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ABSTRACT

Distilling long reasoning traces (10K+ tokens) from stronger teacher models into
smaller student LLMs via supervised fine-tuning (SFT) has emerged as a standard
paradigm. This approach is both practical and efficient: it leverages the ease of
generating abundant reasoning data from stronger models and provides a direct,
data-driven way to teach less capable models better reasoning. While previous
work has largely focused on prompt selection with responses from a single teacher,
the equally important problem of choosing the best response when multiple teacher
outputs are available for a single prompt remains underexplored. This challenge
becomes especially important in a multi-teacher setting, where different students
may benefit from the outputs of different teachers. This paper fills that gap with a
systematic study of response selection for reasoning distillation. We first show that
the current method, which picks the response that the student assigns the highest
global log-probability (i.e., global "naturalness"), fails when responses come from
multiple teachers. In such cases, global naturalness no longer correlates with
downstream performance, especially as the reasoning traces from strong teachers
become longer. To overcome this limitation, we introduce Local Naturalness, which
scores a response by measuring the student’s log-probabilities over short, sequential
reasoning steps (e.g., sentences) conditioned only on a small local window. Local
Naturalness enables two novel applications: 1) Teacher Selection: Aggregating
local scores across prompts reliably identifies the most helpful teacher, whereas
global scoring fails completely. 2) Response Selection from a Mixed-Teacher
Dataset: When mixing answers from many teachers, Local Naturalness boosts a
32-billion-parameter student’s accuracy on math benchmarks by 9.4% over global-
naturalness-based selection, also surpassing the performance achieved by training
on data from the single best teacher. These results highlight the power of localized
data quality evaluation and data mixing for more effective reasoning distillation.

1 INTRODUCTION

Large language models (LLMs) have reached the point where reasoning, not merely fluent text genera-
tion, has become the next frontier. Supervised fine-tuning (SFT) on long chain-of-thought (CoT) (Liu
et al. 2024) exemplars distilled from stronger reasoning teacher models, such as DeepSeek-R1,
Qwen3, or QWQ-32B, is now the workhorse for pushing a student model toward more sophisticated,
multi-step reasoning (Guha et al., 2025} Ye et al., 2025} |Liu et al.l 2025} Shen et al., 2025)).

Recognizing the fundamental role of data in modern machine learning, recent research has increas-
ingly focused on data selection strategies. Most efforts, however, stop at the prompt level, such as
curating prompts for diversity or difficulty (Muennighoff et al., [2025; [Ye et al., [2025; [Zeng et al.,
2025)), and implicitly assume that each prompt has a single, fixed teacher response. In reality, re-
searchers and practitioners often have access to multiple teachers, each capable of producing many
distinct responses to the same prompt. Those responses could vary in logical depth, clarity, and
alignment with the student’s current knowledge, so keeping the “right” response that better fits the
student could matter as much as choosing the right prompt (Shen et al., 2025). Yet student-aware
response selection remains underexplored.

Zhang et al.| (2025) introduce first principal attempts at response selection. Responses to which the
student assigns the highest global log-probability during next-token prediction are retained. The
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intuition is that data the model already finds “natural” will be easiest to learn. While the heuristic
works well when all candidate responses come from a single teacher with shorter CoT responses, in
multi-teacher settings with long reasoning data (10K+ tokens), however, it breaks down: the student’s
global scores do not generalize across teachers with long reasoning data—a response with a lower
global likelihood can still yield superior downstream accuracy.

From global to local assessment. We hypothesize that global log probability is an unreliable metric
for evaluating performance on long-context tasks. This is because student models, which were trained
with shorter context windows, often struggle to maintain information consistency when processing
extended input lengths (10,000-30,000 tokens), a form of degradation that global metrics can fail
to capture (Liu et al.l [2023)). Driven by this insight, we propose Local Naturalness: instead of a
single global log-probability for the entire response, we measure the log-probabilities of successive
reasoning steps, each conditioned on a limited preceding window.

We evaluate Local Naturalness across two critical applications: firstly, the selection of an optimal
teacher model, and secondly, the curation of superior responses from a heterogeneous dataset
generated by multiple teachers. Our experiments demonstrate that Local Naturalness robustly
identifies the most effective teacher model. Furthermore, when selecting individual responses, it
consistently assembles a subset of data that yields the best downstream performance across diverse
student models. Notably, this local selection strategy significantly outperforms existing global
scoring method and can achieve results surpassing those obtained by training on the dataset from the
best-performing individual teacher model.
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tently improves reasoning performance scoring, and our proposed Local scoring.
on math and science benchmarks.

More broadly, this work contributes to the
development of model-aware data curation techniques, an increasingly critical direction as LLMs are
pushed to tackle longer and more cognitively demanding reasoning tasks.

2 RELATED WORK

The task of curating effective data for SFT of LLMs is an active and critical area of research. High-
quality SFT data is essential for adapting pre-trained models to specific downstream tasks and aligning
them with desired behaviors. Our work builds upon and differentiates itself from several existing
lines of inquiry, particularly in the generation and use of synthetic reasoning data, model-aware data
selection, and knowledge distillation.

Synthetic instruction data curation. The use of LLMs to generate synthetic reasoning data,
especially long chain-of-thought (CoT) responses (Wei et al.,[2022), has become prevalent for tasks
requiring multi-step inference. For instance, |Guo et al.[(2025); Ye et al.| (2025); [Liu et al.| (2025)),
have demonstrated methods for generating such data. The generation of synthetic data also involves
processes of critique and revision, sometimes employing other Al models as evaluators to filter or
refine the generated examples, ensuring higher quality and alignment. However, as|Guha et al.| (2025)
observed, it is not necessarily a stronger teacher that is always more beneficial for a student model.
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Model-aware data selection. Recognizing that a one-size-fits-all approach to SFT data is sub-
optimal (Li et al., [2025)), researchers have explored various model-aware data selection strategies.
GRAPE (Zhang et al.| 2025) made a significant step by proposing to select SFT data based on
the student model’s global generation (log) probability of the entire response. This aims to select
responses “natural” to the student model’s pretraining distribution. Our work directly builds on
GRAPE, acknowledging its strengths for selecting responses from a single teacher but identifying its
limitations for mixed-teacher settings and long reasoning data. Beyond global probabilities, some
methods involve offline student modeling, where a surrogate student-response predictor is trained
to score potential training examples ((Kostrikov et al.l 2021} |Bai et al., [2021)). While potentially
effective, these often require expensive offline training loops. Another avenue is online curriculum
learning, which dynamically adapts sampling probabilities during training ((Liang et al.| 2021; [Lu &
Zhang| [2021)), though this can necessitate modifications to the training process itself. Active learning
strategies aim to select the most informative data points for labeling or fine-tuning, thereby reducing
annotation costs and improving model efficiency. For instance, SIFT (Selection by Information-
theoretic Fine-Tuning) (Hubotter et al.| 2024)) combines retrieval and active learning to select data
that reduces uncertainty about the model’s response. Influence functions have also been explored to
identify training samples that have the most impact on a model’s predictions or specific validation
samples, although their application to LLMs presents challenges due to scalability and convergence
issues (Choe et al.|[2024). Our method, by focusing on inherent model probabilities, offers a simpler,
more direct way to achieve model-awareness for reasoning data without auxiliary models or complex
training loop modifications.

