

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AGREEMENT WITH THE ENSEMBLE FOR ZERO-SHOT VISION- LANGUAGE MODEL SELECTION

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretrained vision-language models (VLMs) such as CLIP are well known for enabling *zero-shot* classification with *category names*. The rapid growth of open-access variants has led to a diverse VLM zoo, where selecting the most suitable model can yield superior zero-shot performance, yet the optimal choice is often *dataset-dependent*. At the same time, selecting VLMs for *zero-shot* tasks is challenging, since only *category names* are available and target images are absent. Prior approaches rely on text-only evaluation, which suffers from the *modality gap* inherent to VLMs. To address this issue, we propose **SAGE** (Selection via AGreement-with-the-Ensemble), which leverages *in-the-wild* images to bridge the modality gap. Specifically, SAGE quantifies the agreement between individual VLMs and their ensemble counterparts in terms of prediction behavior on *in-the-wild* images. Experiments demonstrate that SAGE consistently outperforms state-of-the-art zero-shot VLM selection methods.

1 INTRODUCTION

Vision-language models (VLMs) have reshaped the intersection of computer vision and natural language processing by bridging visual and textual modalities (Li et al., 2022; Singh et al., 2022; Wang et al., 2023). A prominent example is CLIP (Radford et al., 2021), which learns aligned image–text representations via contrastive training. One of its most notable capabilities is *zero-shot* image recognition, enabling predictions for unseen image classes using only category names.

Today, even users without machine learning expertise can download VLMs from the open-source community to perform their own recognition tasks. Within this community, a wide variety of VLMs trained with diverse architectures and strategies form an ever-expanding “VLM zoo.” (Zohar et al., 2023; Lu et al., 2024; Jeong et al., 2024) Prior studies show that the zero-shot recognition performance of VLMs is highly *dataset-dependent* (Fang et al., 2022; Rodriguez-Opazo et al., 2025). Consequently, selecting VLMs from the zoo according to the target task with an appropriate strategy can yield better results than arbitrary choice. However, this is particularly difficult for non-expert users, who often lack the necessary experience and the time to collect an evaluation dataset. In many cases, they only have access to the category names. To address these challenges, recent work (Zohar et al., 2023) introduces the task of **zero-shot VLM selection**, which evaluates models solely based on the provided **category names**, without extra target data (see Figure 1).

Existing approaches (Zohar et al., 2023; Yi et al., 2024) rely on *text-only* proxy evaluation. Specifically, LLMs (Ouyang et al., 2022; Touvron et al., 2023) are prompted with category names to generate task-related texts, which are then fed into the text encoders of VLMs to approximate target image features within the cross-modal embedding space. The image recognition capability of VLMs is

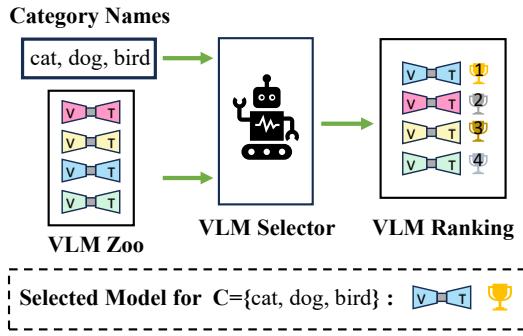


Figure 1: **Zero-shot VLM selection.** The model selector is required to select an appropriate VLM according to category names.

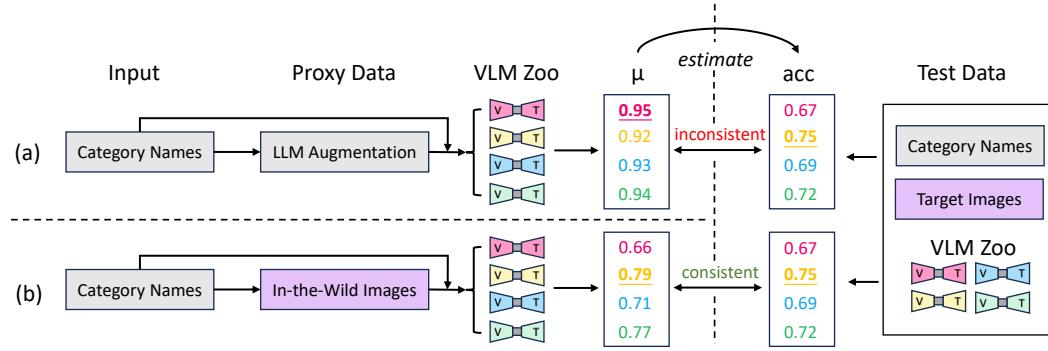


Figure 2: **Compare methods of zero-shot VLM selection.** These methods compute a metric μ on proxy data to estimate test accuracy. (a) *Previous text-only approaches* rely on LLM-generated texts to simulate target images, but the text classification ability does not faithfully reflect the image recognition capability of VLMs due to the modality gap phenomenon. (b) *Our proposed SAGE* avoid the modality gap by leveraging in-the-wild images.

subsequently estimated from the classification performance of text classifiers over these generated textual features. However, such methods attempt to assess cross-modal characteristics using *uni-modal* data, thereby suffering from the well-known *modality gap* (Liang et al., 2022), which creates a discrepancy between discriminative abilities over text and over images.

In this paper, we address the limitation of *uni-modal* evaluation by leveraging **in-the-wild images**, which have been shown to help bridge the modality gap in zero-shot tasks. The difficulty of utilizing in-the-wild images for VLM selection arises from two perspectives: (1) the absence of target task labels for in-the-wild images; and (2) the semantic gap between in-the-wild images and the target task.

To tackle the first challenge, we propose pseudo-labeling with VLM ensembles. Since all models must be inferred during selection, their predictions can be aggregated to form an ensemble model. This ensemble exhibits strong generalization across diverse tasks and thus provides high-quality pseudo-labels. Building on this, we propose **AGE** (agreement-with-the-ensemble), a label-free metric that measures the consistency between individual VLM predictions and pseudo-labels generated by ensembles. We empirically demonstrate that AGE is strongly correlated with accuracy.

To tackle the second challenge, we integrate semantic-based image retrieval with robust estimation to mitigate the semantic gap between in-the-wild images and the target task when computing AGE. Consequently, AGE can be used to estimate accuracy without requiring target images, enabling SAGE to effectively bridge the modality gap in zero-shot VLM selection and achieve state-of-the-art performance. A comparison between our approach and existing methods is shown in Figure 2.

Our contributions are as follows:

- We introduce AGE, a metric that quantifies agreement between individual outputs and their ensemble counterparts, which strongly correlates with the ground-truth accuracy.
- We adapt AGE to zero-shot VLM selection with in-the-wild images, leading to our proposed method SAGE.
- We evaluate SAGE on the established benchmark for zero-shot VLM selection, demonstrating that SAGE outperforms existing SOTA significantly.

2 RELATED WORK

Vision-language models. Pretrained vision-language models (Li et al., 2022; Singh et al., 2022; Wang et al., 2023), are typically trained on large datasets of image-text pairs (Lin et al., 2014; Young et al., 2014; Schuhmann et al., 2021) and are utilized for a variety of challenging tasks. CLIP (Radford et al., 2021), for example, is designed to create a unified representation space for images and texts, enabling image classification without requiring specific training samples for the target task. This approach, known as “zero-shot classification”, maps test images to class names in the learned representation space. Numerous pretrained models have been developed and made

108 available online for users to download based on their specific tasks. For instance, different versions of
 109 CLIP with various architectures (He et al., 2016b; Vaswani et al., 2017; Liu et al., 2022) trained on
 110 diverse datasets (Deng et al., 2009; Lin et al., 2014; Schuhmann et al., 2021) can be found on model
 111 platforms. These diverse VLMs form a **VLM zoo**. Recent studies (Lu et al., 2024; Jeong et al., 2024)
 112 have shown that combining the outputs of multiple VLMs, forming **VLM ensembles**, can achieve
 113 higher zero-shot performance.

