MIX: A Multi-view Time-Frequency Interactive
Explanation Framework for Time Series Classification

Viet-Hung Tran'; Ngoc Phu Doan'; Zichi Zhang'; Tuan Dung Pham!, Phi Hung Nguyen',
Xuan Hoang Nguyen?, Hans Vandierendonck', Ira Assent®>, Thai Son Mai'*

1Queen’s University Belfast, UK
{h.tran, h.vandierendonck, thaison.mai}@qub.ac.uk
2Institut Polytechnique de Paris, France
{xuan-hoang.nguyen}@ip-paris.fr
3 Aarhus University, Denmark
{ira}@cs.au.dk

Abstract

Deep learning models for time series classification (TSC) have achieved impres-
sive performance, but explaining their decisions remains a significant challenge.
Existing post-hoc explanation methods typically operate solely in the time domain
and from a single-view perspective, limiting both faithfulness and robustness. In
this work, we propose MIX (Multi-view Time-Frequency Interactive EXplanation
Framework), a novel framework that helps to explain deep learning models in
a multi-view setting by leveraging multi-resolution, time-frequency views con-
structed using the Haar Discrete Wavelet Transform (DWT). MIX introduces an
interactive cross-view refinement scheme, where explanation’s information from
one view is propagated across views to enhance overall interpretability. To align
with user-preferred perspectives, we propose a greedy selection strategy that tra-
verses the multi-view space to identify the most informative features. Additionally,
we present OSIGV, a user-aligned segment-level attribution mechanism based on
overlapping windows for each view, and introduce keystone-first IG, a method that
refines explanations in each view using additional information from another view.
Extensive experiments across multiple TSC benchmarks and model architectures
demonstrate that MIX significantly outperforms state-of-the-art (SOTA) methods
in terms of explanation faithfulness and robustness.

1 Introduction

Time series classification (TSC) is an important task in many domains, such as healthcare [46],
finance [44]], and supply chain [38]. In recent years, deep learning (DL) models have become
increasingly popular in TSC thanks to their ability to capture complex temporal patterns and achieve
state-of-the-art (SOTA) performance on a wide range of datasets [59]. However, DL models are
considered as black boxes due to their lack of transparency. This makes it difficult to understand
or trust their predictions, which is especially critical in sensitive applications such as medical and
financial, where interpretability, accountability, and error analysis are essential.

To mitigate this issue, explainable Al (XAI) has emerged as an important direction for improving
the interpretability of DL models. XAI methods help users to understand model decisions, which
in turn help to increase trust, supports accountability, and enables model debugging. In the context
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of TSC, explanation methods can be broadly divided into ante-hoc and post-hoc categories. Ante-
hoc methods aim to make models interpretable by design, for example, decision trees, attention
mechanisms [32,131,169, 9} 146], or shapelet-based methods [92,147,122|161,124,91]]. Post-hoc methods,
on the other hand, provide explanations after the model is trained and are usually agnostic to the
model’s internal structure. Since most high-performing DL models are not inherently interpretable,
post-hoc XAI has become the common explanation approach for DL models in TSC.

According to the type of explanation output, most methods provide either time point-based explana-
tions [36, 186,12} 1749|4866, (11} 4} [16], which give importance score to individual time points
or subsequences-based explanations, which focuses on sub-regions of the time series [8} 33| [27].
Time point-based explanations are more common, especially when models operate directly on raw
time series. However, assigning importance scores to each time point often results in fragmented,
hard-to-interpret explanations and fails to capture the temporal structure or meaningful patterns in the
data. Segment-based methods, which assign scores to segments of time series, have recently gained
attention as they provide more meaningful explanations for human [63\ 29, 76l 83]].

Despite these recent efforts, most existing methods, including both time point-based and subsequence-
based approaches, focus only on the time domain. They overlook another important aspect of time
series: frequency. Addressing this gap, SpectralX [10] introduces an XAI framework that operates in
the time-frequency space, using Short-Time Fourier Transform (STFT) to better reflect the underlying
characteristics of time series. While SpectralX represents a step forward, it has two key limitations: it
uses a fixed STFT setup, which lacks adaptability across different time series; and it fails to map the
frequency-based insights back to the time domain, where users typically interpret results. In addition,
the SpectralX deletion/insertion/combined attribution mechanism also has shortcomings of stability
with randomness, and false negatives in attribution indicated in our detailed analysis presented in
Section [C|of the Appendices.

More broadly, a key limitation across current post-hoc TSC explanation methods is that they rely on
a single view of the time series in either time domain or time-frequency domain. This highlights a
research gap: the lack of multi-view explanation frameworks that integrate different perspectives of
input to provide a more faithful and robust understanding of DL models.

To address the multi-view research gap and fixed setup of SpectralX, we present a new framework,
called Multi-view Time-Frequency Interactive EXplanation (MIX). MIX aims to improve the in-
terpretability of deep learning models for time series classification (TSC) by explaining multiple
time-frequency views of the input through Haar wavelet transforms at various resolutions. Each
view captures distinct temporal patterns, enabling a richer and more faithful understanding of model
behavior. In addition, we propose an interactive mechanism called cross-view refinement, which
leverages the explanation from one view to improve those of others, enhancing the overall faithfulness
of the explanations. To the best of our knowledge, this is the first approach for using multiple
perspectives in a view interactive way in post-hoc TSC explanations. Finally, we incorporate a greedy
search strategy to identify and map the most important features across views back to the time domain.
This not only improves explanation quality but also offers users valuable insights into the granularity
of important segments contributing to the model’s prediction.

Summarization. In this paper, our contributions are summarized as follows:

First, we propose a new perspective for TSC XAl that explains models from multiple views of time
series in both time and frequency domains. Our approach MIX not only generates explanations across
different time-frequency views, but also applies cross-view refinement to enhance each explanation
and performs a greedy feature selection across views to extract the most important patterns in the
view, that is most relevant to the users.

Second, we address key limitations of SpectralX’s attribution mechanism by introducing a new
method based on Integrated Gradients (IG) applied to overlapping segments, defined by the window
and overlap size. This approach yields more faithful and human-aligned explanations by capturing
temporal relationship more effectively. Furthermore, we extend this mechanism to a variant called
Keystone-first, inspired by the keystone species concept in ecologyﬂ This adaptation also provides
a new way to the refinement of explanations in one view using informative segments from another
view, helping cross-view refinement.

ZKeystone species is a species that has a disproportionately large effect on its natural environment.



(A) Multi-view constructit?n (B) Cross-view refinement (C) Multi-view greedy
and independent explanatlon selection
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Figure 1: Overview of the MIX framework with three phases. (A) Multi-view Construction and
Independent Explanation described in Sec 2.5} views V, are constructed via Haar DWT, then
explained independently using IGV and OSIGV. (B) Cross-view Refinement described in Sec 2.5}
the best view V is selected using KAUCS},,,, then refined using KIGV and OSIGV guided by
top-h segments. (C) Multi-view Greedy Selection described in Sec[2.5} MIX traverses all views to
select key features and maps them to the user-preferred view. Phase 3 is practical for selecting top
features directly. (D) Attribution mechanism in Phase 1: IGV is applied to each view, and scores are
aggregated into overlapping segments via OSIGV (see Section[2.3). (E) Attribution mechanism in
Phase 2: Keystone-first IG for view (KIGV) is used to prioritize keystone features before generate
importance score to others (see Section 2.3), then apply OSIGV again to overlapping segments.
Refer Section[A]and Table 3] for meaning of symbols.

Third, we propose a adaptive selector with a novel criterion called Keystone AU CS’top (KAU Cgtop),
inspired by recent work on attribution evaluation for TSC XAI [84]]. The adaptive selector makes the
decision whether explanations should be updated after cross-view refinements.

Fourth, we conduct extensive experiments on 11 datasets with 3 deep learning architectures including
ResNet-34, BiLSTM, Transformer and compare against 3 state-of-the-art (SOTA) TSC XAI methods
including LIMESegment, InteDisUX, SpectralX to demonstrate the performance of MIX.

The Table [I] summarises key differ- Table 1: Comparison between SpectralX and MIX.
ences between MIX and our closest Aspect SpectralX MIX
work, SpectralX. In summary, MIX is

different to SpectralX in 3 fundamental Multi-views No Yes
PR . L Time-frequency transform STFT DWT
aspects: (i) hierarchical multi-view ex- . .
! . e . | . View interaction No Yes
planations, (ii) interactive explanation Attribution mechanism Insertion/Deletion  OSIGV

refinement scheme among views, (iii)
novel attribution mechanism.

2 Multi-view Interactive Explanation

In this section, we describe the proposed MIX framework, as illustrated in Fig.[T} which consists of
three phases: Phase 1: Multi-view Construction and Independent Explanation, Phase 2: Cross-view
Refinement, and Phase 3: Multi-view Greedy Selection. We begin by clarifying the problem definition



and introducing the concept of multi-view, along with our formulation of the novel multi-view
explanation setting. We then define the interpretable representation as the input and the explanation
as the output of MIX. For the internal mechanisms, we define the attribution methods used in each
phase: IGV, OSIG, and OSIGV (based on Integrated Gradients) for Phase 1, and KIGV for Phase 2.
In addition, we introduce a novel selection criterion, KAUCS},,, adapted from the TSC explanation
evaluation framework in [84]], which is used to select the best view and refine explanations in Phase 2.
Finally, we describe the overall algorithmic flow of the MIX framework in addition with description
of Phase 3 for practical setups.

2.1 Problem Definition

Time series. A time series x = {21, 22,...,27} € RT*4 is an ordered sequence of T real-valued
vectors, where each z; € R? represents the observation at time step t. Here, T' denotes the total
number of time steps, and d is the number of channels. x is referred to as univariate when d = 1 and
as multivariate when d > 1. In this paper, we investigate on univariate time series as its popularity in
time series explanation. The current SOTA TSC explanation methods are mainly focusing on this
type of time series 76,83, [10]. We drop d out for univariate time series for simplicity.

Time series classification and explanation. We denote a TSC dataset is an annotated dataset
D = {(x;,y:)}Y,, where x; € R is a univariate time series and y; € N is the corresponding
class. The objective of TSC is to learn a DL model F' : RT — N that assigns each x; € X to its
corresponding label y;. Our target is to explain the pretrained model F' for an instance x to answer
"Why does F predict x as F(x)?’. As a TSC post-hoc explanation, our approach seeks which part of
x significantly affects the model’s prediction outcomes.

Segment-based explanation for time series. Different from Time Points-based Attribution Mech-
anism, which assigns an importance score to each time series step, segment-based attribution
method maintains a set of segments with their scores as the interpretable representation. By con-
sidering the time-dependence characteristic of time series, this method makes the explanation
more naturally aligned with human perception. Given a time series x, a segment is defined as
sel (2) = {&y, Tryt1s- - - » To,y } Where gy and teyg are starting time and ending time of the

segment and 1 < tyuq < teng < 7. Let S = {sel,se?,...,seM} be a set of segment functions,
where each segment se! = sei:[“;l. Our objective is to build an explainer £ that gives a score for each
segment se’ € S: E(x, F,S) = {sy.i|se’ € S}. Here, |syi| > |54 indicates that se’ is more
important than se’ in making a prediction for the instance x.