Knowledge distillation. Our approach shares conceptual similarities with knowledge distillation
(KD), where the goal is to transfer knowledge from a (typically larger) teacher model to a smaller
student model. Classical KD aligns the two models at foken level by minimizing the KL divergence
between their output distributions at every decoding step (Gou et al.,[2021} |Song et al.| 2025). Al-
though effective, this step-wise alignment is computationally expensive because the teacher must be
run in lock-step with the student throughout training. A more efficient alternative is response-level
KD: a teacher first generates complete responses, and the student is later trained on those sequences
with ordinary cross-entropy loss (Hsieh et al.,2023; \Gupta et al., 2023)). Our method belongs to this
family but adds a student-aware filter.

3 METHOD

3.1 PROBLEM DEFINITION: RESPONSE SELECTION

In this section, we provide necessary notations, define the problem of response selection for supervised
fine-tuning (SFT) of LLMs, and introduce the concept of global log probabilities.

Notations. We denote a sample as an input-output pair (x,y), where x = (1, ..., z,) represents
the input prompt sequence, and y = (y1, . .., ¥ ) represents the output response sequence. For a
given student model S with parameters 6, the generation probability of a response y conditioned on
the input prompt x is expressed as P(y|x; 0g). The average log probability of the response y is then
defined as the average of the log probabilities of each token in the response, given the input prompt
and the previously generated tokens:

_ ™1
logP(ylz; 05) = ; —log P(yily1s-1,:05), )
where y1.: 1 = (y1,-..,y:_1) denotes the sequence of tokens generated up to the (¢ — 1)" token

(with y1.0 being an empty sequence). This log probability quantifies how "natural" or likely the
model considers the response y given the input prompt 2. We term log P (y|z; 0s) as the global log
probability of the response y given the input prompt z, as it considers the entire response sequence
conditioned on the input.

Problem statement. Given a set of candidate responses ¥ = {y(l), y@, .. ,y(k)} generated
from diverse sources for a specific input prompt x, our goal is to select the most suitable response
y* € Y for SFT of a student S using the pair (x,y*). In this paper, we primarily focus on the
mathematical reasoning domain. This domain provides access to long, structured reasoning data and
allows for straightforward verification of response correctness. Throughout the paper, we evaluate
model performance on a wide suite of math benchmarks, including MATH-500, AIME 2025, AMC,
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MINERVA, KAOYAN, OLYMPIADBENCH, CN_MATH_2024, and we evaluate based on accuracy.
Please refer to the Appendix for further dataset details and for LiveCodeBench evaluation.

3.2 RE-EXAMINING GLOBAL LOG PROBABILITY WITH MIXED TEACHERS

Global Log Probabilities. As proposed by Zhang et al. (Zhang et al.,[2025) (referred to as GRAPE),
one method for response selection is to choose the response with the highest global log probability
as calculated by the student model S. For a given prompt x and a set of candidate responses Y, the
selected response y* is:
y* = argmaxlogP(y|: 0s).
yey

This approach assumes that the response most “natural” to the student model (i.e., having the highest
log probability according to its current parameters) is the most informative for SFT, thereby leading
to better downstream performance. While the original work demonstrated GRAPE’s effectiveness on
general domain data, we aim to investigate its applicability specifically to reasoning data, considering
multiple teacher models.

Task Setup. To evaluate the effectiveness of GRAPE, we conduct initial experiments using MATH
prompts of level 3-5 difficulty, resulting in 8890 prompts. For each prompt, we generate 16 responses
using a teacher model with temperature 0.6 and 0.95 top-p sampling, employing vLLM (Kwon
et al., [2023)) for generation. We ensure that the final answer in each response matches the ground
truth. Using the GRAPE method, we select the response with the highest global log probability for
SFT. The student model is then fine-tuned on these selected responses for 5 epochs with a learning
rate of le-5 and an effective batch size of 64. For comparison, we also train the student model on
responses with the lowest and middle log probabilities from the set of 16 candidates. We conduct
these experiments using two teacher: Qwen2.5-72B-Instruct (Yang et al., 2024b) and Gemma-27B-IT
(Team et al., [2025)), and two student models: Qwen2.5-7B-Instruct and a domain-adapted variant,
Qwen2.5-Math-7B. We evaluate using greedy decoding in this task.

Preliminary Observations. Our results, detailed in Table |1| and illustrated in Figure [2} student
models trained on responses with the highest log probability generally achieve the best performance
compared to those trained on responses with lower or middle log probabilities. Furthermore, Figure 2]
indicates a positive correlation between the average performance of the student model and the average
global log probability of the training data within the same teacher model. However, the results
do not hold across teachers. For example, as we observe in Figure Q], in Qwen-7B-Instruct, the
responses with the lowest global log probabilities from the Qwen2.5-72B-Instruct teacher responses
yield the lowest model performance (0.292), while with these global scores, the responses from
Gemma3-27B-IT reach much higher performance (0.313). Moreover, for the Qwen-Math-7B model,
we also observe that the two teacher lines do not align, showing some divergence between teachers.
These observations motivate us to further investigate into whether global naturalness can be effective
for selecting responses that come from even more capable reasoning teacher models.