114 **Pretrained model selection.** Pretrained models make it possible to utilize prior knowledge learned
 115 from a variety of datasets, showing remarkable improvement compared with training from scratch (He
 116 et al., 2016a; Devlin, 2018; Radford et al., 2021; Amos et al., 2024). Observing that randomly selecting
 117 a pretrained model from multiple models can result in unpredictable performance (Wang et al., 2019),
 118 pretrained model selection methods estimate model performance given a zoo of pretrained models
 119 and a small set of labeled data. Typically, forward-based methods (Tran et al., 2019; 2020; You
 120 et al., 2021; 2022; Ding et al., 2022; Huang et al., 2022a) assess feature-label distribution, while
 121 similarity-based methods (Achille et al., 2019; Dwivedi & Roig, 2019; Zhang et al., 2023) extract or
 122 learn representations for models and datasets and match models to datasets based on similarity. At
 123 the same time, model selection using only unlabeled data has drawn attention recently (Lin et al.,
 124 2020; Zhao et al., 2021; Baek et al., 2022; Goswami et al., 2022; Hu et al., 2023).

125 Unlike other pretrained vision models, vision-language models are often used in zero-shot settings
 126 without access to image data, making evaluation challenging. **Zero-shot VLM selection** (Zohar et al.,
 127 2023; Yi et al., 2024) addresses the problem of selecting VLMs using only category names.

129 3 PRELIMINARIES

131 3.1 VISION-LANGUAGE MODEL

133 VLMs are known for their cross-modal generalization ability (Radford et al., 2021; Li et al., 2022;
 134 Wang et al., 2023; Singh et al., 2022). A VLM f consists of an image encoder f_x and a text encoder
 135 f_t . Mapping texts and images into a unified representation space, similarity $\text{sim}(\mathbf{x}, \mathbf{t})$ between an
 136 image \mathbf{x} and a text \mathbf{t} is obtained by cosine similarity:

$$137 \text{sim}(\mathbf{x}, \mathbf{t}; f) = \frac{f_x(\mathbf{x})^\top f_t(\mathbf{t})}{\|f_x(\mathbf{x})\|_2 \cdot \|f_t(\mathbf{t})\|_2}. \quad (1)$$

140 **Zero-Shot Classification.** A zero-shot image classification task is defined as $\langle \mathcal{C}, \mathcal{X}_{\text{test}} \rangle$, where \mathcal{C}
 141 are **category names** and $\mathcal{X}_{\text{test}}$ are the **test images** to be classified. Specifically, the user describes a
 142 C -class custom task by providing category names $\mathcal{C} = \{\mathbf{c}_i\}_{i=1}^C$ (e.g., {cat, dog, bird}). Then, the
 143 category names are plugged into a defined prompt template (e.g., “a photo of a {c}”), forming textual
 144 prompts $\mathcal{T} = \{\mathbf{t}_i\}_{i=1}^C$. For a test image $\mathbf{x} \in \mathcal{X}_{\text{test}}$, a VLM f calculates similarity between the test
 145 image and the prompts of each class. Then the predicted probability of class y is given by:

$$146 \text{Pr}(\hat{y} = y | \mathbf{x}, \mathcal{T}, f) = \frac{\exp(\text{sim}(\mathbf{x}, \mathbf{t}_y; f))}{\sum_{y' \in [C]} \exp(\text{sim}(\mathbf{x}, \mathbf{t}_{y'}; f))}. \quad (2)$$

149 We use $f(\mathbf{x}; \mathcal{T}) \in \Delta^C$ to denote the probability output of model f given image \mathbf{x} and class prompts \mathcal{T} ,
 150 where $f(\mathbf{x}; \mathcal{T})_i \triangleq \text{Pr}(\hat{y} = i | \mathbf{x}, \mathcal{T}, f)$. The predicted label would be the class with highest probability.
 151 With ground-truth labels, we can measure the *zero-shot* accuracy of model f for a given task $\langle \mathcal{C}, \mathcal{X}_{\text{test}} \rangle$
 152 with corresponding labels $\mathcal{Y}_{\text{test}}$, denoted $\text{acc}(f; \mathcal{C}, \mathcal{X}_{\text{test}}, \mathcal{Y}_{\text{test}})$.

154 3.2 ZERO-SHOT VLM SELECTION AND CURRENT SOLUTIONS

156 Nowadays, many VLMs are trained and released, varying in terms of the training dataset, model
 157 architecture, training methodology, etc. These diverse VLMs form a model zoo, consisting of M
 158 VLMs, denoted as $\mathcal{F} = \{f_i\}_{i=1}^M$. For a downstream task $\langle \mathcal{C}, \mathcal{X}_{\text{test}} \rangle$, we want to deploy the best model
 159 $f^* \in \mathcal{F}$ such that $\text{acc}(f^*; \mathcal{C}, \mathcal{X}_{\text{test}}, \mathcal{Y}_{\text{test}})$ is maximized.

160 **Problem setting of zero-shot VLM selection.** In this paper, we tackle the challenge of *zero-shot*
 161 VLM selection, which requires choosing an optimal VLM from \mathcal{F} according to \mathcal{C} without access
 to target images $\mathcal{X}_{\text{test}}$. To address the absence of target evaluation data, prior work leverages *proxy*

162 *data* to compute a *proxy metric* $\mu(f; \mathcal{C})$ that is expected to correlate with the ground-truth accuracy
 163 $\text{acc}(f; \mathcal{C}, \mathcal{X}_{\text{test}})$. Such proxy data may consist of **in-the-wild images** from large-scale datasets (*e.g.*,
 164 ImageNet (Deng et al., 2009)) or **LLM-generated texts** (Ouyang et al., 2022; Touvron et al., 2023)
 165 derived from \mathcal{C} . In what follows, we introduce two representative proxy metrics built upon these two
 166 directions.

167 **ImageNet accuracy.** A straightforward baseline is to leverage benchmark performance (*e.g.*, accuracy
 168 on ImageNet) as a measure of a VLM’s inherent capability:
 169

$$\mu_{\text{IN}}(f; \mathcal{C}) = \text{acc}(f; \mathcal{C}_{\text{IN}}, \mathcal{X}_{\text{IN}}, \mathcal{Y}_{\text{IN}}), \quad (3)$$

170 where \mathcal{C}_{IN} and \mathcal{X}_{IN} are the category names and the test images of ImageNet, respectively.
 171

172 **Text scores.** ModelGPT (Zohar et al., 2023) and its improved derivative SWAB (Yi et al., 2024) use
 173 LLMs to generate captions for each class based on \mathcal{C} , forming a “text dataset” $\text{LLM}(\mathcal{C})$. Specifically,
 174 given the category names of the target task, an LLM is prompted to produce relevant captions. For
 175 example, for a task with categories *Abyssinian* and *Beagle*, it may generate “An adorable Abyssinian
 176 cat lounged in sunshine, eyes gleaming afar.” for *Abyssinian*, and “A stunning beagle sat on the grass,
 177 gazing into distance.” for *Beagle*. Based on the cross-modal embedding space, we can treat the
 178 generated captions as target images in the cross-modal embedding spaces of VLMs and convert VLM
 179 evaluation to assessment of text classification capability, with text classification accuracy treated as
 180 an approximation of zero-shot classification accuracy:

$$\mu_{\text{text}}(f; \mathcal{C}) = \text{acc}(f; \mathcal{C}, \text{LLM}(\mathcal{C})). \quad (4)$$