Multi-view Explanation Problem. The key idea of our explanation method is built upon the
concept of multi-view where each view could refine the results of other views and vice versa. Let
V : R — R? be a view of x where it transforms x to a space of d’ dimensions. If the view is
invertible, it has a corresponding inverse V =* : R? — R? such that V~(V(x)) = x. Let Sy denote
a set of views. Our multi-view explanation problem can be defined as to establish a view-specific
explanations Ey (x, F, S, V). Let v (x, F,S,V) = {s4.: | se’ € S} be a set of scores over the
segment set S in the view V. In particular, £y denotes the explanation for the specific view V' which
is built not only from this view itself but also from the refinement of other views. Finally, we get a set
of explanations for the model F as {Ey (x, F, S, V) | V € Sy }.

2.2 MIX Framework’s Description

Time-Frequency View Definition. Recent TSC explanation methods focus on the time domain,
using time points or segment-based attribution. They often overlook the frequency domain, which
might contain crucial information in many time series. SpectralX addresses this by masking the
attribution in the time-frequency domain via Short-Time Fourier Transform (STFT), but its fixed
time-frame setup limits adaptability across different time-frequency patterns. To address these
limitations, we propose a more flexible and interpretable approach using the Haar Discrete Wavelet
Transform (Haar DWT) for time series [7]], a widely used signal analysis tool. Wavelet transforms
enable multi-resolution decomposition, capturing both time-localized and frequency patterns. In
this work, we define views using the multi-resolution Haar DWT. Following standard notation, we
denote the DWT outputs as cA (approximation coefficients) and cD (detail coefficients), representing
low- and high-frequency components, respectively (see Fig.|l|(A) in DWT part). For multi-level



decomposition, cA,. and cD,. refer to the approximation and detail coefficients at level . We formally
define our view by DWT. Given a time series x, the view at level r, denoted V;., is defined as:
Vi (x) = [cAy,¢Dy,cD,—1,...,cD1]. In addition, each view V,.(x) can be inverted to reconstruct
the original time series x.

Segments-based explanation in MIX. We define the interpretable representation used in each
view as input to the explanation mechanism. As described above, the view at level r is represented
as [cA,,cDy,eD,_1,...,cD1], which can be inverted to reconstruct the original time series cAy.
At each level, we focus on explaining on cA, and c¢D,, since lower-level detail coefficients are
handled in their respective views. With TSC explanation attribution approach, we choose segments-
based explanation to conduct as it is more aligned with human perception more than time points
based [83]. Given a time series x = [z1, ..., z7], window size w, and step size J, the ith overlapping
segment is: se’ = sez,‘;”“, where t},, = min(1 +i,T), ti4; = min(l 4 6 + w,T). The full
set is denoted as OijlmFor each cA, and cD,., the structure of them is similar as a time series,
then we generate overlapping segments denoted OS.4, = {cAl, cA2 ... cAN} and OS.p, =
{cD},cD?, ... c¢DXN}, and use them as the interpretable representation for explanation. We choose
overlapping segments so that explanation can avoid missing some regions between separate segments
as in InteDisUX [83]]. The window and step sizes are adjusted by scale: w, = min(w-27",1), 6, =
min(d - 27", 1), where w and 0 are sizes defined on the input x = cAy.

Definition 2.1 (MIX setup). Given a time series x, deep learning model F', a set of views from Haar
DWT Sy = {V, | r € [0,m]}, where m is the maximum wavelet level, and w and ¢ to generate
overlapping segments for each cA and ¢D as input, MIX produces output as a set of explanations
with segment set S, = OS.4, UOS.p, U...UOScp,; s, = {E&v (X, F, S, V) | V. € Sv},
where each view’s explanation is defined based on segments-based explanation as:

gv(X,F, Sr, VT) = {Ssei se' e 08Sca, UOS.p, U... U OSch}

2.3 Attribution Mechanism for MIX

To get output from input as defined in Def. we apply attribution mechanism on overlapping seg-
ment. Motivated by limitations in SpectralXs attribution approach analyzed in Sec[C|of Appendices,
we propose a new mechanism, OSIG, based on Integrated Gradients (IG), which satisfies important
axioms such as sensitivity and implementation invariance.

Definition 2.2 (Integrated Gradients (IG) [80]). Given input x, baseline x’, and model F, the IG

1 9F (x'+a(x—x")) do.

along the jth dimension is: 1G;(x) = (z; — %) - [ oy

Although IG is theoretically sound, it operates at the time point level, which hinders interpretability
in TSC. InteDisUX [83]] adapts IG for segment-level attribution (SIG), but uses non-overlapping
segments, potentially missing important transitional regions. We address this with overlapping
segments define in Sec.

Definition 2.3 (Overlapping Segment-level Integrated Gradients (OSIG)). Given segments {se'},
OSIG aggregates IG over time points in each segment: OSIG(se?) = Zt;"d IG;(x).

j:tsimrl
Definition 2.4 (IGV and OSIGV). For view V (x), if V and V! are differentiable, we define IG in
view space as:

GV (V(x), V(x)) = (V(2); - V(2)}) - /O oF(V- (V(X’>8+V ?gc()‘jf(X)V(x’)))) o

To simplify the Def. 2.4] we call the new function with input zy = V(z) or 2}, = V(2') is
Fy = F o V!, then Def. 2.4 become:

LR / o
IG‘/;(LUU’J;;) = (LUvj — x;) . / 0 V(xv + Oé(xv xv))
’ 0 0y,

To use IGV on segments, we compute OSIG as: OSIGV (se?) = Zjé“d IGV,(V(x)), where se;

A:tflarl
lies on the transformed representation {cA,., ¢D,}. In MIX, for each view V;., we apply OSIG to
overlapping segments of cA,. and c¢D,., while setting attribution for other cD,,, (with m < r) to zero.



Cross-view refinement by attribution mechanism. While we can directly apply the attribution
mechanism OSIGYV to obtain the final explanation output £g,, , our goal is to identify the most faithful
explanation of the model’s decision. To this end, we introduce a refinement scheme called cross-
view refinement, which leverages attribution information across views. Although each individual
explanation may be imperfect, it often highlights features that is strongly important to the model’s
prediction. These features can be seen as “keystone” features that represent to the core characteristics
of the input. Inspired by the ecological concept of keystone species, we define keystone features in
time series as those with a large impact on model decisions. Analogous to ecological studies that
prioritize keystone species, our method first approximates such features using an attribution map,
then uses this information to refine the explanation across views. To approximate keystone features,
we use the best view V. choosing by evaluate attribution map of each view by a novel criterion in the
next section. Moreover, we choose top-h segments of view V;. with highest score in &y (V;.(x), F).
Then, MIX map their positions from view r to view p using the properties of the Haar DWT. Let
cA, = [x1,...,21,] and ¢D, = [z1,...,27.]. A time step ¢, in level r is mapped to level p as:
t, = min(|t, - 2777, T},)., where T}, is length of cA, or ¢D,,. For each segment, we apply this
mapping to both the start and end positions to locate corresponding segments in cA and cD of the
target view. To incorporate this transferred information, we introduce a new attribution method called
Keystone-first Integrated Gradients for view (KIGV). Inspired by the ecological role of keystone
species, KIGV first attributes importance to the top-h keystone segments and then extends attribution
to the rest of the view. Since exact keystone features are unknown, we approximate them using the
top-h segments from the best view selected using a criterion introduced in the next section.

Definition 2.5 (Keystone-first Integrated Gradients). Given a view V' (x) and top segment positions
topV C {1,...,T,}, define a binary mask mask € {0,1}?~, where m; = 1if [ € topV, and 0
otherwise. The masked input is: V' (X)keystone = mask - V(x) + (1 — mask) - V(x). The KIGV
attribution is:

KIGV;(V(x), V(x)) := IGV;(V (X)keystone; V(X)) + IGV;(V (%), V (X)eystone ) -

Finally, to refine view V,,,, we compute KIGV using the transferred segments from V,., and then
apply OSIGV to produce a refined explanation guided by cross-view information.

2.4 Selection Criterion

In multi-view settings, selecting the most meaningful explanation requires a principled criterion.
While InteDisUX uses a heuristic based on discrimination and faithfulness gain, it is not aligned with
recent evaluation standards [84]. To address this and support user evaluation preferences, we propose
a general, user-adaptable selection method using selection scores based on [84].

First, we define a top-k-quantile-masked sample, denoted X}, as a perturbed version of input x
where the top-k most important features (based on the absolute attribution scores) are replaced.
Features are selected by exceeding the (1 — k)-quantile threshold. Unlike [84], which uses random
noise, we replace values with the baseline from OSIG, which is the mean value over time series
training dataset to maintain stability. The Top-k-Quantile strategy typically applies to explanation
with scores for each feature, but segment-based attribution provides scores only at the segment level.
Given a view V,.(x), to assign scores to individual features in each view V,.(x), we use the maximum

absolute score among all segments containing that point: s; = max {|s: f Vi(z); € se'}.

To estimate explanation quality, we define the normalized degradation score as the drop in confidence

when input x is perturbed into %: S(x) = % where S(x) is the model’s confidence for the

predicted class. By progressively corrupting the top- or bottom-# features, we construct S—T curves,
where T' = % is the fraction of corrupted time steps. The area under this curve quantifies overall
degradation: AUCS = fol S dT. Specifically, AUC §top evaluates degradation from top-%-quantile-

masked samples with k& € [0, 1]. A higher AUC S’top indicates a more faithful explanation. In fact,
users often care most about the top influential or "keystone" features. To capture this preference, we
propose the following focused selection criterion:

Definition 2.6 (Keystone AU Cgtop). Keystone AU CS’top (KAU Cgtop) is a version of AU CS’top,
computed over k € [0, k), where £ € (0, 1) specifies the top fraction of features to prioritize. We
denote the function as: K AUC'S,,,,(F, V,(z),E), where £ is explanation on V..
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Figure 2: Comprehensive comparison of our method (MIX) against state-of-the-art baselines.
(Top) Scatter plots show robustness and averaged faithfulness scores across 11 datasets and 3 model
architectures. Our method (red star) consistently outperforms others. Quantitatively, MIX ranks first
in 27/33 robustness and 24/33 faithfulness evaluations. (Bottom-left) Radar plots for AU C Stop and
F1S metrics further demonstrate the superiority of MIX. (Bottom-right) Box plots summarizing the
distribution of scores over all datasets confirm that MIX achieves higher and more stable performance.

2.5 Multi-view Interactive Explanation

Overall, our algorithm can be divided to 3 phases: Phase A, B, and C as shown in Figure[I]

Phase 1: Multi-view Construction and Independent Explanation. Given a time series x, window
size w, step size d, and a model F', MIX first applies the Haar Discrete Wavelet Transform (DWT)
to generate multi-resolution views. Each view V,. corresponds to the r-th decomposition level, with
Vo(x) = cAp = %, and general form defined in Sec In the second step, for each view V,., we
generate an explanation by applying the OSIGV attribution mechanism (Def. 2.4). This results
explanations: s, = {&v (x, F, S, V) | V,. € Sy }.