Performance vs Global Log Probability for Qwen-7B-Instruct Performance vs Global Log Probability for Qwen-Math-7B
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Figure 2: Average Performance vs Global Log Probabilities (scaled by 102) of the Data used for
Model Training on Teacher Data (Left) Qwen-7B-Instruct as a Student (Right) Qwen-Math-7B as a
student for short data.

3.3 LIMITATIONS OF GLOBAL LOG PROBABILITIES FOR LONG REASONING DATA

The demonstrated value of reasoning data in enhancing the capabilities of leading LLMs, such as
OpenATl’s O-series (Jaech et al.,2024), DeepSeek-R1 (Guo et al., [2025), Nemotron (Bercovich et al.,
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MATH AIME25 AMC MINERVA KAOYAN OLYMPIADB CN_MATH24 AVG
Student: Qwen2.5-7B-Instruct

Original Model 0.752 0.167 0.5 0.268 0.216 0.404 0.167 0.353
Teacher: Lowest LP 0.678 0.1 0.3 0.224 0.296 0.314 0.133  0.292
Qwen2.5-72B  Middle LP 0.71 0.1 0425 0.257 0.336 0.339 02 0.338
-Instruct Highest LP 0.744 0.133 0.5 0.252 0.391 0.391 0.167 0.368
Teacher: Lowest LP 0.667 0.1 0375 0.165 0.226 0.29 0.133  0.279
Gemma3-27B  Middle LP 0.716 0.1 0475 0.129 0.246 0.357 0.167 0.313
-IT Highest LP 0.712 0.1 0.5 0.176 0.251 0.362 0.133  0.319

Student: Qwen2.5-Math-7B

Original Model 0.5 0.033 0.425 0.092 0.1 0.164 0.133  0.207
Teacher: Lowest LP 0.77 0.033 0.5 0.26 0.407 0.381 0.1 0.350
Qwen2.5-72B  Middle LP 0.79 0.1 0.55 0.25 0.41 0.416 0.133  0.378
-Instruct Highest LP 0.778 0.133 0.6 0.35 0.46 0.398 0.167 0.412
Teacher: Lowest LP 0.802 0.133  0.525 0.213 0.331 0.436 02 0377
Gemma3-27B  Middle LP 0.792 0.1 0575 0.246 0.312 0.45 0.367  0.406
-IT Highest LP 0.816 0.167 0.625 0.25 0.387 0.455 0433 0.448

Table 1: Performance of Qwen2.5-7B-Instruct and Qwen2.5-Math-7B student models on various
reasoning tasks when fine-tuned with responses from different teacher models using MATH prompts.
The log probabilities (LP) are categorized into lowest, middle, and highest based on the generation
log probabilities of the student model.

2025)), or QWQ-32B (Team, |2025c), is significant. Moreover, recent work has successfully distilled
long, complex reasoning abilities (10K+ tokens) from these highly capable teacher models to smaller
student models (Ye et al., 2025 [Team, [2025a; [Wen et al., 2025). These advancements underscore
the importance of effective data selection strategies. This motivates our critical examination of
methods like GRAPE, specifically for their efficacy in selecting high-quality, long-form reasoning
data. We posit that the difficulty in preserving information consistency across long contexts (Liu
et al.| 2023)) undermines the reliability of global log probability as an evaluation metric. This issue
is particularly pronounced in student models not exposed to long-chain reasoning (10,000-32,000
tokens) during their training, suggesting that a metric measuring across the entire sequence may
overlook the potential inconsistency of the student model.

Task Setup. To investigate
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distinct teacher models known
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et all 2025), QWQ-32B, and \ .
DeepSeek-R1 (Guo et al., [2025). .
For generation, we use a tem-
perature of 0.6 and top-p sam-
pling of 0.95 with vLLM (Kwon
et al., 2023)), continuing to sam-
ple until the response’s final an-
swer matches the ground truth.
For each set of teacher-generated
data, we fine-tune two student
models: Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct. The fine-tuning follows LIMO’s rec-
ommendations: 10 epochs for the 7B model and 15 epochs for the 32B model, with learning rates
of 1 x 107° and 5 x 107%, respectively. We compute the global log probabilities of the training
responses using the pre-fine-tuned student models to assess their initial perception of the data’s
"naturalness," consistent with the GRAPE methodology.
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Teacher models used for Model Training on Teacher LIMO Data
(Left) Qwen-32B-Instruct as a Student (Right) Qwen-7B-Instruct
as a student.
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Observation and Motivation. Figure [3| reveals a crucial discrepancy. Student models trained
on responses generated by Qwen3-32B achieved the lowest performance among the three teacher
datasets, despite these Qwen3-32B responses having the highest average global log probability as
assessed by the student models. Conversely, responses from QWQ-32B, which did not yield the
highest global log probabilities, led to the best student model performance after fine-tuning.

This inconsistency strongly suggests that for reasoning data, global log probabilities (the core metric
of GRAPE) may not be a reliable indicator of training effectiveness. The student model’s global
"naturalness" assessment of a long chain of thought does not consistently correlate with the actual
performance.

Consequently, relying on these global scores can obscure high-quality reasoning segments embedded
within longer responses. Overcoming the unreliability of global log probabilities assigned by student
models to long reasoning data is therefore a central challenge. This motivates our exploration of
a more localized approach to data selection, focusing on the "naturalness" of individual reasoning
steps rather than the entire response, to better identify data that genuinely enhances student model
capabilities.

3.4 METHODOLOGY: LOCAL LOG PROBABILITIES

The insight from (Prystawski et al.| [2023) that effective reasoning, like chain-of-thought, often arises
from a "locality of experience", where models learn to chain accurate local inferences, is pivotal.
Their work suggests that robust step-by-step reasoning depends on the model’s proficiency with local
statistical dependencies. Building on this and addressing the limitations of global log probabilities
for reasoning data discussed in Section [3.3] we introduce an alternative data selection strategy.