181 Beyond text classification accuracy, Zohar et al. (2023) propose using more text-based scores such as
 182 F1-score and Fisher Criterion, which are combined with ImageNet accuracy to build a strong proxy
 183 metric. However, text scores suffer from limited assessment of the visual modality due to the *modality*
 184 *gap* (Liang et al., 2022). Moreover, employing LLMs introduces additional computational cost and
 185 makes selection performance highly dependent on the quality of LLM outputs.
 186

4 METHODOLOGY OF SAGE

191 **High-level idea of SAGE.** Our goal is to estimate $\text{acc}(f^*; \mathcal{C}, \mathcal{X}_{\text{test}}, \mathcal{Y}_{\text{test}})$. The challenge is that only
 192 \mathcal{C} is available, while the target data $\mathcal{X}_{\text{test}}$ and labels $\mathcal{Y}_{\text{test}}$ are not. To address this, we propose two
 193 sequential steps: **(1)** replace ground-truth labels $\mathcal{Y}_{\text{test}}$ with *pseudo-labels* $\hat{\mathcal{Y}}$, and **(2)** replace target
 194 images $\mathcal{X}_{\text{test}}$ with *in-the-wild* images \mathcal{X}' .

195 The first step leads to the **AGE** (agreement-with-the-ensemble) metric, which leverages VLM
 196 ensembles to generate *pseudo-labels* for evaluation. The second step adapts AGE to in-the-wild
 197 images, where we incorporate *semantic retrieval* and *robust similarity measures* to strengthen this
 198 adaptation. In what follows, we formally introduce AGE and demonstrate its correlation with accuracy,
 199 and then detail how AGE can be adapted to in-the-wild images for zero-shot VLM selection.
 200

4.1 AGE ON TARGET IMAGES

201 We first tackle the challenge of absence of ground-truth labels. Building on the universal generalization
 202 ability of VLMs (Mayilvahanan et al., 2024; Bielawski et al., 2022; Tu et al., 2023) and advances
 203 in ensemble learning with VLMs (Lu et al., 2024; Jeong et al., 2024; Li et al., 2023; Huang et al.,
 204 2022b), we argue that VLM ensembles provide high-quality pseudo-labels for unlabeled images.
 205 Building on this, we propose **AGE** (agreement-with-the-ensemble), which measures the consistency
 206 between individual VLMs and their ensemble counterparts.
 207

208 **Formal definition of AGE.** Consider zero-shot classification on an image set $\mathcal{X}_{\text{test}}$ using VLMs
 209 $\mathcal{F} = \{f_i\}_{i=1}^M$ and a set of category names. For category names \mathcal{C} consisting of C classes, we
 210 insert them into a prompt template to obtain textual prompts \mathcal{T} , which are then fed into the text
 211 encoders of VLMs to construct text classifiers. For an image \mathbf{x} , each VLM f_i outputs a probability
 212 vector $f_i(\mathbf{x}; \mathcal{T}) = [p_1, \dots, p_C] \in \Delta^C$. We then construct an **ensemble model** \bar{f} , which produces
 213 predictions

$$\bar{f}(\mathbf{x}; \mathcal{T}) \triangleq \frac{1}{M} \sum_{i=1}^M f_i(\mathbf{x}; \mathcal{T}). \quad (5)$$

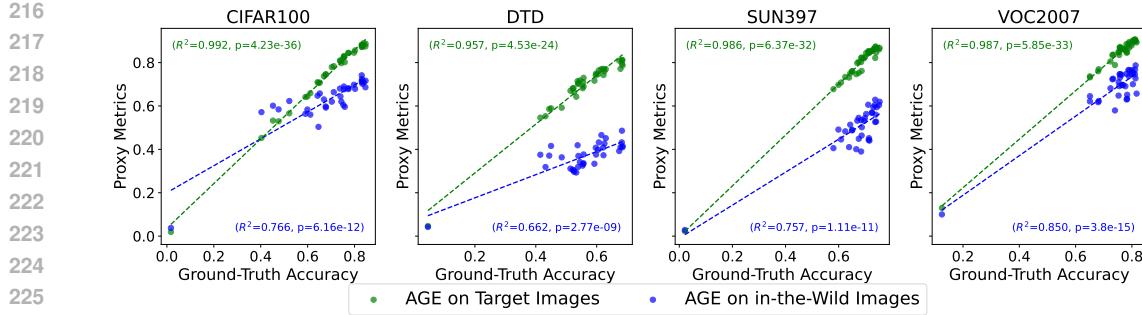


Figure 3: **Linear correlation between AGE and ground-truth accuracy.** Each point represents $(\text{acc}(f_i), \mu(f_i))$ for a VLM $f_i \in \mathcal{F}$. The X-axis denotes ground-truth accuracy, while the Y-axis denotes AGE obtained using target images (green) and in-the-wild images (blue) with pseudo-labels generated by the ensemble model.

Next, for each model f_i , we compute AGE μ on \mathcal{X} . AGE is defined as the pseudo-label accuracy of individual models with respect to the pseudo-labels produced by \bar{f} :

$$\mu(f_i; \mathcal{C}, \mathcal{X}_{\text{test}}) = \frac{1}{|\mathcal{X}_{\text{test}}|} \sum_{\mathbf{x} \in \mathcal{X}_{\text{test}}} \mathbb{I} \left(\arg \max_j f_i(\mathbf{x}; \mathcal{T})_j = \arg \max_j \bar{f}(\mathbf{x}; \mathcal{T})_j \right). \quad (6)$$

Observation: AGE strongly correlates with ground-truth accuracy. We calculate the zero-shot accuracy $\text{acc}(f_i)$ and the AGE $\mu(f_i)$ for the 35 models in the model zoo (see section 5) on selected datasets. We plot $(\text{acc}(f_i), \mu(f_i))$ in green in Figure 3. As shown in Figure 3, AGE exhibits a strong correlation with ground-truth accuracy. Note that all models must be inferred during model selection; therefore, constructing the ensemble model does not significantly increase the time cost. Consequently, AGE can be used for model selection when target labels are absent.

4.2 ADAPTING AGE FOR ZERO-SHOT VLM SELECTION

We have demonstrated that when unlabeled target images and category names are available, AGE can be computed and shows strong correlation with ground-truth accuracy, enabling effective VLM ranking and selection without labeled data. However, target images are unavailable for zero-shot VLM selection. In this section, we show that AGE can still serve as a reliable model selection metric even *without* target images.

Utilizing in-the-wild images. To address the absence of target images, we propose utilizing in-the-wild images as surrogates. Prior studies (Shin et al., 2022; Wallingford et al., 2023) have shown that such images help bridge the modality gap in zero-shot applications. For broad applicability, the selected in-the-wild images should cover diverse domains to ensure adaptability across downstream tasks. In this work, we adopt ImageNet (Deng et al., 2009) as the source of in-the-wild images. ImageNet is both comprehensive and known to approximate the training distribution of many VLMs (Shin et al., 2022). Specifically, we randomly sample one image from each ImageNet1K class to form a compact in-the-wild dataset for efficiency, denoted as \mathcal{X}' .