Phase 2: Cross-view Refinement. In the first step, MIX estimate the explanation quality of
each view using the KAUCStOp score using Def. and then select the best view as following:
V= arg max KAUCS,,, (F, V;.(x), £(V;(x), F)). Starting from the selected best view V* at level

q (1dent1ﬁed in Phase 1), we first extract the top-h most important segments, denoted topS(g, h) C
OSca, UOS.p,.

In the second step, these top segments are then mapped across all other views using the cross-level
mapping defined in Sec.|2.3] n producing topS(r, k) for each level r. In the third step, guided by these
mapped segments, we apply the keystone first IG from Def. [2.5]to compute a new attribution for time
points then applying OSIG for each view. Finally, we propose adaptive selector for MIX using the
KAU CS’top selection criterion (Def. [2.6) to choose between the refined explanation and the original
explanation from Phase 1, for each view. ThlS results in an updated explanation set, enhanced through
cross-view interaction.

Phase 3: Multi-view Greedy Selection. After Phase 2, MIX has £y (V,.(x), F') for each view V.
When a target view is required (typically cAg), we aggregate key segments from all levels into it. To
do so, we use a greedy strategy that iteratively selects the segment with the highest score from all
levels and maps them to the target view, continuing until the desired number of time points is reached.



2.6 MIX for Multivariate Time Series.

The MIX framework naturally extends to multivariate time series, as its core components are designed
to handle multi-channel inputs. Concretely, in Phase 1, the Discrete Wavelet Transform (DWT)
is applied to each channel independently, after which overlapping segments are generated on a
per-channel basis. Our attribution methods, including Integrated Gradients (IG) and OSIGYV, are then
computed directly on the multivariate inputs. The refinement mechanisms in Phase 2 also generalize
directly: the top-h segments are selected from the entire pool of segments across all channels based
on their scores, and the “KAUCS'tOp” criterion is calculated by removing k-quantile features based
on importance scores aggregated across all channels . For experimental comparisons, we adapted
baselines such as InteDisUX and SpectralX by converting the multivariate data into a univariate time
series via channel concatenation.

3 Experiments

3.1 Experimental Setup

Dataset. To evaluate our method against state-of-the-art approaches, we first use a synthetic dataset
with predefined explanation ground truth. For all, cA; is the concatenation of three sine waves, and
for label 0, ¢D; has a constant value of 10 from position 50 to 100. For label 1, ¢D; has value 20 in
the same region. This corresponds to time steps 100-200 in c Ay, reconstructed from {cA;, cD1}. We
then apply our explanation method on the time series x, obtained via inverse DWT and add random
noise to the raw time series. Basically, samples from two label will be different of details in time
steps from 100 to 200, noise added in final step will make explanation task more challenging. To
demonstrate generalizability on real-world data, we test on 11 UCR datasets: ArrowHead, Strawberry,
Yoga, FordA, FordB, MixedShapesRegularTrain (MSRTrain), CinCECGTorso (CCECGTorso), Gun-
PointMaleVersusFemale (GPGender), TwoPatterns, MixedShapesSmallTrain (MSSTrain), and Wafer.
In addition, to demonstrate the effectiveness of our explanation method in a real-world scenario, we
conduct experiments on the MIT-BIH dataset [[66]], which includes expert-annotated explanations
provided by cardiologists. Full details about the annotation process are described in the TimeX
paper [66]. We also conduct our straightforward adaptation on UEA Basic Motion dataset. This
dataset’s results are in the Appendices Sec. [F.I] Full details of dataset are provided in the Appendices,
Sec.[E1l

DL Architecture. We conduct experiments on three deep learning architectures, ResNet34, BiLSTM,
and Transformer to demonstrate the generality of MIX. In total, we evaluate across 33 configurations,
combining 11 datasets with 3 model architectures (see Sec. [E.4]in Appendices for details).

Baselines. We compare our method with recent SOTA explanation approach for TSC including
LIMESegment [[76]], InteDisUX [83]], SpectralX [[10] (see Sec. E]in Appendices for details).

Evaluation Metric. We evaluate explanations using four complementary criteria: First, we compute
top-k faithfulness by measuring the drop in confidence score when removing the £ most important
features. These features are selected either using a greedy strategy or obtained from attribution
maps. We report results for k£ = 8, 20, and 30 as faithfulness@8, @20, and @30. with MIX,
since explanation output is for each view, we evaluate in all views then choose level with maximum
average of those faithfulness. We report the performance of the single best-performing view for each
dataset. Concretely, for each individual view, we average its performance across the different metrics
(Faithfulness @8, @20, and @30). We then select the single view with the highest score and report its
performance.This process highlights a key strength of our framework: its ability to identify the most
effective explanatory perspective for a given task, rather than report the results by averaging. Second,
we use two faithfulness-oriented metrics proposed in [84]: AUCS,,, and F1S. Third, we evaluate
robustness by computing the Jaccard coefficient between two sets of top-30 features: one derived
from the original input x and one from a noisy version of x (perturbed with small Gaussian noise).
Fourth, for datasets with explanation ground truth, we compute AUPRC and the Jaccard coefficient
between the top-k features identified by the explanation and the annotated ground truth features. For
synthetic and MIT-BIH datasets, we use our greedy selection scheme (Phase 3), which provides an
even more direct comparison. In this phase, the most important features are collected from all views
and then projected onto a single user-specified view (chosen as cAg). The final explanation’s quality
is then evaluated on this chosen view only. Full details of all metrics are in Sec. [E.6|in Appendices.
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3.2 Main results

Results on synthetic and MIT-BIH dataset. We report AUPRC and Jaccard Coefficient for our
method compared to LIMESegment [76] and InteDisUX [83]] on both the synthetic dataset and
MIT-BIH. SpectralX [10] is not included to comparison as it cannot generate explanations in the raw
time domain from spectrogram. As shown in Table 2] our framework outperforms both baselines.
Additionally, the proposed Phase 3 boosts the Jaccard Coefficient from 0.6133 to 0.7481 on the
synthetic dataset, and from 0.5946 to 0.6329 on MIT-BIH. The visualization examples in Fig. [3|show
that multi-view greedy selection helps MIX identify more relevant features by exploring multiple
wavelet levels, rather than relying solely on a single view.

Results on UCR datasets. The ) )
scatter plots in Fig. ] compare our Table 2: Comparison on synthetic and MIT-BIH datasets.

method with three state-of-the-art  Method Synthetic MIT-BIH

baselines including LIMESegment

> AUPRC ] d AUPRC J d
InteDisUX, and SpectralX in terms acear acear
of faithfulness and robustness. In  LIMESegment  0.6663  0.1427 05651  0.3376

InteDisUX 0.6781  0.2077  0.6364  0.4261
Ours 0.7103  0.6133  0.7404  0.5946
Ours w/ Greedy - 0.7481 - 0.6329

the lower scatter plot, the vertical
axis shows the average of Faithful-
ness@8, @20, and @30, while the
upper plot displays robustness. Addi-
tionally, we present the average performance across 11 datasets using a grouped box plot in Fig. 2
which includes error bars for each metric. Across all evaluations, MIX consistently outperforms the
baselines on both faithfulness and robustness. Our method achieves the best performance in 24/33
cases for faithfulness and 27/33 cases for robustness, outperforming the baselines across both criteria.
We also compare AUC'Sy,, and F'1.S compared to LIMESegment, IntedisUX with the results are in
spider graph in Fig.[2]. Our method is still better than other two methods. More results are in Sec. [F]
in Appendices.

3.3 Ablation Study

Study on Cross-View Refinement. To study the effect of cross-view refinement, we compare
faithfulness scores between Phase 1 (without cross-view refinement) and Phase 2 across all views
(represented by wavelet levels) in three different dataset/architecture setups: Yoga/BiLSTM, MSR-
Train/Transformer, and Wafer/ResNet-34. The results show that cross-view refinement consistently
improves faithfulness across all three setups indicates in Fig. [ (A, B, C).

Study on Our Attribution Mechanism. To show the effectiveness of our attribution mechanism, we
compare its performance with the standard IG method for each feature in view V. across three setups:
Yoga/BiLSTM, Wafer/Transformer, and GPGender/ResNet-34. Our study shows that our attribution
mechanism has higher faithfulness compared to the IG baseline indicates in Fig. | (D, E, F).
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Figure 4: Ablation study on Cross-view Refinement (A, B, C), MIXs attribution mechanism (D, E,
F), and window size, step size (G, H, K).

Study on Window Size and Step Size. We also study the effect of window size w and step size
d = w/2 on the performance of MIX using three datasets: Yoga, TwoPatterns, and Wafer. The results
are presented in Fig. E|(G, H, K). We observe that faithfulness remains relatively stable as w increases,
with some datasets exhibiting a peak at a specific value, such as w = 16 for the Wafer dataset. In
addition, robustness is generally more stable across different window sizes but may peak and then
slightly decline, as also observed on Wafer.

4 Related Works

Time series classification approaches can be broadly categorized into two types: ante-hoc and
post-hoc. Ante-hoc approaches are interpretable by design, where the model’s internal structure
inherently provides explanations such as decision trees, shapelet-based models [92, 47, 24,
183 [90], attention mechanisms [691 9, [46], Symbolic Aggregate
approXimation (SAX) [52, [711 [78], 41]], prototypes [57} 211, features [87, [721 93,164, [6, 19,
[30, 23], or other ways such as pathches [56}[55]]. In contrast, post-hoc approaches are applied
after model training, typically when the model itself is a black box and not inherently interpretable.
Post-hoc methods aim to explain the model’s decision behavior after training. These can be further
grouped into: (i) attribution-based methods, which assign importance scores to individual time
points 80,89, (681 31 [95] (04,50, [77, 73| [97. [70, [75. 162} [74. IS8 [1, 165, 82} 1431 [S31 I5. 136, 186, [121 [17
66, [16] or segments[29] 63 [76} [83]]; (ii) subsequence-based methods, which identify
discriminative time intervals [8] 33 27]; and (iii) instance-based methods, which explain predictions
by referencing similar or counterfactual instances [37), 21 40Q], and other approaches such as
using prototypes [13} 811, 06].

Our work is closely related to post-hoc segment-based attribution methods, which assign importance
score to segments rather than time points [76, [83]]. In the context of multi-view time-frequency
explanations, MIX is most similar to SpectralX [10]], which operates on a single time-frequency
representation.

