MIX: A Multi-view Time-Frequency Interactive Explanation Framework for Time Series Classification

Viet-Hung Tran¹*, Ngoc Phu Doan¹*, Zichi Zhang¹*, Tuan Dung Pham¹, Phi Hung Nguyen¹, Xuan Hoang Nguyen², Hans Vandierendonck¹, Ira Assent³, Thai Son Mai¹*

¹Queen's University Belfast, UK
{h.tran, h.vandierendonck, thaison.mai}@qub.ac.uk

²Institut Polytechnique de Paris, France
{xuan-hoang.nguyen}@ip-paris.fr

³Aarhus University, Denmark
{ira}@cs.au.dk

Abstract

Deep learning models for time series classification (TSC) have achieved impressive performance, but explaining their decisions remains a significant challenge. Existing post-hoc explanation methods typically operate solely in the time domain and from a single-view perspective, limiting both faithfulness and robustness. In this work, we propose MIX (Multi-view Time-Frequency Interactive EXplanation Framework), a novel framework that helps to explain deep learning models in a multi-view setting by leveraging multi-resolution, time-frequency views constructed using the Haar Discrete Wavelet Transform (DWT). MIX introduces an interactive cross-view refinement scheme, where explanation's information from one view is propagated across views to enhance overall interpretability. To align with user-preferred perspectives, we propose a greedy selection strategy that traverses the multi-view space to identify the most informative features. Additionally, we present OSIGV, a user-aligned segment-level attribution mechanism based on overlapping windows for each view, and introduce keystone-first IG, a method that refines explanations in each view using additional information from another view. Extensive experiments across multiple TSC benchmarks and model architectures demonstrate that MIX significantly outperforms state-of-the-art (SOTA) methods in terms of explanation faithfulness and robustness.

1 Introduction

Time series classification (TSC) is an important task in many domains, such as healthcare [46], finance [44], and supply chain [38]. In recent years, deep learning (DL) models have become increasingly popular in TSC thanks to their ability to capture complex temporal patterns and achieve state-of-the-art (SOTA) performance on a wide range of datasets [59]. However, DL models are considered as black boxes due to their lack of transparency. This makes it difficult to understand or trust their predictions, which is especially critical in sensitive applications such as medical and financial, where interpretability, accountability, and error analysis are essential.

To mitigate this issue, explainable AI (XAI) has emerged as an important direction for improving the interpretability of DL models. XAI methods help users to understand model decisions, which in turn help to increase trust, supports accountability, and enables model debugging. In the context

^{*}Equal Contribution.

of TSC, explanation methods can be broadly divided into ante-hoc and post-hoc categories. Ante-hoc methods aim to make models interpretable by design, for example, decision trees, attention mechanisms [32, 31, 69, 9, 46], or shapelet-based methods [92, 47, 22, 61, 24, 91]. Post-hoc methods, on the other hand, provide explanations after the model is trained and are usually agnostic to the model's internal structure. Since most high-performing DL models are not inherently interpretable, post-hoc XAI has become the common explanation approach for DL models in TSC.

According to the type of explanation output, most methods provide either time point-based explanations [36, 86, 12, 17, 49, 48, 66, 11, 4, 16], which give importance score to individual time points or subsequences-based explanations, which focuses on sub-regions of the time series [8, 33, 27]. Time point-based explanations are more common, especially when models operate directly on raw time series. However, assigning importance scores to each time point often results in fragmented, hard-to-interpret explanations and fails to capture the temporal structure or meaningful patterns in the data. Segment-based methods, which assign scores to segments of time series, have recently gained attention as they provide more meaningful explanations for human [63, 29, 76, 83].

Despite these recent efforts, most existing methods, including both time point-based and subsequence-based approaches, focus only on the time domain. They overlook another important aspect of time series: frequency. Addressing this gap, SpectralX [10] introduces an XAI framework that operates in the time-frequency space, using Short-Time Fourier Transform (STFT) to better reflect the underlying characteristics of time series. While SpectralX represents a step forward, it has two key limitations: it uses a fixed STFT setup, which lacks adaptability across different time series; and it fails to map the frequency-based insights back to the time domain, where users typically interpret results. In addition, the SpectralX deletion/insertion/combined attribution mechanism also has shortcomings of stability with randomness, and false negatives in attribution indicated in our detailed analysis presented in Section C of the Appendices.

More broadly, a key limitation across current post-hoc TSC explanation methods is that they rely on a single view of the time series in either time domain or time-frequency domain. This highlights a research gap: the lack of multi-view explanation frameworks that integrate different perspectives of input to provide a more faithful and robust understanding of DL models.

To address the multi-view research gap and fixed setup of SpectralX, we present a new framework, called Multi-view Time-Frequency Interactive EXplanation (MIX). MIX aims to improve the interpretability of deep learning models for time series classification (TSC) by explaining multiple time-frequency views of the input through Haar wavelet transforms at various resolutions. Each view captures distinct temporal patterns, enabling a richer and more faithful understanding of model behavior. In addition, we propose an interactive mechanism called *cross-view refinement*, which leverages the explanation from one view to improve those of others, enhancing the overall faithfulness of the explanations. To the best of our knowledge, this is the first approach for using multiple perspectives in a view interactive way in post-hoc TSC explanations. Finally, we incorporate a greedy search strategy to identify and map the most important features across views back to the time domain. This not only improves explanation quality but also offers users valuable insights into the granularity of important segments contributing to the model's prediction.

Summarization. In this paper, our contributions are summarized as follows:

First, we propose a new perspective for TSC XAI that explains models from multiple views of time series in both time and frequency domains. Our approach MIX not only generates explanations across different time-frequency views, but also applies cross-view refinement to enhance each explanation and performs a greedy feature selection across views to extract the most important patterns in the view, that is most relevant to the users.

Second, we address key limitations of SpectralX's attribution mechanism by introducing a new method based on Integrated Gradients (IG) applied to overlapping segments, defined by the window and overlap size. This approach yields more faithful and human-aligned explanations by capturing temporal relationship more effectively. Furthermore, we extend this mechanism to a variant called *Keystone-first*, inspired by the keystone species concept in ecology². This adaptation also provides a new way to the refinement of explanations in one view using informative segments from another view, helping cross-view refinement.

²Keystone species is a species that has a disproportionately large effect on its natural environment.

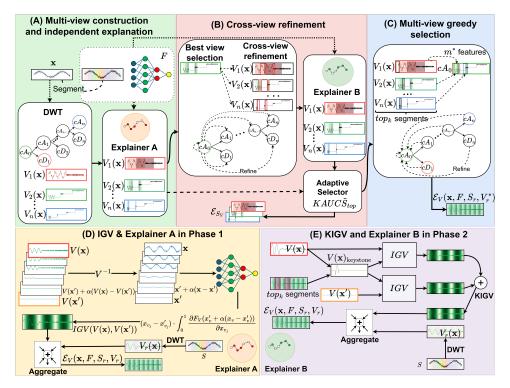


Figure 1: Overview of the MIX framework with three phases. (A) *Multi-view Construction and Independent Explanation* described in Sec 2.5: views V_r are constructed via Haar DWT, then explained independently using IGV and OSIGV. (B) *Cross-view Refinement* described in Sec 2.5: the best view V_q is selected using KAUC \tilde{S}_{top} , then refined using KIGV and OSIGV guided by top-h segments. (C) *Multi-view Greedy Selection* described in Sec 2.5: MIX traverses all views to select key features and maps them to the user-preferred view. Phase 3 is practical for selecting top features directly. (D) Attribution mechanism in Phase 1: IGV is applied to each view, and scores are aggregated into overlapping segments via OSIGV (see Section 2.3). (E) Attribution mechanism in Phase 2: Keystone-first IG for view (KIGV) is used to prioritize keystone features before generate importance score to others (see Section 2.3), then apply OSIGV again to overlapping segments. Refer Section A and Table 3 for meaning of symbols.

Third, we propose a adaptive selector with a novel criterion called Keystone $AUC\tilde{S}_{top}$ ($KAUC\tilde{S}_{top}$), inspired by recent work on attribution evaluation for TSC XAI [84]. The adaptive selector makes the decision whether explanations should be updated after cross-view refinements.

Fourth, we conduct extensive experiments on 11 datasets with 3 deep learning architectures including ResNet-34, BiLSTM, Transformer and compare against 3 state-of-the-art (SOTA) TSC XAI methods including LIMESegment, InteDisUX, SpectralX to demonstrate the performance of MIX.

The Table 1 summarises key differences between MIX and our closest work, SpectralX. In summary, MIX is different to SpectralX in 3 fundamental aspects: (i) hierarchical multi-view explanations, (ii) interactive explanation refinement scheme among views, (iii) novel attribution mechanism.

Table 1: Comparison between SpectralX and MIX.

Aspect	SpectralX	MIX
Multi-views	No	Yes
Time-frequency transform	STFT	DWT
View interaction	No	Yes
Attribution mechanism	Insertion/Deletion	OSIGV

2 Multi-view Interactive Explanation

In this section, we describe the proposed MIX framework, as illustrated in Fig. 1, which consists of three phases: *Phase 1: Multi-view Construction and Independent Explanation, Phase 2: Cross-view Refinement*, and *Phase 3: Multi-view Greedy Selection*. We begin by clarifying the problem definition

and introducing the concept of multi-view, along with our formulation of the novel multi-view explanation setting. We then define the interpretable representation as the *input* and the explanation as the *output* of MIX. For the internal mechanisms, we define the attribution methods used in each phase: IGV, OSIG, and OSIGV (based on Integrated Gradients) for Phase 1, and KIGV for Phase 2. In addition, we introduce a novel selection criterion, KAUC \tilde{S}_{top} , adapted from the TSC explanation evaluation framework in [84], which is used to select the best view and refine explanations in Phase 2. Finally, we describe the overall algorithmic flow of the MIX framework in addition with description of Phase 3 for practical setups.

2.1 Problem Definition

Time series. A time series $\mathbf{x} = \{x_1, x_2, \dots, x_T\} \in \mathbb{R}^{T \times d}$ is an ordered sequence of T real-valued vectors, where each $x_t \in \mathbb{R}^d$ represents the observation at time step t. Here, T denotes the total number of time steps, and d is the number of channels. \mathbf{x} is referred to as *univariate* when d = 1 and as *multivariate* when d > 1. In this paper, we investigate on univariate time series as its popularity in time series explanation. The current SOTA TSC explanation methods are mainly focusing on this type of time series [76, 83, 10]. We drop d out for univariate time series for simplicity.

Time series classification and explanation. We denote a TSC dataset is an annotated dataset $D=\{(\mathbf{x}_i,y_i)\}_{i=1}^N$, where $\mathbf{x}_i\in\mathbb{R}^T$ is a univariate time series and $y_i\in\mathbb{N}$ is the corresponding class. The objective of TSC is to learn a DL model $F:\mathbb{R}^T\to\mathbb{N}$ that assigns each $\mathbf{x}_i\in X$ to its corresponding label y_i . Our target is to explain the pretrained model F for an instance \mathbf{x} to answer 'Why does F predict \mathbf{x} as $F(\mathbf{x})$?'. As a TSC post-hoc explanation, our approach seeks which part of \mathbf{x} significantly affects the model's prediction outcomes.

Segment-based explanation for time series. Different from *Time Points-based Attribution Mechanism*, which assigns an importance score to each time series step, segment-based attribution method maintains a set of segments with their scores as the interpretable representation. By considering the time-dependence characteristic of time series, this method makes the explanation more naturally aligned with human perception. Given a time series \mathbf{x} , a segment is defined as $se_{t_{\text{start}}}^{t_{\text{end}}}(x) = \{x_{t_{\text{start}}}, x_{t_{\text{start}}+1}, \dots, x_{t_{\text{end}}}\}$ where t_{start} and t_{end} are starting time and ending time of the segment and $1 \leq t_{\text{start}} < t_{\text{end}} \leq T$. Let $S = \{se_1^1, se_2^2, \dots, se_M^M\}$ be a set of segment functions, where each segment $se^i = se_{t_{\text{end}}}^{t_{\text{end}}}$. Our objective is to build an explainer \mathcal{E} that gives a score for each segment $se^i \in S$: $\mathcal{E}(\mathbf{x}, F, S) = \{s_{se^i} | se^i \in S\}$. Here, $|s_{se^i}| > |s_{se^j}|$ indicates that se^i is more important than se^j in making a prediction for the instance \mathbf{x} .

Multi-view Explanation Problem. The key idea of our explanation method is built upon the concept of multi-view where each view could refine the results of other views and vice versa. Let $V: \mathbb{R}^d \to \mathbb{R}^{d'}$ be a view of \mathbf{x} where it transforms \mathbf{x} to a space of d' dimensions. If the view is invertible, it has a corresponding inverse $V^{-1}: \mathbb{R}^{d'} \to \mathbb{R}^d$ such that $V^{-1}(V(\mathbf{x})) = \mathbf{x}$. Let S_V denote a set of views. Our *multi-view explanation problem* can be defined as to establish a *view-specific explanations* $\mathcal{E}_V(\mathbf{x}, F, S, V)$. Let $\mathcal{E}_V(\mathbf{x}, F, S, V) = \{s_{se^i} \mid se^i \in S\}$ be a set of scores over the segment set S in the view V. In particular, \mathcal{E}_V denotes the explanation for the specific view V which is built not only from this view itself but also from the refinement of other views. Finally, we get a set of explanations for the model F as $\{\mathcal{E}_V(\mathbf{x}, F, S, V) \mid V \in S_V\}$.

2.2 MIX Framework's Description

Time-Frequency View Definition. Recent TSC explanation methods focus on the time domain, using time points or segment-based attribution. They often overlook the frequency domain, which might contain crucial information in many time series. SpectralX addresses this by masking the attribution in the time-frequency domain via Short-Time Fourier Transform (STFT), but its fixed time-frame setup limits adaptability across different time-frequency patterns. To address these limitations, we propose a more flexible and interpretable approach using the Haar Discrete Wavelet Transform (Haar DWT) for time series [7], a widely used signal analysis tool. Wavelet transforms enable multi-resolution decomposition, capturing both time-localized and frequency patterns. In this work, we define views using the multi-resolution Haar DWT. Following standard notation, we denote the DWT outputs as cA (approximation coefficients) and cD (detail coefficients), representing low- and high-frequency components, respectively (see Fig. 1 (A) in DWT part). For multi-level

decomposition, cA_r and cD_r refer to the approximation and detail coefficients at level r. We formally define our view by DWT. Given a time series \mathbf{x} , the view at level r, denoted V_r , is defined as: $V_r(\mathbf{x}) = [cA_r, cD_r, cD_{r-1}, \ldots, cD_1]$. In addition, each view $V_r(\mathbf{x})$ can be inverted to reconstruct the original time series \mathbf{x} .

Segments-based explanation in MIX. We define the interpretable representation used in each view as input to the explanation mechanism. As described above, the view at level r is represented as $[cA_r, cD_r, cD_{r-1}, \ldots, cD_1]$, which can be inverted to reconstruct the original time series cA_0 . At each level, we focus on explaining on cA_r and cD_r , since lower-level detail coefficients are handled in their respective views. With TSC explanation attribution approach, we choose segments-based explanation to conduct as it is more aligned with human perception more than time points based [83]. Given a time series $\mathbf{x} = [x_1, \ldots, x_T]$, window size w, and step size δ , the ith overlapping segment is: $se^i = se^{i_{\text{end}} \atop i_{\text{start}}}$, where $t_{\text{start}}^i = \min(1+i\delta,T)$, $t_{\text{end},i}^i = \min(1+i\delta+w,T)$. The full set is denoted as $OS_{\mathbf{x}}$. For each cA_r and cD_r , the structure of them is similar as a time series, then we generate overlapping segments denoted $OS_{cA_r} = \{cA_r^1, cA_r^2, \ldots, cA_r^N\}$ and $OS_{cD_r} = \{cD_r^1, cD_r^2, \ldots, cD_r^N\}$, and use them as the interpretable representation for explanation. We choose overlapping segments so that explanation can avoid missing some regions between separate segments as in InteDisUX [83]. The window and step sizes are adjusted by scale: $w_r = \min(w \cdot 2^{-r}, 1)$, $\delta_r = \min(\delta \cdot 2^{-r}, 1)$, where w and δ are sizes defined on the input $\mathbf{x} = cA_0$.