Instead of relying on the student model’s evaluation of an entire, extended response (which can be
unreliable for less specialized or overwhelmed models), our approach focuses on assessing the gener-
ation probabilities of smaller, constituent logical steps within that response. This "local" assessment
aligns more closely with the constructive nature of reasoning. Individual logical steps, being shorter
and less complex, are more amenable to accurate probability estimation by student models that might
falter with the full sequence’s length and intricacies. By evaluating these "stepping stones" of the
reasoning process, we aim to directly assess the quality and suitability of the intermediate components
for the student model. This shift to local log probabilities (exemplified in Figure|l) leverages the
model’s ability to comprehend and evaluate more manageable logical units, thereby offering a more
reliable measure of reasoning quality in long responses across different teacher models and mitigating
the biases inherent in global log probability assessments.

Definition. We define the local log probability of a response y as the averages of the log probabili-
ties of its constituent logical steps, where each step is conditioned on a limited context of k preceding
logical steps. Formally, let a response y be composed of p logical steps, y = (s1, S2, ..., sp), where
each step s; is a sequence of tokens. The local log probability of y given an input prompt x is:

P

log-Plocal(y|x; 95) = % Z logp(si‘Smax(l,i—k’):i—ly 5 95)7 2

i=1

Where spax(1,i—k):i—1 represents the sequence of at most & logical steps immediately preceding step
s;. If @ < k, the context includes all preceding steps s1, ..., s;—1 and the initial prompt z. When
i =1, s1 is conditioned only on x. This formulation captures the model’s assessment of each logical
step within a localized context, allowing for a more granular evaluation of reasoning quality. In our
practical implementation, we define these logical steps s; as individual sentences within the response.

Experimental Setup. To understand the relationship and divergence between local and global log
probabilities, we conduct an analysis. We use the LIMO prompts and the corresponding reasoning
responses generated by our three teacher models (DeepSeek-R1, Qwen3-32B, QWQ-32). For these
responses, we compute their local log probabilities using a student model with varying context
window sizes k for the logical steps (sentences). Specifically, we test context sizes corresponding to
approximately 5%, 25%, 50%, and 75% of the total number of sentences in the preceding part of the
response. We then compare these local log probability rankings with the ranking derived from the
standard global log probabilities (Equation |1} for the same set of responses.
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Observation. As illustrated in Figure
several key patterns emerge: local log prob-
abilities calculated with smaller context
windows (i.e., 5% and 25% of preced-
ing sentences) are generally significantly
higher than global log probabilities. This
suggests that the student model expresses
greater confidence (assigns higher proba-
bility) when evaluating individual logical
steps within a limited, recent context, com-
pared to evaluating the entire, potentially
very long, response. Morever, we observe
that the ranking of teachers remains sta-
ble at smaller context window size (<25%).
For smaller context windows, the ranking
of teacher data based on local log probabili-
ties can differ substantially from the global

Relationship Between Context Size and Local Log Probability
of Qwen-7B-Instruct on Responses from Different Teachers
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Figure 4: Average log probabilities (scaled by 10%) with
increasing context window showing the convergence to
the global log probabilities ranking. Qwen-7B-Instruct
as a student model trained with LIMO response from
the teacher (avg SFT performance reported).

log probability ranking. For instance, with

a small context, QWQ-32Bresponses might consistently rank highest locally. However, as the context
window size k increases (e.g., towards 50% or more of the preceding sentences), the local log proba-
bilities and their induced rankings begin to converge towards those of the global log probabilities.
At larger context sizes, the ranking might flip, aligning with the global ranking where, for example,
Qwen3-32B responses had the highest global scores but poorest downstream performance (as noted
in Section [3.3). This divergence at smaller context windows shows that local log probabilities offer a
fundamentally different, and potentially more nuanced and reliable, assessment of reasoning quality
than global scores, especially when the student model is still developing its long-context reasoning
capabilities. The ability of local scores to highlight "naturalness" at the step level, independent of the
global assessment of the entire chain, forms the basis for our proposed response selection method.
Consequently, we will explore the efficacy of using these local log probabilities, particularly those
derived from shorter contexts, for selecting long reasoning responses across teachers for SFT in the
subsequent sections.

4 EXPERIMENTS

In this section, we present experiments designed to evaluate the efficacy of our proposed local log
probability-based method for selecting long reasoning responses. We compare its performance against
selection based on global log probabilities. Our investigation focuses on two primary scenarios:

1. Teacher Model Selection for a Given Student: Identifying the most suitable teacher model (and
its generated data) for fine-tuning a specific student model.

2. Cross-Teacher Data Selection for a Given Student: Selecting the best individual responses from
a pool generated by multiple different teacher models for fine-tuning a specific student model.

4.1 STUDENT-AWARE TEACHER MODEL SELECTION

The choice of teacher model can significantly impact a student model’s fine-tuning outcome, as
the alignment between the teacher’s data characteristics and the student’s pre-existing knowledge
(pretraining distribution) varies. Identifying an optimal teacher is therefore crucial. This experiment
investigates whether local log probabilities, as assessed by the student model, can effectively guide
the selection of the most suitable teacher model for generating long reasoning data.

Experimental Setup. We employ Llama-3.1-8B-Instruct, Qwen2.5-7B-Instruct, Qwen2.5-32B-
Instruct as our student models. The teacher models are Qwen3-32B-Instruct, DeepSeek-R1 (Guo
et al.,2025), and QWQ-32. For each teacher, we generate responses to the LIMO prompts (Ye et al.,
2025)). Each student model is then fine-tuned separately on the full set of responses generated by each
respective teacher model. The fine-tuning hyperparameters (epochs, learning rates) are consistent
with those described in Section [3.3](i.e., LIMO’s recommendations). For results on other training
datasets (8890 prompts), we refer the reader to Appendix B. Due to limited space, we show all results
on Llama-3.1-8B-Instruct model in Appendix B.
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After data generation but before fine-tuning, we compute both the global and local log probabilities
of all generated responses using the specific student model that will be trained on that data. For local
log probabilities, we use a context window of at most k = 4 preceding sentences, the size we found
to be optimal for performance and efficiency. For ablation study, we refer the reader to Appendix.
The goal is to see if the average local log probability for a teacher’s dataset, as perceived by a student,
correlates with that student’s post-fine-tuning performance.

