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Abstract

Pretrained vision-language models (VLMs) such as CLIP are well known for
enabling zero-shot classification with category names. The rapid growth of open-
access variants has led to a diverse VLM zoo, where selecting the most suitable
model can yield superior zero-shot performance, yet the optimal choice is often
dataset-dependent. At the same time, selecting VLMs for zero-shot tasks is
challenging, since only category names are available and target images are absent.
Prior approaches rely on text-only evaluation, which suffers from the modality
gap inherent to VLMs. To address this issue, we propose SAGE (Selection via
AGreement-with-the-Ensemble), which leverages in-the-wild images to bridge the
modality gap. Specifically, SAGE quantifies the agreement between individual
VLMs and their ensemble counterparts in terms of prediction behavior on in-
the-wild images. Experiments demonstrate that SAGE consistently outperforms
state-of-the-art zero-shot VLM selection methods.

1 Introduction
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Figure 1: Zero-shot VLM selection. The model
selector is required to select an appropriate VLM
according to category names.

Vision-language models (VLMs) have reshaped
the intersection of computer vision and natu-
ral language processing by bridging visual and
textual modalities (Li et al., 2022; Singh et al.,
2022; Wang et al., 2023). A prominent ex-
ample is CLIP (Radford et al., 2021), which
learns aligned image–text representations via
contrastive training. One of its most notable
capabilities is zero-shot image recognition, en-
abling predictions for unseen image classes using
only category names.

Today, even users without machine learning ex-
pertise can download VLMs from the open-
source community to perform their own recog-
nition tasks. Within this community, a wide va-
riety of VLMs trained with diverse architectures
and strategies form an ever-expanding “VLM
zoo.” (Zohar et al., 2023; Lu et al., 2024; Jeong et al., 2024) Prior studies show that the zero-shot
recognition performance of VLMs is highly dataset-dependent (Fang et al., 2022; Rodriguez-Opazo
et al., 2025). Consequently, selecting VLMs from the zoo according to the target task with an
appropriate strategy can yield better results than arbitrary choice. However, this is particularly difficult
for non-expert users, who often lack the necessary experience and the time to collect an evaluation
dataset. In many cases, they only have access to the category names. To address these challenges,
recent work (Zohar et al., 2023) introduces the task of zero-shot VLM selection, which evaluates
models solely based on the provided category names, without extra target data (see Figure 1).

Existing approaches (Zohar et al., 2023; Yi et al., 2024) rely on text-only proxy evaluation. Specifically,
LLMs (Ouyang et al., 2022; Touvron et al., 2023) are prompted with category names to generate
task-related texts, which are then fed into the text encoders of VLMs to approximate target image
features within the cross-modal embedding space. The image recognition capability of VLMs is
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Figure 2: Compare methods of zero-shot VLM selection. These methods compute a metric µ
on proxy data to estimate test accuracy. (a) Previous text-only approaches rely on LLM-generated
texts to simulate target images, but the text classification ability does not faithfully reflect the image
recognition capability of VLMs due to the modality gap phenomenon. (b) Our proposed SAGE avoid
the modality gap by leveraging in-the-wild images.

subsequently estimated from the classification performance of text classifiers over these generated
textual features. However, such methods attempt to assess cross-modal characteristics using uni-modal
data, thereby suffering from the well-known modality gap (Liang et al., 2022), which creates a
discrepancy between discriminative abilities over text and over images.

In this paper, we address the limitation of uni-modal evaluation by leveraging in-the-wild images,
which have been shown to help bridge the modality gap in zero-shot tasks. The difficulty of utilizing
in-the-wild images for VLM selection arises from two perspectives: (1) the absence of target task
labels for in-the-wild images; and (2) the semantic gap between in-the-wild images and the target task.

To tackle the first challenge, we propose pseudo-labeling with VLM ensembles. Since all models
must be inferred during selection, their predictions can be aggregated to form an ensemble model.
This ensemble exhibits strong generalization across diverse tasks and thus provides high-quality
pseudo-labels. Building on this, we propose AGE (agreement-with-the-ensemble), a label-free metric
that measures the consistency between individual VLM predictions and pseudo-labels generated by
ensembles. We empirically demonstrate that AGE is strongly correlated with accuracy.

To tackle the second challenge, we integrate semantic-based image retrieval with robust estimation
to mitigate the semantic gap between in-the-wild images and the target task when computing AGE.
Consequently, AGE can be used to estimate accuracy without requiring target images, enabling
SAGE to effectively bridge the modality gap in zero-shot VLM selection and achieve state-of-the-art
performance. A comparison between our approach and existing methods is shown in Figure 2.