Definition 2.1 (MIX setup). Given a time series \mathbf{x} , deep learning model F, a set of views from Haar DWT $S_V = \{V_r \mid r \in [0,m]\}$, where m is the maximum wavelet level, and w and δ to generate overlapping segments for each cA and cD as input, MIX produces output as a set of explanations with segment set $S_r = OS_{cA_r} \cup OS_{cD_r} \cup \ldots \cup OS_{cD_1}$; $\mathcal{E}_{S_V} = \{\mathcal{E}_V(\mathbf{x}, F, S_r, V_r) \mid V_r \in S_V\}$, where each view's explanation is defined based on segments-based explanation as:

$$\mathcal{E}_V(\mathbf{x}, F, S_r, V_r) = \{ s_{se^i} \mid se^i \in OS_{cA_r} \cup OS_{cD_r} \cup \ldots \cup OS_{cD_1} \}$$

2.3 Attribution Mechanism for MIX

To get output from input as defined in Def. 2.1, we apply attribution mechanism on overlapping segment. Motivated by limitations in SpectralX's attribution approach analyzed in Sec C of Appendices, we propose a new mechanism, OSIG, based on Integrated Gradients (IG), which satisfies important axioms such as sensitivity and implementation invariance.

Definition 2.2 (Integrated Gradients (IG) [80]). Given input \mathbf{x} , baseline \mathbf{x}' , and model F, the IG along the jth dimension is: $\mathrm{IG}_j(\mathbf{x}) = (x_j - x_j') \cdot \int_0^1 \frac{\partial F(\mathbf{x}' + \alpha(\mathbf{x} - \mathbf{x}'))}{\partial x_j} \, d\alpha$.

Although IG is theoretically sound, it operates at the time point level, which hinders interpretability in TSC. InteDisUX [83] adapts IG for segment-level attribution (SIG), but uses non-overlapping segments, potentially missing important transitional regions. We address this with overlapping segments define in Sec. 2.1.

Definition 2.3 (Overlapping Segment-level Integrated Gradients (OSIG)). Given segments $\{se^i\}$, OSIG aggregates IG over time points in each segment: OSIG $(se^i) = \sum_{j=t_{\rm shuff}}^{t_{\rm end}} {\rm IG}_j(\mathbf{x})$.

Definition 2.4 (IGV and OSIGV). For view $V(\mathbf{x})$, if V and V^{-1} are differentiable, we define IG in view space as:

$$\operatorname{IGV}_{j}(V(\mathbf{x}), V(\mathbf{x}')) = (V(x)_{j} - V(x)'_{j}) \cdot \int_{0}^{1} \frac{\partial F(V^{-1}(V(\mathbf{x}') + \alpha(V(\mathbf{x}) - V(\mathbf{x}'))))}{\partial V(x)_{j}} d\alpha$$

To simplify the Def. 2.4, we call the new function with input $x_V = V(x)$ or $x_V' = V(x')$ is $F_V = F \circ V^{-1}$, then Def. 2.4 become:

$$IGV_j(x_v, x_v') = (x_{v_j} - x_{v_j}') \cdot \int_0^1 \frac{\partial F_V(x_v' + \alpha(x_v - x_v'))}{\partial x_{v_i}}$$

To use IGV on segments, we compute OSIG as: OSIGV $(se^i) = \sum_{j=t_{\text{start}}}^{t_{\text{end}}^i} \text{IGV}_j(V(\mathbf{x}))$, where se_i lies on the transformed representation $\{cA_r, cD_r\}$. In MIX, for each view V_r , we apply OSIG to overlapping segments of cA_r and cD_r , while setting attribution for other cD_m (with m < r) to zero.

Cross-view refinement by attribution mechanism. While we can directly apply the attribution mechanism OSIGV to obtain the final explanation output \mathcal{E}_{S_V} , our goal is to identify the most faithful explanation of the model's decision. To this end, we introduce a refinement scheme called crossview refinement, which leverages attribution information across views. Although each individual explanation may be imperfect, it often highlights features that is strongly important to the model's prediction. These features can be seen as "keystone" features that represent to the core characteristics of the input. Inspired by the ecological concept of keystone species, we define keystone features in time series as those with a large impact on model decisions. Analogous to ecological studies that prioritize keystone species, our method first approximates such features using an attribution map, then uses this information to refine the explanation across views. To approximate keystone features, we use the best view V_r choosing by evaluate attribution map of each view by a novel criterion in the next section. Moreover, we choose top-h segments of view V_r with highest score in $\mathcal{E}_V(V_r(\mathbf{x}), F)$. Then, MIX map their positions from view r to view p using the properties of the Haar DWT. Let $cA_r = [x_1, \dots, x_{T_r}]$ and $cD_r = [x_1, \dots, x_{T_r}]$. A time step t_r in level r is mapped to level p as: $t_p = \min(\lfloor t_r \cdot 2^{p-r} \rfloor, T_p)$, where T_p is length of cA_p or cD_p . For each segment, we apply that mapping to both the start and end positions to locate corresponding segments in cA and cD of the target view. To incorporate this transferred information, we introduce a new attribution method called Keystone-first Integrated Gradients for view (KIGV). Inspired by the ecological role of keystone species, KIGV first attributes importance to the top-h keystone segments and then extends attribution to the rest of the view. Since exact keystone features are unknown, we approximate them using the top-h segments from the best view selected using a criterion introduced in the next section.

Definition 2.5 (Keystone-first Integrated Gradients). Given a view $V(\mathbf{x})$ and top segment positions top $V \subseteq \{1, \dots, T_r\}$, define a binary mask $\mathbf{mask} \in \{0, 1\}^{T_r}$, where $m_l = 1$ if $l \in \text{top } V$, and 0 otherwise. The masked input is: $V(\mathbf{x})_{\text{keystone}} = \mathbf{mask} \cdot V(\mathbf{x}) + (1 - \mathbf{mask}) \cdot V(\mathbf{x}')$. The KIGV attribution is:

$$KIGV_i(V(\mathbf{x}), V(\mathbf{x}')) := IGV_i(V(\mathbf{x})_{\text{keystone}}, V(\mathbf{x}')) + IGV_i(V(\mathbf{x}), V(\mathbf{x})_{\text{keystone}}).$$

Finally, to refine view V_m , we compute KIGV using the transferred segments from V_r , and then apply OSIGV to produce a refined explanation guided by cross-view information.

2.4 Selection Criterion

In multi-view settings, selecting the most meaningful explanation requires a principled criterion. While InteDisUX uses a heuristic based on discrimination and faithfulness gain, it is not aligned with recent evaluation standards [84]. To address this and support user evaluation preferences, we propose a general, user-adaptable selection method using selection scores based on [84].

First, we define a top-k-quantile-masked sample, denoted $\tilde{\mathbf{x}}_k^{top}$, as a perturbed version of input \mathbf{x} where the top-k most important features (based on the absolute attribution scores) are replaced. Features are selected by exceeding the (1-k)-quantile threshold. Unlike [84], which uses random noise, we replace values with the baseline from OSIG, which is the mean value over time series training dataset to maintain stability. The Top-k-Quantile strategy typically applies to explanation with scores for each feature, but segment-based attribution provides scores only at the segment level. Given a view $V_r(\mathbf{x})$, to assign scores to individual features in each view $V_r(\mathbf{x})$, we use the maximum absolute score among all segments containing that point: $s_j = \max \left\{ |s_{se^i}| \mid V_r(x)_j \in se^i \right\}$.

To estimate explanation quality, we define the normalized degradation score as the drop in confidence when input \mathbf{x} is perturbed into $\tilde{\mathbf{x}}$: $\tilde{S}(\mathbf{x}) = \frac{S(\mathbf{x}) - S(\tilde{\mathbf{x}})}{S(\mathbf{x})}$, where $S(\mathbf{x})$ is the model's confidence for the predicted class. By progressively corrupting the top- or bottom-k features, we construct $\tilde{S} - \tilde{T}$ curves, where $\tilde{T} = \frac{\bar{T}}{T}$ is the fraction of corrupted time steps. The area under this curve quantifies overall degradation: $AUC\tilde{S} = \int_0^1 \tilde{S} \, d\tilde{T}$. Specifically, $AUC\tilde{S}_{\text{top}}$ evaluates degradation from top-k-quantile-masked samples with $k \in [0,1]$. A higher $AUC\tilde{S}_{\text{top}}$ indicates a more faithful explanation. In fact, users often care most about the top influential or "keystone" features. To capture this preference, we propose the following focused selection criterion:

Definition 2.6 (Keystone $AUC\tilde{S}_{top}$). Keystone $AUC\tilde{S}_{top}$ ($KAUC\tilde{S}_{top}$) is a version of $AUC\tilde{S}_{top}$, computed over $k \in [0, \kappa)$, where $\kappa \in (0, 1)$ specifies the top fraction of features to prioritize. We denote the function as: $KAUC\tilde{S}_{top}(F, V_r(x), \mathcal{E})$, where \mathcal{E} is explanation on V_r .

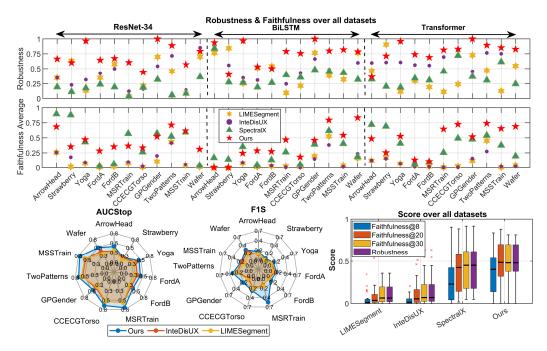


Figure 2: Comprehensive comparison of our method (MIX) against state-of-the-art baselines. (Top) Scatter plots show robustness and averaged faithfulness scores across 11 datasets and 3 model architectures. Our method (red star) consistently outperforms others. Quantitatively, MIX ranks first in 27/33 robustness and 24/33 faithfulness evaluations. (Bottom-left) Radar plots for AUCStop and F1S metrics further demonstrate the superiority of MIX. (Bottom-right) Box plots summarizing the distribution of scores over all datasets confirm that MIX achieves higher and more stable performance.

2.5 Multi-view Interactive Explanation

Overall, our algorithm can be divided to 3 phases: Phase A, B, and C as shown in Figure 1.

Phase 1: Multi-view Construction and Independent Explanation. Given a time series \mathbf{x} , window size w, step size δ , and a model F, MIX first applies the Haar Discrete Wavelet Transform (DWT) to generate multi-resolution views. Each view V_r corresponds to the r-th decomposition level, with $V_0(\mathbf{x}) = cA_0 = \mathbf{x}$, and general form defined in Sec 2.1. In the second step, for each view V_r , we generate an explanation by applying the OSIGV attribution mechanism (Def. 2.4). This results explanations: $\mathcal{E}_{S_V} = \{\mathcal{E}_V(\mathbf{x}, F, S_r, V_r) \mid V_r \in S_V\}$.

Phase 2: Cross-view Refinement. In the first step, MIX estimate the explanation quality of each view using the KAUC \tilde{S}_{top} score using Def. 2.6, and then select the best view as following: $V^* = \underset{V_r}{\operatorname{arg\,max}} \operatorname{KAUC} \tilde{S}_{top}(F, V_r(\mathbf{x}), \mathcal{E}(V_r(\mathbf{x}), F))$. Starting from the selected best view V^* at level q (identified in Phase 1), we first extract the top-h most important segments, denoted topS $(q,h) \subset OS_{cA_q} \cup OS_{cD_q}$.

In the second step, these top segments are then mapped across all other views using the cross-level mapping defined in Sec. 2.3, producing topS(r,h) for each level r. In the third step, guided by these mapped segments, we apply the keystone-first IG from Def. 2.5 to compute a new attribution for time points then applying OSIG for each view. Finally, we propose adaptive selector for MIX using the $KAUC\tilde{S}_{top}$ selection criterion (Def. 2.6) to choose between the refined explanation and the original explanation from Phase 1, for each view. This results in an updated explanation set, enhanced through cross-view interaction.

Phase 3: Multi-view Greedy Selection. After Phase 2, MIX has $\mathcal{E}_V(V_r(\mathbf{x}), F)$ for each view V_r . When a target view is required (typically cA_0), we aggregate key segments from all levels into it. To do so, we use a greedy strategy that iteratively selects the segment with the highest score from all levels and maps them to the target view, continuing until the desired number of time points is reached.

2.6 MIX for Multivariate Time Series.

The MIX framework naturally extends to multivariate time series, as its core components are designed to handle multi-channel inputs. Concretely, in Phase 1, the Discrete Wavelet Transform (DWT) is applied to each channel independently, after which overlapping segments are generated on a per-channel basis. Our attribution methods, including Integrated Gradients (IG) and OSIGV, are then computed directly on the multivariate inputs. The refinement mechanisms in Phase 2 also generalize directly: the top-h segments are selected from the entire pool of segments across all channels based on their scores, and the "KAUC \tilde{S}_{top} " criterion is calculated by removing k-quantile features based on importance scores aggregated across all channels . For experimental comparisons, we adapted baselines such as InteDisUX and SpectralX by converting the multivariate data into a univariate time series via channel concatenation.

3 Experiments

3.1 Experimental Setup

Dataset. To evaluate our method against state-of-the-art approaches, we first use a synthetic dataset with predefined explanation ground truth. For all, cA_1 is the concatenation of three sine waves, and for label 0, cD_1 has a constant value of 10 from position 50 to 100. For label 1, cD_1 has value 20 in the same region. This corresponds to time steps 100-200 in cA_0 , reconstructed from $\{cA_1, cD_1\}$. We then apply our explanation method on the time series x, obtained via inverse DWT and add random noise to the raw time series. Basically, samples from two label will be different of details in time steps from 100 to 200, noise added in final step will make explanation task more challenging. To demonstrate generalizability on real-world data, we test on 11 UCR datasets: ArrowHead, Strawberry, Yoga, FordA, FordB, MixedShapesRegularTrain (MSRTrain), CinCECGTorso (CCECGTorso), Gun-PointMaleVersusFemale (GPGender), TwoPatterns, MixedShapesSmallTrain (MSSTrain), and Wafer. In addition, to demonstrate the effectiveness of our explanation method in a real-world scenario, we conduct experiments on the MIT-BIH dataset [66], which includes expert-annotated explanations provided by cardiologists. Full details about the annotation process are described in the TimeX paper [66]. We also conduct our straightforward adaptation on UEA Basic Motion dataset. This dataset's results are in the Appendices Sec. F.1. Full details of dataset are provided in the Appendices, Sec. E.1.

DL Architecture. We conduct experiments on three deep learning architectures, ResNet34, BiLSTM, and Transformer to demonstrate the generality of MIX. In total, we evaluate across 33 configurations, combining 11 datasets with 3 model architectures (see Sec. E.4 in Appendices for details).

Baselines. We compare our method with recent SOTA explanation approach for TSC including LIMESegment [76], InteDisUX [83], SpectralX [10] (see Sec. E.5 in Appendices for details).