5 Conclusion

In this paper, we introduce a novel explainability framework for time series classification (TSC)
based on the concept of multi-view. To the best of our knowledge, our work is the first to not only
generate independent explanations across multiple views, but also to improve explanations across
all views through a new cross-view refinement scheme. In addition, we propose a novel multi-view
traversal greedy strategy that selects the most important features within the user’s preferred view,
further improve the explanation with constraints from human perspective.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We clearly write our contribution and scope in abstract as well as introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we provide limitations discussion in our Limitations section in Appen-
dices.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Yes, we have theoretical results, which is proved in Appendices.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details to reproduce results in experimental setup in both main
paper and the appendices.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [Yes]
Justification: Yes, we provide code and data in supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide details in Experiment Setup section in Appendices.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide error bar in main result figure with group box plot in main paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we provide sufficient information on the computer resources in hardware
details section in Appendices.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: My paper conform, in every respect, with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts and negative societal impacts of
the work performed in Broader Impacts section in Appendices.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our data is public data, our model and datasets poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices and Supplementary Material

In the appendices, we first provide mathematic notions with definition in Section[A] In addition, we
provide extensive background on time series classification (TSC), explanation methods for TSC, and
the Discrete Wavelet Transform (DWT) in Sec. |E

We also include an in-depth analysis of the attribution mechanism used in SpectralX, focusing on its
stability and the risk of false negative feature selection in Sec.[C] This analysis motivates our choice
to adapt Integrated Gradients (IG) as the foundation for attribution mechanism in MIX. Furthermore,
we present insight analysis into our proposed variants, IGV and KIGV in Sec.|D} to support their
design and behavior. Furthermore, we include comprehensive experimental results and comparisons
in Sec. [F} along with full experimental setup details to support reproducibility in Sec. [E]

To analyze insight of our method in various aspects, we conduct analysis in Section[G] First of all, we
analyze system design, then we move to extensive ablation studies to verify contribution of each core
component. Finally, we analyze hyperparameters analysis and computational complexity of MIX
compared to InteDisUX and SpectralX. We also include qualitative results in Sec. [H]

We also put two discussion section, Section[[Jand Section[]]to clearify the difference, possitive side
and limitation when comparing post-hoc and ant-hoc explanation setting, local vs. global explanation,
and multi-view with cross-modal aspects. To ensure transparency, we also dedicate two sections to
discussing the limitations in Sec.|[K]and broader impact of our method in Sec.
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A Table of Symbols

We define key notations in the paper in the Table 3]

B Background

B.1 Problem Definition

Definition B.1 (Deep Learning Model for TSC). A deep learning model for time series classification
is a function Fj : RT*? — [0, 1]1¥| parameterized by 6, which maps an input time series x € R *¢
to a probability distribution over a finite set of class labels Y = {1,2,...,C}, where C = || is the

number of classes. The output vector fp(x) = [p1,p2, .- ., pc] satisfies ZzC:1 p; = land p; € [0,1].

The model is trained by minimizing the cross-entropy loss over a labeled dataset D = {(x;, ;) }7_ ;.
defined as:

N
1
‘CCE(H) = _N ZlogFe(xj)ij

j=1
where fy(x;),, denotes the predicted probability for the true class ;.

B.2 Discrete Wavelet Transform

We begin by introducing the Continuous Wavelet Transform (CWT), Discrete Wavelet Transform
(DWT), and the Haar wavelet:

Definition B.2 (Continuous Wavelet Transform [[7]]). The Continuous Wavelet Transform (CWT) of a
time series signal x is defined as:

o) = v ()
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Table 3: Notation used throughout the paper.

Symbols Meaning
x = {x1,22,..., 27} € RT*? A time series vector of dimension d and T time steps.
D = {(xi,y:)} o TSC dataset
F:RT 5N Deep learning model
V:R? 5 RY View
V. rth view
V-1 RY & RY reverse view
Fy=FoV™! New model combine DL model with view for input as view
se' = sei:gdn ith Segment with start time step iS ¢y and end time step is tend
S = {se',se?,...,seM} Set of segments

Sget

E(x,F,8) = {s,.i|s¢" € S}

score of segment se*
Set of score for each segment

Sv Set of views
Ev(x,F,8,V) = {s,.: | s¢' € S} Set of score for each segment for the corresponding view
cA, cA on rth level
cD, ¢D on rth level
OSca, Set of overlapping segments on cA,.
OS.p,. Set of overlapping segments on cA,
Sr =08c4, UOScp, U...UOS.p, Setof overlapping segments of rth view
IG;(x) Integrated Gradients of x
IGV;(V(x),V(x)) Integrated Gradients of a view of x
OSIGV((se?) Integrated Gradients of segments of a view of x
KIG;(V(x), V(x)) Keystone-first Integrated Gradients of a view of x
AUC S'mp Metric in [84]
KAUCS:op Keystone AUC Siop

where H (x, (, 7) denotes the wavelet coefficient as a function of the time series x, the time-shift
parameter 7, and the scale parameter (; 1) is the mother wavelet (or basis function), and ¥* is its
complex conjugate. The function x(¢) is the input signal evaluated over continuous time, we can
denote x(t) = x;.

The oldest and simplest wavelet is the Haar wavelet, whose mother wavelet is defined as:
1 ifo<t<i

-1 iff<t<1

0 otherwise

b(t) =

The Continuous Wavelet Transform (CWT) is computationally expensive. The Discrete Wavelet
Transform (DWT) offers a more efficient alternative by applying high-pass and low-pass filters
across multiple scales [7]]. DWT has proven effective in time series analysis and naturally produces
hierarchical, interpretable multi-resolution representations. However, its potential for explainability
in TSC XAI remains underexplored.

C SpectralX Attribution Mechanism Analysis

Table 4: Faithfulness @30 and robustness scores for two random seeds across datasets.

Dataset

CinCECGTorso
MixedShapesRegularTrain

Seed 1 Faithfulness@30 Seed 2 Faithfulness @30

0.3850 £ 0.2986 0.3709 £ 0.2828
0.5036 £ 0.1730 0.5283 £ 0.2371

Jaccard

0.4678 £ 0.2671
0.4834 £ 0.1557

C.1 Stability

According to the SpectralX method described in Section [E.5] we hypothesize that its random feature
selection process may be sensitive to the randomness of the system. To investigate this, we run
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SpectralX with the same algorithmic setup but vary only the manual seed. We then compare the
resulting explanations using faithfulness @30 and the Jaccard coefficient between the top-30 selected
features under each setup. The results, shown in TableE], indicate that while the overall faithfulness
remains comparable, the Jaccard coefficient is only around 0.4. This suggests that the set of top
important features can change significantly due to randomness. While this does not negate its overall
faithfulness, it makes the explanation unstable.

C.2 False Negative Analysis

According to the way spectralX generate masks in Sec.[E.5] the all P masks may never unmask a
specific features. Formally, given a feature f;, then probability that all P masks never unmask f; is
larger than zero. The probability is calculate as follow:

Theorem C.1. Given the spectralX random maske generation process with P masks, R features
unmasked each mask, and time series length T, then the probability that a feature f; have never been

unmasked in all P masks is:
Pr=(1-R/T)"

Proof. Overall, with T features, when generating maskes, we have total combination of 7" choose R:
T

(r)

Assume that the feature f; has never been unmasked, then each time genration process only choose

R features in total 7" — 1 features. Then, total number of that is: (Tgl).

Then, probability for a mask does not unmask f; is:
T-1
(r)
T
(r)
(T—1)!
RI(T—1-R)!

T
R(T-R)!

(T —1)!-RY(T — R)!
TI-R(T —1—-R)!

pr =

_(T'-R)

T
R

f17?

For P masks, then the probability that all P masks never unmask f; is:
R P
Pr=prf=[1-=
r=opr ( T)

The case when a feature f; is never unmask in P masks can result that importance score for this
is zero just by sampling but not actual influence to the model’s decision. With the default setup
of SpectralX, where R = 10 and P = 2000, the probability Pr is approximately 4 x 10> when
T = 2000. However, this value increases with larger T'; for example, when 7" = 10000, we have
Pr ~ 0.135. In practice, SpectralX remains effective because this probability is still relatively small.
Nonetheless, the growth of Pr with respect to T" highlights a limitation of SpectralX when applied to
longer time series.

O

D Analysis on Attribution Mechanism of MIX

IGV. Our IGV is just modified version of IG for new function F o V=1 on V(x), then it still staisfies
axioms of IG in [80]].
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D.1 Invariant to Implementation.

Our attribution mechanisms, IGV and KIGV, are fully deterministic and do not rely on any ran-
domized operations. Given a window size w and step size d, the overlapping segments generated in
all views are fixed for each dataset. Consequently, both OSIG and OSIGV produce deterministic
results. In the KAUCS,,,, criterion, we use a baseline 2’ defined as the mean of each view, which
introduces no randomness. As a result, the adaptive selector also operates independently of noise.
Therefore, given a model F' and an input time series z, MIX produces explanations that are invariant
to implementation and do not depend on any random process. This ensures that our framework
remains stable and consistent, even in the presence of system-level randomness.

D.2 Analysis on Keystone-first Integrated Gradients
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Figure 5: Comparison of KIGV (bottom) with conventional Integrated Gradients (IG, top) on the
CinCECGTorso dataset. The time series signal is shown as a black line, while the highlighted segment
in green indicates the keystone parts used as input for KIGV. The background color represents
the attribution value at each time step. In the regions highlighted by red rectangles, KIGV avoids
attributing importance to less relevant features that are mistakenly emphasized by standard IG. This
demonstrates the effectiveness of cross-view refinement in filtering out irrelevant features. It is also

reflected by higher K AUCS}OP with KIGV.

In both the main paper and Appendices, we have shown that IGV, satisfies the axioms of Integrated
Gradients (IG) and our overall attribution mechanism is implementation invariant. Here, we further
analyze KIGV within the cross-view refinement framework to demonstrate its advantages over
standard IG. By prioritizing the explanation of "keystone" features, KIGV effectively reduces the
noise present in importance scores generated by IG, resulting in more accurate attribution maps.
As aresult, OSIGV also benefits from these improved scores. As illustrated in Fig. [5} our method
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avoids highlighting irrelevant features, which is further supported by the higher K AU CS’tOp values
achieved with KIGV compared to IG.

E Experimental Setup

E.1 More Details about Datasets

ArrowHead. The ArrowHead dataset comprises univariate time series derived from the outlines of
arrowhead images, converted into time series using an angle-based method. It contains 36 training
instances and 175 testing instances, each of length 251, categorized into three classes: "Avonlea,"
"Clovis," and "Mix." This dataset is particularly relevant in anthropology for classifying projectile
points based on shape distinctions, such as the presence and location of notches.

Strawberry. The Strawberry dataset consists of univariate time series data representing different
classes of strawberries. It includes 613 training instances and 370 testing instances, each of length
235, divided into two classes. This dataset is useful for classification tasks involving agricultural
products, such as distinguishing between different strawberry varieties or assessing quality.

Yoga. The Yoga dataset features univariate time series data related to yoga poses, aiming to classify
different postures or movements. It comprises 300 training instances and 3,000 testing instances,
each of length 426, categorized into two classes. This dataset is valuable for applications in human
activity recognition and pose classification.

FordA. The FordA dataset contains univariate time series data collected from automotive subsystems,
with the task of classifying whether a symptom exists under typical operating conditions. It includes
1,320 training instances and 1,320 testing instances, each of length 500, divided into two classes.
This dataset is pertinent for fault detection and predictive maintenance in automotive systems.

FordB. Similar to FordA, the FordB dataset comprises univariate time series data from automotive
subsystems. However, the test data samples in FordB were collected under noisy conditions, adding
complexity to the classification task. It consists of 3,636 training instances and 810 testing instances,
each of length 500, categorized into two classes. This dataset challenges models to maintain accuracy
despite increased noise in the data.

