472

work (Fisch et al., 2019; Khashabi et al., 2020b), in- 473

cluding using data augmentation (Yue et al., 2021), 474

adversarial training (Lee et al., 2019), contrastive 475

method (Yue et al., 2021), back-training (Kul- 476

shreshtha et al., 2021), and exploiting small lottery 477

subnetworks (Zhu et al., 2021). 478

9 Conclusion 479

We present a simulation study of learning from 480

user feedback for extractive QA. We formulate the 481

problem as contextual bandit learning. We con- 482

duct experiments to show the effectiveness of such 483

feedback, the robustness to feedback noise, the im- 484

pact of initial model performance, the trade-offs 485

between online and offline learning, and the po- 486

tential for domain adaptation. Our study design 487

emphasizes the potential for reducing annotation 488

costs by annotating few examples or by utilizing 489

existing datasets for new domains. 490

We intentionally adopt a basic setup, including 491

a simple binary reward and vanilla learning algo- 492

rithms, to illustrate what can be achieved with a rel- 493

atively simple variant of the contextual bandit learn- 494

ing scenario. Our results already indicate the strong 495

potential of learning from feedback, which more ad- 496

vanced methods are likely to further improve. For 497

example, the balance between online and offline 498

learning can be further explored using proximal 499

policy optimization (PPO; Schulman et al., 2017) 500

or replay memory (Mnih et al., 2015). With well- 501

designed interface, human users may be able to 502

provide more sophisticated feedback (Lamm et al., 503

2021), which will provide a stronger signal com- 504

pared to our binary reward. 505

Our aim in this study is to lay the foundation for 506

future work, by formalizing the setup and show- 507

ing its potential. This is a critical step in enabling 508

future research, especially going beyond simula- 509

tion to study using real human feedback for QA 510

systems. Another important direction for future 511

work is studying user feedback for QA systems 512

that do both context retrieval and answer genera- 513

tion (Lewis et al., 2020), where assigning the feed- 514

back to the appropriate stage in the process poses 515

a challenge. Beyond extractive QA, we hope our 516

work will inspire research of user feedback as a 517

signal to improve other types of NLP systems. 518
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Dataset arg max Sampling

SQUAD 80.0 73.6
HotpotQA 65.7 56.8
NQ 64.8 62.9

Table 4: Comparison of final F1 development scores
between arg max and sampling in online simulation
with initial models trained on 256 supervised in-
domain examples.

A Additional Discussion713

Reward Function Intuitively, partial credit re-714

ward may improve learning over binary rewards.715

We experiment with using F1 score of the pre-716

dicted answer span as a more refined feedback.13 In717

practice, using F1 as feedback does not introduce718

stronger learning signals, potentially because the719

distribution over F1 scores is bimodal on extreme720

values: around 85 % F1 scores are either 0 or 1 for721

predicted spans from a SQUAD-trained model on722

8% NQ training data. We observe similar trends723

on all six datasets across all setups. Experiments724

with BLEU score (Papineni et al., 2002) as feed-725

back show similar conclusion and distribution to726

F1 score.727

Perturbation In practice, noise in feedback is728

likely to be more systematic than the statistical729

simplification which defines noise as the random730

percentage of wrong feedback. For example, prior731

work (Nguyen et al., 2017) on bandit neural ma-732

chine translation (NMT) proposes that noisy human733

feedback is granular, high-variance, and skewed,734

which can be approximated by mathematical func-735

tions and shows to significantly impact the bandit736

NMT learning. We experiment with the three per-737

turbation functions from Nguyen et al. (2017) on738

F1 reward. Our experiments show that the effect739

of adding these perturbation functions is negligi-740

ble. We hypothesize that the reward distribution for741

NMT is likely to be closer to a normal distribution,742

rather than a bimodal one like QA.743

B Additional Experiments744

B.1 Method of Sampling745

While arg max can bias towards exploitation, sam-746

pling can encourage more exploration. We exper-747

iment with prediction via arg max and sampling748

13We set the reward as -0.1 if receiving a 0 F1 score. In
general, updating with negative rewards consistently shows a
slightly higher performance across different setups for both
binary and F1 reward.