Evaluation Metric. We evaluate explanations using four complementary criteria: First, we compute top-k faithfulness by measuring the drop in confidence score when removing the k most important features. These features are selected either using a greedy strategy or obtained from attribution maps. We report results for k = 8, 20, and 30 as faithfulness@8, @20, and @30. with MIX, since explanation output is for each view, we evaluate in all views then choose level with maximum average of those faithfulness. We report the performance of the single best-performing view for each dataset. Concretely, for each individual view, we average its performance across the different metrics (Faithfulness @8, @20, and @30). We then select the single view with the highest score and report its performance. This process highlights a key strength of our framework: its ability to identify the most effective explanatory perspective for a given task, rather than report the results by averaging. Second, we use **two faithfulness-oriented metrics** proposed in [84]: $AUC\tilde{S}_{top}$ and $F1\tilde{S}$. Third, we evaluate robustness by computing the Jaccard coefficient between two sets of top-30 features: one derived from the original input x and one from a noisy version of x (perturbed with small Gaussian noise). Fourth, for datasets with explanation ground truth, we compute AUPRC and the Jaccard coefficient between the top-k features identified by the explanation and the annotated ground truth features. For synthetic and MIT-BIH datasets, we use our greedy selection scheme (Phase 3), which provides an even more direct comparison. In this phase, the most important features are collected from all views and then projected onto a single user-specified view (chosen as cA_0). The final explanation's quality is then evaluated on this chosen view only. Full details of all metrics are in Sec. E.6 in Appendices.

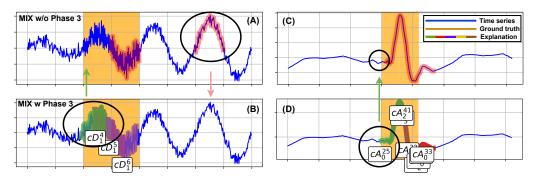


Figure 3: MIX explanations on the synthetic dataset (A, B) and MIT-BIH (C, D), without (A, C) and with (B, D) Phase 3. Labels use the format $cA_{\text{level}}^{\text{segment id}}$. Phase 3 enhances interpretability by highlighting key features of time series and relevant granularity.

3.2 Main results

Results on synthetic and MIT-BIH dataset. We report AUPRC and Jaccard Coefficient for our method compared to LIMESegment [76] and InteDisUX [83] on both the synthetic dataset and MIT-BIH. SpectralX [10] is not included to comparison as it cannot generate explanations in the raw time domain from spectrogram. As shown in Table 2, our framework outperforms both baselines. Additionally, the proposed Phase 3 boosts the Jaccard Coefficient from 0.6133 to 0.7481 on the synthetic dataset, and from 0.5946 to 0.6329 on MIT-BIH. The visualization examples in Fig. 3 show that multi-view greedy selection helps MIX identify more relevant features by exploring multiple wavelet levels, rather than relying solely on a single view.

Results on UCR datasets. The scatter plots in Fig. 2 compare our method with three state-of-the-art baselines including LIMESegment, InteDisUX, and SpectralX in terms of faithfulness and robustness. In the lower scatter plot, the vertical axis shows the average of Faithfulness@8, @20, and @30, while the upper plot displays robustness. Addi-

Table 2: Comparison on synthetic and MIT-BIH datasets.

Method	Synthetic		MIT-	BIH
	AUPRC	Jaccard	AUPRC	Jaccard
LIMESegment	0.6663	0.1427	0.5651	0.3376
InteDisUX	0.6781	0.2077	0.6364	0.4261
Ours	0.7103	0.6133	0.7404	0.5946
Ours w/ Greedy	-	0.7481	-	0.6329

tionally, we present the average performance across 11 datasets using a grouped box plot in Fig. 2, which includes error bars for each metric. Across all evaluations, MIX consistently outperforms the baselines on both faithfulness and robustness. Our method achieves the best performance in 24/33 cases for faithfulness and 27/33 cases for robustness, outperforming the baselines across both criteria. We also compare $AUC\tilde{S}_{top}$ and F1S compared to LIMESegment, IntedisUX with the results are in spider graph in Fig. 2 . Our method is still better than other two methods. More results are in Sec. F in Appendices.

3.3 Ablation Study

Study on Cross-View Refinement. To study the effect of cross-view refinement, we compare faithfulness scores between Phase 1 (without cross-view refinement) and Phase 2 across all views (represented by wavelet levels) in three different dataset/architecture setups: Yoga/BiLSTM, MSR-Train/Transformer, and Wafer/ResNet-34. The results show that cross-view refinement consistently improves faithfulness across all three setups indicates in Fig. 4 (A, B, C).

Study on Our Attribution Mechanism. To show the effectiveness of our attribution mechanism, we compare its performance with the standard IG method for each feature in view V_r across three setups: Yoga/BiLSTM, Wafer/Transformer, and GPGender/ResNet-34. Our study shows that our attribution mechanism has higher faithfulness compared to the IG baseline indicates in Fig. 4 (D, E, F).

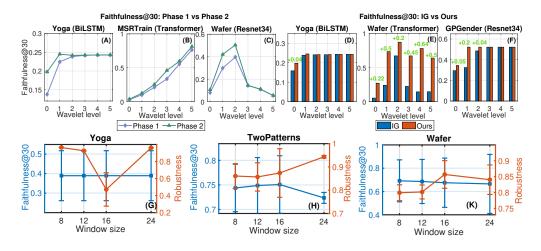


Figure 4: Ablation study on Cross-view Refinement (A, B, C), MIX's attribution mechanism (D, E, F), and window size, step size (G, H, K).

Study on Window Size and Step Size. We also study the effect of window size w and step size $\delta = w/2$ on the performance of MIX using three datasets: *Yoga, TwoPatterns*, and *Wafer*. The results are presented in Fig. 4 (G, H, K). We observe that faithfulness remains relatively stable as w increases, with some datasets exhibiting a peak at a specific value, such as w=16 for the Wafer dataset. In addition, robustness is generally more stable across different window sizes but may peak and then slightly decline, as also observed on Wafer.

4 Related Works

Time series classification approaches can be broadly categorized into two types: **ante-hoc** and **post-hoc**. Ante-hoc approaches are interpretable by design, where the model's internal structure inherently provides explanations such as decision trees, shapelet-based models [92, 47, 22, 61, 24, 91, 18, 15, 28, 51, 88, 85, 54, 25, 26, 90], attention mechanisms [32, 31, 69, 9, 46], Symbolic Aggregate approXimation (SAX) [52, 71, 78, 41], prototypes [57, 21], features [87, 20, 35, 72, 93, 64, 6, 19, 30, 34, 60, 23], or other ways such as pathches [56, 55]. In contrast, post-hoc approaches are applied after model training, typically when the model itself is a black box and not inherently interpretable. Post-hoc methods aim to explain the model's decision behavior after training. These can be further grouped into: (i) attribution-based methods, which assign importance scores to individual time points [80, 89, 68, 3, 95, 94, 50, 77, 73, 97, 70, 75, 62, 74, 58, 1, 65, 82, 43, 53, 5, 36, 86, 12, 17, 49, 48, 66, 11, 4, 16] or segments[29, 63, 76, 83]; (ii) subsequence-based methods, which identify discriminative time intervals [8, 33, 27]; and (iii) instance-based methods, which explain predictions by referencing similar or counterfactual instances [39, 14, 37, 2, 40], and other approaches such as using prototypes [13, 81, 96].

Our work is closely related to post-hoc segment-based attribution methods, which assign importance score to segments rather than time points [76, 83]. In the context of multi-view time-frequency explanations, MIX is most similar to SpectralX [10], which operates on a single time-frequency representation.

5 Conclusion

In this paper, we introduce a novel explainability framework for time series classification (TSC) based on the concept of multi-view. To the best of our knowledge, our work is the first to not only generate independent explanations across multiple views, but also to improve explanations across all views through a new cross-view refinement scheme. In addition, we propose a novel multi-view traversal greedy strategy that selects the most important features within the user's preferred view, further improve the explanation with constraints from human perspective.

Acknowledgements

We special thank Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Eamonn Keogh and others for producing and maintaining the UCR and UEA time series archive, which we use in our work. We thank Owen Queen, Thomas Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, Marinka Zitnik for providing the MIT-BIH dataset with explanation ground truth in their NeurIPS 2023 paper. We thank the anonymous reviewers for their valuable comments. This research is part-funded by the European Union (Horizon Europe 2021-2027 Framework Programme Grant Agreement number 10107245; views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. The European Union cannot be held responsible for them) and by the Engineering and Physical Sciences Research Council under grant number EP/X029174/1.

References

- [1] Roy Assaf, Ioana Giurgiu, Frank Bagehorn, and Anika Schumann. Mtex-cnn: Multivariate time series explanations for predictions with convolutional neural networks. In *ICDM*, pages 952–957. IEEE, 2019.
- [2] Emre Ates, Burak Aksar, Vitus J Leung, and Ayse K Coskun. Counterfactual explanations for multivariate time series. In *ICAPAI*, pages 1–8. IEEE, 2021.
- [3] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. *PloS One*, 10(7):e0130140, 2015.
- [4] João Bento, Pedro Saleiro, André F Cruz, Mário AT Figueiredo, and Pedro Bizarro. Timeshap: Explaining recurrent models through sequence perturbations. In *KDD*, pages 2565–2573, 2021.
- [5] Xin Bi, Chao Zhang, Yao He, Xiangguo Zhao, Yongjiao Sun, and Yuliang Ma. Explainable time–frequency convolutional neural network for microseismic waveform classification. *Inf. Sci.*, 546:883–896, 2021.
- [6] Nestor Cabello, Elham Naghizade, Jianzhong Qi, and Lars Kulik. Fast, accurate and explainable time series classification through randomization. *Data Min. Knowl. Discov.*, 38(2):748–811, 2024.
- [7] Pimwadee Chaovalit, Aryya Gangopadhyay, George Karabatis, and Zhiyuan Chen. Discrete wavelet transform-based time series analysis and mining. *ACM Comput. Surv.*, 43(2):1–37, 2011.
- [8] Sohee Cho, Wonjoon Chang, Ginkyeng Lee, and Jaesik Choi. Interpreting internal activation patterns in deep temporal neural networks by finding prototypes. In *KDD*, pages 158–166, 2021.
- [9] Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, and Walter Stewart. Retain: An interpretable predictive model for healthcare using reverse time attention mechanism. NIPS, 29, 2016.
- [10] Hyunseung Chung, Sumin Jo, Yeonsu Kwon, and Edward Choi. Time is not enough: Time-frequency based explanation for time-series black-box models. In CIKM, pages 394–403, 2024.
- [11] Jonathan Crabbé and Mihaela Van Der Schaar. Explaining time series predictions with dynamic masks. In *ICML*, pages 2166–2177. PMLR, 2021.
- [12] Tommy Dang, Huyen N Nguyen, and Ngan VT Nguyen. Vixlstm: Visual explainable lstm for multivariate time series. In *Proceedings of the 12th International Conference on Advances in Information Technology*, pages 1–5, 2021.
- [13] Subhajit Das, Panpan Xu, Zeng Dai, Alex Endert, and Liu Ren. Interpreting deep neural networks through prototype factorization. In *ICDMW*, pages 448–457. IEEE, 2020.

- [14] Eoin Delaney, Derek Greene, and Mark T Keane. Instance-based counterfactual explanations for time series classification. In *International conference on case-based reasoning*, pages 32–47. Springer, 2021.
- [15] Huiqi Deng, Weifu Chen, Andy J Ma, Qi Shen, Pong C Yuen, and Guocan Feng. Robust shapelets learning: Transform-invariant prototypes. In *Pattern Recognition and Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou, China, November 23-26, 2018, Proceedings, Part III 1*, pages 491–502. Springer, 2018.
- [16] Ramesh Doddaiah, Prathyush Parvatharaju, Elke Rundensteiner, and Thomas Hartvigsen. Class-specific explainability for deep time series classifiers. In *ICDM*, pages 101–110. IEEE, 2022.
- [17] Joseph Enguehard. Learning perturbations to explain time series predictions. In *ICML*, pages 9329–9342. PMLR, 2023.
- [18] Zicheng Fang, Peng Wang, and Wei Wang. Efficient learning interpretable shapelets for accurate time series classification. In *ICDE*, pages 497–508. IEEE, 2018.
- [19] K. Fauvel, E. Fromont, V. Masson, P. Faverdin, and A. Termier. Xem: An explainable-by-design ensemble method for multivariate time series classification. *Data Min. Knowl. Discov.*, 36(3):917–957, 2022.
- [20] Dominique Gay, Romain Guigourès, Marc Boullé, and Fabrice Clérot. Feature extraction over multiple representations for time series classification. In *International Workshop on New Frontiers in Mining Complex Patterns*, pages 18–34. Springer, 2013.
- [21] Alan H Gee, Diego Garcia-Olano, Joydeep Ghosh, and David Paydarfar. Explaining deep classification of time-series data with learned prototypes. In *CEUR workshop proceedings*, volume 2429, page 15, 2019.
- [22] Mohamed F Ghalwash and Zoran Obradovic. Early classification of multivariate temporal observations by extraction of interpretable shapelets. *BMC Bioinform.*, 13:1–12, 2012.
- [23] Ioana Giurgiu and Anika Schumann. Explainable failure predictions with rnn classifiers based on time series data. arXiv preprint arXiv:1901.08554, 2019.
- [24] Josif Grabocka, Nicolas Schilling, Martin Wistuba, and Lars Schmidt-Thieme. Learning time-series shapelets. In KDD, pages 392–401, 2014.
- [25] Riccardo Guidotti and Matteo D'Onofrio. Matrix profile-based interpretable time series classifier. *Frontiers in Artificial Intelligence*, 4:699448, 2021.
- [26] Riccardo Guidotti and Anna Monreale. Designing shapelets for interpretable data-agnostic classification. In *AIES*, pages 532–542, 2021.
- [27] Riccardo Guidotti, Anna Monreale, Francesco Spinnato, Dino Pedreschi, and Fosca Giannotti. Explaining any time series classifier. In *CogMI*, pages 167–176. IEEE, 2020.
- [28] Mael Guillemé, Simon Malinowski, Romain Tavenard, and Xavier Renard. Localized random shapelets. In *Advanced Analytics and Learning on Temporal Data: 4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, September 20, 2019, Revised Selected Papers 4*, pages 85–97. Springer, 2020.
- [29] Maël Guillemé, Véronique Masson, Laurence Rozé, and Alexandre Termier. Agnostic local explanation for time series classification. In *ICTAI*, pages 432–439. IEEE, 2019.
- [30] Babak Hosseini, Romain Montagne, and Barbara Hammer. Deep-aligned convolutional neural network for skeleton-based action recognition and segmentation. *Data Sci. Eng.*, 5(2):126–139, 2020.
- [31] Tsung-Yu Hsieh, Suhang Wang, Yiwei Sun, and Vasant Honavar. Explainable multivariate time series classification: a deep neural network which learns to attend to important variables as well as time intervals. In *WSDM*, pages 607–615, 2021.

