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Abstract

Contextual bandit learning is increasingly favored in modern large-scale recommen-
dation systems. To better utilize the contextual information and available user or
item features, the integration of neural networks have been introduced to enhance
contextual bandit learning and has triggered significant interest from both academia
and industry. However, a major challenge arises when implementing a disjoint neu-
ral contextual bandit solution in large-scale recommendation systems, where each
item or user may correspond to a separate bandit arm. The huge number of items
to recommend poses a significant hurdle for real world production deployment. This
paper focuses on a joint neural contextual bandit solution which serves all recom-
mending items in one single model. The output consists of a predicted reward µ, an
uncertainty σ and a hyper-parameter α which balances exploitation and exploration,
e.g., µ + ασ.
The tuning of the parameter α is typically heuristic and complex in practice due
to its stochastic nature. To address this challenge, we provide both theoretical
analysis and experimental findings regarding the uncertainty σ of the joint neural
contextual bandit model. Our analysis reveals that α demonstrates an approximate
square root relationship with the size of the last hidden layer F and inverse square
root relationship with the amount of training data N , i.e., σ ∝

√
F
N . The experi-

ments, conducted with real industrial data, align with the theoretical analysis, help
understanding model behaviors and assist the hyper-parameter tuning during both
offline training and online deployment.

1 Introduction

The Bandit algorithms (Lattimore & Szepesvári, 2020) as part of the reinforcement learning algo-
rithms family (Sutton & Barto, 1998) have emerged as powerful tools and favored approaches in
the realm of large-scale recommendation systems (Elena et al., 2021). A plethora of bandit learning
algorithms has emerged, including various methodologies such as non-contextual upper confidence
bound (UCB), linear contextual upper confidence bound, neural network-based bandits, and epis-
temic neural recommendation algorithms (Li et al., 2010; Zhou et al., 2020; Xu et al., 2020; Zhu &
Van Roy, 2023; Guo et al., 2023; Nguyen-Thanh et al., 2019; Huang et al., 2022; Zhu et al., 2023;
Silva et al., 2022; Zheng et al., 2018). The bandit solution balances exploration and exploitation by
iteratively selecting actions based on estimated rewards and uncertainties. Initial parameters are
set, and for each round, actions are chosen based on the corresponding reward’s posterior distri-
bution. This way, rewards are observed and model parameters are updated iteratively. Extensive
analysis had been conducted mostly on regret of these bandit algorithms (Beygelzimer et al., 2017;
Bubeck et al., 2012; Lu et al., 2020). Some examples of early adoptions of bandit solutions in video
recommendations are described in Covington et al. (2016); Gomez-Uribe & Hunt (2015), and then
some further developments as in Guo et al. (2020); Zhang et al. (2022).

Among those literatures, the pioneer work of linear bandit algorithm described in Li et al. (2010)
assumes a linear relationship between contextual features and the expected rewards. During this
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process, a linear matrix need to be maintained iteratively and its inverse need to be calculated which
is computation heavy (Tveit, 2003). Based on this pioneer work, to further utilize the power of deep
learning and to introduce non-linearity, some works such as Xu et al. (2020); Zhou et al. (2020)
extended linear bandit with a neural network to pre-process the raw features before they are fed to
the linear bandit module. The raw features are transformed by an multi layer perception (MLP)
module and the output of the MLP’s last hidden layer are fed to a classical linear contextual module.

In some large-scale recommendation systems, the sheer volume of items to be recommended, often
numbering in the millions, presents a considerable challenge. Consequently, training and deploying a
disjoint neural contextual bandit solution, where each item may be treated as a bandit arm1, requests
the maintenance of millions or even billions of matrices and as a result may prove impractical. An
alternative approach, where there is no need for training a deep learning model, entails utilizing a
non-contextual UCB algorithm (Nguyen-Thanh et al., 2019; Guo et al., 2023) with feature clusters.
In such approaches, users or items can be clustered by available features, and then each cluster is
treated as a bandit arm. Such non-neural network approaches still come with some drawbacks, e.g.,
the features may not be most efficiently utilized, and clustering may not be updated timely.