MATH AIME25 AMC MINERVA KAOYAN OLYMPIADB CN_MATH24 AVG Global LP  Local LP
Student: Qwen2.5-7B-Instruct

Student Before SFT 0.752 0.167  0.500 0.268 0.216 0.404 0.167  0.353 - -
Qwen3-32B Data 0.714 0.166  0.500 0.279 0.389 0.375 0.133 ~ 0.365 -0.697 -0.279
DeepSeek-R1 Data 0.784 0.166  0.600 0.239 0.330 0.441 0233 0.399 -0.796 -0.264
QWQ-32BData 0.780 0.266  0.600 0.275 0.356 0.442 0.2 0417 -0.743 -0.241
Student: Qwen2.5-32B-Instruct
Student Before SFT 0.822 0.133  0.700 0.298 0.422 0471 0.233 0445 - -
Qwen3-32B Data 0.882 0.567  0.900 0.353 0.598 0.559 0.600  0.637 -0.800 -0.257
DeepSeek-R1 Data 0.896 0467 0925 0.338 0.613 0.644 0733 0.659 -0.895 -0.241
QWQ-32BData 0.916 0.633 0975 0.364 0.653 0.689 0.800 0.719 -0.888 -0.218

Table 2: Performance of Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct student models on LIMO
prompts when fine-tuned with responses from different teacher models. The log probabilities (LP)
are categorized into global and local average log probabilities of the student model.

Results and Analysis. The performance outcomes are presented in Table[2] and the relationship
between log probabilities and performance is visualized in Figure[3] In particular, student models fine-
tuned on QWQ-32B data achieved the highest downstream task performance, the phenomenon which
has been observed in|Guha et al.|(2025) and Xiao et al.| (2025). Notably, the QWQ-32B-generated
data also exhibited the highest average local log probability when assessed by the student models.
This was followed by data from DeepSeek-R1 (second highest local log probability and performance),
and then Qwen3-32B data (lowest local log probability and performance). This direct correlation
suggests that student-model-assessed local log probabilities are an effective metric for predicting
which teacher’s data will be most beneficial. In contrast, global log probabilities did not show this
clear correlation with student performance in the context of long reasoning data. As previously noted
(Section [3.3), Qwen3-32B data had high global scores but led to poorer outcomes. Interestingly,
the loss landscape might also be misleading, as models trained with highest global log achieved
lowest and fastest convergence (more in Appendix). Computing log probabilities across an entire
large dataset can be computationally intensive. We investigated whether a smaller subset of prompts
could suffice for reliable teacher model ranking. Our experiments (using 200, 400, and 600 LIMO
prompts) demonstrated that local log probabilities derived from as few as 200 prompts were sufficient
to reliably rank the teacher models in the same order as when using the full set.

Takeaways. These findings indicate that student-model-assessed local log probabilities offer a robust
and efficient method for identifying optimal teacher models for generating long reasoning SFT data.
This local, "naturalness-at-the-step-level" metric appears better equipped than global scores to capture
the true utility of extended reasoning responses, especially when the student (evaluator) model might
struggle with full-sequence assessment. The ability to make this selection accurately using a small
subset of prompts significantly reduces computational overhead, making the approach practical for
large datasets and facilitating quicker identification of suitable data sources.

4.2 RESPONSE SELECTION ACROSS TEACHER MODELS

When multiple teacher models are available, they produce data of varying quality and suitability for a
specific student model. Effective curation to select the most beneficial individual responses is critical.
This experiment investigates the efficacy of using student-model-assessed local log probabilities to
select the best individual responses per prompt for a target student model from a diverse pool of
outputs generated by different teacher models.

Experimental Setup. We use the same student models (Qwen2.5-7B-Instruct, Qwen2.5-32B-Instruct)
and teacher models (Qwen3-32B-Instruct, DeepSeek-R1, QWQ-32) as in Use Case 1. For each
LIMO prompt, we consider all responses generated by all three teacher models, creating a candidate
pool for that prompt. Using the target student model, we compute the global log probability and
the local log probability (with a context of k£ = 4 preceding sentences) for each candidate response.
For each prompt, we then create different datasets for fine-tuning by selecting responses based on
the following criteria: Local Highest: The response with the highest local log probability from the
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candidate pool. Global Highest: The response with the highest global log probability (GRAPE
baseline). All 3 Teacher: The 3 responses from all teachers. Random: A randomly selected response
from the candidate pool (another baseline). The student models are then fine-tuned on these curated
datasets using the same hyperparameters as in the previous experiments (Section[4.T)). Due to space
constraints, we provide results of capable open-weight models, LIMO-32B, Sky-T1-32B-Preview,
and OpenThinker2-32B in the Appendix.

Task Setup. Similarly as in the previous experiment, we conduct experiments using Qwen2.5-
7B-Instruct and Qwen2.5-32B-Instruct as student models and Qwen3-32B-Instruct, DeepSeek-R1,
and QWQ-32B as teacher models. We generate responses from each teacher model using LIMO
prompts and compute local log probabilities of the responses with a context size of at most 4 previous
sentences. For each prompt, we then select the responses with the highest local log probabilities
across all teacher models. We also select the responses with the lowest local and highest global log
probabilities for comparison. We train the student models on these selected responses with the same
hyperparameters as in the previous section. For non greedy decoding with temperature 0.6 and top-p
0.95 with 8 samples for pass@1 evaluation, we refer the reader to the Appendix.

MATH AIME25 AMC MINERVA KAOYAN OLYMPIAD CN_MATH24 AVG
Student: Qwen2.5-7B-Instruct

Original Model 0.752 0.167 0.500 0.268 0.216 0.404 0.167 0.353
Random 0.768 0.133 0.625 0.268 0.367 0.456 0.233 0.407
Global Highest 0.762 0.2 0.6 0.268 0.381 0.441 0.233 0.412
Local Lowest 0.742 0.167 0.575 0.298 0.342 0.433 0.233 0.399
Local Highest (Ours) 0.788 0.2 0.625 0.298 0.392 0.441 0.333 0.440
Student: Qwen2.5-32B-Instruct
Original Model 0.824 0.133 0.700  0.298 0.422 0.471 0.233 0.445
Random 0.906 0.400 0.925 0.327 0.628 0.636 0.733 0.651
Global Highest 0.876 0.433 0.825 0.331 0.592 0.636 0.733 0.632
Local Lowest 0.896 0.400 0.825 0.324 0.608 0.640 0.700 0.623
Local Highest (Ours) 0.902 0.667 1.000 0.353 0.653 0.673 0.833 0.726

Table 3: Performance of Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct student models on LIMO
prompts when fine-tuned with responses from different selection strategies. The log probabilities
(LP) are the global and local average log probabilities of the student model.