Semantic retrieval for task customization. While in-the-wild images provide general coverage, they may not align semantically with a specific downstream task, creating a *semantic gap*. Intuitively, images semantically closer to the task should contribute more. To this end, we apply a **semantic retrieval** strategy: images are weighted by their similarity to the task category names in the embedding space. Since \mathcal{X}' is small, retrieving only a few samples risks high variance; instead, we employ *soft retrieval*, assigning weights based on semantic similarity and aggregate the results. Formally, each image $\mathbf{x} \in \mathcal{X}'$ is assigned weight

$$w(\mathbf{x}) = \frac{\exp \left(\sum_{\mathbf{t} \in \mathcal{T}} \text{sim}(\mathbf{x}, \mathbf{t}; f_0) / C \right)}{\sum_{\mathbf{x} \sim \mathcal{X}'} \exp \left(\sum_{\mathbf{t} \in \mathcal{T}} \text{sim}(\mathbf{x}, \mathbf{t}; f_0) / C \right)}, \quad (7)$$

270 where f_0 is any VLM from the model zoo. Adapting Equation 6 with in-the-wild images and semantic
271 retrieval, we compute

$$272 \quad \mu(f_i; \mathcal{C}) = \sum_{\mathbf{x} \sim \mathcal{X}'} w(\mathbf{x}) \cdot \mathbb{I}\left(\arg \max_j f_i(\mathbf{x}; \mathcal{T})_j = \arg \max_j \bar{f}(\mathbf{x}; \mathcal{T})_j\right). \quad (8)$$

275 As shown in Figure 3 (blue points), AGE remains correlated with ground-truth accuracy even
276 when target images are replaced by ImageNet alternatives. Although this substitution introduces
277 approximation error, reflected in the weaker correlation compared to using target images (green
278 points), it still preserves the relative model rankings effectively.

279 **Robust estimation of AGE.** Both Equation 6 and Equation 8 are based on *Top-1 accuracy*, which is
280 well known to be non-robust under a *small* sample size. Moreover, working with in-the-wild data
281 often leads to *low confidence*, further reducing the reliability of accuracy metrics. To address this,
282 we explore alternative, more robust evaluation metrics to support AGE in the in-the-wild setting.
283 In the following, we introduce additional **similarity measures** to quantify the consistency between
284 predictions of individual VLMs and pseudo-labels, *i.e.*, consistency between $f_i(\mathbf{x}; \mathcal{T})$ and $\bar{f}(\mathbf{x}; \mathcal{T})$,
285 which are both probabilistic vectors in the simplex Δ^C .

286 (1) *Class ranking correlation.* A natural way to compare class probability vectors is to treat them as class
287 rankings and measure the correlation between their induced orderings. Inspired by recommendation
288 systems, we focus on mutual items in the Top- k predictions to highlight high-probability classes,
289 which are more relevant to the target and its common confusions:

$$290 \quad \text{Sim}(f_i(\mathbf{x}; \mathcal{T}), \bar{f}(\mathbf{x}; \mathcal{T})) = \frac{|\text{argmax}_k(f_i(\mathbf{x}; \mathcal{T})) \cap \text{argmax}_k(\bar{f}(\mathbf{x}; \mathcal{T}))|}{k}, \quad (9)$$

292 where argmax_k denotes the indexes of the Top- k components. When k equals 1, the score
293 $\text{Sim}(f_i(\mathbf{x}; \mathcal{T}), \bar{f}(\mathbf{x}; \mathcal{T}))$ reduces to vanilla AGE. In SAGE, we set $k \in \{1, 2, 3\}$.

294 (2) *Exponential of negative divergence.* A common way to measure the discrepancy between two
295 distributions is via KL divergence. To improve interpretability, we apply the negative exponential to
296 map it into $[0, 1]$, yielding a similarity score:

$$297 \quad \text{Sim}(f_i(\mathbf{x}; \mathcal{T}), \bar{f}(\mathbf{x}; \mathcal{T})) = \exp(-\text{KL}(f_i(\mathbf{x}; \mathcal{T}) || \bar{f}(\mathbf{x}; \mathcal{T}))). \quad (10)$$

299 (3) *Normalized total variation distance.* Total variation distance is another popular way to measure
300 distributional discrepancy, enjoying numerical stability. We normalize it to $[0, 1]$ to obtain a similarity
301 function:

$$302 \quad \text{Sim}(f_i(\mathbf{x}; \mathcal{T}), \bar{f}(\mathbf{x}; \mathcal{T})) = 1 - \frac{\|f_i(\mathbf{x}; \mathcal{T}) - \bar{f}(\mathbf{x}; \mathcal{T})\|_1}{2}. \quad (11)$$

304 We replace $\mathbb{I}(\text{argmax} f_i(\mathbf{x}; \mathcal{T}) = \text{argmax} \bar{f}(\mathbf{x}; \mathcal{T}))$ in Equation 8 with $\text{Sim}(f_i(\mathbf{x}; \mathcal{T}), \bar{f}(\mathbf{x}; \mathcal{T}))$ to
305 compute AGE on \mathcal{X}' . We observe that combining multiple implementations of the similarity function
306 yields better performance than relying solely on accuracy-based implementations.

308 5 EXPERIMENTS

310 In this section, we provide numerical results of our zero-shot VLM selection method.

312 **Model zoo and datasets.** To evaluate the effectiveness of VLM selection methods, we construct a
313 VLM zoo and test across diverse datasets. Following Zohar et al. (2023), we build a VLM zoo of 35
314 models from Ilharco et al. (2021), covering variations in architecture, training data, and optimization
315 strategies. We then evaluate selection methods on 23 downstream datasets used in Zohar et al. (2023),
316 including Stanford Cars (Krause et al., 2013), CIFAR-100 (Krizhevsky, 2009), among others. These
317 datasets span a broad range of tasks and domains, providing a comprehensive benchmark. Detailed
318 descriptions of the models and datasets are provided in the appendix.

319 **Competitive methods.** We compare against three existing approaches: the ImageNet accuracy
320 baseline, ModelGPT (Zohar et al., 2023), and the recent SWAB method (Yi et al., 2024), all of which
321 represent state-of-the-art zero-shot VLM selection techniques.

322 **Metrics.** For model ranking, we adopt standard evaluation metrics including *Recall@K* and *Weighted*
323 *Kendall's τ* . In addition, we report the *accuracy* of the selected models to directly assess the
324 effectiveness of model selection.

324

325

Table 1: Results on zero-shot VLM selection benchmark

326

327

Method	Use of LLM	R_5	τ	$R_5 + \tau$
ImageNet Accuracy	✗	48.7	24.6	73.3
ModelGPT (Zohar et al., 2023)	✓	49.6	29.0	75.6
SWAB (Yi et al., 2024)	✓	49.8	31.0	80.8
SAGE	✗	54.8	31.6	86.4
SAGE + ModelGPT	✓	57.4	41.4	98.8

330

331

5.1 ZERO-SHOT VLM SELECTION BENCHMARK RESULTS

332

Protocol. Following Zohar et al. (2023), we partition the downstream datasets into one *target dataset* and the remaining *support datasets*. VLM selection methods have *full access* to the support datasets, including category names and test accuracies, while only *category names* are available for the target dataset. In addition, methods may exploit external *in-the-wild* data to aid model selection; following prior work, we use ImageNet1K (Deng et al., 2009) for this purpose. To evaluate performance, we adopt a leave-one-out strategy: in each round, one dataset is designated as the target while the others serve as support. The selection methods are required to predict a model ranking for the target dataset, which is then compared against the ground-truth ranking. Following Zohar et al. (2023); Yi et al. (2024), we report **Recall@5** and **Weighted Kendall’s τ** , where the weights are assigned uniformly to the mutual Top-5 items.