from the output distribution over spans. Table 4 749

shows that arg max performs better than random 750

sampling on three datasets. This set of experiments 751

is conducted with batch size 80. 752

B.2 Sensitivity Analysis 753

Table 5 shows the sensitivity analysis results for 754

online in-domain simulation on HotpotQA and 755

TriviaQA. We experiment with five initial models 756

trained on different sets of 64 or 1,024 supervised 757

examples, each used to initiate a separate simula- 758

tion experiment. For weaker initial models trained 759

on 64 supervised examples, four out of five experi- 760

ments on HotpotQA show performance gains simi- 761

lar to our main results, except one experiment that 762

starts with a very low initialization performance. 763

Nearly all experiments on TriviaQA collapse (mean 764

F1 of 7.3). Our sensitivity analysis with stronger 765

initial models trained on 1,024 examples shows 766

that the final performance is stable across runs on 767

both HotpotQA and TriviaQA (standard deviations 768

are 0.5 and 2.6). 769

B.3 Offline Adaptation 770

We perform domain adaptation with offline learn- 771

ing, and compare its performance with online adap- 772

tation. Table 6 shows the performance gain of of- 773

fline adaptation simulation compared to the online 774

setup. In most settings, online learning proves to be 775

more effective, possibly because it observes feed- 776

back from partially adapted model predictions. In 777

a few settings (4/30), we observe better adaptation 778

with offline settings (+1.1 to +4.6). Overall, we 779

observe that online learning is more effective on 780

domain adaptation, while offline adaption performs 781

slightly better when both domains are related (e.g., 782

same source domain). 783
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Setup 64 + sim 1024 + sim
HotpotQA TriviaQA HotpotQA TriviaQA

42 16.4→ 66.8 16.6→ 3.3 66.1→ 71.5 55.1→ 58.9
43 15.9→ 69.7 24.0→ 3.4 65.3→ 71.6 63.0→ 65.0
44 18.1→ 68.8 23.3→ 2.4 66.4→ 71.3 58.0→ 65.1
45 6.7→ 1.4 22.8→ 9.9 65.1→ 71.9 60.8→ 64.2
46 24.8→ 67.5 16.2→ 17.4 66.2→ 70.5 34.2→ 62.1

µσ 16.46.5 → 54.829.9 20.63.8 → 7.36.4 65.80.6 → 71.40.5 54.011.4 → 63.12.6

Table 5: Sensitivity analysis Development F1 scores of online in-domain simulation on HotpotQA and TriviaQA
with initial models trained on 64 or 1024 examples. Each row corresponds to a different random seed and a
different set of initial model training examples. x→ y denotes that the performance changes from x to y after the
model learns from feedback. Bottom row reports the mean and standard deviation across the five runs.

Sim+Eval\Pre-Train SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

SQuAD 88.1(+1.3) 89.0(+1.1) 85.9(-2.8) 78.2(-8.5) 81.3(-3.1)
HotpotQA 75.1(-0.8) 73.7(-1.1) 69.6(-3.6) 56.6(-16.4) 68.1(-4.2)
NQ 69.1(-2.7) 67.3(+4.6) 64.7(-7.6) 42.2(-25.6) 52.6(-14.6)
NewsQA 59.3(-2.7) 48.4(-10.9) 48.5(-12.5) 0.1(-57.5) 45.6(0.3)
TriviaQA 62.5(-5.4) 66.6(-3.1) 9.5(-58.4) 3.2(-61.9) 70.2(-2.0)

Table 6: Offline domain adaptation simulation development F1 performance. Numbers in parenthesis show the
performance gain (green) or decrease (red) of offline learning compared to online learning (Figure 4). We omit
offline adaptation to SearchQA.

Dataset Train Dev Question (Q) Context (C) Q ⊥⊥ C

SQuAD 86,588 10,507 Crowdsourced Wikipedia 7
HotpotQA 72,928 5,904 Crowdsourced Wikipedia 7
NQ 104,071 12,836 Search logs Wikipedia 3
NewsQA 74,160 4,212 Crowdsourced News articles 3

TriviaQA♠ 61,688 7,785 Trivia Web snippets 3

SearchQA♠ 117,384 16,980 Jeopardy Web snippets 3

Table 7: Dataset statistics. ♠-marked datasets use distant supervision to match questions and contexts. Q ⊥⊥ C is
true if the question was written independently from the passage used for context.

Setup

64+sim
256+sim
1024+sim

SQuAD HotpotQA NQ NewsQA TriviaQA SearchQA

0.43/0.05 0.54/0.14 0.32/0.18 0.03/0.22 0.30/0.30 0.01/0.30

0.49/0.32 0.67/0.48 0.36/0.25 0.23/0.23 0.31/0.34 0.34/0.37

0.56/0.50 0.75/0.70 0.41/0.39 0.34/0.36 0.35/0.42 0.38/0.41

Table 8: Percentage of positive examples in online/offline in-domain simulation in one pass on the training set.
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