Observation. Table[3|reveals an advantage for using highest local log probabilities in data selec-
tion: student models trained on responses chosen this way demonstrated the highest performance,
surpassing both random selection and selection via global log probabilities. This underscores the
efficacy of local log probabilities for curating high-quality long reasoning responses from different
teachers suitable for SFT. The improvement of 0.094 in performance when using highest local versus
highest global log probabilities strongly validates our proposed method’s effectiveness. A particularly
noteworthy finding is that our selection technique can further refine and improve upon the perfor-
mance of even the top-performing model (Qwen2.5-32B-Instruct trained on QWQ-32B responses
from Table [2). This ability to find beneficial individual responses, even from teacher models not
deemed globally most helpful, directly addresses the inherent problem of data selection: that true
quality can be hidden and not always correlate with a teacher’s overall performance. It showcases the
nuanced power of our selection criterion and the remarkable effectiveness of our method in precisely
identifying these valuable instances.

5 CONCLUSION

In this work, we identified a critical limitation of using full-sequence (global) log probabilities to select
reasoning examples for supervised fine-tuning across teacher models. Global log probabilities fails at
selecting responses from different teacher sources, causing poor correlation between global scores
and downstream performance. To address this, we introduced local log probabilities, which assess
model confidence over individual logical steps within a response. By computing these shorter-context
scores, we obtain a more reliable selection criterion that aligns with a student’s actual reasoning
capabilities. Empirically, local log probability based selection consistently outperforms global log
probabilities selection across multiple student-teacher pairs for math reasoning benchmarks. Future
work includes adaptive, and informative context window strategies, integrating local scoring into the
training loop, and extending beyond mathematical reasoning tasks.
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Reproducibility statement. The authors have made an effort to ensure the reproducibility of
their work. The paper includes a detailed formulation of the method, along with all necessary
hyperparameters for data generation, training, and evaluation. Furthermore, all codebases used in
this research are properly referenced. In a commitment to fostering further research within the
open-source community, the authors will also release the data and models.
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A ADDITIONAL DETAILS

To ensure clarity and facilitate reproducibility, this section outlines the datasets used for training and
evaluation, the student model and teacher model architectures, and the hyperparameters used during
our supervised fine-tuning process.

A.1 DATASET DETAILS

Training Datasets. For training, we use two primary datasets. First, we use the MATH dataset
(Hendrycks et al., 2021}, and following prior works (Zeng et al., 2025} |Yu et al., [2025])), we filter it
to include only questions of difficulty levels 3-5, yielding 8,890 prompts (available athttps://
huggingface.co/datasets/EleutherAI/hendrycks_math). Second, to train models
on reasoning data, we use the LIMO dataset (Ye et al., [ 2025)), a carefully curated collection of 817
prompts (available at https: //huggingface.co/datasets/GAIR/LIMO).

Evaluation Datasets. To evaluate the performance of the model in mathematical capabilities, we
include a wide suite of math benchmarks, including:

* MATHS500 (Hendrycks et al., 2021} (500 Samples)
URL: https://huggingface.co/datasets/EleutherAI/hendrycks_
math

* AIME 2025 (American Invitational Mathematics Examination) (30 Samples)
URL: https://huggingface.co/datasets/opencompass/AIME2025

* AMC 2023(American Mathematics Competition) (40 Samples)
URL: https://huggingface.co/datasets/math-ai/amc23

* MINERVA (Lewkowycz et al.,[2022) (272 Samples)
URL: https://huggingface.co/datasets/knoveleng/Minerva—Math

* KAOYAN (Chinese Graduate School Entrance Examinations) (199 Samples)
URL: https://github.com/GAIR-NLP/LIMO/blob/main/eval/data/
kaoyan/test.jsonl

* OLYMPIADBENCH (He et al.,[2024)) (675 Samples)
URL: https://huggingface.co/datasets/knoveleng/OlympiadBench

* CN_MATH_2024 (Chinese High School Mathematics League Competition) (30 Samples)
URL: https://github.com/GAIR-NLP/LIMO/blob/main/eval/data/cn_
math_2024/test.jsonl

* GPQA-D (A Graduate-Level Google-Proof Q&A Benchmark) (198 Samples)
URL: https://huggingface.co/datasets/Idavidrein/gpga

* LCBvV2 (LiveCodeBench) (511 Samples)
URL:|https://github.com/LiveCodeBench/LiveCodeBench

A.2 MODEL DETAILS
Student Models. For student models, we perform supervised fine-tuning on:

* Qwen2.5-Math-7B (Yang et al.| [2024c)
URL: https://huggingface.co/Qwen/Qwen2.5-Math—-7B

* Qwen2.5-7B-Instruct (Yang et al.,[2024a3b)
URL: https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

* Qwen2.5-32B-Instruct (Yang et al., [2024ajb)

¢ Llama-3.1-8B-Instruct (Grattafiori et al., [2024)
URL: https://huggingface.co/meta-1lama/Llama—-3.1-8B-Instruct
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Teacher Models. For teacher models, we sample responses from the following models:

* Qwen2.5-72B-Instruct (Yang et al., [2024ajjb)
URL: https://huggingface.co/Qwen/Qwen2.5-32B-Instruct

¢ Gemma3-27B-IT (Team et al., 2025)
URL: https://huggingface.co/google/gemma-3-27b-it
* DeepSeek-R1 (Guo et al.,2025)
URL: https://huggingface.co/deepseek—ai/DeepSeek—R1

* QWQ-32B(Team,[2025c)
URL: https://huggingface.co/Qwen/QWQ32b

* Qwen3-32B (Yang et al., 2025))
URL: https://huggingface.co/Qwen/Qwen3—-32B

A.3 EXPERIMENTAL DETAILS

Sampling Hyperparameters. Training data for fine-tuning student models were generated by
sampling outputs from teacher models. We use the vLLM library (Kwon et al.l 2023) for this process
to ensure efficient inference, employing the sampling hyperparameters detailed in Table [4]

Property Value
Number of samples 1/16
Temperature 0.0/1.0
Top P 1.0/0.95
Top K 1/40
Max Tokens 42786+

Table 4: The hyperparameters for sampling from the teacher models using vLLM (Kwon et al.| [2023)).