333

334

Implementation details. As in ModelGPT and SWAB, SAGE involves combining multiple proxy metrics, including ImageNet accuracy and AGE metrics. We strictly follow (Yi et al., 2024; Zohar et al., 2023) to perform Leave-One-Out evaluation on the 23 datasets, where the coefficients of metrics on the evaluated dataset is decided by regression on the rest. Inspired by (Yi et al., 2024), we adopt Huber and ridge regression to fit the coefficients of different metrics. For a fair comparison, we adopt the same prompt templates to construct text classifiers as in (Yi et al., 2024; Zohar et al., 2023). More details are provided in the appendix.

335

Result analysis. Table 1 demonstrates performance comparison between SAGE and baselines. Notably, SAGE performs better than the three baselines across all criteria without the need for LLM to generate texts. Note that all methods incorporate ImageNet information during model selection since ModelGPT and SWAB have combined ImageNet accuracy. Therefore, SAGE does not leverage extra information by utilizing ImageNet images as proxies of target images. We also combine SAGE and ModelGPT by combining AGE metrics with the text scores used in ModelGPT, which significantly boosts VLM selection performance. As shown in Table 1, the AGE metrics and text scores enjoy complementary advantages.

336

337

5.2 ABLATION STUDIES

338

In this section, we provide ablation experiment results of the designs of SAGE to justify our choices. We present the benchmark criteria for SAGE and SAGE⁺ (representing combining AGE scores and the text scores derived from LLM-generated texts in (Zohar et al., 2023)).

339

5.2.1 MAIN TECHNICAL DESIGNS IN SAGE

340

In the methodology section, we introduce our core mechanism **AGE** which quantifies similarity between individual VLMs and their ensemble counterpart on *in-the-wild* images and target task descriptions. In addition, to improve AGE as a proxy metric for VLM selection, we introduce several technical designs. The main technical designs in SAGE are as follows:

341

- **Semantic Retrieval (SR):** We prioritize images from \mathcal{X}' semantically closer to the task via weighting, using category names \mathcal{C} .
- **Composed Similarity (CS):** We combine extra similarity measures in addition to Top-1 accuracy for robust estimation of AGE.
- **Regularized Regression (RR):** Inspired by (Yi et al., 2024), we use Ridge regression and Huber regression instead of vanilla linear regression to combine multiple metrics.

378

379

Table 2: Ablation results of the main designs

SR	CS	RR	SAGE		SAGE ⁺	
			R_5	τ	R_5	τ
✗	✗	✗	53.9	25.0	53.9	28.1
✗	✗	✓	53.9	25.0	53.9	34.8
✗	✓	✗	53.9	29.6	54.8	34.8
✗	✓	✓	53.9	31.0	56.5	39.4
✓	✗	✗	53.0	24.6	53.9	27.5
✓	✗	✓	53.0	27.5	53.9	34.8
✓	✓	✗	54.8	31.0	54.8	35.7
✓	✓	✓	54.8	31.6	57.4	41.4

380

381

Table 3: Ablation results of the AGE scores

CC	KL	TV	SAGE		SAGE ⁺	
			R_5	τ	R_5	τ
✗	✗	✗	53.0	27.5	53.9	34.8
✗	✗	✓	53.0	27.5	53.9	35.0
✗	✓	✗	53.0	27.5	53.9	38.5
✗	✓	✓	53.0	27.5	53.9	39.4
✓	✗	✗	53.0	31.0	56.5	35.9
✓	✗	✓	54.8	31.0	56.5	36.5
✓	✓	✗	53.0	31.0	57.4	39.4
✓	✓	✓	54.8	31.6	57.4	41.4

382

383

384

385

386

387

388

389

390

391

Table 4: Comparison of methods under the small model pool setting

Method	R_5	τ	$R_5 + \tau$
ImageNet accuracy	53.9	30.5	84.4
ModelGPT	56.5	34.8	91.3
SAGE	60.0	50.9	110.9
SAGE +ModelGPT	63.5	50.9	114.4

392

393

394

395

396

397

400 We present the ablation results in Table 2, which confirm that these designs are essential for SAGE.

401

402

5.2.2 SIMILARITY SCORES IN SAGE

403

404

405

406

407

408 In the methodology section, we propose using multiple metrics to quantify the similarity between the
409 predictions of individual and ensemble models to enhance robustness. We introduce the following
410 three extended similarity scores to complement vanilla AGE:

411

- **Class Ranking Correlation (CC):** The proportion of mutual items in the Top- k classes predicted by the individual and the ensemble. We set $k \in \{2, 3\}$ in SAGE in addition to $k = 1$ (vanilla AGE).
- **Exponential of Negative KL Divergence (KL):** Similarity induced by KL-divergence.
- **Normalized Total Variance Distance (TV):** Similarity induced by total variance distance.

412

413

414 We present ablation results in Table 3, which demonstrate that these similarity scores are complementary
415 in SAGE. In the base case (without applying similarity scores), we combine ImageNet accuracy with
416 vanilla AGE (induced by pseudo-accuracy) for SAGE, and further incorporate text scores for SAGE⁺.

417

418

5.3 SIGNIFICANCE EXPERIMENTS

419

420

5.3.1 RESULTS ON SMALLER MODEL POOLS

421

422

423

424

425

426 Although SAGE involves VLM ensembles, it is insensitive to the construction of the VLM zoo. To
427 demonstrate this, we select a subset from the full group of 35 models, excluding the “strong models”
428 to form a “small model pool.” As shown in Table 4, SAGE still significantly outperforms the baselines
429 under this setting. The construction of the subset is described in the appendix.

430

431

5.3.2 STABILITY ON THE CHOICE OF IN-THE-WILD IMAGES

432

433

434

435

436 The set of in-the-wild images used for SAGE is randomly sampled from ImageNet1K, with one image
437 per class. In Table 5, we conduct 20 random experiments using different samples to evaluate the
438 stability of SAGE with respect to the randomness of the in-the-wild data. Results indicate that SAGE
439 is stable with regard to the choice of in-the-wild images.

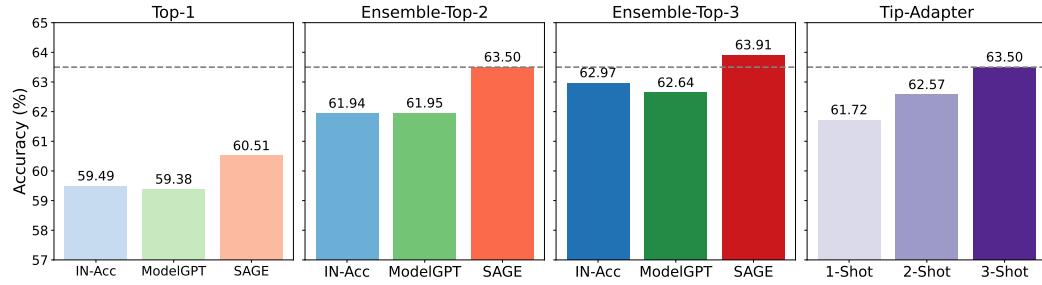


Figure 4: **Accuracy of different methods.** The y-axis represents average accuracy across 23 datasets. The left three figures are: accuracy of Top-1 model, Top-2 ensembles, and Top-3 ensembles selected by ImageNet accuracy, ModelGPT, and SAGE. We additionally evaluate Tip-Adapter as a few-shot adaptation baseline for reference.