MixedShapesRegularTrain. The MixedShapesRegularTrain dataset consists of univariate time
series obtained by converting two-dimensional shapes into one-dimensional time series. It includes
500 training instances and 2,425 testing instances, each of length 1,024, divided into five classes:
Arrowhead, Butterfly, Fish, Seashell, and Shield. This dataset is designed to test the ability of
classifiers to distinguish between different shape patterns.

CinCECGTorso. The CinCECGTorso dataset is a multivariate time series dataset containing
electrocardiogram (ECG) data collected from the torso. It comprises 40 training instances and
1,380 testing instances, each of length 1,639, categorized into four classes. This dataset is used for
classifying different heart conditions and is relevant in the field of biomedical signal processing.

GunPointMaleVersusFemale. The GunPointMale VersusFemale dataset is a remake of the original
GunPoint dataset, featuring recordings from a male and a female actor performing gun and point
gestures. It includes 135 training instances and 316 testing instances, each of length 150, divided into
two classes. This dataset is useful for studying variations in human motion patterns across different
individuals.

TwoPatterns. The TwoPatterns dataset is a synthetic univariate time series dataset designed to test
the ability of classifiers to distinguish between different types of patterns. It consists of 1,000 training
instances and 4,000 testing instances, each of length 128, categorized into four classes. This dataset
is commonly used for benchmarking time series classification algorithms.

MixedShapesSmallTrain. Similar to MixedShapesRegularTrain, the MixedShapesSmallTrain
dataset comprises univariate time series obtained by converting two-dimensional shapes into one-
dimensional time series. However, it has a smaller training set with 100 training instances and 2,425
testing instances, each of length 1,024, divided into the same five classes: Arrowhead, Butterfly, Fish,
Seashell, and Shield. This dataset tests the performance of classifiers with limited training data.

Wafer. The Wafer dataset contains univariate time series data from semiconductor manufacturing
processes, used to detect whether a wafer is normal or exhibits a fault. It includes 1,000 training
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instances and 6,164 testing instances, each of length 152, categorized into two classes. This dataset is
pertinent for quality control and fault detection in industrial settings.

MIT-BIH. The MIT-BIH dataset has ECG recorded from 47 subjects at the sampling rate 360Hz. The
raw dataset was then window-sliced into 92511 samples of 360 timestamps each. Two cardiologists
have labeled each beat independently. The dataset is choose left bundle branch block beat (L), and
right bundle branch block beat (R) as anomaly with label 1 and normal as label 0.

E.2 Data Normalization and Split Mechanism

We apply Z-score normalization to preprocess the data before training and testing deep learning
models. The dataset is divided into three parts: 80% for training, 10% for validation, and 10% for
testing. We conduct explanation on testing data in all setups.

E.3 Training details for Classifiers

For UCR time series datasets, we use a batch size of 16, cross-entropy loss, and the Adam optimizer
with a learning rate of 2 x 10~—* for 200 epochs. For the synthetic dataset, we use a batch size of
64, cross-entropy loss, and the Adam optimizer with a learning rate of 0.001 for 10 epochs, using
a simple 1D CNN architecture. For MIT-BIH, we adopt the CNN architecture from [66 48], use
PolyLoss [42], a batch size of 16, the Adam optimizer with a learning rate of 2 x 10~%, and train for
200 epochs.

E.4 DL Architecture

We use the same architecture with SpectralX for TSC on 11 UCR datasets. We use simple 1D CNN
for synthetic dataset and MIT-BIH.

E.5 Baselines

LIMESegment. LIMESegment is a post-hoc TSC method based on the LIME explanation method on
distinct segments, which is generated from time series using the NNSegment method. LIMESegment
uses NNSegment using input as a time series x, a predefined number of change points 7", window
size ws, then generates segments based on the time series itself. After that, LIMESegment uses LIME
to explain segments with input as a time series, a set of segments, and the model.

InteDisUX. InteDisUX is a new post-hoc segments-based TSC explanation approach using model’s
information to generate set of segments for explanation. Firstly, InteDisUX initialize Ng equal-
length segments. Then, the algorithm iteratively merge every two consecutive segments pair using
faithfulness gain and discrimination gain metrics.

SpectralX. The method explains time series in the time-frequency domain by transforming the time
series to a spectrogram using STFT, then applying a greedy selection on that, with each feature
defined as a time-frequency region. This greedy strategy iteratively estimates deletion and insertion
scores and chooses a feature with the best score until it reaches the desired number of features. During
the insertion/deletion phase, SpectralX generates diverse perturbations by selecting random features.
Technically, given predefined R time-frequency regions unmasked, spectralX generates P masks that
have R regions unmasked, then the insertion/deletion score of a feature is estimated as the reduction
of confidence score when inserting/deleting that feature.

E.6 Evaluation

Faithfulness. Following the SpectralX paper [10], we evaluate the faithfulness of explanations by
removing the top-k features and measuring the reduction in the model’s confidence for the ground
truth label. We use k = 8, 20, 30, which represents a sufficient number of features to significantly
influence the model’s decision. Then, the faithfulness metrics is: faithfulness @8, faithfulness @20,
faithfulness @30. For each individual view, we average its performance across the different metrics
(Faithfulness@8, @20, and @30). We then select the single view with the highest score and report
its performance. This process highlights a key strength of our framework: its ability to identify the
most effective explanatory perspective for a given task, rather than report the results by averaging.
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To compare with SpectralX, we need to convert segment-level explanation scores into individual
feature-level scores as presented in Section 2.4. The score for each time point z; is calculated as the
maximum absolute score of any segment that contains it. Then we follow the evaluation scheme of
SpectralX: measuring Faithfulness @k by removing the top-k most important features and calculating
the degradation in the model’s confidence score. To compare with segment-based methods, we use
the AUC S,op and F1.5 metrics proposed in [84]]. They evaluate performance by measuring the area
under the confidence degradation curve as an increasing fraction of the most important features (the
top k-quantile) are removed. Furthermore, for synthetic and MIT-BIH datasets, we use our greedy
selection scheme (Phase 3), which provides an even more direct comparison. In this phase, the most
important features are collected from all views and then projected onto a single user-specified view
(chosen as cAp). The final explanation’s quality is then evaluated on this chosen view only. Therefore,
these ensure fair comparisons to single-view methods.

Robustness. Following the SpectralX paper [10], we evaluate robustness by measuring the overlap
between the top-k features identified with and without the addition of noise. Specifically, we use
the Jaccard coefficient between these two sets as a quantitative measure of robustness. MIX follows
standard practices for evaluating the stability of an explanation by measuring its consistency when the
input is slightly perturbed. First, we take the original input time series x and generate an explanation,
from which we identify the set of its top-k most important features E. Next, we create a perturbed
version of the input x’. By adding a small amount of Gaussian noise. We then generate a new
explanation for this noisy input, and identify its corresponding set of top-30 features, E’. Finally, we
compute the Jaccard coefficient between these two sets of top-30 features: E, E’. Higher Jaccard
score (greater overlap between the two sets) signifies that the explanation is stable and consistent. A
lower score suggests the explanation is sensitive to minor perturbations and is therefore less robust.

Relevance identification. We follow paper [84] to evaluate our explanation by using their two
proposed metrics called AU C’S‘top and F'1S. First, we define a top-k-quantile-masked sample,
denoted itkop , as a perturbed version of the input x, where the top-k most important features (based
on absolute attribution scores) are replaced. Features are selected using a (1 — k)-quantile threshold.
[84] uses random noise for replacement.

The top-k-quantile strategy is typically applied to point-wise explanations. However, since segment-
based attribution produces scores at the segment level, we assign importance scores to individual
features in a view V,.(x) by taking the maximum absolute score across all segments that include the
feature: _

sj =max {|ssei| | Vo(z); € se'}.

To quantify explanation quality, we define the normalized degradation score as the drop in model
confidence when x is perturbed into x:

where S(x) is the model’s confidence for the predicted class.

By progressively corrupting the top- or bottom-% features, we construct S—T curves, where T =

% represents the fraction of corrupted time steps. The area under this curve quantifies overall

degradation:
1
AUCS = / SdT.
0
In particular, AUC Smp captures the degradation from top-k-quantile-masked samples, with & € [0, 1].
A higher AUC'S,qp, indicates a more faithful explanation.

In terms of F'1S, we compute AU C Spoom, Which measures the degradation when perturbing features
with the lowest attribution scores. Specifically, features are perturbed if their scores fall below the
threshold defined by the k-quantile, i.e., the bottom-k-quantile of importance scores. Then F'1.5 is
calculated by:

. AUOStop : (1 — Achbotto’m)
AUCgtop + (1 - AUCSbottom)

F18
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Since no evaluation metric is perfect, using two distinct, standard faithfulness metrics provides a
more robust and trustworthy validation for MIX.

Reasoning of Faithfulness Metrics. Our method helps users understand which features are influential
in a model’s decision but does not prove a causal link, which is outside the scope of this study. Without
a perfect causal method, the faithfulness metric is the community’s best available proxy for evaluating
post-hoc explanations. It directly and pragmatically tests the model’s internal behavior: if the model’s
confidence drops significantly when we remove the features the explainer identifies as important,
it provides strong evidence that the explanation has faithfully captured what the model considers
important for its decisions. While it cannot reveal the underlying "logic" or "reason" why the model
learned to depend on those features, it rigorously validates that our explanation is true to the black-box
model’s function. This is the standard and accepted goal of attribution-based methods in the current
XAI landscape.

Validity of the experiments. The validity of our experiments is grounded in our use of standardized,
community-accepted post-hoc evaluation protocols for TSC XAI [83,[10} 84]. For dataset selection,
to ensure a direct and relevant comparison, we use 9 UCR datasets from SpectralX and 2 additional
UCR datasets for comprehensive evaluations. For evaluation metrics, we adopted the evaluation
protocol from SpectralX to ensure fair comparisons. For faithfulness, we follow their method of
measuring the drop in model confidence after removing the top-k most important features. For
robustness, we also follow their approach of measuring the overlap between the top features of an
original instance and a noisy version using Jaccard Coefficient, which is similar to the way SpectralX
quantifies the overlap between two fixed-size sets. We also apply AUCS|o, and F1S from [84]]. Since
MIX generates local explanations for each sample, we calculate the faithfulness and robustness scores
for every sample in the test set and report averaged values. This is the standard practice in post-hoc
TSC XAIL We also provide a global explanation in Table [T4]

E.7 MIX Hyperparameters

For the top h, we use h as 1/5 of all segments for all dataset. For thresold for K AUS’top, we use
x = 0.3 for all setups. According to window size and step size, we adapt for each dataset as follow:

Table 5: Window size and step size settings for each dataset.

Dataset Window Size  Step Size
ArrowHead 10 5
Strawberry 8 4
Yoga 8 4
FordA 10 5
FordB 12 6
MixedShapesRegularTrain 8 4
CinCECGTorso 24 12
GunPointMale VersusFemale 8 4
TwoPatterns 8 4
MixedShapesSmallTrain 24 12
Wafer 12 6

E.8 Hardware Details

We use the system with 1 GPU GeForce RTX 4070 in Ubuntu 20.04.6 LTS.

F Extensive Experimental Results

F.1 Results on UEA multivariate time series.