On the other hand, a joint deep neural network bandit is able to both utilize features efficiently and
avoid maintaining an individual matrix for each recommending item. In such solution, the score for
all items follows the same format: a predicted reward µ, an associated uncertainty σ and a critical
hyper-parameter α which governs the balance between exploration and exploitation. From this
single model, the score µ + ασ can be generated for each item. The uncertainty term σ is inherently
stochastic and fluctuates during both training and deployment phases. This poses challenges in real
industrial deployment for determining the optimal value of α , because α balances µ with σ where
the value range of the former may be prior known approximately2 but the latter may not. Usually in
production the tuning of α often relies on heuristic methods and is lack of theoretical justification.
This paper aims to address this gap. By delving into the theoretical investigations and empirical
observations, this study endeavors to enhance the understanding of how a joint neural contextual
bandit model operates, and offer valuable insights into the effective tuning of the hyper-parameter.

The remainder of the paper is organized as follows: Section 2 describes the joint neural contextual
bandit solution, analyzing feature distribution and uncertainty fluctuation. Section 3 presents the
experimental results obtained from industrial data. Finally, Section 4 concludes this work.

2 Joint Neural Contextual Bandit and Uncertainty

2.1 Joint neural contextual bandit

A joint neural contextul bandit model architecture consists of two modules: a multi-layer perception
(MLP) or neural network module which consumes the raw features and outputs processed features
f , and a linear bandit module which consumes f and outputs predicted reward µ and uncertainty σ.
This architecture is depicted in Fig. 1. All items to be recommended share the same model, i.e., only
one MLP module need to be trained, and only one matrix inverse in the linear bandit module need to
be maintained. The MLP module with the trainable bottom layers can be updated through gradient
descent and back-propagation by leveraging the optimizers of modern deep learning frameworks such
as PyTorch, TensorFlow or MXNet(Paszke et al., 2019; Chen et al., 2015; Pang et al., 2020). In
contrast, the linear module constituting the final layer, is not updated through gradient descent but
via matrix computations and matrix inverse operations. These matrix operations can be accelerated
by modern matrix algorithms (Courrieu, 2008) but are still with considerable computation cost.
Fortunately, in a joint neural contextual bandit model we maintain only one single such matrix for
all recommending items.

Refer to Fig. 1, officially each training data point contains a raw feature vector and a scalar reward.
The raw feature vector goes through MLP module which outputs f ∈ RF ×1 as a processed feature

1Depending on the scenario, item or user, or even <user, item> pair maybe considered as a bandit arm.
2In our application, reward is conversion rate which is prior known to be mostly within a specific range, e.g., 0 0.1.
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Figure 1: Joint neural contextual bandit.

vector matching the size of the last hidden layer of the MLP module. Name F ∈ RF ×N as a stack
of N feature vectors from N training data points, then we have a linear fitting problem

y = FT w + e (1)

where y ∈ RN×1 is the ground truth reward, FT ∈ RN×F is the stack of MLP processed features,
w ∈ RF ×1 is the linear weights to be derived, and e ∈ RN×1 is fitting error. By finding the optimal
w, we can derive the joint contextual bandit algorithm as{

µw =
(
FFT + γI

)−1 Fy

Σw =
(
FFT + γI

)−1 (2)

Here µw ∈ RF ×1 and Σw ∈ RF ×F . The scaling factor γI ∈ RF ×F is related to the Gaussian
assumption on prior distribution of weights, Prob(w). As regularization item it can help reduce
overfitting. Also, it avoids numerically instability in case of inverting a low rank matrix 3. More
details to derive Eq. 2 refer to Appendix A and B.

On an inference data, we get its predicted reward and uncertainty through its feature vector f by{
µ = fT µw = fT

(
FFT + γI

)−1 Fy

σ2 = fT Σwf = fT
(
FFT + γI

)−1 f
(3)

Eventually the uncertainty is derived as σ =
√

fT (FFT + γI)−1 f and it can be used for exploration
together with hyper-parameter α to form µ + ασ.

2.2 Features distribution and approximation

For a data point, the MLP output f consists of two components, a centroid x and a variant n:

f = x + n (4)

where x is common to all data and normalized

xT x = ∥x∥2 = 1 (5)
3In real industrial scenario, this identity matrix is not critical because features are not identical and as a result

the matrix will not be low rank. Further, in case of inverting a low rank matrix, the Moore-Penrose inverse or
torch.linalg.pinv can be applied to avoid numerical stability issue.
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while n is a vector of independent and identically distributed (i.i.d.) random variables from normal
distribution with zero mean. More officially, n = (n1, . . . , nf , . . . , nF ) where each nf follows

nf ∼ i.i.d. N (0, σ2
n) (6)

This assumption is based on several observations. Different items can share some commonness due
to the same data collection policy. Further, f is the output of the last hidden layer of well trained
MLP module. Due to the central limit theorem, assuming the network has a large number of
neurons and the inputs are sufficiently complex, then the combination of non-linear transformations
and homogeneous training leads to the outputs of the last hidden layer of a well-trained MLP
approximately following i.i.d. normal distribution.