Table 5: Stability of SAGE under randomness of in-the-wild images

Method	R_5	τ	$R_5 + \tau$
SAGE	0.548 ± 0.007	0.316 ± 0.016	0.829 ± 0.02
SAGE+ModelGPT	0.563 ± 0.006	0.365 ± 0.017	0.928 ± 0.022

5.4 FROM ENSEMBLES FOR SELECTION TO SELECTION FOR ENSEMBLES

We have shown that ensembles can benefit VLM selection, and in practice, ensemble methods are widely used to improve VLM performance (Lu et al., 2024; Jeong et al., 2024; Li et al., 2023; Huang et al., 2022b). Here, we show that model rankings from SAGE can be used to construct superior VLM ensembles compared to baselines.

Building ensembles from model ranks. In selective ensemble methods (Caruana et al., 2004; Wood et al., 2023), ranking-based approaches aim to generate a model ranking such that selecting the Top- k models yields a strong ensemble.

SAGE produces better ensembles. We construct Top- k ensembles using rankings from ImageNet accuracy, ModelGPT (Zohar et al., 2023), and SAGE, following (Lu et al., 2024) with zero-shot output averaging. Evaluated on 23 datasets, Figure 4 shows that SAGE consistently produces superior Top- k ensembles.

Comparison to few-shot adaptation. Few-shot adaptation methods (Gao et al., 2024; Zhang et al., 2022; Silva-Rodriguez et al., 2024) fine-tune VLMs with limited target samples. Using Tip-Adapter (Zhang et al., 2022) on the Top-1 model by ImageNet accuracy as a baseline, we report averages over 30 trials. As shown in Figure 4, ensembles from SAGE achieve performance comparable to Tip-Adapter with 3-shot samples, demonstrating that zero-shot ensembling can rival few-shot adaptation and compensate for data scarcity by increasing the number of models.

6 CONCLUSION

We address the challenge of *zero-shot* VLM selection for image recognition tasks. We propose Selection via AGreement-with-the-Ensemble (SAGE), a method that quantifies the similarity between individual VLMs and their ensemble counterparts using in-the-wild images and target category names. We provide empirical evidence to support our method. SAGE outperforms existing approaches on established benchmarks.

REFERENCES

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for meta-learning. In *ICCV*, 2019.

486 Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from scratch: Fair comparison of
 487 long-sequence models requires data-driven priors. In *ICLR*, 2024.

488

489 Christina Baek, Yiding Jiang, Aditi Raghunathan, and J Zico Kolter. Agreement-on-the-line:
 490 Predicting the performance of neural networks under distribution shift. *NeurIPS*, 2022.

491 Romain Bielawski, Benjamin Devillers, Tim Van De Cruys, and Rufin VanRullen. When does clip
 492 generalize better than unimodal models? when judging human-centric concepts. In *ACL Workshop*,
 493 pp. 29–38, 2022.

494

495 Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection from
 496 libraries of models. In *ICML*, 2004.

497 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
 498 and state of the art. *Proc. IEEE*, 2017.

499

500 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
 501 Describing textures in the wild. In *CVPR*, 2014.

502 Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
 503 feature learning. In *AISTATS*, 2011.

504

505 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
 506 hierarchical image database. In *CVPR*, 2009.

507

508 Jacob Devlin. Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv*
 509 preprint *arXiv:1810.04805*, 2018.

510

511 Nan Ding, Xi Chen, Tomer Levinboim, Soravit Changpinyo, and Radu Soricut. Pactrans: Pac-bayesian
 512 metrics for estimating the transferability of pretrained models to classification tasks. In *ECCV*,
 513 2022.

514

515 Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient task taxonomy &
 516 transfer learning. In *CVPR*, 2019.

517

518 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisser-
 519 man. The pascal visual object classes challenge 2007 (voc2007) results. <http://www.pascal->
 520 network.org/challenges/VOC/voc2007/workshop/index.html, 2007.

521

522 Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, and
 523 Ludwig Schmidt. Data determines distributional robustness in contrastive language image pre-
 524 training (CLIP). In *ICML*, 2022.

525

526 Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and
 527 Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International Journal*
 528 of *Computer Vision*, 2024.

529

530 Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti
 531 dataset. *IJRR*, 2013.

532

533 Dumitru Ian Goodfellow, Will Cukierski, and Yoshua Bengio. Challenges in representation learning:
 534 Facial expression recognition challenge, 2013.

535

536 Mononito Goswami, Cristian Ignacio Challu, Laurent Callot, Lenon Minorics, and Andrey Kan.
 537 Unsupervised model selection for time series anomaly detection. In *ICLR*, 2022.

538

539 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 540 recognition. In *CVPR*, 2016a.

541

542 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 543 recognition. In *CVPR*, 2016b.

544

545 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and
 546 deep learning benchmark for land use and land cover classification. *J-STARS*, 2019.

540 Dapeng Hu, Jian Liang, Jun Hao Liew, Chuhui Xue, Song Bai, and Xinchao Wang. Mixed samples as
 541 probes for unsupervised model selection in domain adaptation. *NeurIPS*, 2023.

542

543 Long-Kai Huang, Junzhou Huang, Yu Rong, Qiang Yang, and Ying Wei. Frustratingly easy
 544 transferability estimation. In *ICML*, 2022a.

545

546 Tony Huang, Jack Chu, and Fangyun Wei. Unsupervised prompt learning for vision-language models.
 547 *arXiv preprint arXiv:2204.03649*, 2022b.

548

549 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan
 550 Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi,
 551 Ali Farhadi, and Ludwig Schmidt. Openclip, 2021. URL <https://doi.org/10.5281/zenodo.5143773>.

552

553 Kiyoon Jeong, Woojun Lee, Woongchan Nam, Minjeong Ma, and Pilsung Kang. Technical report of
 554 nice challenge at cvpr 2024: Caption re-ranking evaluation using ensembled clip and consensus
 555 scores. In *CVPR Workshop*, 2024.

556

557 Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Fei-Fei Li, C. Lawrence Zitnick, and
 558 Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
 559 reasoning. In *CVPR*, 2017.

560

561 Kaggle and EyePacs. Kaggle diabetic retinopathy detection, 2015. URL <https://www.kaggle.com/c/diabetic-retinopathy-detection/data>.

562

563 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
 564 categorization. In *4th International IEEE Workshop on 3D Representation and Recognition
 (3dRR-13)*, 2013.

565

566 Alex Krizhevsky. Learning multiple layers of features from tiny images. *Master's thesis, University
 567 of Tront*, 2009.

568

569 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs*, 2010.

570

571 Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. BLIP: bootstrapping language-image
 572 pre-training for unified vision-language understanding and generation. In *ICML*, 2022.

573

574 Shuang Li, Yilun Du, Joshua B Tenenbaum, Antonio Torralba, and Igor Mordatch. Composing
 575 ensembles of pre-trained models via iterative consensus. In *ICLR*, 2023.

576

577 Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y. Zou. Mind the gap:
 578 Understanding the modality gap in multi-modal contrastive representation learning. In *NeurIPS*,
 579 2022.

580

581 Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 582 Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In *ECCV*, 2014.

583

584 Zinan Lin, Kiran Thekumpampil, Giulia Fanti, and Sewoong Oh. Infogan-cr and modelcentrality:
 585 Self-supervised model training and selection for disentangling gans. In *ICML*, 2020.

586

587 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 588 A convnet for the 2020s. In *CVPR*, 2022.