Training Hyperparameters. For supervised fine-tuning on student models, we leverage the
LLaMA-Factory (Zheng et al.,[2024])) platform that offers efficient training and apply the following
setting of hyperparameters (listed in Table 3):

Property Value
Train Batch Size Per Device 172
Gradient Accumulation Steps 8
Learning Rate 5.0 x 107%/1.0 x 10~°
Epochs 10/15
Warmup Ratio 0.0
BFloat16 True

Table 5: The hyperparameters for SFT the student models using LLaMA Factory (Zheng et al., [2024).

Evaluation Hyperparameters. After models are trained, we evaluate the models on a variety of
mathemtical benchmarks using the evaluation library from LIMO (Ye et al.,[2025) (URL: https:
//github.com/GAIR-NLP/LIMO/tree/main/eval) with the following hyperparameters
(Table [6):

After training, we evaluate the models on a range of mathematical benchmarks using the evaluation
library provided by LIMO (Ye et al., 2025) based on the Qwen2.5-Math evaluation code (Yang
et al., 2024b) (available at https://github.com/GAIR-NLP/LIMO/tree/main/eval).
The evaluation is conducted using the hyperparameter settings from DeepSeek-R1 |Guo et al.[(2025)
as detailed in Table
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Property Value

Temperature  0.0/0.6
Max Tokens 32768

Top P 1/0.95
Pass@K 1/8
Samples 1/8

Table 6: The hyperparameters for evaluation of the student models at the inference stage using
evaluation code from Qwen?2.5-Math evaluation (Yang et all,[2024D).

B ADDITIONAL RESULTS

B.1 Loss COMPARISON

We compare the loss curves of student models trained on data selected using global and local log
likelihood criteria, as summarized in Table 3] The corresponding loss plots are presented in Figure 5]

Training Loss when Trained on Differently Selected Data
Student: Qwen2.5-32B-Instruct with LR=5e-06

0.9]
—— Random
0.8 Highest Local Logprobs
0.7 —— Highest Global Logprobs
0.6
0
3 0.5
|
0.4
0.3
0.2
0 50 100 150 200
Step

Figure 5: Loss plots of the student model Qwen2.5-32B-Instruct trained on randomly selected
data points from LIMO responses, highest local log probabilities responses, and highest global log
probabilities responses.

As shown in Figure[5] models trained on responses with the highest global log-likelihood demonstrate
the fastest convergence and lowest training loss compared to those trained on randomly selected
data or responses with the highest local log-likelihood. This behavior is expected, as high global
log-likelihood responses likely represent more cohesive and natural samples as a whole, which align
more closely with the student model’s existing representation space. Such data may provide clearer
learning signals, enabling the model to fit the training distribution more efficiently. However, as
shown earlier in Table[3] instead, the model trained on data selected by highest local log-likelihood
ultimately achieves better downstream performance. This highlights a key insight: while global log-
likelihood data may facilitate faster convergence during training, this does not necessarily translate to
better generalization, underscoring the limitations of relying solely on loss curves as indicators of
final model performance.
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B.2 DATA COMPOSITION FROM SELECTION

In Section4.2] we have chosen LIMO responses across three teachers (DeepSeek-R1, QWQ-32B,
Qwen3-32B) based on local and global naturalness and provided results in Table 3] Here, we provide
the composition of selected responses across teachers depending on the method in Table

In Section[d.2] we selected LIMO responses from three teacher models, DeepSeek-R1, QWQ-32B,
and Qwen3-32B, based on eihter local and global naturalness criteria, with the corresponding results
presented in Table[3] In Table[7} we further detail the composition of the selected responses across
teacher models for each selection method.

DeepSeek-R1  QWQ-32B  Qwen3.0-32B
Student: Qwen2.5-32B-Instruct

Random 333 333 334
Local Lowest 42 .4 11.3 46.3
Global Highest 47.6 7.2 45.2
Local Highest 42.4 36.3 21.3

Student: Qwen2.5-32B-Instruct
Random 333 333 334
Local Lowest 43.3 20.4 36.3
Global Highest 47.2 8.6 44.2
Local Highest 26.8 44.9 28.3

Table 7: Data composition from different teacher models for the LIMO responses depending on the
selection method(%).

B.3 ADDITIONAL RESULTS ON MATH PROMPTS

We present additional results for Qwen2.5-7B-Instruct on the MATH benchmark, using responses
generated by two different teacher models: Qwen2.5-72B-Instruct, which tends to produce shorter
responses, and QWQ-32B, which generates longer reasoning responses. We provide a comprehensive
summary of these results in Table[8]

MATH AIME25 AMC MINERVA KAOYAN OLYMPIADB CN_MATH24 AVG
Student: Qwen2.5-7B-Instruct

Original Model 0.752 0.167 0.5 0.268 0.216 0.404 0.167 0.353
Teacher: Lowest LP 0.678 0.1 0.3 0.224 0.296 0.314 0.133  0.292
Qwen2.5-72B  Middle LP 0.71 0.1 0425 0.257 0.336 0.339 02 0.338
-Instruct Highest LP 0.744 0.133 0.5 0.252 0.391 0.391 0.167 0.368
Teacher: Lowest LP 0.686 0.1 0.4 0.246 0.286 0.324 02 0.320
QWQ-32 Middle LP 0.71 0.167 0.425 0.272 0.336 0.333 02 0.349

Highest LP 0.732 0.167 0475 0.279 0.412 0.382 0.233  0.382

Table 8: Performance of Qwen2.5-7B-Instruct student model on various reasoning tasks when fine-
tuned with responses from different teacher models using MATH prompts. The log probabilities
(LP) are categorized into lowest, middle, and highest based on the generation log probabilities of the
student model.

B.4 ABLATION: CONTEXT WINDOW SIZE VS PERFORMANCE

We provide an ablation study of the context window size in terms of performance. As we observe in
Figure[6] the window size of 4 seems to be the optimal size for our case.

B.5 GENERALIZABILITY EXPERIMENTS

To explicitly test this generalizability, we have since conducted additional experiments in general
science. For the models trained on math data from our paper, we computed performance the GPQA-
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Context Window Size vs Performance
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Figure 6: Context window size vs performance. Ablation on two student models.