With the features of multiple data points F = [f1, · · · , fN ] ∈ RF ×N where F = X + N and X =
[x, · · · , x] ∈ RF ×N , N = [n1, · · · , nN ] ∈ RF ×N , we have

FFT = (X + N) (X + N)T = (X + N) (X + N)T = XXT + XNT + NXT + NNT (7)

That is, N is the delta to the feature centroids X. When it is small, we have approximately F ≈ X.
Note X has identical columns as all data points share the same centroid. N does not have identical
columns. Statistically, the expectation of A is

E
(
FFT

)
= E

(
XXT + XNT + NXT + NNT

)
= E

(
XXT

)
+ IΣn (8)

Without loss of generality and for simplicity, our analysis assumes the variance in each MLP output
dimension is uniform, Σn = Diag [σ1 · · · σF ] where σ1 = · · · = σF = ϵ. This reduces Eq. 8 into

E
(
FFT

)
= E

(
XXT

)
+ ϵI (9)

Usually there is also a regularization term γI which comes from the prior assumption of w as in
Eq. 2 and 3, but it can be mathematically merged into ϵI as one single term for simplicity. From
here, we name

A = XXT (10)

and focus on the analysis of XXT + ϵI (or XXT + γI, indistinguishable between these two) without
losing generality.

2.3 Uncertainty of the special case : inference data with f = x

In a special case when the feature vector is identical, i.e., the variance of feature f being zero, we
have f = x, n = 0 and

(A + ϵI)x =
(
XXT + ϵI

)
x =

(
NxxT + ϵI

)
x = NxxT x + ϵIx = Nx + ϵx = (N + ϵ)x (11)

where N is the number of training data points. Eq. 11 means

λ = N + ϵ (12)

where λ is the eigenvalue of A + ϵI and its corresponding eigenvector is x. When matrix inverse
exists, the eigenvalues of the inverse matrix are equal to the inverse of the eigenvalues of the original
matrix4, we get

(A + ϵI)−1x = 1
N + ϵ

x (13)

4In our experiments, features of different items are different, and the regularization item ϵ inside XXT + ϵI is set
to non-zero. Thus the inverse (A + ϵI)−1 always exist.
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and then straightforwardly

xT (A + ϵI)−1x = xT 1
N + ϵ

x = 1
N + ϵ

xT x = 1
N + ϵ

∥x∥2 = 1
N + ϵ

(14)

σ = 1√
xT (A + ϵI)−1x

= 1√
N + ϵ

(15)

When our training data amount N is huge such as thousands or even millions Eq. 15 approximately
reduces to σ ≈ 1√

N
. That is, uncertainty linearly decreases with the increase of square root of

training data amount5.

2.4 Uncertainty of the general case: inference data with f ̸= x

A more general case is that the feature vector consists of both centroid and variation, i.e., f = x+n.
In this case we have

σ2 = fT (A + ϵI)−1f

= (x + n)T (A + ϵI)−1 (x + n)
= xT (A + ϵI)−1x + xT (A + ϵI)−1n + nT (A + ϵI)−1x + nT (A + ϵI)−1n (16)

Due to E (n) = 0, we have6

E
(
xT (A + ϵI)−1n

)
= E

(
nT (A + ϵI)−1x

)
= 0 (17)

and then approximately Eq. 16 reduces to 7

σ2 ≈ xT (A + ϵI)−1x + nT (A + ϵI)−1n = 1
N + ϵ

+
˜∥n∥

2

N + ϵ
= 1 + σñ

N + ϵ
(18)

Here the term nT (A+ϵI)−1n is represented by ˜∥n∥
2
. A is constant because of X being the centroid,

and n follows a stable distribution, thus σñ is stable and can be treated as a constant. When the
amount of training data is huge, we can ingore ϵ and approximately get

σ ∝ N− 1
2 (19)

Further, the argument vector f has shape F , and as a result its corresponding quadratic form
fT (A + ϵI)−1f in nature is proportional to the magnitude F . That is, the σ2 is approximately
proportional to the MLP output layer size:

σ ∝
√

F (20)

More details can be found in Appendix C. Eventually we have

σ ∝
√

F

N
(21)

where F is the MLP output layer size and N is the training data amount8.