589

590 Zhihe Lu, Jiawang Bai, Xin Li, Zeyu Xiao, and Xinchao Wang. Beyond sole strength: Customized
 591 ensembles for generalized vision-language models. In *ICML*, 2024.

592

593 Prasanna Mayilvahanan, Thaddäus Wiedemer, Evgenia Rusak, Matthias Bethge, and Wieland Brendel.
 594 Does clip's generalization performance mainly stem from high train-test similarity? In *ICOR*,
 595 2024.

596

597 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
 598 digits in natural images with unsupervised feature learning. In *NeurIPS Workshop*, 2011.

599

600 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 601 of classes. In *ICVGIP*, 2008.

594 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 595 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 596 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 597 Ryan Lowe. Training language models to follow instructions with human feedback. *NeurIPS*, 2022.

598 Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In *CVPR*,
 599 2012.

600 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 601 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 602 Learning transferable visual models from natural language supervision. In *ICML*, 2021.

603 Cristian Rodriguez-Opazo, Ehsan Abbasnejad, Damien Teney, Hamed Damirchi, Edison Marrese-
 604 Taylor, and Anton van den Hengel. Synergy and diversity in clip: Enhancing performance through
 605 adaptive backbone ensembling. In *ICLR*, 2025.

606 Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
 607 Arush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of
 608 clip-filtered 400 million image-text pair. *CoRR*, abs/2111.02114, 2021.

609 Gyungin Shin, Weidi Xie, and Samuel Albanie. Reco: Retrieve and co-segment for zero-shot transfer.
 610 *NeurIPS*, 2022.

611 Julio Silva-Rodriguez, Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. A closer look at the few-shot
 612 adaptation of large vision-language models. In *CVPR*, 2024.

613 Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
 614 Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In
 615 *CVPR*, 2022.

616 Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign
 617 recognition benchmark: a multi-class classification competition. In *IJCNN*, 2011.

618 Hugo Touvron, Thibaut Lavrille, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 619 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 620 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

621 Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner. Transferability and hardness of supervised
 622 classification tasks. In *ICCV*, 2019.

623 Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner. Leep: A new measure to evaluate transferability
 624 of learned representations. In *ICML*, 2020.

625 Weijie Tu, Weijian Deng, and Tom Gedeon. A closer look at the robustness of contrastive language-
 626 image pre-training (clip). *NeurIPS*, 2023.

627 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
 628 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

629 Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
 630 equivariant CNNs for digital pathology, 2018.

631 Matthew Wallingford, Vivek Ramanujan, Alex Fang, Aditya Kusupati, Roozbeh Mottaghi, Aniruddha
 632 Kembhavi, Ludwig Schmidt, and Ali Farhadi. Neural priming for sample-efficient adaptation.
 633 *NeurIPS*, 2023.

634 Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
 635 Owais Khan Mohammed, Saksham Singhal, Subhajit Som, and Furu Wei. Image as a foreign
 636 language: BEiT pretraining for vision and vision-language tasks. In *CVPR*, 2023.

637 Zirui Wang, Zihang Dai, Barnabás Póczos, and Jaime Carbonell. Characterizing and avoiding negative
 638 transfer. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 639 pp. 11293–11302, 2019.

648 Danny Wood, Tingting Mu, Andrew M Webb, Henry WJ Reeve, Mikel Lujan, and Gavin Brown. A
 649 unified theory of diversity in ensemble learning. *JMLR*, 2023.
 650

651 Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 652 Large-scale scene recognition from abbey to zoo. In *CVPR*, 2010.

653 Chao Yi, Yu-Hang He, De-Chuan Zhan, and Han-Jia Ye. Bridge the modality and capacity gaps in
 654 vision-language model selection. In *NeurIPS*, 2024.

655

656 Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of
 657 pre-trained models for transfer learning. In *ICML*, 2021.

658

659 Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I. Jordan, and Mingsheng Long.
 660 Ranking and tuning pre-trained models: a new paradigm for exploiting model hubs. *JMLR*, 2022.

661

662 Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
 663 denotations: New similarity metrics for semantic inference over event descriptions. *TACL*, 2014.

664

665 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 666 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
 667 Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and Neil
 668 Houlsby. A large-scale study of representation learning with the visual task adaptation benchmark,
 2020.

669

670 Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
 671 Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *ECCV*,
 2022.

672

673 Yi-Kai Zhang, Ting-Ji Huang, Yao-Xiang Ding, De-Chuan Zhan, and Han-Jia Ye. Model spider:
 674 Learning to rank pre-trained models efficiently. *NeurIPS*, 2023.

675

676 Yue Zhao, Ryan Rossi, and Leman Akoglu. Automatic unsupervised outlier model selection. *NeurIPS*,
 2021.

677

678 Orr Zohar, Shih-Cheng Huang, Kuan-Chieh Wang, and Serena Yeung. Lovm: Language-only vision
 679 model selection. In *NeurIPS*, 2023.

680

681

682 **A APPENDIX**

683

684 **A.1 USE OF LLMs**

685 LLMs are used to assist in polishing writing, including grammar checking and improving expression.

686

687

688 **A.2 MODELS AND DATASETS**

689

690 Following Zohar et al. (2023), we use the OpenCLIP library Ilharco et al. (2021) to form a VLM
 691 zoo. As shown in Table 6, these VLMs differ in terms of model architecture (e.g., ResNet He et al.
 692 (2016b), Transformer Vaswani et al. (2017), ConvNext Liu et al. (2022)), pretraining datasets (e.g.,
 693 OpenAI’s data Radford et al. (2021), LAION 2B Schuhmann et al. (2021)), and other factors. As
 694 shown in Table 7, LOVM utilizes 23 datasets from different domains. Table 6 and Table 7 are from
 Zohar et al. (2023) and Yi et al. (2024).

695

696 **A.3 IMPLEMENTATION DETAILS OF SAGE**

697

698 **Semantic retrieval.** We calculate the semantic similarity between samples in the ImageNet subset
 699 and the textual prompts \mathcal{T} of target tasks using a VLM f_0 as:

700

$$w(\mathbf{x}) = \frac{\exp\left(\sum_{\mathbf{t} \in \mathcal{T}} \text{sim}(\mathbf{x}, \mathbf{t}; f_0)/C\right)}{\sum_{\mathbf{x} \sim \mathcal{X}'_{\text{IN}}} \exp\left(\sum_{\mathbf{t} \in \mathcal{T}} \text{sim}(\mathbf{x}, \mathbf{t}; f_0)/C\right)}. \quad (12)$$

702

703

Table 6: The 35 VLMs used in LOVM.