- [32] En-Yu Hsu, Chien-Liang Liu, and Vincent S Tseng. Multivariate time series early classification with interpretability using deep learning and attention mechanism. In *PAKDD*, pages 541–553. Springer, 2019.
- [33] Yupeng Hu, Peng Zhan, Yang Xu, Jia Zhao, Yujun Li, and Xueqing Li. Temporal representation learning for time series classification. *Neural Computing and Applications*, 33:3169–3182, 2021
- [34] Hao Huang, Chenxiao Xu, Shinjae Yoo, Weizhong Yan, Tianyi Wang, and Feng Xue. Imbalanced time series classification for flight data analyzing with nonlinear granger causality learning. In *CIKM*, pages 2533–2540, 2020.
- [35] Hidetoshi Ito and Basabi Chakraborty. A proposal for shape aware feature extraction for time series classification. In *iCAST*, pages 1–6. IEEE, 2019.
- [36] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Shun Chen. Lstm fully convolutional networks for time series classification. *IEEE access*, 6:1662–1669, 2017.
- [37] Isak Karlsson, Jonathan Rebane, Panagiotis Papapetrou, and Aristides Gionis. Locally and globally explainable time series tweaking. *Knowl. Inf. Syst.*, 62(5):1671–1700, 2020.
- [38] Thorben Keller, Frédéric Thiesse, and Elgar Fleisch. Classification models for rfid-based real-time detection of process events in the supply chain: An empirical study. *TMIS*, 5(4):1–30, 2014.
- [39] Ferdinand Küsters, Peter Schichtel, Sheraz Ahmed, and Andreas Dengel. Conceptual explanations of neural network prediction for time series. In *IJCNN*, pages 1–6. IEEE, 2020.
- [40] Jokin Labaien, Ekhi Zugasti, and Xabier De Carlos. Contrastive explanations for a deep learning model on time-series data. In *International Conference on Big Data Analytics and Knowledge Discovery*, pages 235–244. Springer, 2020.
- [41] Thach Le Nguyen, Severin Gsponer, Iulia Ilie, Martin O'reilly, and Georgiana Ifrim. Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations. *Data Min. Knowl. Discov.*, 33:1183–1222, 2019.
- [42] Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Xiaojie Shi, Shuyang Cheng, and Dragomir Anguelov. Polyloss: A polynomial expansion perspective of classification loss functions. *arXiv* preprint arXiv:2204.12511, 2022.
- [43] Kin Kwan Leung, Clayton Rooke, Jonathan Smith, Saba Zuberi, and Maksims Volkovs. Temporal dependencies in feature importance for time series prediction. In *ICLR*, 2023.
- [44] Mengxia Liang, Xiaolong Wang, and Shaocong Wu. Improving stock trend prediction through financial time series classification and temporal correlation analysis based on aligning change point. *Soft Comput.*, 27(7):3655–3672, 2023.
- [45] Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pages 6555–6565, 2024.
- [46] Lei Lin, Beilei Xu, Wencheng Wu, Trevor W Richardson, and Edgar A Bernal. Medical time series classification with hierarchical attention-based temporal convolutional networks: A case study of myotonic dystrophy diagnosis. In *CVPR workshops*, volume 2, 2019.
- [47] Jason Lines, Luke M Davis, Jon Hills, and Anthony Bagnall. A shapelet transform for time series classification. In *KDD*, pages 289–297, 2012.
- [48] Zichuan Liu, Tianchun Wang, Jimeng Shi, Xu Zheng, Zhuomin Chen, Lei Song, Wenqian Dong, Jayantha Obeysekera, Farhad Shirani, and Dongsheng Luo. Timex++: Learning time-series explanations with information bottleneck. *arXiv preprint arXiv:2405.09308*, 2024.

- [49] Zichuan Liu, Yingying Zhang, Tianchun Wang, Zefan Wang, Dongsheng Luo, Mengnan Du, Min Wu, Yi Wang, Chunlin Chen, Lunting Fan, et al. Explaining time series via contrastive and locally sparse perturbations. *arXiv* preprint arXiv:2401.08552, 2024.
- [50] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. NIPS, 30, 2017.
- [51] Qianli Ma, Wanqing Zhuang, Sen Li, Desen Huang, and Garrison Cottrell. Adversarial dynamic shapelet networks. In *AAAI*, volume 34, pages 5069–5076, 2020.
- [52] André G Maletzke, Huei D Lee, Gustavo EAPA Batista, Solange O Rezende, Renato B Machado, Richardson F Voltolini, Joylan N Maciel, and Fabiano Silva. Time series classification using motifs and characteristics extraction: a case study on ecg databases. In *Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support*, pages 322–329. Atlantis Press, 2013.
- [53] Barbara Mukami Maweu, Sagnik Dakshit, Rittika Shamsuddin, and Balakrishnan Prabhakaran. Cefes: a cnn explainable framework for ecg signals. *J. Med. Artif. Intell.*, 115:102059, 2021.
- [54] Roberto Medico, Joeri Ruyssinck, Dirk Deschrijver, and Tom Dhaene. Learning multivariate shapelets with multi-layer neural networks for interpretable time-series classification. *Adv. Data Anal. Classif.*, 15(4):911–936, 2021.
- [55] Dominique Mercier, Andreas Dengel, and Sheraz Ahmed. P2exnet: Patch-based prototype explanation network. In *Neural Information Processing: 27th International Conference, ICONIP 2020, Bangkok, Thailand, November 23–27, 2020, Proceedings, Part III 27*, pages 318–330. Springer, 2020.
- [56] Dominique Mercier, Andreas Dengel, and Sheraz Ahmed. Patchx: explaining deep models by intelligible pattern patches for time-series classification. In *IJCNN*, pages 1–8. IEEE, 2021.
- [57] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable sequence learning via prototypes. In *KDD*, pages 903–913, 2019.
- [58] Saumitra Mishra, Bob L Sturm, and Simon Dixon. Local interpretable model-agnostic explanations for music content analysis. In *ISMIR*, volume 53, pages 537–543, 2017.
- [59] Navid Mohammadi Foumani, Lynn Miller, Chang Wei Tan, Geoffrey I Webb, Germain Forestier, and Mahsa Salehi. Deep learning for time series classification and extrinsic regression: A current survey. *ACM Comput. Surv.*, 56(9):1–45, 2024.
- [60] Sara Mohammadinejad, Jyotirmoy V Deshmukh, Aniruddh G Puranic, Marcell Vazquez-Chanlatte, and Alexandre Donzé. Interpretable classification of time-series data using efficient enumerative techniques. In *Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control*, pages 1–10, 2020.
- [61] Abdullah Mueen, Eamonn Keogh, and Neal Young. Logical-shapelets: an expressive primitive for time series classification. In *KDD*, pages 1154–1162, 2011.
- [62] Mohsin Munir, Shoaib Ahmed Siddiqui, Ferdinand Küsters, Dominique Mercier, Andreas Dengel, and Sheraz Ahmed. Tsxplain: demystification of dnn decisions for time-series using natural language and statistical features. In Artificial Neural Networks and Machine Learning—ICANN 2019: Workshop and Special Sessions: 28th International Conference on Artificial Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings 28, pages 426–439. Springer, 2019.
- [63] Inês Neves, Duarte Folgado, Sara Santos, Marilia Barandas, Andrea Campagner, Luca Ronzio, Federico Cabitza, and Hugo Gamboa. Interpretable heartbeat classification using local modelagnostic explanations on ecgs. *Comput. Biol. Med.*, 133:104393, 2021.
- [64] Yuzuru Okajima and Kunihiko Sadamasa. Deep neural networks constrained by decision rules. In *AAAi*, volume 33, pages 2496–2505, 2019.

- [65] Prathyush S Parvatharaju, Ramesh Doddaiah, Thomas Hartvigsen, and Elke A Rundensteiner. Learning saliency maps to explain deep time series classifiers. In CIKM, pages 1406–1415, 2021.
- [66] Owen Queen, Tom Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and Marinka Zitnik. Encoding time-series explanations through self-supervised model behavior consistency. *NeurIPS*, 36, 2024.
- [67] Carl O Retzlaff, Alessa Angerschmid, Anna Saranti, David Schneeberger, Richard Roettger, Heimo Mueller, and Andreas Holzinger. Post-hoc vs ante-hoc explanations: xai design guidelines for data scientists. *Cognitive Systems Research*, 86:101243, 2024.
- [68] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the predictions of any classifier. In *KDD*, pages 1135–1144, 2016.
- [69] Leonid Schwenke and Martin Atzmueller. Show me what you're looking for: visualizing abstracted transformer attention for enhancing their local interpretability on time series data. In *The International FLAIRS Conference Proceedings*, volume 34, 2021.
- [70] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization. In *ICCV*, pages 618–626, 2017.
- [71] Pavel Senin and Sergey Malinchik. Sax-vsm: Interpretable time series classification using sax and vector space model. In *ICDM*, pages 1175–1180. IEEE, 2013.
- [72] Vera Shalaeva, Sami Alkhoury, Julien Marinescu, Cécile Amblard, and Gilles Bisson. Multioperator decision trees for explainable time-series classification. In *Information Processing* and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations: 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part I 17, pages 86–99. Springer, 2018.
- [73] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation differences. In *ICML*, pages 3145–3153. PMIR, 2017.
- [74] Shoaib Ahmed Siddiqui, Dominique Mercier, Andreas Dengel, and Sheraz Ahmed. Tsinsight: A local-global attribution framework for interpretability in time series data. *Sensors*, 21(21):7373, 2021.
- [75] Shoaib Ahmed Siddiqui, Dominique Mercier, Mohsin Munir, Andreas Dengel, and Sheraz Ahmed. Tsviz: Demystification of deep learning models for time-series analysis. *IEEE Access*, 7:67027–67040, 2019.
- [76] Torty Sivill and Peter Flach. Limesegment: Meaningful, realistic time series explanations. In AISTATS, pages 3418–3433. PMLR, 2022.
- [77] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smooth-grad: removing noise by adding noise. *arXiv preprint arXiv:1706.03825*, 2017.
- [78] Wei Song, Lu Liu, Minghao Liu, Wenxiang Wang, Xiao Wang, and Yu Song. Representation learning with deconvolution for multivariate time series classification and visualization. In Data Science: 6th International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2020, Taiyuan, China, September 18-21, 2020, Proceedings, Part 16, pages 310–326. Springer, 2020.
- [79] Qiqi Su, Christos Kloukinas, and Artur d'Avila Garcez. Focuslearn: Fully-interpretable, high-performance modular neural networks for time series. In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2024.
- [80] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *ICML*, pages 3319–3328. PMLR, 2017.
- [81] Wensi Tang, Lu Liu, and Guodong Long. Interpretable time-series classification on few-shot samples. In *IJCNN*, pages 1–8. IEEE, 2020.

- [82] Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and Anna Goldenberg. What went wrong and when? instance-wise feature importance for time-series black-box models. *NeurIPS*, 33:799–809, 2020.
- [83] Viet-Hung Tran, Zichi Zhang, Tuan Dung Pham, Ngoc Phu Doan, Anh-Tuan Hoang, Peixin Li, Hans Vandierendonck, Ira Assent, and Son T Mai. Intedisux: intepretation-guided discriminative user-centric explanation for time series. In *AAAI*, volume 39, pages 20921–20928, 2025.
- [84] Hugues Turbé, Mina Bjelogrlic, Christian Lovis, and Gianmarco Mengaldo. Evaluation of post-hoc interpretability methods in time-series classification. *Nat. Mach. Intell.*, 5(3):250–260, 2023.
- [85] Gilles Vandewiele, Femke Ongenae, and Filip De Turck. Gendis: Genetic discovery of shapelets. Sensors, 21(4):1059, 2021.
- [86] Phongtharin Vinayavekhin, Subhajit Chaudhury, Asim Munawar, Don Joven Agravante, Giovanni De Magistris, Daiki Kimura, and Ryuki Tachibana. Focusing on what is relevant: Time-series learning and understanding using attention. In *ICPR*, pages 2624–2629. IEEE, 2018.
- [87] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. Multilevel wavelet decomposition network for interpretable time series analysis. In KDD, pages 2437–2446, 2018.
- [88] Yichang Wang, Rémi Emonet, Elisa Fromont, Simon Malinowski, and Romain Tavenard. Adversarial regularization for explainable-by-design time series classification. In *ICTAI*, pages 1079–1087. IEEE, 2020.
- [89] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep neural networks: A strong baseline. In *IJCNN*, pages 1578–1585. IEEE, 2017.
- [90] Yunshi Wen, Tengfei Ma, Ronny Luss, Debarun Bhattacharjya, Achille Fokoue, and Anak Agung Julius. Shedding light on time series classification using interpretability gated networks. In *ICLR*, 2025.
- [91] Yi Yang, Qilin Deng, Furao Shen, Jinxi Zhao, and Chaomin Luo. A shapelet learning method for time series classification. In *ICTAI*, pages 423–430. IEEE, 2016.
- [92] Lexiang Ye and Eamonn Keogh. Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. *Data Min. Knowl. Discov.*, 22:149–182, 2011.
- [93] Munawar Zaman and Adnan Hassan. Fuzzy heuristics and decision tree for classification of statistical feature-based control chart patterns. *Symmetry*, 13(1):110, 2021.
- [94] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In *ECCV*, pages 818–833. Springer, 2014.
- [95] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-down neural attention by excitation backprop. *Int. J. Comput. Vis.*, 126(10):1084–1102, 2018.
- [96] Xuchao Zhang, Yifeng Gao, Jessica Lin, and Chang-Tien Lu. Tapnet: Multivariate time series classification with attentional prototypical network. In AAAI, volume 34, pages 6845–6852, 2020.
- [97] Linjiang Zhou, Chao Ma, Xiaochuan Shi, Dian Zhang, Wei Li, and Libing Wu. Salience-cam: Visual explanations from convolutional neural networks via salience score. In *IJCNN*, pages 1–8. IEEE, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We clearly write our contribution and scope in abstract as well as introduction. Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we provide limitations discussion in our Limitations section in Appendices.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, we have theoretical results, which is proved in Appendices.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details to reproduce results in experimental setup in both main paper and the appendices.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Yes, we provide code and data in supplemental material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide details in Experiment Setup section in Appendices.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bar in main result figure with group box plot in main paper. Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Yes, we provide sufficient information on the computer resources in hardware details section in Appendices.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: My paper conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts and negative societal impacts of the work performed in Broader Impacts section in Appendices.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our data is public data, our model and datasets poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Technical Appendices and Supplementary Material

In the appendices, we first provide mathematic notions with definition in Section A. In addition, we provide extensive background on time series classification (TSC), explanation methods for TSC, and the Discrete Wavelet Transform (DWT) in Sec. B.

We also include an in-depth analysis of the attribution mechanism used in SpectralX, focusing on its stability and the risk of false negative feature selection in Sec. C. This analysis motivates our choice to adapt Integrated Gradients (IG) as the foundation for attribution mechanism in MIX. Furthermore, we present insight analysis into our proposed variants, IGV and KIGV in Sec. D, to support their design and behavior. Furthermore, we include comprehensive experimental results and comparisons in Sec. F, along with full experimental setup details to support reproducibility in Sec. E.

To analyze insight of our method in various aspects, we conduct analysis in Section G. First of all, we analyze system design, then we move to extensive ablation studies to verify contribution of each core component. Finally, we analyze hyperparameters analysis and computational complexity of MIX compared to InteDisUX and SpectralX. We also include qualitative results in Sec. H.

We also put two discussion section, Section I and Section J to clearify the difference, possitive side and limitation when comparing post-hoc and ant-hoc explanation setting, local vs. global explanation, and multi-view with cross-modal aspects. To ensure transparency, we also dedicate two sections to discussing the limitations in Sec. K and broader impact of our method in Sec. L.