The Tab. E] shows averaged results on UEA Basic Motion on 4 DL models (CNN, PatchTST, Trans-
former, ResNet34). MIX still outperforms IntedisUX as well as SpectralX.
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Figure 7: Comparison of Our method with LIMESegment, InteDisUX, and SpectralX, showing
average performance of 3 DL architectures across 11 datasets .

F.2 Extensive Comparison

Compare in cAg. We compare our method with LIMESegment and InteDisUX in the same view, .i.e.,
cAy, in Fig. |§|, in terms of faithfulness @8, faithfulness @20, faithfulness @30 and robustness. The
results show that MIX has significant higher faithfulness and robustness compared to LIMESegment
and InteDisUX.

Comparison average over architecture for each dataset. We compare MIX with three baselines,
which are LIMESegment, InteDisUX, and SpectralX, on faithfulness@8, @20, @30, and robustness
across all UCR datasets. Results in Fig.[7]show that MIX consistently outperforms all baselines.

Comparison on faithfulness of MIT-BIH dataset. The Table [7] shows that MIX outperforms
SpectralX for faithfulness @30 for MIT-BITH data.

Average MIX vs. SpectralX comparison To provide a more granular view of the results in Figure 2,
the Figure |Z] details the mean for each dataset for Faithfulness @8, Faithfulness @20, Faithfulness @30
and Robustness averaged over the three deep learning architectures for every dataset. We also provide
mean and standard deviation for Faithfulness @30 comparing MIX vs. SpectralX in the Table ]

Comparison MIX vs SpectralX. To compare with SpectralX, which also explains in the time-
frequency domain, we present results in Fig.[8] In addition, Figure §]show comparison of MIX vs
SpectralX. Across the 11 UCR datasets, MIX outperforms SpectralX in terms of Faithfulness@8 on
9 datasets, Faithfulness@20 on 8 datasets, and Faithfulness @30 on 7 datasets, and Robustness on all
datasets.

G Extensive Analysis

G.1 System Design Analysis

Our framework is built systematically from well-established principles, where each new component
serves a specific purpose to address limitations in prior work. Please find below step-by-step
justifications of our designs (IGV, OSIGV, KIGV, cross-view refinement).

IGV. Our method is built upon Integrated Gradients (IG) , a widely used and axiomatically sound
attribution method. IGV, is the necessary mathematical adaptation of IG to operate in a transformed

33



Ours vs SpectralX (Faithfulness@8) Ours vs SpectralX (Faithfulness@20) Ours vs SpectralX (Faithfulness@30) Ours vs SpectralX (Robustness)
1 1 1 1

- -
2/ e 3/ - 6 e A Ours > SpectralX 0/ e
0.8 279 0.8 .~ 817108 ngPatte7rns 0.8 @ SpectralX>Ours| -~ 14
4 ArrowH
< Strawberry ArrowHead gl Stawoery ArrowHead, “ TéoPatiem 0.6} Strawberry .now eai e/A/ : 06 e .
© 0.6 ) () P A % P A [} GPGendef™MSSTrain .
5 TwoPatterns PGender®” A MSSTrain v ArrowFea TwoPattdms
804 //(%GenderA 04 Yogalh A MSRTrain 04 002 @7, " MSRTrain 04 CCECGTorsoMSSTrain
o Yoga 7 A " GGECGTorso ’ .7 _MSRTaing A3RGender
MSRTrain> A MSSTrain _ - CCEcGTorso 5 7 boraB \ader s Forcﬁ " WA' Al
r
0.21ccEcaTorsg A wafer 0.2 e FordB A Wafer 0. e i A 0.2 - Strawbely or aler A
-7 A FordA - FordA -
0 0 0 0
0 02 04 06 08 1 0 0.5 1 0 02 04 06 08 10 02 04 06 08 1
Ours Ours Ours Ours

Figure 8: Comparison Ours vs SpectralX

Table 6: Performance Comparison on Multivariate UEA BasicMotions Dataset

Metric InteDisUX SpectralX MIX

Faithfulness@8 | 0.009 +/- 0.014 | 0.029 +/- 0.029 | 0.060 +/- 0.048
Faithfulness@20 | 0.011 +/- 0.013 | 0.044 +/- 0.026 | 0.106 +/- 0.088
Faithfulness@30 | 0.012 +/- 0.013 | 0.074 +/- 0.022 | 0.157 +/- 0.100
AUCStop 0.475 +/- 0.094 - 0.557 +/- 0.093
F1S 0.208 +/- 0.056 - 0.299 +/- 0.059

"view" space (e.g., the wavelet domain). As defined in our paper, if a view transformation V" is
differentiable and invertible, IGV is simply IG applied to the composite model F' o V~!. This
provides a mathematically sound way to calculate feature importance in any given view, not just the
input space.

OSIGY. To make the point-wise scores from IGV more aligned with human perception, we aggregate
them into segments. Our method OSIGV (Overlapping Segment-level Integrated Gradients for a
View) is designed to improve upon prior segment-based approaches and make explanations more
robust and interpretable. First, we use IGV to calculate an importance score for each individual point
in a given view V(x). Second, we generate a set of overlapping segments across the view, where
each segment is defined by a window size. The final score for each segment is then calculated as the
sum of the IGV scores of all the individual points contained within that segment, as defined in our
paper. The use of overlapping segments is a key design choice that directly addresses a limitation
in prior work like InteDisUX, which uses non-overlapping segments. Non-overlapping segments
risk splitting meaningful temporal patterns and can miss important information that occurs at the
boundaries between segments.

Interactive Refinement (KIGV and Cross-View Refinement). The perceived complexity of our
framework arises from our main contribution: cross-view refinement, which is enabled by our
proposed Keystone-first Integrated Gradients (KIGV) method. Our motivation comes from the
"keystone species” concept in ecology; just as a keystone species has a disproportionate impact on
its environment, we hypothesize that certain "keystone features" in one view are strongly indicative
of the model’s core reasoning . Our novel KIGV method leverages this idea by first attributing
importance to these keystone features, which are approximated as the top-h segments from the best
view identified in Phase 1. By focusing the IG calculation path through these important regions first,
we can generate a more robust gradient signal with less noise, and this refined attribution map is
then used to improve the explanations in other views. To ensure that the cross-view refinement step
is always beneficial, we introduce a final safeguard: the adaptive selector. The refined explanation
generated by KIGV is only adopted for a given view if it shows a demonstrable improvement over
the original one from Phase 1. This ensures our "heuristic" choice is not arbitrary but is instead a
principled decision controlled by an objective quality metric based on paper [84].

Scores for segments. While time point-based explanations are common, they can be fragmented and
difficult for users to interpret. Providing scores for contiguous segments is often more meaningful
because it is better aligned with human perception as pointed out in [80]. For instance, on MIT-BIH
ECG, a cardiologist can see that an entire heartbeat segment is responsible for an anomalous prediction.
This is significantly more actionable and interpretable than analyzing hundreds of individual, high-
importance time points, helping experts to easily validate whether a model’s reasoning aligns with
their own medical knowledge.
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Table 7: Comparison of Faithfulness @30 metric scores between MIX and SpectralX on MIT-BIH
dataset.

Metric
Faithfulness @30

IntedisUX SpectralX MIX
0.6656 0.7478 0.8371

Table 8: A comparison of MIX and SpectralX performance across various datasets. The values
represent mean =+ standard deviation. Bold indicates the superior result for each dataset.

Dataset MIX SpectralX

ArrowHead 0.394 £0.357  0.6112 £+ 0.3778
Strawberry 0.1951 £ 0.1913  0.5638 + 0.3732
Yoga 0.3891 £ 0.1280  0.4486 + 0.0266
FordA 0.3254 + 0.1382 0.0813 £ 0.0163
FordB 0.3128 + 0.1401 0.1463 + 0.0633
MixedShapesRegularTrain ~ 0.5808 + 0.2114 0.5036 + 0.1730
CinCECGTorso 0.4849 + 0.2829 0.3850 % 0.2986
GPGender 0.5003 +0.0345  0.5190 + 0.0607
TwoPatterns 0.7438 + 0.0484 0.6266 + 0.0748
MixedShapesSmallTrain 0.6710 + 0.0826 0.6036 + 0.0826
Wafer 0.6538 + 0.1417 0.1585 £+ 0.0954

Circular Dependency Justification. First, in Phase 1, the framework generates an initial, independent
explanation for every view using the OSIGV attribution mechanism. This step is foundational,
creating a complete set of unrefined explanations. At this stage, each explanation is generated in
isolation based solely on its own view, and no refinement or "best view" selection has yet occurred.
This provides the baseline set of explanations upon which the next phase will operate. MIX then
moves to Phase 2, which is a two-step procedure that clearly separates selection from refinement. In
the first step, the quality of the initial explanations from Phase 1 is evaluated using the KX AUC'S;,,,
score. The view that achieves the highest score is designated as the "best view" (V). Only *after*
this selection is complete, does the refinement process begin. The information from the now-selected
V is used as a static guide to refine the explanations of the other views using the Keystone-first IG
(KIGV) method. In summary, the selection of the best view depends on the quality of the initial,
unrefined explanations, and the refinement process depends on the result of that selection. The refined
explanations do not influence the initial scores that were used to make the selection in the first place.
This strictly linear process ensures that there is no circular logic.

In summary, MIX’s design is not complex for its own sake, but is a direct result of our attempt
to solve several key challenges of this novel multi-view XAI setup at once. To create a robust
multi-view explanation system, our framework was built to simultaneously address: providing an
axiomatically-grounded explanation for any given view space (handled in Phase 1), Enabling views
to interact and demonstrably improve one another’s faithfulness (the core of Phase 2), Ensuring the
final, user-facing explanation is of the highest possible quality (the goal of the Adaptive Selector in
Phase 2 and the Greedy Selection in Phase 3).

G.2 Extensive Ablation Studies

Along with ablation studies on overall Phase 2, the attribution mechanism (compared to standard
1G), and the effects of window and step size, we also investigate the adaptive selector, which is a
novel component in cross-view refinement. The adaptive selector dynamically determines whether to
adopt the newly generated explanation or retain the previous one, thereby maintaining the quality
of the explanations. Our ablation results, shown in Fig.[9] demonstrate that the adaptive selector
consistently enhances explanation quality across all wavelet levels on both evaluated datasets.

G.3 Hyperparameters Sensitivity

We will provide analysis how we choose hyperparameters and sensitivity analysis on that.
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Figure 9: Ablation study on the adaptive selector for the Wafer and FordA datasets across three
deep learning architectures. The results show that incorporating the adaptive selector (adaptive line)
improves explanation quality across all wavelet levels compared to using KIGV alone (no adaptive
line).

Table 9: Hyperparameter sensitivity for window and step size on the FordA dataset. Faithfulness is
measured at k=30 (Faithfulness @30).

Window Size Step Size Faithfulness@30 Robustness

8 4 0.3238 £ 0.1445  0.6527 £ 0.1054
16 8 0.2480 £ 0.0661  0.6647 +0.1350
32 16 0.2111£0.0749 0.6732 £ 0.1449
48 24 0.2014 £ 0.0829  0.7379 &+ 0.0560
56 28 0.1967 £ 0.0884  0.7172 £ 0.0446
64 32 0.1789 £0.0761  0.6937 4 0.0480
96 48 0.2116 £0.0885  0.7501 +0.0710
128 64 0.2153 £ 0.0857  0.7614 + 0.0676

First, the window size (w) and step size (J) for the overlapping segments were selected via a grid
search on a validation set. The objective of this search was to identify the parameters that maximized
the aggregate faithfulness score and robustness score (the sum of Faithfulness@8, @20, @30, and
robustness score). Note that the optimal w can offer valuable insights into the temporal scale at which
the model identifies important patterns, thus supporting human understanding of model behaviors.