Diamond benchmark, which tests expert-level reasoning across biology, physics, and chemistry. We
obtained the following results:

Table 9: GPQA-Diamond Benchmark Results

Model / Method GPQA-Diamond (pass@1)
Original Qwen2.5-32B-Instruct 0.551
All 3 Teachers” Responses 0.439
LIMO-32B 0.626
Sky-T1-32B-Preview 0.566
OpenThinker2-32B 0.646
Global Highest (GRAPE) 0.611
Local Highest (Ours) 0.702

Notably, our Local Naturalness selection method not only surpasses the Global Highest baseline
but also outperforms other state-of-the-art models. This is particularly significant as these other
models were trained on substantially larger and more diverse long reasoning datasets, underscoring
the efficiency and effectiveness of our data curation technique.

To further demonstrate the generalizability of our approach, we extended our evaluation to code
reasoning. We generated responses for 5,000 prompts from the OpenCodeReasoning and LeetCode
datasets and used them to fine-tune the Qwen2.5-32B-Instruct model. The models performance were
then evaluated on the LiveCodeBench v2 benchmark.

Table 10: LiveCodeBench v2 Benchmark Results

Method LiveCodeBench-easy LiveCodeBench-medium LiveCodeBench-hard
Original Qwen2.5-32B-Instruct 0.890 0.471 0.114
Global Highest (GRAPE) 0.845 0.588 0.232
Local Highest (Ours) 0.874 0.633 0.261

As the results indicate, the student model trained on data selected via Local Naturalness consistently
outperforms the one trained using the global log-probability baseline across the medium and hard
difficulty tiers.

These additional results from the scientific and coding domains strongly suggest that the core principle
of Local Naturalness is not confined to mathematics. The method’s effectiveness in identifying high-
quality reasoning data appears to generalize to other domains that require complex, step-by-step
inference. We will include these findings in the paper to provide a more comprehensive evaluation of
our method’s applicability.

18



Under review as a conference paper at ICLR 2026

B.6 ABLATION: LLAMA-3.1-8B-INSTRUCT
We provide results on another student model to show the generalizability of our method in Table

MATH AIME25 AMC MINERVA KAOYAN OLYMPIAD CN_MATH24 GPQA
Student: Llama-3.1-8B-Instruct

Original Model 0.726 0.0 0.45 0.316 0.216 0.361 0.3 0.656
Global Highest 0.796 0.133 0.625 0371 0.437 0.395 0.2 0.833
Local Highest (Ours) 0.814 0.167 0.725 0.368 0.432 0.410 0.2 0.879

Table 11: Performance of Llama-3.1-8B-Instruct student models on LIMO prompts when fine-tuned
with responses from different selection strategies. The log probabilities (LP) are the global and local
average log probabilities of the student model with non-greedy decoding with temperature 0.6, top-p
0.95 and over 8 samples, pass@8.

B.7 CROSS TEACHER SELECTION: PERFORMANCE WITH NON-GREEDY DECODING
We provide results on cross teacher selection with non-greedy decoding in Table[I2]

MATH AIME25 AMC MINERVA KAOYAN OLYMPIAD CN_MATH24 AVG
Student: Qwen2.5-32B-Instruct

Original Model 0.826 0.121 0.715  0.295 0.416 0.461 0.237 0.439
All 3 Teachers 0.835 0.400 0.887 0.335 0.578 0.559 0.583 0.597
Global Highest 0.862 0.442 0.903 0.338 0.629 0.634 0.721 0.647
Local Highest (Ours) 0.911 0.662 0.969 0.361 0.658 0.675 0.850 0.727

Table 12: Performance of Qwen2.5-7B-Instruct and Qwen2.5-32B-Instruct student models on LIMO
prompts when fine-tuned with responses from different selection strategies. The log probabilities
(LP) are the global and local average log probabilities of the student model with non-greedy decoding
with temperature 0.6, top-p 0.95 and over 8 samples.

B.8 PERFORMANCE COMPARISON WITH OTHER SOTA QWEN-32B MODELS

We compare the performance of our model against several strong open-source imple-
mentations that also fine-tune the Qwen-32B-Instruct student model on comparable or
larger datasets. LIMO-32B-VI1(Ye et al., [2025) (available at https://huggingfacel
co/GAIR/LIMO) is trained on the LIMO prompt set using responses exclusively from
the DeepSeek-R1 teacher. Sky-T1-32B-Preview(Teaml [2025a) (available at https://
huggingface.co/NovaSky—-AI/Sky-T1-32B-Preview) is trained on a 17K ex-
ample dataset (https://huggingface.co/datasets/NovaSky—-AI/Sky-T1l _data_
17k) generated using the QWQ-32B model. OpenThinker2-32B(Team, [2025b) (available
at https://huggingface.co/open-thoughts/OpenThinker2-32B) is trained on
a substantially larger dataset of 1.04M samples(https://huggingface.co/datasets/
open-thoughts/OpenThoughts2-1M), also generated using DeepSeek-R1 as the teacher.
A detailed comparison of the results is provided in Table

MATH AIME25 AMC MINERVA KAOYAN OLYMPIAD CN_MATH24 AVG GPQA
Student: Qwen2.5-32B-Instruct

Original Model 0.824 0.133 0.700  0.298 0.422 0.471 0.233 0.445 0.551
Global Highest 0.876 0.433 0.825 0.331 0.592 0.636 0.733 0.632 0.611
LIMO-32B 0.896 0.433 0.925 0.346 0.618 0.630 0.800 0.664 0.626
Sky-T1-32B-Preview  0.876 0.200 0.750  0.301 0.558 0.507 0.533 0.532  0.566
OpenThinker2-32B 0.922 0.567 0.900 0.324 0.648 0.640 0.833 0.691 0.646
Local Highest (Ours) 0.902 0.667 1.000  0.353 0.653 0.673 0.833 0.726  0.694

Table 13: A performance comparison of our model with other open-source SOTA models fine tuned
on the Qwen2.5-32B-Instruct student model.

All experiments, including sampling, training, and evaluation, were conducted using either 4xH100
GPUs or publicly available APIs when applicable. Upon completion of the review process, we
are committed to releasing our code, datasets, and trained models to support and accelerate further
research within the community.
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