Contents

A	A Table of Symbols			
В	Bac	kground	25	
	B.1	Problem Definition	25	
	B.2	Discrete Wavelet Transform	25	
C	Spec	etralX Attribution Mechanism Analysis	26	
	C.1	Stability	26	
	C.2	False Negative Analysis	27	
D	Ana	lysis on Attribution Mechanism of MIX	27	
	D.1	Invariant to Implementation	28	
	D.2	Analysis on Keystone-first Integrated Gradients	28	
E	Exp	erimental Setup	29	
	E.1	More Details about Datasets	29	
	E.2	Data Normalization and Split Mechanism	30	
	E.3	Training details for Classifiers	30	
	E.4	DL Architecture	30	
	E.5	Baselines	30	
	E.6	Evaluation	30	
	E.7	MIX Hyperparameters	32	
	E.8	Hardware Details	32	
F	Exte	ensive Experimental Results	32	

	F.1	Results on UEA multivariate time series	32
	F.2	Extensive Comparison	33
G	Exte	ensive Analysis	33
	G.1	System Design Analysis	33
	G.2	Extensive Ablation Studies	35
	G.3	Hyperparameters Sensitivity	35
	G.4	Complexity Analysis	37
Н	Qua	litative Results	39
	H.1	Visualization of Explanations on UCR Dataset	39
	H.2	Visualization of Explanations on Synthetic Dataset	40
	H.3	Visualization of Explanations on MIT-BIH Dataset	40
I	Post	Hoc vs. Ante Hoc and Local vs. Global Explanation Discussion	41
J	Mul	ti-view vs. Cross-modal Discussion	41
K	Limi	itations	42
L	Broa	nder Impacts	44

A Table of Symbols

We define key notations in the paper in the Table 3.

B Background

B.1 Problem Definition

Definition B.1 (Deep Learning Model for TSC). A deep learning model for time series classification is a function $F_{\theta}: \mathbb{R}^{T \times d} \to [0,1]^{|\mathcal{Y}|}$ parameterized by θ , which maps an input time series $\mathbf{x} \in \mathbb{R}^{T \times d}$ to a probability distribution over a finite set of class labels $\mathcal{Y} = \{1,2,\ldots,C\}$, where $C = |\mathcal{Y}|$ is the number of classes. The output vector $f_{\theta}(\mathbf{x}) = [p_1,p_2,\ldots,p_C]$ satisfies $\sum_{i=1}^C p_i = 1$ and $p_i \in [0,1]$.

The model is trained by minimizing the cross-entropy loss over a labeled dataset $D = \{(\mathbf{x}_j, y_j)\}_{j=1}^N$, defined as:

$$\mathcal{L}_{CE}(\theta) = -\frac{1}{N} \sum_{j=1}^{N} \log F_{\theta}(\mathbf{x}_j)_{y_j},$$

where $f_{\theta}(\mathbf{x}_j)_{y_j}$ denotes the predicted probability for the true class y_j .

B.2 Discrete Wavelet Transform

We begin by introducing the Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), and the Haar wavelet:

Definition B.2 (Continuous Wavelet Transform [7]). The *Continuous Wavelet Transform (CWT)* of a time series signal x is defined as:

$$H(\mathbf{x}, \zeta, \tau) = \frac{1}{\sqrt{|\zeta|}} \int x(t) \cdot \psi^* \left(\frac{t - \tau}{\zeta}\right) dt$$

Table 3: Notation used throughout the paper.

Symbols	Meaning
$\mathbf{x} = \{x_1, x_2, \dots, x_T\} \in \mathbb{R}^{T \times d}$	A time series vector of dimension d and T time steps.
$D = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N}$	TSC dataset
$F: \mathbb{R}^T \to \mathbb{N}$	Deep learning model
$V: \mathbb{R}^d o \mathbb{R}^{d'}$	View
V_r	rth view
$V^{-1}: \mathbb{R}^{d'} \to \mathbb{R}^d$	reverse view
$F_V = F \circ V^{-1}$	New model combine DL model with view for input as view
$se^i = se^{t_{ ext{end}}}_{t_{ ext{start}}} \ S = \{se^1, se^2, \dots, se^M\}$	ith Segment with start time step is t_{start} and end time step is t_{end}
$S = \{se^1, se^2, \dots, se^M\}$	Set of segments
s_{se}	score of segment se^i
$\mathcal{E}(\mathbf{x}, F, S) = \begin{cases} s_{se^i} \\ s_{se^i} se^i \in S \end{cases}$	Set of score for each segment
S_V	Set of views
$\mathcal{E}_V(\mathbf{x}, F, S, V) = \{ s_{se^i} \mid se^i \in S \}$	Set of score for each segment for the corresponding view
cA_r	cA on r th level
cD_r	cD on r th level
OS_{cA_r}	Set of overlapping segments on cA_r
OS_{cD_r}	Set of overlapping segments on cA_r
$S_r = OS_{cA_r} \cup OS_{cD_r} \cup \ldots \cup OS_{cD_1}$	Set of overlapping segments of r th view
$\mathrm{IG}_j(\mathbf{x})$	Integrated Gradients of x
$\operatorname{IGV}_{j}(V(\mathbf{x}), V(\mathbf{x}'))$	Integrated Gradients of a view of x
$\mathrm{OSIGV}(se^i)$	Integrated Gradients of segments of a view of x
$\mathrm{KIG}_i(V(\mathbf{x}),V(\mathbf{x}'))$	Keystone-first Integrated Gradients of a view of x
$AUC ilde{S}_{ ext{top}}$	Metric in [84]
$KAUC\tilde{S}_{top}$	Keystone $AUC\tilde{S}_{top}$

where $H(\mathbf{x},\zeta,\tau)$ denotes the wavelet coefficient as a function of the time series \mathbf{x} , the time-shift parameter τ , and the scale parameter ζ ; ψ is the *mother wavelet* (or basis function), and ψ^* is its complex conjugate. The function x(t) is the input signal evaluated over continuous time, we can denote $x(t) = x_t$.

The oldest and simplest wavelet is the *Haar wavelet*, whose mother wavelet is defined as:

$$\psi(t) = \begin{cases} 1 & \text{if } 0 \leq t < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \leq t < 1 \\ 0 & \text{otherwise} \end{cases}$$

The Continuous Wavelet Transform (CWT) is computationally expensive. The Discrete Wavelet Transform (DWT) offers a more efficient alternative by applying high-pass and low-pass filters across multiple scales [7]. DWT has proven effective in time series analysis and naturally produces hierarchical, interpretable multi-resolution representations. However, its potential for explainability in TSC XAI remains underexplored.

C SpectralX Attribution Mechanism Analysis

Table 4: Faithfulness@30 and robustness scores for two random seeds across datasets.

Dataset	Seed 1 Faithfulness@30	Seed 2 Faithfulness@30	Jaccard
CinCECGTorso	0.3850 ± 0.2986	0.3709 ± 0.2828	$\begin{array}{c} 0.4678 \pm 0.2671 \\ 0.4834 \pm 0.1557 \end{array}$
MixedShapesRegularTrain	0.5036 ± 0.1730	0.5283 ± 0.2371	

C.1 Stability

According to the SpectralX method described in Section E.5, we hypothesize that its random feature selection process may be sensitive to the randomness of the system. To investigate this, we run

SpectralX with the same algorithmic setup but vary only the manual seed. We then compare the resulting explanations using faithfulness@30 and the Jaccard coefficient between the top-30 selected features under each setup. The results, shown in Table 4, indicate that while the overall faithfulness remains comparable, the Jaccard coefficient is only around 0.4. This suggests that the set of top important features can change significantly due to randomness. While this does not negate its overall faithfulness, it makes the explanation unstable.

C.2 False Negative Analysis

According to the way spectral X generate masks in Sec. E.5, the all P masks may never unmask a specific features. Formally, given a feature f_i , then probability that all P masks never unmask f_i is larger than zero. The probability is calculate as follow:

Theorem C.1. Given the spectralX random maske generation process with P masks, R features unmasked each mask, and time series length T, then the probability that a feature f_i have never been unmasked in all P masks is:

$$Pr = (1 - R/T)^P$$

Proof. Overall, with T features, when generating maskes, we have total combination of T choose R: $\binom{T}{R}$

Assume that the feature f_i has never been unmasked, then each time genration process only choose R features in total T-1 features. Then, total number of that is: $\binom{T-1}{R}$.

Then, probability for a mask does not unmask f_i is:

$$pr = \frac{\binom{T-1}{R}}{\binom{T}{R}}$$

$$= \frac{\frac{(T-1)!}{R!(T-1-R)!}}{\frac{T!}{R!(T-R)!}}$$

$$= \frac{(T-1)! \cdot R!(T-R)!}{T! \cdot R!(T-1-R)!}$$

$$= \frac{(T-R)}{T}$$

$$= 1 - \frac{R}{T}$$

For P masks, then the probability that all P masks never unmask f_i is:

$$Pr = pr^P = \left(1 - \frac{R}{T}\right)^P$$

The case when a feature f_i is never unmask in P masks can result that importance score for this is zero just by sampling but not actual influence to the model's decision. With the default setup of SpectralX, where R=10 and P=2000, the probability Pr is approximately 4×10^{-5} when T=2000. However, this value increases with larger T; for example, when T=10000, we have $Pr\approx 0.135$. In practice, SpectralX remains effective because this probability is still relatively small. Nonetheless, the growth of Pr with respect to T highlights a limitation of SpectralX when applied to longer time series.

D Analysis on Attribution Mechanism of MIX

IGV. Our IGV is just modified version of IG for new function $F \circ V^{-1}$ on $V(\mathbf{x})$, then it still staisfies axioms of IG in [80].

D.1 Invariant to Implementation.

Our attribution mechanisms, IGV and KIGV, are fully deterministic and do not rely on any randomized operations. Given a window size w and step size δ , the overlapping segments generated in all views are fixed for each dataset. Consequently, both OSIG and OSIGV produce deterministic results. In the KAUC \tilde{S}_{top} criterion, we use a baseline x' defined as the mean of each view, which introduces no randomness. As a result, the adaptive selector also operates independently of noise. Therefore, given a model F and an input time series x, MIX produces explanations that are invariant to implementation and do not depend on any random process. This ensures that our framework remains stable and consistent, even in the presence of system-level randomness.

D.2 Analysis on Keystone-first Integrated Gradients

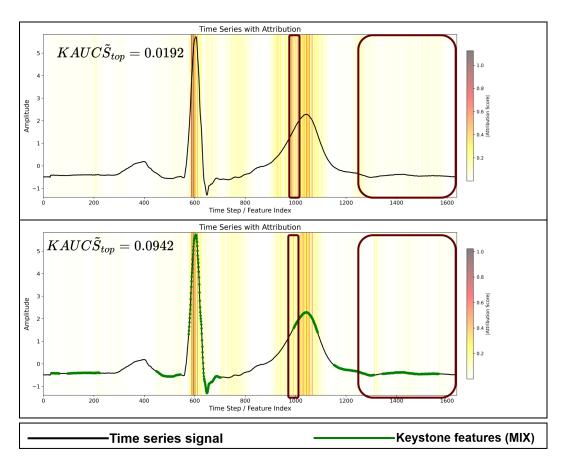


Figure 5: Comparison of KIGV (bottom) with conventional Integrated Gradients (IG, top) on the CinCECGTorso dataset. The time series signal is shown as a black line, while the highlighted segment in green indicates the keystone parts used as input for KIGV. The background color represents the attribution value at each time step. In the regions highlighted by red rectangles, KIGV avoids attributing importance to less relevant features that are mistakenly emphasized by standard IG. This demonstrates the effectiveness of cross-view refinement in filtering out irrelevant features. It is also reflected by higher $KAUC\tilde{S}_{top}$ with KIGV.

In both the main paper and Appendices, we have shown that IGV, satisfies the axioms of Integrated Gradients (IG) and our overall attribution mechanism is implementation invariant. Here, we further analyze KIGV within the cross-view refinement framework to demonstrate its advantages over standard IG. By prioritizing the explanation of "keystone" features, KIGV effectively reduces the noise present in importance scores generated by IG, resulting in more accurate attribution maps. As a result, OSIGV also benefits from these improved scores. As illustrated in Fig. 5, our method

avoids highlighting irrelevant features, which is further supported by the higher $KAUC\tilde{S}_{top}$ values achieved with KIGV compared to IG.

E Experimental Setup

E.1 More Details about Datasets

ArrowHead. The ArrowHead dataset comprises univariate time series derived from the outlines of arrowhead images, converted into time series using an angle-based method. It contains 36 training instances and 175 testing instances, each of length 251, categorized into three classes: "Avonlea," "Clovis," and "Mix." This dataset is particularly relevant in anthropology for classifying projectile points based on shape distinctions, such as the presence and location of notches.

Strawberry. The Strawberry dataset consists of univariate time series data representing different classes of strawberries. It includes 613 training instances and 370 testing instances, each of length 235, divided into two classes. This dataset is useful for classification tasks involving agricultural products, such as distinguishing between different strawberry varieties or assessing quality.

Yoga. The Yoga dataset features univariate time series data related to yoga poses, aiming to classify different postures or movements. It comprises 300 training instances and 3,000 testing instances, each of length 426, categorized into two classes. This dataset is valuable for applications in human activity recognition and pose classification.

FordA. The FordA dataset contains univariate time series data collected from automotive subsystems, with the task of classifying whether a symptom exists under typical operating conditions. It includes 1,320 training instances and 1,320 testing instances, each of length 500, divided into two classes. This dataset is pertinent for fault detection and predictive maintenance in automotive systems.

FordB. Similar to FordA, the FordB dataset comprises univariate time series data from automotive subsystems. However, the test data samples in FordB were collected under noisy conditions, adding complexity to the classification task. It consists of 3,636 training instances and 810 testing instances, each of length 500, categorized into two classes. This dataset challenges models to maintain accuracy despite increased noise in the data.

MixedShapesRegularTrain. The MixedShapesRegularTrain dataset consists of univariate time series obtained by converting two-dimensional shapes into one-dimensional time series. It includes 500 training instances and 2,425 testing instances, each of length 1,024, divided into five classes: Arrowhead, Butterfly, Fish, Seashell, and Shield. This dataset is designed to test the ability of classifiers to distinguish between different shape patterns.

CinCECGTorso. The CinCECGTorso dataset is a multivariate time series dataset containing electrocardiogram (ECG) data collected from the torso. It comprises 40 training instances and 1,380 testing instances, each of length 1,639, categorized into four classes. This dataset is used for classifying different heart conditions and is relevant in the field of biomedical signal processing.

GunPointMaleVersusFemale. The GunPointMaleVersusFemale dataset is a remake of the original GunPoint dataset, featuring recordings from a male and a female actor performing gun and point gestures. It includes 135 training instances and 316 testing instances, each of length 150, divided into two classes. This dataset is useful for studying variations in human motion patterns across different individuals.

TwoPatterns. The TwoPatterns dataset is a synthetic univariate time series dataset designed to test the ability of classifiers to distinguish between different types of patterns. It consists of 1,000 training instances and 4,000 testing instances, each of length 128, categorized into four classes. This dataset is commonly used for benchmarking time series classification algorithms.

MixedShapesSmallTrain. Similar to MixedShapesRegularTrain, the MixedShapesSmallTrain dataset comprises univariate time series obtained by converting two-dimensional shapes into one-dimensional time series. However, it has a smaller training set with 100 training instances and 2,425 testing instances, each of length 1,024, divided into the same five classes: Arrowhead, Butterfly, Fish, Seashell, and Shield. This dataset tests the performance of classifiers with limited training data.

Wafer. The Wafer dataset contains univariate time series data from semiconductor manufacturing processes, used to detect whether a wafer is normal or exhibits a fault. It includes 1,000 training

instances and 6,164 testing instances, each of length 152, categorized into two classes. This dataset is pertinent for quality control and fault detection in industrial settings.

MIT-BIH. The MIT-BIH dataset has ECG recorded from 47 subjects at the sampling rate 360Hz. The raw dataset was then window-sliced into 92511 samples of 360 timestamps each. Two cardiologists have labeled each beat independently. The dataset is choose left bundle branch block beat (L), and right bundle branch block beat (R) as anomaly with label 1 and normal as label 0.

E.2 Data Normalization and Split Mechanism

We apply Z-score normalization to preprocess the data before training and testing deep learning models. The dataset is divided into three parts: 80% for training, 10% for validation, and 10% for testing. We conduct explanation on testing data in all setups.