Due to the fact that the MLP as a deep learning module not being transparent, we do not have
variance information of the distribution of the MLP output. In practice, we can introduce a heuristic
scaling hyper-parameter C and get σ ∝ C

√
F/N . The heuristic value of C may depend on specific

use case, its training dataset and feature variance.
5Intuitively, this is because feature vectors across huge amount of data points are correlated since they share the

same centroid component, but the variation component is random across multiple data points.
6Particularly, with a larger F the MLP last layer size, xT (A + ϵI)−1n or nT (A + ϵI)−1x approaches to 0+ .
7We always have nT (A + ϵI)−1n > 0 because (A + ϵI)−1 is Hermitian and n ̸= 0, as a result the quadratic form

nT (A + ϵI)−1n > 0. Shortly, n can be decomposed into two components within Range(x) and its orthogonal space
Range(x)⊥ respectively, then the component in Range(x) counts for ˜∥n∥2. For brevity, more details are not included.

8Note we cannot directly reuse the logic in Eq. 11 ∼ Eq. 15 to conclude that σ is only related to N but unrelated
to F , because F does not have identical columns (while X does). In the analysis of σ2 = fT (A + ϵI)−1f it is the
variation component n that mostly contributes to σ ∝

√
F .
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3 Experiment Set Up and Results

In our experiment, we adopted a neural contextual bandit model as in Fig 1 and the output consists
of a predicted reward µ and an uncertainty σ. The predicted reward is predicted average conversion
rate (CVR). Since CVR is usually very small, our µ is mostly in range of 0.0 to 0.1. In our experiment,
we adopted various amount of training data N and various MLP output layer sizes F .

In Fig 2, we set a very small α = 0.01 with little exploration where the model’s output µ + ασ is
dominated by exploitation. The output is mostly in the range of 0 to 0.1, basically same as the range
of µ, because of this small α. On the contrary, we emphasize exploration in Fig 3 where a very large
value of α = 100 is adopted. The output is dominated by uncertainty σ over the predicted reward µ.
Overall, Figures 2 and 3 together show that α can hugely affect the model’s final output. In order
to best configure α, we need to know the approximate value range of µ and σ. The former term, µ,
is relatively stable during both training and deployment because it is predicted CVR and we prior
know its rough range. Thus, the anticipation of uncertainty term σ is of critical importance to tune
the model’s hyper-parameter α so that we can reasonably balance up exploration with exploitation.

Fig. 4 shows uncertainty σ with different MLP output size F = 32, 64, 128, 256, 512, 1024. It is seen
that the uncertainty σ increases proportionally to the square root of F , approximately following
σ ∝

√
F . This result matches analysis and provides some guidance for us to pre-hand decide the

size of last hidden layer. Fig. 5 shows the uncertainty monotonically decreases as the square root
of N increases, approximately following σ ∝ 1√

N
. This is very useful in direction of our planning of

offline training and online test. In real application, we first train a model with offline logged data,
and then we put model to online serving wherein the model is updated with new data daily. It is
the online stage that we need a reasonable anticipation of the future value of uncertainty σ, so as to
instruct the configuration of a long term α. Further, in some industry scenarios, due to serving and
infrastructure limitations, it is not preferred to frequently change model hyper-parameters such as
α. Instead, it is preferred to set a semi-permanent α without changing it too often. Fig 5 shows the
uncertainty drops very quickly at the very beginning with a limited amount of training data, and
then it decreases very slowly. This encourage us to adopt some aggressive α during offline training
stage, and then we can deploy the trained model to online serving without having to make change
to α as the serving infrastructure does not favor such change.

In the industrial pipeline, it may be unfavorable or tricky to change model parameters like α during
online serving. We first train with offline data, record the values of σ, N , F , and then we can figure
out an heuristic value of the hyper-parameter C as in σ = C

√
F
N by the end of offline training.

Then we can use this heuristic value to estimate future σ during online serving. For example, we
initially set some α value and trained model with 200,000 offline data, and during online serving
stage we will have 20,000 new training data daily. Based on the offline observation of α, we can
anticipate that after 5 days of serving the uncertainty will drop from about 0.09 to 0.07 in Fig 5.
Further, we can anticipate after two months the uncertainty will drop to 0.004. Suppose we wish
to keep uncertainty to be no smaller than 0.04 after a couple of months serving, then at the very
beginning we should scale up α to 10 times larger based on our future expectation of σ. This example
shows how our findings can conveniently instruct our offline configuration and online tuning so as
to balance exploration with exploitation.