ID	Model	Name	Dataset	Name
1	RN50	RN50	openai	WIT
2	RN101	RN101	openai	WIT
3	RN50x4	RN50x4	openai	WIT
4	RN50-16	RN50x16	openai	WIT
5	RN50x64	RN50x64	openai	WIT
6	ViT-B-32	ViT-B/32	laion400m_e31	L400m
7	ViT-B-32	ViT-B/32	laion400m_e32	L400m
8	ViT-B-32-quickgelu	ViT-B/32	laion400m_e32	L400m
9	ViT-B-32	ViT-B/32	openai	WIT
10	ViT-B-32	ViT-B/32	laion2b_s34b_b79k	L2b-b
11	ViT-B-32	ViT-B/32	laion2b_e16	L2b-c
12	ViT-B-16	ViT-B/16	laion400m_e32	L400m
13	ViT-B-16	ViT-B/16	openai	WIT
14	ViT-B-16-240	ViT-B/16-240	laion400m_e32	L400m
15	ViT-L-14	ViT-L/14	laion400m_e31	L400m
16	ViT-L-14	ViT-L/14	laion400m_e32	L400m
17	ViT-L-14	ViT-L/14	laion2b_s32b_b82k	L2b-b
18	ViT-L-14	ViT-L/14	openai	WIT
19	ViT-L-14-336	ViT-L/14-336	openai	WIT
20	ViT-G-14	ViT-G/14	laion2b_s12b_b42k	L2b-a
21	ViT-G-14	ViT-G/14	laion2b_s34b_b88k	L2b-a
22	ViT-H-14	ViT-H/14	laion2b_s32b_b79k	L2b-b
23	coca_ViT-B-32	CoCa-ViT-B/32	laion2b_s13b_b90k	L2b-c
24	coca_ViT-B-32	CoCa-ViT-B/32	mscoco_finetuned_laion2b_s13b_b90k	L2b-c + coco
25	coca_ViT-L-14	CoCa-ViT-L/14	laion2b_s13b_b90k	L2b-c
26	coca_ViT-L-14	CoCa-ViT-L/14	mscoco_finetuned_laion2b_s13b_b90k	L2b-c + coco
27	convnext_base	ConvNEXT-B	laion400m_s13b_b51k	L400m-c
28	convnext_base_w	ConvNEXT-BW	laion2b_s13b_b82k	L2b-d
29	convnext_base_w	ConvNEXT-BW	laion2b_s13b_b82k_augreg	L2b-e
30	convnext_base_w	ConvNEXT-BW	laion_aesthetic_s13b_b82k	L2b-f
31	convnext_base_w_320	ConvNEXT-BW-320	laion_aesthetic_s13b_b82k	L2b-f
32	convnext_base_w_320	ConvNEXT-BW-320	laion_aesthetic_s13b_b82k_augreg	L2b-g
33	convnext_large_d	ConvNEXT-LD	laion2b_s26b_b102k_augreg	L2b-h
34	convnext_large_d_320	ConvNEXT-LD-320	laion2b_s29b_b131k_ft	L2b-i
35	convnext_large_d_320	ConvNEXT-LD-320	laion2b_s29b_b131k_ft_soup	L2b-j

733

734

735 Here, f_0 can be any VLM in the model zoo since the image embeddings are precomputed and we infer
736 \mathcal{T} through all VLMs during VLM selection. We recommend to use large VLMs to ensure the quality
737 of cross-modal embedding. In terms of implementation in this paper, we choose ViT-H/14-L2b-b (ID
738 22 in Table 6) as f_0 .

739

740 **Regression methods.** To combine multiple proxy metrics in the Leave-One-Out evaluation, we
741 follow Yi et al. (2024) and apply regularized regression methods. We apply Ridge regression with
742 $\alpha = 1e-5$ for SAGE to combine ImageNet accuracy with AGE metrics. We apply Huber regression
743 with $\alpha = 1.15$ for SAGE+ModelGPT as in Yi et al. (2024), which combines ImageNet accuracy,
744 AGE metrics and text scores from ModelGPT.

744

745

A.4 CONSTRUCTION OF THE SMALL MODEL POOL

746

747 The small model pool described in Section 5.3 consists of all models in Table 6 except for the following
748 (by ID): 5, 18, 19, 20, 21, 22, 31, 32, 33, 34, and 35. These excluded models exhibit significantly
749 higher average performance across the datasets.

750

751

A.5 DISCUSSIONS ON THE METHODOLOGY

752

753

754 **Why not use labels from the original ImageNet dataset?** In SAGE, we utilize ImageNet images as
755 in-the-wild images and discard their labels in the original ImageNet dataset. We argue that there is a
756 gap between the ImageNet classes \mathcal{T}_{IN} and the target task \mathcal{T} . For example, in a car brand classification
757 task, an ImageNet image labeled as “car” may be useful for evaluating VLMs. However, the label “car”

756
757 **Table 7: The 23 tasks used in LOVM.**
758

759 Dataset	760 Classes	761 Task	762 Domain
759 Imagenet (Deng et al., 2009)	760 1000	761 classification	762 natural image
760 SUN397 (Xiao et al., 2010)	761 397	762 scene und.	763 natural image
761 Country211 (Radford et al., 2021)	762 211	763 geolocation	764 natural image
762 Stanford Cars (Krause et al., 2013)	763 196	764 classification	765 natural image
763 Flowers102 (Nilsback & Zisserman, 2008)	764 102	765 classification	766 natural image
764 CIFAR100 (Krizhevsky, 2009)	765 100	766 classification	767 natural image
765 DTD (Cimpoi et al., 2014)	766 46	767 classification	768 textural image
766 RESISC45 (Cheng et al., 2017)	767 45	768 classification	769 satellite images
767 GTSRB (Stallkamp et al., 2011)	768 43	769 classification	770 natural image
768 Oxford Pets (Parkhi et al., 2012)	769 37	770 classification	771 natural image
769 VOC2007 (Everingham et al., 2007)	770 20	771 classification	772 natural image
770 STL10 (Coates et al., 2011)	771 10	772 classification	773 natural image
771 EuroSAT (Helber et al., 2019)	772 10	773 classification	774 satellite images
772 MNIST (LeCun et al., 2010)	773 10	774 classification	775 hand-writing
773 SVHN (Netzer et al., 2011)	774 10	775 OCR	776 natural image
774 CLEVR-C (Johnson et al., 2017)	775 8	776 object counting	777 natural image
775 CLEVR-D (Johnson et al., 2017)	776 8	777 distance est.	778 natural image
776 FER2013 (Goodfellow et al., 2013)	777 7	778 fac. exp. rec.	779 natural image
777 DMLab (Zhai et al., 2020)	779 6	780 distance est.	781 synthetic
778 Retinopathy (Kaggle & EyePacs, 2015)	780 5	781 classification	782 retina scan
779 KITTI (Geiger et al., 2013)	781 4	782 distance est.	783 natural image
780 PCam (Veeling et al., 2018)	781 2	782 classification	783 histopathology
781 Rendered SST2 (Radford et al., 2021)	782 2	783 OCR	784 text image

779 does not provide enough detail to determine the specific brand. Furthermore, valuable information in
780 a natural image is not always reflected in its original label. For instance, a photo of a car parked in the
781 mud (labeled “car”) could be helpful for a land-use classification task, even though the label provides
782 no clue about the context.

783 **Inference cost of SAGE compared to previous methods.** LLM-based methods like ModelGPT Zohar
784 et al. (2023) mainly involve the following procedures. First, they need to generate a large-scale caption
785 dataset (K -shot for each of the C classes) with an LLM. Then, they need to feed the $K \times C$ texts
786 along with the text descriptions \mathcal{T} to the text encoders of the M VLMs in the model zoo. In contrast,
787 SAGE does not require access to an LLM interface. Additionally, the embeddings of the in-the-wild
788 images \mathcal{X}' remain invariant across different downstream tasks and can therefore be precomputed
789 offline. As a result, the only online inference cost in SAGE is computing the embeddings of the task
790 descriptions \mathcal{T} . Thus, SAGE does not increase the overall cost compared to previous LLM-based
791 methods.

792 A.6 EXPERIMENTS COMPUTE RESOURCES

793 We conduct our experiments on a single NVIDIA RTX 4090 GPU (24GB). The primary computational
794 cost arises from performing inference on the ImageNet-1K sample images across 35 VLMs, which
795 takes approximately 3 GPU hours. The remaining components of our experiments are lightweight
796 and can be executed with minimal computational overhead.

797
798
799
800
801
802
803
804
805
806
807
808
809