E.3 Training details for Classifiers

For UCR time series datasets, we use a batch size of 16, cross-entropy loss, and the Adam optimizer with a learning rate of 2×10^{-4} for 200 epochs. For the synthetic dataset, we use a batch size of 64, cross-entropy loss, and the Adam optimizer with a learning rate of 0.001 for 10 epochs, using a simple 1D CNN architecture. For MIT-BIH, we adopt the CNN architecture from [66, 48], use PolyLoss [42], a batch size of 16, the Adam optimizer with a learning rate of 2×10^{-4} , and train for 200 epochs.

E.4 DL Architecture

We use the same architecture with SpectralX for TSC on 11 UCR datasets. We use simple 1D CNN for synthetic dataset and MIT-BIH.

E.5 Baselines

LIMESegment. LIMESegment is a post-hoc TSC method based on the LIME explanation method on distinct segments, which is generated from time series using the NNSegment method. LIMESegment uses NNSegment using input as a time series \mathbf{x} , a predefined number of change points T', window size ws, then generates segments based on the time series itself. After that, LIMESegment uses LIME to explain segments with input as a time series, a set of segments, and the model.

InteDisUX. InteDisUX is a new post-hoc segments-based TSC explanation approach using model's information to generate set of segments for explanation. Firstly, InteDisUX initialize N_S equallength segments. Then, the algorithm iteratively merge every two consecutive segments pair using faithfulness gain and discrimination gain metrics.

SpectralX. The method explains time series in the time-frequency domain by transforming the time series to a spectrogram using STFT, then applying a greedy selection on that, with each feature defined as a time-frequency region. This greedy strategy iteratively estimates deletion and insertion scores and chooses a feature with the best score until it reaches the desired number of features. During the insertion/deletion phase, SpectralX generates diverse perturbations by selecting random features. Technically, given predefined R time-frequency regions unmasked, spectralX generates P masks that have R regions unmasked, then the insertion/deletion score of a feature is estimated as the reduction of confidence score when inserting/deleting that feature.

E.6 Evaluation

Faithfulness. Following the SpectralX paper [10], we evaluate the faithfulness of explanations by removing the top-k features and measuring the reduction in the model's confidence for the ground truth label. We use k=8,20,30, which represents a sufficient number of features to significantly influence the model's decision. Then, the faithfulness metrics is: faithfulness@8, faithfulness@20, faithfulness@30. For each individual view, we average its performance across the different metrics (Faithfulness@8, @20, and @30). We then select the single view with the highest score and report its performance. This process highlights a key strength of our framework: its ability to identify the most effective explanatory perspective for a given task, rather than report the results by averaging.

To compare with SpectralX, we need to convert segment-level explanation scores into individual feature-level scores as presented in Section 2.4. The score for each time point x_j is calculated as the maximum absolute score of any segment that contains it. Then we follow the evaluation scheme of SpectralX: measuring Faithfulness@k by removing the top-k most important features and calculating the degradation in the model's confidence score. To compare with segment-based methods, we use the $AUC\tilde{S}_{top}$ and F1 \tilde{S} metrics proposed in [84]. They evaluate performance by measuring the area under the confidence degradation curve as an increasing fraction of the most important features (the top k-quantile) are removed. Furthermore, for synthetic and MIT-BIH datasets, we use our greedy selection scheme (Phase 3), which provides an even more direct comparison. In this phase, the most important features are collected from all views and then projected onto a single user-specified view (chosen as cA_0). The final explanation's quality is then evaluated on this chosen view only. Therefore, these ensure fair comparisons to single-view methods.

Robustness. Following the SpectralX paper [10], we evaluate robustness by measuring the overlap between the top-k features identified with and without the addition of noise. Specifically, we use the Jaccard coefficient between these two sets as a quantitative measure of robustness. MIX follows standard practices for evaluating the stability of an explanation by measuring its consistency when the input is slightly perturbed. First, we take the original input time series x and generate an explanation, from which we identify the set of its top-k most important features E. Next, we create a perturbed version of the input x'. By adding a small amount of Gaussian noise. We then generate a new explanation for this noisy input, and identify its corresponding set of top-30 features, E'. Finally, we compute the Jaccard coefficient between these two sets of top-30 features: E, E'. Higher Jaccard score (greater overlap between the two sets) signifies that the explanation is stable and consistent. A lower score suggests the explanation is sensitive to minor perturbations and is therefore less robust.

Relevance identification. We follow paper [84] to evaluate our explanation by using their two proposed metrics called $AUC\tilde{S}_{top}$ and F1S. First, we define a top-k-quantile-masked sample, denoted $\tilde{\mathbf{x}}_k^{top}$, as a perturbed version of the input \mathbf{x} , where the top-k most important features (based on absolute attribution scores) are replaced. Features are selected using a (1-k)-quantile threshold. [84] uses random noise for replacement.

The top-k-quantile strategy is typically applied to point-wise explanations. However, since segment-based attribution produces scores at the segment level, we assign importance scores to individual features in a view $V_r(\mathbf{x})$ by taking the maximum absolute score across all segments that include the feature:

$$s_j = \max\left\{ |s_{se^i}| \mid V_r(x)_j \in se^i \right\}.$$

To quantify explanation quality, we define the normalized degradation score as the drop in model confidence when \mathbf{x} is perturbed into $\tilde{\mathbf{x}}$:

$$\tilde{S}(\mathbf{x}) = \frac{S(\mathbf{x}) - S(\tilde{\mathbf{x}})}{S(\mathbf{x})},$$

where $S(\mathbf{x})$ is the model's confidence for the predicted class.

By progressively corrupting the top- or bottom-k features, we construct $\tilde{S}-\tilde{T}$ curves, where $\tilde{T}=\frac{\tilde{T}}{T}$ represents the fraction of corrupted time steps. The area under this curve quantifies overall degradation:

$$AUC\tilde{S} = \int_0^1 \tilde{S} \, d\tilde{T}.$$

In particular, $AUC\tilde{S}_{top}$ captures the degradation from top-k-quantile-masked samples, with $k \in [0, 1]$. A higher $AUC\tilde{S}_{top}$ indicates a more faithful explanation.

In terms of F1S, we compute $AUC\tilde{S}_{\text{bottom}}$, which measures the degradation when perturbing features with the *lowest* attribution scores. Specifically, features are perturbed if their scores fall below the threshold defined by the k-quantile, i.e., the bottom-k-quantile of importance scores. Then F1S is calculated by:

$$F1S = \frac{AUC\tilde{S}_{top} \cdot (1 - AUC\tilde{S}_{bottom})}{AUC\tilde{S}_{top} + (1 - AUC\tilde{S}_{bottom})}$$

Since no evaluation metric is perfect, using two distinct, standard faithfulness metrics provides a more robust and trustworthy validation for MIX.

Reasoning of Faithfulness Metrics. Our method helps users understand which features are influential in a model's decision but does not prove a causal link, which is outside the scope of this study. Without a perfect causal method, the faithfulness metric is the community's best available proxy for evaluating post-hoc explanations. It directly and pragmatically tests the model's internal behavior: if the model's confidence drops significantly when we remove the features the explainer identifies as important, it provides strong evidence that the explanation has faithfully captured what the model considers important for its decisions. While it cannot reveal the underlying "logic" or "reason" why the model learned to depend on those features, it rigorously validates that our explanation is true to the black-box model's function. This is the standard and accepted goal of attribution-based methods in the current XAI landscape.

Validity of the experiments. The validity of our experiments is grounded in our use of standardized, community-accepted post-hoc evaluation protocols for TSC XAI [83, 10, 84]. For dataset selection, to ensure a direct and relevant comparison, we use 9 UCR datasets from SpectralX and 2 additional UCR datasets for comprehensive evaluations. For evaluation metrics, we adopted the evaluation protocol from SpectralX to ensure fair comparisons. For faithfulness, we follow their method of measuring the drop in model confidence after removing the top-k most important features. For robustness, we also follow their approach of measuring the overlap between the top features of an original instance and a noisy version using Jaccard Coefficient, which is similar to the way SpectralX quantifies the overlap between two fixed-size sets. We also apply $AUC\tilde{S}_{top}$ and $F1\tilde{S}$ from [84]. Since MIX generates local explanations for each sample, we calculate the faithfulness and robustness scores for every sample in the test set and report averaged values. This is the standard practice in post-hoc TSC XAI. We also provide a global explanation in Table 14.

E.7 MIX Hyperparameters

For the top h, we use h as 1/5 of all segments for all dataset. For thresold for $KAU\tilde{S}_{top}$, we use $\kappa=0.3$ for all setups. According to window size and step size, we adapt for each dataset as follow:

Dataset	Window Size	Step Size
ArrowHead	10	5
Strawberry	8	4
Yoga	8	4
FordA	10	5
FordB	12	6
MixedShapesRegularTrain	8	4
CinCECGTorso	24	12
GunPointMaleVersusFemale	8	4
TwoPatterns	8	4
MixedShapesSmallTrain	24	12
Wafer	12	6

Table 5: Window size and step size settings for each dataset.

E.8 Hardware Details

We use the system with 1 GPU GeForce RTX 4070 in Ubuntu 20.04.6 LTS.

F Extensive Experimental Results

F.1 Results on UEA multivariate time series.

The Tab. 6 shows averaged results on UEA Basic Motion on 4 DL models (CNN, PatchTST, Transformer, ResNet34). MIX still outperforms IntedisUX as well as SpectralX.

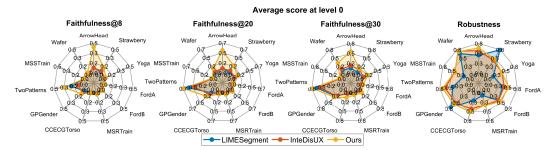


Figure 6: Faithfulness and Robustness of explanation of our method, LIMESegment and InteDisUX at view cA_0 .

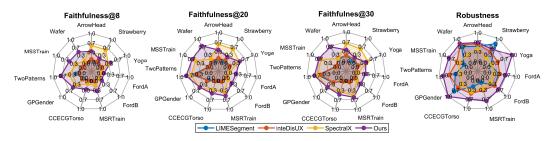


Figure 7: Comparison of Our method with LIMESegment, InteDisUX, and SpectralX, showing average performance of 3 DL architectures across 11 datasets .

F.2 Extensive Comparison

Compare in cA_0 . We compare our method with LIMESegment and InteDisUX in the same view, i.e., cA_0 , in Fig. 6, in terms of faithfulness@8, faithfulness@20, faithfulness@30 and robustness. The results show that MIX has significant higher faithfulness and robustness compared to LIMESegment and InteDisUX.

Comparison average over architecture for each dataset. We compare MIX with three baselines, which are LIMESegment, InteDisUX, and SpectralX, on faithfulness@8, @20, @30, and robustness across all UCR datasets. Results in Fig. 7 show that MIX consistently outperforms all baselines.

Comparison on faithfulness of MIT-BIH dataset. The Table 7 shows that MIX outperforms SpectralX for faithfulness@30 for MIT-BITH data.

Average MIX vs. SpectralX comparison To provide a more granular view of the results in Figure 2, the Figure 7 details the mean for each dataset for Faithfulness@8, Faithfulness@20, Faithfulness@30 and Robustness averaged over the three deep learning architectures for every dataset. We also provide mean and standard deviation for Faithfulness@30 comparing MIX vs. SpectralX in the Table 8.

Comparison MIX vs SpectralX. To compare with SpectralX, which also explains in the time-frequency domain, we present results in Fig. 8. In addition, Figure 8 show comparison of MIX vs SpectralX. Across the 11 UCR datasets, MIX outperforms SpectralX in terms of Faithfulness@8 on 9 datasets, Faithfulness@20 on 8 datasets, and Faithfulness@30 on 7 datasets, and Robustness on all datasets.

G Extensive Analysis

G.1 System Design Analysis

Our framework is built systematically from well-established principles, where each new component serves a specific purpose to address limitations in prior work. Please find below step-by-step justifications of our designs (IGV, OSIGV, KIGV, cross-view refinement).

IGV. Our method is built upon Integrated Gradients (IG), a widely used and axiomatically sound attribution method. IGV, is the necessary mathematical adaptation of IG to operate in a transformed

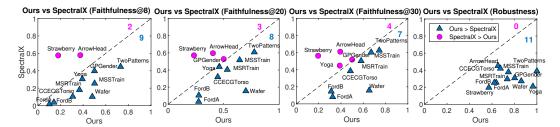


Figure 8: Comparison Ours vs SpectralX

Table 6: Performance Comparison on Multivariate UEA BasicMotions Dataset

Metric	InteDisUX	SpectralX	MIX
Faithfulness@8	0.009 +/- 0.014	0.029 +/- 0.029	0.060 +/- 0.048
Faithfulness@20	0.011 +/- 0.013	0.044 +/- 0.026	0.106 +/- 0.088
Faithfulness@30	0.012 +/- 0.013	0.074 +/- 0.022	0.157 +/- 0.100
AUCStop	0.475 +/- 0.094	_	0.557 +/- 0.093
F1S	0.208 +/- 0.056	-	0.299 +/- 0.059

"view" space (e.g., the wavelet domain). As defined in our paper, if a view transformation V is differentiable and invertible, IGV is simply IG applied to the composite model $F \circ V^{-1}$. This provides a mathematically sound way to calculate feature importance in any given view, not just the input space.

OSIGV. To make the point-wise scores from IGV more aligned with human perception, we aggregate them into segments. Our method OSIGV (Overlapping Segment-level Integrated Gradients for a View) is designed to improve upon prior segment-based approaches and make explanations more robust and interpretable. First, we use IGV to calculate an importance score for each individual point in a given view V(x). Second, we generate a set of overlapping segments across the view, where each segment is defined by a window size. The final score for each segment is then calculated as the sum of the IGV scores of all the individual points contained within that segment, as defined in our paper. The use of overlapping segments is a key design choice that directly addresses a limitation in prior work like InteDisUX, which uses non-overlapping segments. Non-overlapping segments risk splitting meaningful temporal patterns and can miss important information that occurs at the boundaries between segments.

Interactive Refinement (KIGV and Cross-View Refinement). The perceived complexity of our framework arises from our main contribution: cross-view refinement, which is enabled by our proposed Keystone-first Integrated Gradients (KIGV) method. Our motivation comes from the "keystone species" concept in ecology; just as a keystone species has a disproportionate impact on its environment, we hypothesize that certain "keystone features" in one view are strongly indicative of the model's core reasoning. Our novel KIGV method leverages this idea by first attributing importance to these keystone features, which are approximated as the top-h segments from the best view identified in Phase 1. By focusing the IG calculation path through these important regions first, we can generate a more robust gradient signal with less noise, and this refined attribution map is then used to improve the explanations in other views. To ensure that the cross-view refinement step is always beneficial, we introduce a final safeguard: the adaptive selector. The refined explanation generated by KIGV is only adopted for a given view if it shows a demonstrable improvement over the original one from Phase 1. This ensures our "heuristic" choice is not arbitrary but is instead a principled decision controlled by an objective quality metric based on paper [84].

Scores for segments. While time point-based explanations are common, they can be fragmented and difficult for users to interpret. Providing scores for contiguous segments is often more meaningful because it is better aligned with human perception as pointed out in [80]. For instance, on MIT-BIH ECG, a cardiologist can see that an entire heartbeat segment is responsible for an anomalous prediction. This is significantly more actionable and interpretable than analyzing hundreds of individual, high-importance time points, helping experts to easily validate whether a model's reasoning aligns with their own medical knowledge.

Table 7: Comparison of Faithfulness@30 metric scores between MIX and SpectralX on MIT-BIH dataset.

Metric	IntedisUX	SpectralX	MIX
Faithfulness@30	0.6656	0.7478	0.8371

Table 8: A comparison of MIX and SpectralX performance across various datasets. The values represent mean \pm standard deviation. Bold indicates the superior result for each dataset.