4 Conclusion

In this work, we depicted a joint neural bandit solution whose output consists of a predicted re-
ward term and an uncertainty term, and then presented the challenges of its deployment due to the
unknown fluctuation of the uncertainty term. To fill in this gap, we provided theoretical analysis
of uncertainty, together with experimental results conducted from real-world industrial data. Our
experimental observations align with theoretical analysis, demonstrating that the uncertainty mono-
tonic decreases proportional to the square root of historical data amount, and monotonic increases
proportional to the square root of the final hidden layer size. These results serve to guide the de-
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Figure 2: Model’s output prediction µ + ασ with α = 0.01.

Figure 3: Model’s output prediction µ + ασ with α = 100.

velopment and deployment of joint neural contextual bandit solution in large-scale recommendation
systems, and helps to instruct the tuning of key hyper-parameter to balance up exploitation with
exploration.
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A Derivation of µw

By optimizing the posterior distribution

arg max
w

J(w) = arg max
w

Prob (w|F, y)
posterior

∝ Prob (y|F, w)
likelihood

· Prob(w)
prior

(22)

the solution to w can be derived. More detailed, with a log operation and Gaussian assumptions,
and by maximizing J against w we have

∇J = ∇
((

y − FT w
)T (

y − FT w
)

+ γwT w
)

= ∇
(
yT y + wT FFT w − yT FT w − wT Fy + γwT w

)
= 2FFT w − 2Fy + 2γw = 0 (23)

which directly gives the estimation of w as

µw =
(
FFT + γI

)−1 Fy (24)
(25)

B Derivation of Σw

This part gets the variance of linear weights w. For simplicity, re-write µw as

µw =
(
FFT + γI

)−1 Fy = My (26)

where M =
(
FFT + γI

)−1 F, M ∈ RF ×N , y ∈ RN×1, then the variance of w is expressed as

Σw = MΣyMT

= ΣyMMT

=
(
FFT + γI

)−1 FFT
((

FFT + γI
)−1)T

=
(
FFT + γI

)−1 FFT
(
FFT + γI

)−1

=
(
FFT + γI

)−1 (
FFT + γI − γI

) (
FFT + γI

)−1

=
(
FFT + γI

)−1 (
FFT + γI

) (
FFT + γI

)−1 − γI
(
FFT + γI

)−1 (
FFT + γI

)−1 (27)

=
(
FFT + γI

)−1 − γ
(
FFT + γI

)−1 (
FFT + γI

)−1 (28)

wherein Σy = ϵI is a scaled identity matrix and for simplicity we can assume ϵ = 1 without losing
generality. Now given a new data point f for inference, we can get uncertainty as σ = fT Σwf . Name
the eigen value of matrix

(
FFT + γI

)
as λ, we get the eigen value of matrix

(
FFT + γI

)−1 as λ−1.
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As analyzed in the previous session, it is approximately λ−1 ≈ 1
N+γ which is a infinitesimal associated

with data amount N . Thus, λ−2 can be negligible compared to λ−1. Then we have uncertainty as

σ = fT Σwf

= fT
(
FFT + γI

)−1 f − γfT
(
FFT + γI

)−1 (
FFT + γI

)−1 f
=

(
λ−1 + γλ−2)

fT f
≈ λ−1fT f
= fT

(
λ−1f

)
= fT

(
FFT + γI

)−1 f (29)

This directly indicates that we can reduce Σw into

Σw ≈
(
FFT + γI

)−1 (30)

in our scenario because our uncertainty is σ = fT Σwf .

C Derivation of approximately σ ∝
√

F

σ2 = fT A−1f (31)
= fT UT ΛUf (32)

= f̃T


1

N+1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

 f̃ (33)

=
[
f̃1, f̃2, · · · , f̃F

]


1
N+1 0 0 0

0 1 0 0

0 0
. . . 0

0 0 0 1




f̃1
f̃2
· · ·
f̃F

 (34)

≈ F∥f̃∥2 ∝ F (35)

which is

σ ∝
√

F (36)

Here we ignored the scaling factor ϵ or γ as in Eq. 11 without losing generality but to make the
derivation more succinct, and

Λ =


1

N+1 0 0 0
0 1 0 0

0 0
. . . 0

0 0 0 1

 (37)

f̃ = Uf (38)

where f̃ =
[
f̃1 · · · f̃F

]T , f̃ ∈ RF ×1.