Second, the number of top-h segments used in our cross-view refinement is determined by a ratio,
ratiop, of the total number of segments, such that k = ratioy, - Ng. As stated in Sec.[E.7] we used a
fixed ratio of ratiop, = 0.2 (20%) for all datasets. This choice is based on the common observation
in time series analysis that a relatively small subset of features (around 20%) often accounts for the
majority of a model’s predictive signal.

Finally, the parameter « in our X AUC'S;,,, criterion defines the top fraction of features to prioritize
during the quality evaluation of an explanation. While a value of 1.0 would consider all features,
this would reduce the focus on the most critical "keystone" features and increase computational
overhead. We selected x = 0.3, as noted in Appendix D.7, as a principled choice to ensure that the
most influential features (to 20%) are studied while remaining computationally efficient.
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Table 10: Hyperparameter sensitivity for window and step size on the TwoPatterns dataset. Faithful-
ness is measured at k=30 (Faithfulness @30).

Window Size Step Size Faithfulness@30 Robustness
8 4 0.7438 £0.0484  0.8608 £+ 0.0532
16 8 0.7508 £ 0.0587  0.8739 +0.1043
32 16 0.7224 £0.0130  0.9337 £ 0.0349
48 24 0.7150 £ 0.0200  0.9716 + 0.0253
56 28 0.7214 £0.0123  0.9907 4+ 0.0161
64 32 0.7150 £ 0.0200  0.9934 +0.0114

Table 11: Sensitivity analysis for the top segment ratio (k) and the Keystone AUC fraction (x) on the
FordA dataset. The best performance for each metric is highlighted in bold.

Ratioh x  Faithfulness@30 Robustness

0.2 0.3266 0.6304

0.1 0.3 0.2819 0.6803
: 0.5 0.2819 0.6846
1.0 0.2819 0.6830

0.2 0.3282 0.6593

02 0.3 0.2880 0.6951
’ 0.5 0.2881 0.6967
1.0 0.2881 0.6957

0.2 0.3238 0.6738

03 0.3 0.2944 0.7093
: 0.5 0.2943 0.7116
1.0 0.2943 0.7065

We provide sensitivity analysis of w to the performance of Faithfulness @30 and Robustness in Tab. 9]
for FordA dataset, Tab. [10|for TwoPatterns dataset. Overlapping size is set as w/2 for simplicity.
We report averaged results over 3 DL architectures. For both Tables, there appears to be a trade-off
between faithfulness and robustness wrt. the window size w. The data shows that faithfulness
(Faithfulness @30) generally decreases as w increases. Conversely, robustness tends to increase with
a larger w, despite some fluctuations. A potential explanation for this trend is that larger w may
create segments that are more semantically meaningful and interpretable to a human user. These
larger, more stable segments are likely less sensitive to small, localized noise in the input, which
could explain the corresponding increase in the robustness score.

We also provide sensitivity analysis on ratio, and x in Tab. for FordA dataset, Tab. for
TwoPatterns dataset. To isolate the impact of these two hyperparameters, which control the cross-
view refinement and the adaptive selector respectively, we fixed the window size at § and the step size
at 4 for this experiment. For FordA, the result reveals a consistent trend when ratioy, is fixed. As k
increases, faithfulness tends to decrease, while robustness generally increases.This may be because
larger k hinder the focus on the most critical "keystone" features, leading to a lower faithfulness score.
The same general behaviour is observed in TwoPatterns. The impact of varying the top-feature ratio,
ratiop, appears to be more dataset-dependent. For FordA, with a fixed , increasing ratioy, results in
stable faithfulness and improved robustness. In contrast, for TwoPatterns, increasing ratioy, can lead
to a slight decrease in faithfulness. This suggests that the optimal ratio of "keystone" features used
for refinement can vary, and a more focused refinement may be more beneficial for certain types of
data, while others need a higher ratio.

G.4 Complexity Analysis
For MIX, assuming the time series length 7', the number of steps to approximate Integrated Gradients

(IGs) m, the segment step size J, the window size w and the number of views |Sy/|, the complexity of
a single model query C, and the complexity to construct a view via DWT Cy, in Phase 1, the number
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Table 12: Sensitivity analysis for the top segment ratio (h) and the Keystone AUC fraction (x) on the
TwoPatterns dataset. The best performance for each metric is highlighted in bold.

Ratio” k  Faithfulness@30 Robustness

0.2 0.7453 0.8632

01 0.3 0.7475 0.8947
: 0.5 0.7240 0.8891
1.0 0.7240 0.8875

0.2 0.7248 0.8573

0.2 0.3 0.7230 0.8894
: 0.5 0.7230 0.8893
1.0 0.7230 0.8863

0.2 0.7247 0.8611

03 0.3 0.7214 0.9298
’ 0.5 0.7214 0.9303
1.0 0.7214 0.9303

Table 13: Computational cost (seconds per instance) and performance comparison on the FordA and
MixedShapesRegularTrain datasets. The best result for each metric is highlighted in bold.

Dataset Metric InteDisUX SpectralX MIX
Cost/instance 0.1395 £+ 0.0830 31.4600 £+ 16.6579  0.4533 £+ 0.1570
FordA Faithfulness@30 0.0235 £ 0.0047  0.0813 £0.0163  0.3254 + 0.1382
Robustness 0.4314 £0.1271  0.2546 £0.0761  0.6380 £ 0.1042
MixedShape Cost/instance 0.345 £ 0.108 37.793 £ 15.075 0.906 £+ 0.671
Re ularTrl;in Faithfulness@30 0.0432 +£0.0268  0.0475+0.0378  0.6621 & 0.0758
g Robustness 0.4448 £0.3038  0.1753 £0.1268  0.7314 £ 0.2679

of model queries is |Sy/| - m, and the time to aggregate the importance scores over overlapping
segments is 7'/9 - w. The total complexity is thus |Sy | - (m - (C' + Cy) + T/6 - w). In Phase 2, the
number of model queries for refinement is the same for each view, while the adaptive selector can
add approximately /s model queries (s is the step of the ratio). Thus, the combined complexity for
MIXis [Sy|- (2-m- (C+Cv)+T/5*-w+C-k/s).

For InteDisUX, let Ng be the number of initial segments. The worst-case complexity for its greedy
interactive refinement process is m - C' + 7T + N2 - C. In this expression, the m - C' term corresponds
to the IG calculation, while the N2 - C' term arises from the iterative merging of segments. The
parameter N is analogous to the 7'/§ term in our framework’s complexity analysis.

For SpectralX, which employs a greedy strategy, let k& be the number of top features to select, P be
the number of masks generated, and R be the number of features unmasked in each mask. To select a
single best feature, the method must estimate the insertion/deletion score for all candidate features, a
process which requires approximately P model queries. Since the greedy strategy selects k features
sequentially, the total number of queries is approximately P * k. Consequently, the total complexity
is approximately P - k - C, where C'is the cost of a single model query. It is important to note that
the default setting for SpectralX is P = 2000. For a full comparison with methods like MIX and
InteDisUX which provide an importance score for every feature, £ would need to be equal to the total
number of features of spectralgram, which can be larger than 7'.

Tab. [13]shows averaged computational costs of MIX, InteDisUX and SpectralX over 3 architectures
on NVIDIA RTX 4070 GPU. When explaining across 5 views, MIX has moderately higher com-
putational costs (approximately 2.5-3x) than InteDisUX but with significant improvements in both
faithfulness and robustness. Compared to SpectralX, MIX is far more computationally efficient.
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Figure 10: Visualization of the CinCECGTorso time series signal (black line) at wavelet level 0
(cAp) and the best wavelet level for explanation for each instance (ranging from level 0 to 5), along
with the top explanatory segments (colorful lines, each assigned a distinct color such as green, red,
orange, brown, or purple) generated by MIX. Each row represents one instance. The background
regions shaded in blue and pink correspond to cA and ¢D components, respectively, with their names
indicated inside each region. The four signals correspond to four different class labels, and differences
among these labels can be observed in the visualizations. Key features that are correctly captured
by MIX at wavelet levels 1 or 2 (cA;, cAs) but missed at level O (raw time series) are indicated
with green circles. These results highlight the importance of incorporating multiple DWT views for
explanation, demonstrating that a multi-view approach can provide more comprehensive and accurate
explanations than relying on the raw time series alone.

H Qualitative Results

H.1 Visualization of Explanations on UCR Dataset

CinCECGTorso dataset. We present a visualization of our explanations on the CinCECGTorso
dataset and ResNet-34 DL model across multiple instances for each class in Fig.[T0} The figure
suggests that explanations at wavelet level 1 or 2 tend to capture relevant features more effectively
than those at wavelet level 0. Furthermore, the multi-view visualization for a single instance in Fig.[TT]
indicates that explanation quality is highest at level 3, not at cAy. Taken together, these visualizations
highlight the potential value of a multi-view setup for explanation compared to relying solely on the
raw time series.

Wafer dataset. We present a visualization of our explanations on the Wafer dataset using a ResNet-34
deep learning model to illustrate how explanations can improve when generated from different views
(see Fig.[I2). These results suggest that employing a multi-view setup in the wavelet domain may
enhance the interpretability of deep learning models for time series classification. Furthermore, we
observe that each view can both miss and capture important features that are not detected by the other,
indicating that cooperation between views is beneficial to provide better explanations.

TwoPatterns dataset. We present a visualization of our explanations on the TwoPatterns dataset and
ResNet-34 DL model in Fig. [I3]to compare explanations at level 0 versus level 1, and in Fig. [T4]for
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Figure 11: Visualization of the CinCECGTorso time series signal (black line) at wavelet level 0
(cAp) and higher levels (cA; through cAs), together with their corresponding explanations generated
by MIX. All figures correspond to a single instance across five wavelet levels. For each level [, cA;
and cD; are shown as two regions with light blue and pink backgrounds, labeled accordingly. The
black line represents the time series signal for each component, while the colorful lines indicate
the top segments identified by MIX, with each segment assigned a distinct color, including green,
red, orange, brown, and purple. Key regions that are missed at levels 0 and 1 but captured at higher
levels are marked with green circles. Notably, some important segments are successfully identified
in cAs and cAg but not in cAg, which is consistent with the Faithfulness @30 evaluation (highest at
level 3 and lowest at level 0) shown in each subfigure. At higher levels (cA4, cAs), explanations
may also miss crucial segments and are generally less effective than those at cA3. Additionally, cAg
sometimes captures noise (highlighted with a pink circle), which is eliminated at level 3 and above.
These results further highlight the importance of a multi-view explanation setup.

level 2. The results indicate that MIX produces better explanations at levels 1 compared to level 0
and level 2 and level O can support each other. This finding further underscores the importance of a
multi-view setup, consistent with our observations on the CinCECGTorso and Wafer datasets.