Dataset	MIX	SpectralX
ArrowHead	0.394 ± 0.357	0.6112 ± 0.3778
Strawberry	0.1951 ± 0.1913	0.5638 ± 0.3732
Yoga	0.3891 ± 0.1280	0.4486 ± 0.0266
FordA	0.3254 ± 0.1382	0.0813 ± 0.0163
FordB	0.3128 ± 0.1401	0.1463 ± 0.0633
MixedShapesRegularTrain	0.5808 ± 0.2114	0.5036 ± 0.1730
CinCECGTorso	0.4849 ± 0.2829	0.3850 ± 0.2986
GPGender	0.5003 ± 0.0345	0.5190 ± 0.0607
TwoPatterns	0.7438 ± 0.0484	0.6266 ± 0.0748
MixedShapesSmallTrain	0.6710 ± 0.0826	0.6036 ± 0.0826
Wafer	0.6538 ± 0.1417	0.1585 ± 0.0954

Circular Dependency Justification. First, in Phase 1, the framework generates an initial, independent explanation for every view using the OSIGV attribution mechanism. This step is foundational, creating a complete set of unrefined explanations. At this stage, each explanation is generated in isolation based solely on its own view, and no refinement or "best view" selection has yet occurred. This provides the baseline set of explanations upon which the next phase will operate. MIX then moves to Phase 2, which is a two-step procedure that clearly separates selection from refinement. In the first step, the quality of the initial explanations from Phase 1 is evaluated using the $KAUC\tilde{S}_{top}$ score. The view that achieves the highest score is designated as the "best view" (V). Only *after* this selection is complete, does the refinement process begin. The information from the now-selected V is used as a static guide to refine the explanations of the other views using the Keystone-first IG (KIGV) method. In summary, the selection of the best view depends on the quality of the initial, unrefined explanations, and the refinement process depends on the result of that selection. The refined explanations do not influence the initial scores that were used to make the selection in the first place. This strictly linear process ensures that there is no circular logic.

In summary, MIX's design is not complex for its own sake, but is a direct result of our attempt to solve several key challenges of this novel multi-view XAI setup at once. To create a robust multi-view explanation system, our framework was built to simultaneously address: providing an axiomatically-grounded explanation for any given view space (handled in Phase 1), Enabling views to interact and demonstrably improve one another's faithfulness (the core of Phase 2), Ensuring the final, user-facing explanation is of the highest possible quality (the goal of the Adaptive Selector in Phase 2 and the Greedy Selection in Phase 3).

G.2 Extensive Ablation Studies

Along with ablation studies on overall Phase 2, the attribution mechanism (compared to standard IG), and the effects of window and step size, we also investigate the adaptive selector, which is a novel component in cross-view refinement. The adaptive selector dynamically determines whether to adopt the newly generated explanation or retain the previous one, thereby maintaining the quality of the explanations. Our ablation results, shown in Fig. 9, demonstrate that the adaptive selector consistently enhances explanation quality across all wavelet levels on both evaluated datasets.

G.3 Hyperparameters Sensitivity

We will provide analysis how we choose hyperparameters and sensitivity analysis on that.

Faithfulness@30 for Wafer and FordA Datasets

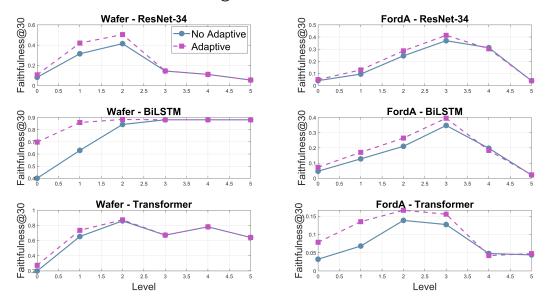


Figure 9: Ablation study on the adaptive selector for the Wafer and FordA datasets across three deep learning architectures. The results show that incorporating the adaptive selector (adaptive line) improves explanation quality across all wavelet levels compared to using KIGV alone (no adaptive line).

Table 9: Hyperparameter sensitivity for window and step size on the FordA dataset. Faithfulness is measured at k=30 (Faithfulness@30).

Window Size	Step Size	Faithfulness@30	Robustness
8	4	0.3238 ± 0.1445	0.6527 ± 0.1054
16	8	0.2480 ± 0.0661	0.6647 ± 0.1350
32	16	0.2111 ± 0.0749	0.6732 ± 0.1449
48	24	0.2014 ± 0.0829	0.7379 ± 0.0560
56	28	0.1967 ± 0.0884	0.7172 ± 0.0446
64	32	0.1789 ± 0.0761	0.6937 ± 0.0480
96	48	0.2116 ± 0.0885	0.7501 ± 0.0710
128	64	0.2153 ± 0.0857	0.7614 ± 0.0676

First, the window size (w) and step size (δ) for the overlapping segments were selected via a grid search on a validation set. The objective of this search was to identify the parameters that maximized the aggregate faithfulness score and robustness score (the sum of Faithfulness@8, @20, @30, and robustness score). Note that the optimal w can offer valuable insights into the temporal scale at which the model identifies important patterns, thus supporting human understanding of model behaviors.

Second, the number of top-h segments used in our cross-view refinement is determined by a ratio, $ratio_h$ of the total number of segments, such that $h = ratio_h \cdot N_S$. As stated in Sec. E.7, we used a fixed ratio of $ratio_h = 0.2$ (20%) for all datasets. This choice is based on the common observation in time series analysis that a relatively small subset of features (around 20%) often accounts for the majority of a model's predictive signal.

Finally, the parameter κ in our $KAUC\tilde{S}_{top}$ criterion defines the top fraction of features to prioritize during the quality evaluation of an explanation. While a value of 1.0 would consider all features, this would reduce the focus on the most critical "keystone" features and increase computational overhead. We selected $\kappa=0.3$, as noted in Appendix D.7, as a principled choice to ensure that the most influential features (to 20%) are studied while remaining computationally efficient.

Table 10: Hyperparameter sensitivity for window and step size on the TwoPatterns dataset. Faithfulness is measured at k=30 (Faithfulness@30).

Window Size	Step Size	Faithfulness@30	Robustness
8	4	0.7438 ± 0.0484	0.8608 ± 0.0532
16	8	0.7508 ± 0.0587	0.8739 ± 0.1043
32	16	0.7224 ± 0.0130	0.9337 ± 0.0349
48	24	0.7150 ± 0.0200	0.9716 ± 0.0253
56	28	0.7214 ± 0.0123	0.9907 ± 0.0161
64	32	0.7150 ± 0.0200	0.9934 ± 0.0114

Table 11: Sensitivity analysis for the top segment ratio (h) and the Keystone AUC fraction (κ) on the FordA dataset. The best performance for each metric is highlighted in bold.

Ratio h	κ	Faithfulness@30	Robustness
0.1	0.2	0.3266	0.6304
	0.3	0.2819	0.6803
	0.5	0.2819	0.6846
	1.0	0.2819	0.6830
0.2	0.2	0.3282	0.6593
	0.3	0.2880	0.6951
	0.5	0.2881	0.6967
	1.0	0.2881	0.6957
0.3	0.2	0.3238	0.6738
	0.3	0.2944	0.7093
	0.5	0.2943	0.7116
	1.0	0.2943	0.7065

We provide sensitivity analysis of w to the performance of Faithfulness@30 and Robustness in Tab. 9 for FordA dataset, Tab. 10 for TwoPatterns dataset. Overlapping size is set as w/2 for simplicity. We report averaged results over 3 DL architectures. For both Tables, there appears to be a trade-off between faithfulness and robustness wrt. the window size w. The data shows that faithfulness (Faithfulness@30) generally decreases as w increases. Conversely, robustness tends to increase with a larger w, despite some fluctuations. A potential explanation for this trend is that larger w may create segments that are more semantically meaningful and interpretable to a human user. These larger, more stable segments are likely less sensitive to small, localized noise in the input, which could explain the corresponding increase in the robustness score.

We also provide sensitivity analysis on $ratio_h$ and κ in Tab. 11 for FordA dataset, Tab. 12 for TwoPatterns dataset. To isolate the impact of these two hyperparameters, which control the crossview refinement and the adaptive selector respectively, we fixed the window size at 8 and the step size at 4 for this experiment. For FordA, the result reveals a consistent trend when $ratio_h$ is fixed. As k increases, faithfulness tends to decrease, while robustness generally increases. This may be because larger k hinder the focus on the most critical "keystone" features, leading to a lower faithfulness score. The same general behaviour is observed in TwoPatterns. The impact of varying the top-feature ratio, $ratio_h$ appears to be more dataset-dependent. For FordA, with a fixed κ , increasing $ratio_h$ results in stable faithfulness and improved robustness. In contrast, for TwoPatterns, increasing $ratio_h$ can lead to a slight decrease in faithfulness. This suggests that the optimal ratio of "keystone" features used for refinement can vary, and a more focused refinement may be more beneficial for certain types of data, while others need a higher ratio.

G.4 Complexity Analysis

For MIX, assuming the time series length T, the number of steps to approximate Integrated Gradients (IGs) m, the segment step size δ , the window size w and the number of views $|S_V|$, the complexity of a single model query C, and the complexity to construct a view via DWT C_V , in Phase 1, the number

Table 12: Sensitivity analysis for the top segment ratio (h) and the Keystone AUC fraction (κ) on the TwoPatterns dataset. The best performance for each metric is highlighted in bold.

Ratio h	κ	Faithfulness@30	Robustness
0.1	0.2	0.7453	0.8632
	0.3	0.7475	0.8947
	0.5	0.7240	0.8891
	1.0	0.7240	0.8875
0.2	0.2	0.7248	0.8573
	0.3	0.7230	0.8894
	0.5	0.7230	0.8893
	1.0	0.7230	0.8863
0.3	0.2	0.7247	0.8611
	0.3	0.7214	0.9298
	0.5	0.7214	0.9303
	1.0	0.7214	0.9303

Table 13: Computational cost (seconds per instance) and performance comparison on the FordA and MixedShapesRegularTrain datasets. The best result for each metric is highlighted in bold.

Dataset	Metric	InteDisUX	SpectralX	MIX
FordA	Cost/instance Faithfulness@30 Robustness	$\begin{array}{c} \textbf{0.1395} \pm 0.0830 \\ 0.0235 \pm 0.0047 \\ 0.4314 \pm 0.1271 \end{array}$	31.4600 ± 16.6579 0.0813 ± 0.0163 0.2546 ± 0.0761	0.4533 ± 0.1570 0.3254 ± 0.1382 0.6380 ± 0.1042
MixedShape RegularTrain	Cost/instance Faithfulness@30 Robustness	$\begin{array}{c} \textbf{0.345} \pm 0.108 \\ 0.0432 \pm 0.0268 \\ 0.4448 \pm 0.3038 \end{array}$	37.793 ± 15.075 0.0475 ± 0.0378 0.1753 ± 0.1268	0.906 ± 0.671 $\textbf{0.6621} \pm 0.0758$ $\textbf{0.7314} \pm 0.2679$

of model queries is $|S_V| \cdot m$, and the time to aggregate the importance scores over overlapping segments is $T/\delta \cdot w$. The total complexity is thus $|S_V| \cdot (m \cdot (C+C_V) + T/\delta \cdot w)$. In Phase 2, the number of model queries for refinement is the same for each view, while the adaptive selector can add approximately κ/s model queries (s is the step of the ratio). Thus, the combined complexity for MIX is $|S_V| \cdot (2 \cdot m \cdot (C+C_V) + T/\delta * \cdot w + C \cdot \kappa/s)$.

For InteDisUX, let N_S be the number of initial segments. The worst-case complexity for its greedy interactive refinement process is $m \cdot C + T + N_S^2 \cdot C$. In this expression, the $m \cdot C$ term corresponds to the IG calculation, while the $N_S^2 \cdot C$ term arises from the iterative merging of segments. The parameter N_S is analogous to the T/δ term in our framework's complexity analysis.

For SpectralX, which employs a greedy strategy, let k be the number of top features to select, P be the number of masks generated, and R be the number of features unmasked in each mask. To select a single best feature, the method must estimate the insertion/deletion score for all candidate features, a process which requires approximately P model queries. Since the greedy strategy selects k features sequentially, the total number of queries is approximately P*k. Consequently, the total complexity is approximately $P \cdot k \cdot C$, where C is the cost of a single model query. It is important to note that the default setting for SpectralX is P=2000. For a full comparison with methods like MIX and InteDisUX which provide an importance score for every feature, k would need to be equal to the total number of features of spectralgram, which can be larger than T.

Tab. 13 shows averaged computational costs of MIX, InteDisUX and SpectralX over 3 architectures on NVIDIA RTX 4070 GPU. When explaining across 5 views, MIX has moderately higher computational costs (approximately 2.5-3x) than InteDisUX but with significant improvements in both faithfulness and robustness. Compared to SpectralX, MIX is far more computationally efficient.

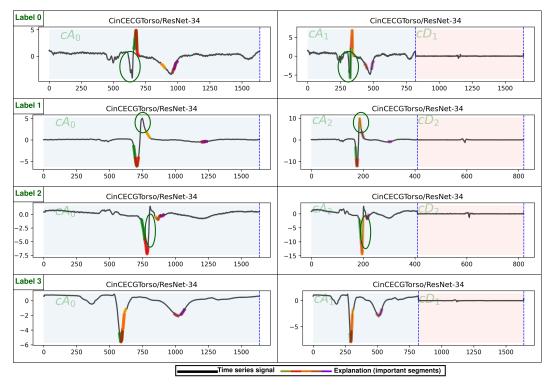


Figure 10: Visualization of the **CinCECGTorso** time series signal (black line) at wavelet level 0 (cA_0) and the best wavelet level for explanation for each instance (ranging from level 0 to 5), along with the top explanatory segments (colorful lines, each assigned a distinct color such as green, red, orange, brown, or purple) generated by MIX. Each row represents one instance. The background regions shaded in blue and pink correspond to cA and cD components, respectively, with their names indicated inside each region. The four signals correspond to four different class labels, and differences among these labels can be observed in the visualizations. Key features that are correctly captured by MIX at wavelet levels 1 or 2 (cA_1, cA_2) but missed at level 0 (raw time series) are indicated with green circles. These results highlight the importance of incorporating multiple DWT views for explanation, demonstrating that a multi-view approach can provide more comprehensive and accurate explanations than relying on the raw time series alone.

H Qualitative Results

H.1 Visualization of Explanations on UCR Dataset

CinCECGTorso dataset. We present a visualization of our explanations on the CinCECGTorso dataset and ResNet-34 DL model across multiple instances for each class in Fig. 10. The figure suggests that explanations at wavelet level 1 or 2 tend to capture relevant features more effectively than those at wavelet level 0. Furthermore, the multi-view visualization for a single instance in Fig. 11 indicates that explanation quality is highest at level 3, not at cA_0 . Taken together, these visualizations highlight the potential value of a multi-view setup for explanation compared to relying solely on the raw time series.

Wafer dataset. We present a visualization of our explanations on the Wafer dataset using a ResNet-34 deep learning model to illustrate how explanations can improve when generated from different views (see Fig. 12). These results suggest that employing a multi-view setup in the wavelet domain may enhance the interpretability of deep learning models for time series classification. Furthermore, we observe that each view can both miss and capture important features that are not detected by the other, indicating that cooperation between views is beneficial to provide better explanations.