H.2 Visualization of Explanations on Synthetic Dataset

We also provide a visualization of explanations on the synthetic dataset. As shown in Fig. [T3]and
Fig.[16] MIX effectively captures important features in ¢D-, which aligns with the way the data was
synthesized.

H.3 Visualization of Explanations on MIT-BIH Dataset

For real-world applications, we visualize our explanations on the MIT-BIH dataset. As shown in
Fig.[I7] MIX captures important features more effectively by utilizing wavelet levels 2 and 3, rather
than relying solely on the raw time series. This leads to a natural question: is it sufficient to search for
a single optimal explanation, or is a more flexible, greedy strategy across multiple views preferable?
Fig. [I8]provides further insight, depending on the instance, explanations at cA3 may capture important
features those are missed at cAy, and vice versa. These observations reinforce the importance of a
multi-view setup and highlight the value of a greedy selection strategy that traverses multiple DWT
levels to produce more faithful and robust explanations. Notably, this finding is consistent with our
observations on the Wafer and TwoPatterns datasets.
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Figure 12: Visualization of the Wafer time series signal (black line) with top segments from MIX’s
explanation represented as colorful lines, each color corresponding to a different top segment, for
the two classes: Normal and Abnormal. Each row corresponds to one instance. For each level [, cA;
and cD; are shown as two regions with light blue and pink backgrounds, labeled accordingly. At
level 0, MIX can capture features associated with the Abnormal class; however, a small segment
(highlighted with a green circle) is missed at this level but is successfully identified in cA; (right
figure). Conversely, some important segments captured in cAy (highlighted with a pink circle) are
not identified at cA;. These results indicate that different views can complement each other to
achieve more faithful explanations, supporting the effectiveness of our multi-view setup for time
series explanation.

I Post Hoc vs. Ante Hoc and Local vs. Global Explanation Discussion

While developing effective interpretable-by-design models is a vital direction, we argue that post-hoc
explanation remains a crucial and growing area of study. As new increasingly complex architectures
like Transformers continue to evolve and achieve SOTA performance on large, complex time series
datasets, post-hoc methods remain an essential and practical tool for understanding their behaviour.
Moreover, the recent trend towards large, pre-trained foundation models for time series analysis also
strengthen the necessity of post-hoc methods as studied in [45]. Even recent hybrid models that
combine interpretable and non-interpretable components, such as [90], still require post-hoc analysis
to understand their black-box parts.

Table 14: Performance comparison between local and global MIX variants. Results are reported as
mean = standard deviation.

Metric MIX Local MIX Global

Faithfulness @8 0.7308 & 0.0230 0.502 £ 0.087
Faithfulness@20 0.7756 & 0.0794 0.693 = 0.016
Faithfulness@30 0.7438 + 0.0484 0.723 4 0.008
AUCStop 0.707 £0.015 0.683 = 0.032
F1S 0.347 +0.024 0.339 £0.035

Regarding the local versus global scope, our paper focused on local explanations. We have now
developed and tested an extension to the MIX framework for generating global explanations. Our
approach involves aggregating the local attribution maps from all instances to produce a single,
summary map. We evaluated its faithfulness on TwoPatterns dataset and found that it is comparable
to local settings, as shown in Table [E}

J Multi-view vs. Cross-modal Discussion

Our cross-view refinement can be considered as feature fusion of the model. The refinement process
works by first identifying "keystone features" from the most faithful view and then using them to
guide the attribution calculation in other views via our Keystone-first IG (KIGV) method. This
allows strong signals from one perspective to improve the explanations of another. While our current
work focuses on different time-frequency views of the same single-modality data. Our current
work operates on a single modality, which is a time series signal. The "views" we generate via the
Haar DWT are different time-frequency perspectives of this same signal, allowing us to analyze its
characteristics at various resolutions. However, we believe "cross-modal integration" is a fantastic
concept for future work, especially in a multivariate context. This concept becomes even more
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Figure 13: Visualization of the TwoPatterns time series signal (black line) with top segments
from MIX’s explanation represented as colorful lines, each color corresponding to a different top
segment, for the four classes represented by two patterns: down-down, up-down, down-up, and up-up.
Each row corresponds to one instance across two wavelet levels, 0 and 1. For each level [, cA; and
cD; are shown as two regions with light blue and pink backgrounds, labeled accordingly. For the
"down-down" class, MIX fails to capture the segment corresponding to the 2nd "down" pattern in
cAy, but the explanation in cA; successfully highlights this segment as important. Similarly, for the
"down-up" class, the segment for the "down" pattern has a redundant part recognized as important
segment (marked in green circle) in cAg, but it is not captured in cA;. These findings indicate the
importance of a multi-view setup for time series classification (TSC) explanation.

powerful in a multivariate context, where different channels could be treated as distinct but related
modalities.

K Limitations

Even though our framework MIX can provide a good explanation for TSC, it has some limitations that
offer avenues for future work. First, while we have extended MIX to handle multivariate time series,
our current approach treats each channel independently during the DWT phase; future work could
explore multivariate wavelet transforms to better capture cross-channel dependencies . Additionally,
as a segment-based attribution method, MIX is subject to the inherent limitation that assigning a
single score to a segment can obscure the specific contributions of individual time points within that
region .

Furthermore, our framework is designed to provide local, post-hoc explanations. Although some
works stated about weakness of post-hoc explanation [[79]], this approach is particularly relevant in
the current landscape, where the rapid development of large-scale foundation models for time series
necessitates model-agnostic tools for interpretability [45]. While this local focus offers detailed,
instance-specific insights, its primary drawback is the need for users to analyze model behavior on a
case-by-case basis. A global explanation framework, which would capture features representative
of an entire dataset, is therefore a valuable complementary approach. As stated in other work [67]],
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Figure 14: Visualization of the TwoPatterns time series signal (black line) with top segments
from MIX’s explanation represented as colorful lines, each color corresponding to a different top
segment, for the four classes defined by two patterns: down-down, up-down, down-up, and up-up.
Each row corresponds to one instance across two wavelet levels (0 and 2). For each level [, cA4;
and cD; are shown as two regions with light blue and pink backgrounds, labeled accordingly. For
the "down-down" class, MIX fails to capture the segment corresponding to the "down" pattern in
cAy, but the explanation in cAs successfully highlights this segment as important. Conversely, an
important segment highlighted by a pink circle is recognized by MIX in cA but not in cA,. These
observations indicate that each view can reveal different important features and can support each
other, supporting our motivation for a multi-view explanation setup.

offering both local and global perspectives would provide users with a more comprehensive suite of
tools for model understanding.

Finally, we acknowledge the limitations of the current evaluation paradigm for local XAI, which
relies heavily on faithfulness scores from ablation studies, particularly the practice of removing
segments to evaluate time series explanations. We recognize that such metrics may be insufficient
to definitively identify a single "most effective explanatory perspective". This points to a broader
challenge in the field to develop more holistic evaluation frameworks, as noted in other research, as
paper [67]) stated.

Besides, our MIX framework was designed with an assumption about “no perfect metric” in mind.
Hence it is not rigidly tied to a specific metric. The framework’s key strength is its flexibility. The
selection criterion used to identify the "best view" is modular. As the XAI field matures and develops
better and more holistic evaluation metrics, they can be easily integrated into our framework to
replace the current faithfulness average. The adaptive selector in Phase 2, which acts as a quality
gate, is a key example of this modular and principled design. In addition, we can combine different
metrics to have a better evaluation (by covering wider aspects) like the way we did in our paper with
3 metrics. This is inspired from the way different classification evaluation metrics e.g. Acc, F1, AUC
are combined in machine learning classification problems.
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Figure 15: Visualization on the synthetic dataset with the top 100 important features highlighted
by selecting top segments. All figures corresponds to one instance across two wavelet levels ( 0 and
1). For each level [, cA; and ¢D; are shown as two regions with light blue and pink backgrounds,
labeled accordingly. The ground truth region for this dataset is from time step 100 to 200 in cAy,
corresponding to steps 250 to 300 in ¢D; based on the synthetic process, highlighted by color
yellow. MIX successfully captures the key features in cD1, correctly identifying the important region
marked in green circle (positions 250-300 in ¢D;, which maps to 100-200 in cA( and matches the
ground truth). In contrast, the explanation on cAq alone misses part of the ground truth (notably, the
segment from approximately time step 100 to 150 remains unhighlighted) marked in green circle,
demonstrating the benefit of multi-view analysis.

L Broader Impacts

Our work proposes a novel explanation for TSC, which can apply to various applications such as
ECG anomaly detection, sensor data analysis, and help people in those fields develop deep learning
and explain them. With a good explanation framework, deep learning models will become more
trustworthy for humans and motivate users to integrate models into their systems. However, post-
hoc explanation can make users understand which features are influential in the model’s decision,
but ignore causality within them. It is necessary to integrate causality and reasoning to post-hoc
explanation, but it is out of the scope of our studies. Also, our research does not directly introduce
societal or environmental risks. However, as the underlying models remain black-box in nature, the
method should not be viewed as a substitute for rigorous model validation or fairness analysis.
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Figure 16: Visualization on the synthetic dataset with the top 100 important features highlighted
by selecting top segments. Each row corresponds to one instance across two wavelet levels (0 and
1). For each level [, cA; and cD; are shown as two regions with light blue and pink backgrounds,
labeled accordingly. The ground truth region for this dataset is from time step 100 to 200 in cAg,
corresponding to steps 250 to 300 in cD based on the synthetic process, highlighted by color yellow.
MIX successfully captures the key features in ¢D1, correctly identifying the important region marked
with a green circle in both classes (positions 50 to 100 (250-300 as shift from cA;) in ¢D;, mapping
to 100-200 in cA , matching the ground truth). In contrast, the explanation on cAg alone misses
part of the ground truth in class O (notably, the segment from approximately time steps 100 to 150
remains unhighlighted, as marked by the green circle), indicating the benefit of multi-view analysis.
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Figure 17: Visualization on the MIT-BIH dataset with the top segments highlighted. All figures
represent a single instance across five wavelet levels. The ground truth, as annotated by cardiologists
according to [[66]], typically corresponds to the peak region in the middle of the signal, highlighted
by color yellow. For each level [, cA; and c¢D; are shown as two regions with light blue and pink
backgrounds, labeled accordingly. Explanations using only cAy miss some important features,
whereas cAs, and cA3 more effectively capture the relevant segments, which are marked with green
circles.
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Figure 18: Visualization on the MIT-BIH dataset with the top segments highlighted. Each row
shows one instance at two DWT levels (3 and 4). For each level [, cA; and ¢D; are shown as two
regions with light blue and pink backgrounds, labeled accordingly. In the instance in the first row,
the explanation in cAj at level 3 covers important features more effectively than cA, at level 4.
The region captured by cAg is indicated with a green circle, while the corresponding region in cAy
(marked with a red circle) is not highlighted. Conversely, for the instance in the second row, MIX
at level 4 with cA,4 highlights important features that are missed at level 3 with cA3 (with missed
regions marked by red circles in cA3 and by green circles in cA4 where they are correctly identified).
These observations suggest that a multi-view setup and cross-view aggregation are beneficial for
achieving more faithful explanations.
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