TwoPatterns dataset. We present a visualization of our explanations on the TwoPatterns dataset and ResNet-34 DL model in Fig. 13 to compare explanations at level 0 versus level 1, and in Fig. 14 for

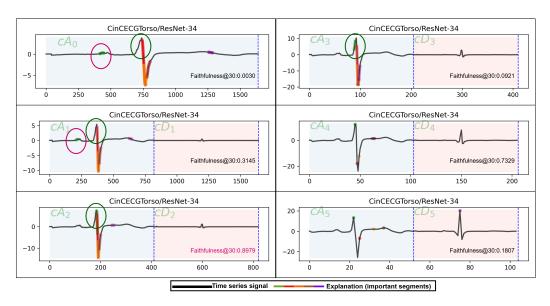


Figure 11: Visualization of the **CinCECGTorso** time series signal (black line) at wavelet level 0 (cA_0) and higher levels (cA_1) through cA_5 , together with their corresponding explanations generated by MIX. All figures correspond to a single instance across five wavelet levels. For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. The black line represents the time series signal for each component, while the colorful lines indicate the top segments identified by MIX, with each segment assigned a distinct color, including green, red, orange, brown, and purple. Key regions that are missed at levels 0 and 1 but captured at higher levels are marked with green circles. Notably, some important segments are successfully identified in cA_2 and cA_3 but not in cA_0 , which is consistent with the Faithfulness@30 evaluation (highest at level 3 and lowest at level 0) shown in each subfigure. At higher levels (cA_4, cA_5) , explanations may also miss crucial segments and are generally less effective than those at cA_3 . Additionally, cA_0 sometimes captures noise (highlighted with a pink circle), which is eliminated at level 3 and above. These results further highlight the importance of a multi-view explanation setup.

level 2. The results indicate that MIX produces better explanations at levels 1 compared to level 0 and level 2 and level 0 can support each other. This finding further underscores the importance of a multi-view setup, consistent with our observations on the CinCECGTorso and Wafer datasets.

H.2 Visualization of Explanations on Synthetic Dataset

We also provide a visualization of explanations on the synthetic dataset. As shown in Fig. 15 and Fig. 16, MIX effectively captures important features in cD_1 , which aligns with the way the data was synthesized.

H.3 Visualization of Explanations on MIT-BIH Dataset

For real-world applications, we visualize our explanations on the MIT-BIH dataset. As shown in Fig. 17, MIX captures important features more effectively by utilizing wavelet levels 2 and 3, rather than relying solely on the raw time series. This leads to a natural question: is it sufficient to search for a single optimal explanation, or is a more flexible, greedy strategy across multiple views preferable? Fig. 18 provides further insight, depending on the instance, explanations at cA_3 may capture important features those are missed at cA_4 , and vice versa. These observations reinforce the importance of a multi-view setup and highlight the value of a greedy selection strategy that traverses multiple DWT levels to produce more faithful and robust explanations. Notably, this finding is consistent with our observations on the Wafer and TwoPatterns datasets.

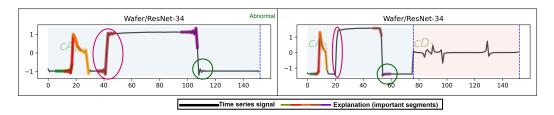


Figure 12: Visualization of the **Wafer** time series signal (black line) with top segments from MIX's explanation represented as colorful lines, each color corresponding to a different top segment, for the two classes: Normal and Abnormal. Each row corresponds to one instance. For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. At level 0, MIX can capture features associated with the Abnormal class; however, a small segment (highlighted with a green circle) is missed at this level but is successfully identified in cA_1 (right figure). Conversely, some important segments captured in cA_0 (highlighted with a pink circle) are not identified at cA_1 . These results indicate that different views can complement each other to achieve more faithful explanations, supporting the effectiveness of our multi-view setup for time series explanation.

I Post Hoc vs. Ante Hoc and Local vs. Global Explanation Discussion

While developing effective interpretable-by-design models is a vital direction, we argue that post-hoc explanation remains a crucial and growing area of study. As new increasingly complex architectures like Transformers continue to evolve and achieve SOTA performance on large, complex time series datasets, post-hoc methods remain an essential and practical tool for understanding their behaviour. Moreover, the recent trend towards large, pre-trained foundation models for time series analysis also strengthen the necessity of post-hoc methods as studied in [45]. Even recent hybrid models that combine interpretable and non-interpretable components, such as [90], still require post-hoc analysis to understand their black-box parts.

Table 14: Performance comparison between local and global MIX variants. Results are reported as mean \pm standard deviation.

Metric	MIX Local	MIX Global
Faithfulness@8	0.7308 ± 0.0230	0.502 ± 0.087
Faithfulness@20	0.7756 ± 0.0794	0.693 ± 0.016
Faithfulness@30	0.7438 ± 0.0484	0.723 ± 0.008
AUCStop	0.707 ± 0.015	0.683 ± 0.032
F1S	0.347 ± 0.024	0.339 ± 0.035

Regarding the local versus global scope, our paper focused on local explanations. We have now developed and tested an extension to the MIX framework for generating global explanations. Our approach involves aggregating the local attribution maps from all instances to produce a single, summary map. We evaluated its faithfulness on TwoPatterns dataset and found that it is comparable to local settings, as shown in Table 14.

J Multi-view vs. Cross-modal Discussion

Our cross-view refinement can be considered as feature fusion of the model. The refinement process works by first identifying "keystone features" from the most faithful view and then using them to guide the attribution calculation in other views via our Keystone-first IG (KIGV) method. This allows strong signals from one perspective to improve the explanations of another. While our current work focuses on different time-frequency views of the same single-modality data. Our current work operates on a single modality, which is a time series signal. The "views" we generate via the Haar DWT are different time-frequency perspectives of this same signal, allowing us to analyze its characteristics at various resolutions. However, we believe "cross-modal integration" is a fantastic concept for future work, especially in a multivariate context. This concept becomes even more

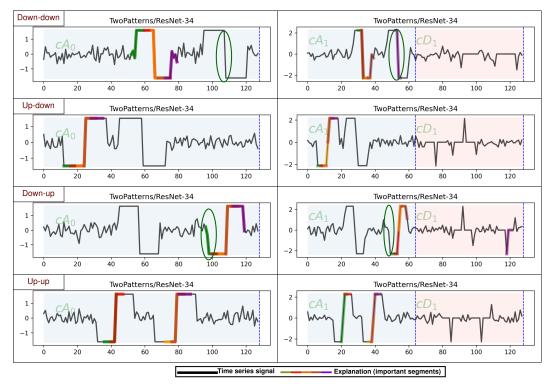


Figure 13: Visualization of the **TwoPatterns** time series signal (black line) with top segments from MIX's explanation represented as colorful lines, each color corresponding to a different top segment, for the four classes represented by two patterns: down-down, up-down, down-up, and up-up. Each row corresponds to one instance across two wavelet levels, 0 and 1. For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. For the "down-down" class, MIX fails to capture the segment corresponding to the 2nd "down" pattern in cA_0 , but the explanation in cA_1 successfully highlights this segment as important. Similarly, for the "down-up" class, the segment for the "down" pattern has a redundant part recognized as important segment (marked in green circle) in cA_0 , but it is not captured in cA_1 . These findings indicate the importance of a multi-view setup for time series classification (TSC) explanation.

powerful in a multivariate context, where different channels could be treated as distinct but related modalities.

K Limitations

Even though our framework MIX can provide a good explanation for TSC, it has some limitations that offer avenues for future work. First, while we have extended MIX to handle multivariate time series, our current approach treats each channel independently during the DWT phase; future work could explore multivariate wavelet transforms to better capture cross-channel dependencies . Additionally, as a segment-based attribution method, MIX is subject to the inherent limitation that assigning a single score to a segment can obscure the specific contributions of individual time points within that region .

Furthermore, our framework is designed to provide local, post-hoc explanations. Although some works stated about weakness of post-hoc explanation [79], this approach is particularly relevant in the current landscape, where the rapid development of large-scale foundation models for time series necessitates model-agnostic tools for interpretability [45]. While this local focus offers detailed, instance-specific insights, its primary drawback is the need for users to analyze model behavior on a case-by-case basis. A global explanation framework, which would capture features representative of an entire dataset, is therefore a valuable complementary approach. As stated in other work [67],

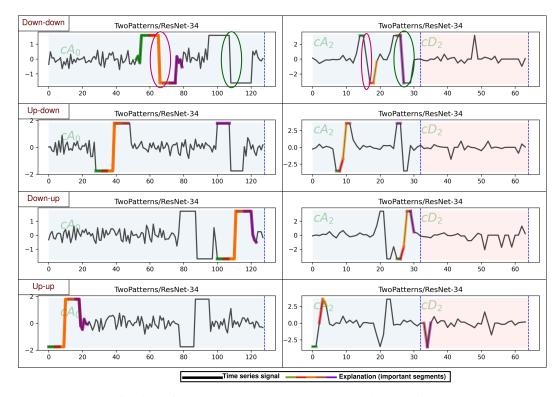


Figure 14: Visualization of the **TwoPatterns** time series signal (black line) with top segments from MIX's explanation represented as colorful lines, each color corresponding to a different top segment, for the four classes defined by two patterns: down-down, up-down, down-up, and up-up. Each row corresponds to one instance across two wavelet levels (0 and 2). For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. For the "down-down" class, MIX fails to capture the segment corresponding to the "down" pattern in cA_0 , but the explanation in cA_2 successfully highlights this segment as important. Conversely, an important segment highlighted by a pink circle is recognized by MIX in cA_0 but not in cA_2 . These observations indicate that each view can reveal different important features and can support each other, supporting our motivation for a multi-view explanation setup.

offering both local and global perspectives would provide users with a more comprehensive suite of tools for model understanding.

Finally, we acknowledge the limitations of the current evaluation paradigm for local XAI, which relies heavily on faithfulness scores from ablation studies, particularly the practice of removing segments to evaluate time series explanations. We recognize that such metrics may be insufficient to definitively identify a single "most effective explanatory perspective". This points to a broader challenge in the field to develop more holistic evaluation frameworks, as noted in other research, as paper [67] stated.

Besides, our MIX framework was designed with an assumption about "no perfect metric" in mind. Hence it is not rigidly tied to a specific metric. The framework's key strength is its flexibility. The selection criterion used to identify the "best view" is modular. As the XAI field matures and develops better and more holistic evaluation metrics, they can be easily integrated into our framework to replace the current faithfulness average. The adaptive selector in Phase 2, which acts as a quality gate, is a key example of this modular and principled design. In addition, we can combine different metrics to have a better evaluation (by covering wider aspects) like the way we did in our paper with 3 metrics. This is inspired from the way different classification evaluation metrics e.g. Acc, F1, AUC are combined in machine learning classification problems.

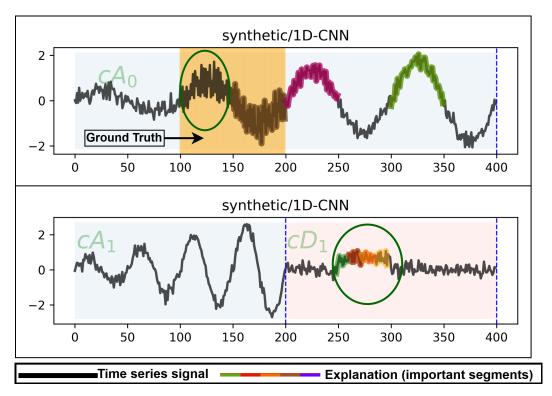


Figure 15: Visualization on the **synthetic** dataset with the top 100 important features highlighted by selecting top segments. All figures corresponds to one instance across two wavelet levels (0 and 1). For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. The ground truth region for this dataset is from time step 100 to 200 in cA_0 , corresponding to steps 250 to 300 in cD_1 based on the synthetic process, highlighted by color yellow. MIX successfully captures the key features in cD_1 , correctly identifying the important region marked in green circle (positions 250–300 in cD_1 , which maps to 100–200 in cA_0 and matches the ground truth). In contrast, the explanation on cA_0 alone misses part of the ground truth (notably, the segment from approximately time step 100 to 150 remains unhighlighted) marked in green circle, demonstrating the benefit of multi-view analysis.

L Broader Impacts

Our work proposes a novel explanation for TSC, which can apply to various applications such as ECG anomaly detection, sensor data analysis, and help people in those fields develop deep learning and explain them. With a good explanation framework, deep learning models will become more trustworthy for humans and motivate users to integrate models into their systems. However, post-hoc explanation can make users understand which features are influential in the model's decision, but ignore causality within them. It is necessary to integrate causality and reasoning to post-hoc explanation, but it is out of the scope of our studies. Also, our research does not directly introduce societal or environmental risks. However, as the underlying models remain black-box in nature, the method should not be viewed as a substitute for rigorous model validation or fairness analysis.

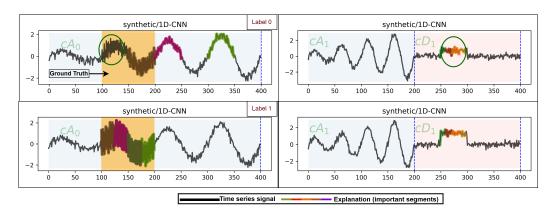


Figure 16: Visualization on the **synthetic** dataset with the top 100 important features highlighted by selecting top segments. Each row corresponds to one instance across two wavelet levels (0 and 1). For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. The ground truth region for this dataset is from time step 100 to 200 in cA_0 , corresponding to steps 250 to 300 in cD_1 based on the synthetic process, highlighted by color yellow. MIX successfully captures the key features in cD_1 , correctly identifying the important region marked with a green circle in both classes (positions 50 to 100 (250–300 as shift from cA_1) in cD_1 , mapping to 100–200 in cA_0 , matching the ground truth). In contrast, the explanation on cA_0 alone misses part of the ground truth in class 0 (notably, the segment from approximately time steps 100 to 150 remains unhighlighted, as marked by the green circle), indicating the benefit of multi-view analysis.

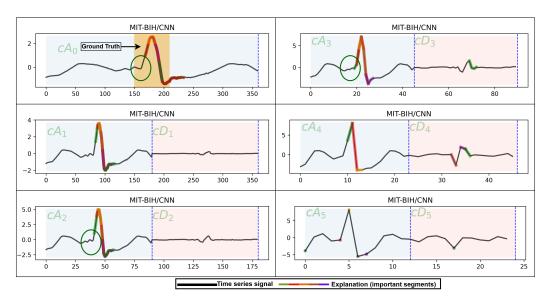


Figure 17: Visualization on the **MIT-BIH** dataset with the top segments highlighted. All figures represent a single instance across five wavelet levels. The ground truth, as annotated by cardiologists according to [66], typically corresponds to the peak region in the middle of the signal, highlighted by color yellow. For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. Explanations using only cA_0 miss some important features, whereas cA_2 , and cA_3 more effectively capture the relevant segments, which are marked with green circles.

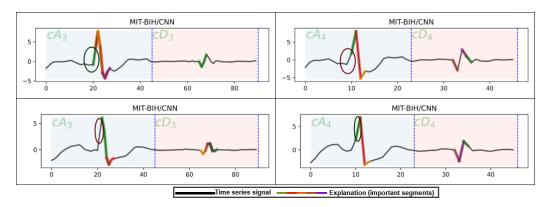


Figure 18: Visualization on the **MIT-BIH** dataset with the top segments highlighted. Each row shows one instance at two DWT levels (3 and 4). For each level l, cA_l and cD_l are shown as two regions with light blue and pink backgrounds, labeled accordingly. In the instance in the first row, the explanation in cA_3 at level 3 covers important features more effectively than cA_4 at level 4. The region captured by cA_3 is indicated with a green circle, while the corresponding region in cA_4 (marked with a red circle) is not highlighted. Conversely, for the instance in the second row, MIX at level 4 with cA_4 highlights important features that are missed at level 3 with cA_3 (with missed regions marked by red circles in cA_3 and by green circles in cA_4 where they are correctly identified). These observations suggest that a multi-view setup and cross-view aggregation are beneficial for achieving more faithful explanations.