Our contributions are as follows:

• We introduce AGE, a metric that quantifies agreement between individual outputs and their
ensemble counterparts, which strongly correlates with the ground-truth accuracy.

• We adapt AGE to zero-shot VLM selection with in-the-wild images, leading to our proposed
method SAGE.

• We evaluate SAGE on the established benchmark for zero-shot VLM selection, demonstrating that
SAGE outperforms existing SOTA significantly.

2 Related Work

Vision-language models. Pretrained vision-language models (Li et al., 2022; Singh et al., 2022;
Wang et al., 2023), are typically trained on large datasets of image-text pairs (Lin et al., 2014;
Young et al., 2014; Schuhmann et al., 2021) and are utilized for a variety of challenging tasks.
CLIP (Radford et al., 2021), for example, is designed to create a unified representation space for
images and texts, enabling image classification without requiring specific training samples for the
target task. This approach, known as “zero-shot classification”, maps test images to class names
in the learned representation space. Numerous pretrained models have been developed and made
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available online for users to download based on their specific tasks. For instance, different versions of
CLIP with various architectures (He et al., 2016b; Vaswani et al., 2017; Liu et al., 2022) trained on
diverse datasets (Deng et al., 2009; Lin et al., 2014; Schuhmann et al., 2021) can be found on model
platforms. These diverse VLMs form a VLM zoo. Recent studies (Lu et al., 2024; Jeong et al., 2024)
have shown that combining the outputs of multiple VLMs, forming VLM ensembles, can achieve
higher zero-shot performance.

Pretrained model selection. Pretrained models make it possible to utilize prior knowledge learned
from a variety of datasets, showing remarkable improvement compared with training from scratch (He
et al., 2016a; Devlin, 2018; Radford et al., 2021; Amos et al., 2024). Observing that randomly selecting
a pretrained model from multiple models can result in unpredictable performance (Wang et al., 2019),
pretrained model selection methods estimate model performance given a zoo of pretrained models
and a small set of labeled data. Typically, forward-based methods (Tran et al., 2019; 2020; You
et al., 2021; 2022; Ding et al., 2022; Huang et al., 2022a) assess feature-label distribution, while
similarity-based methods (Achille et al., 2019; Dwivedi & Roig, 2019; Zhang et al., 2023) extract or
learn representations for models and datasets and match models to datasets based on similarity. At
the same time, model selection using only unlabeled data has drawn attention recently (Lin et al.,
2020; Zhao et al., 2021; Baek et al., 2022; Goswami et al., 2022; Hu et al., 2023).

Unlike other pretrained vision models, vision-language models are often used in zero-shot settings
without access to image data, making evaluation challenging. Zero-shot VLM selection (Zohar et al.,
2023; Yi et al., 2024) addresses the problem of selecting VLMs using only category names.

3 Preliminaries

3.1 Vision-Language Model

VLMs are known for their cross-modal generalization ability (Radford et al., 2021; Li et al., 2022;
Wang et al., 2023; Singh et al., 2022). A VLM f consists of an image encoder fx and a text encoder
ft. Mapping texts and images into a unified representation space, similarity sim(x, t) between an
image x and a text t is obtained by cosine similarity:

sim(x, t; f) =
fx(x)

⊤ft(t)

∥fx(x)∥2 · ∥ft(t)∥2
. (1)

Zero-Shot Classification. A zero-shot image classification task is defined as ⟨C,Xtest⟩, where C
are category names and Xtest are the test images to be classified. Specifically, the user describes a
C-class custom task by providing category names C = {ci}Ci=1 (e.g., {cat, dog, bird}). Then, the
category names are plugged into a defined prompt template (e.g., “a photo of a {c}”), forming textual
prompts T = {ti}Ci=1. For a test image x ∈ Xtest, a VLM f calculates similarity between the test
image and the prompts of each class. Then the predicted probability of class y is given by:

Pr(ŷ = y|x, T , f) =
exp

(
sim(x, ty; f)

)∑
y′∈[C] exp

(
sim(x, ty′ ; f)

) . (2)

We use f(x; T ) ∈ ∆C to denote the probability output of model f given image x and class prompts T ,
where f(x; T )i ≜ Pr(ŷ = i|x, T , f). The predicted label would be the class with highest probability.
With ground-truth labels, we can measure the zero-shot accuracy of model f for a given task ⟨C,Xtest⟩
with corresponding labels Ytest, denoted acc(f ; C,Xtest,Ytest).

3.2 Zero-Shot VLM Selection and Current Solutions

Nowadays, many VLMs are trained and released, varying in terms of the training dataset, model
architecture, training methodology, etc.These diverse VLMs form a model zoo, consisting of M
VLMs, denoted as F = {fi}Mi=1. For a downstream task ⟨C,Xtest⟩, we want to deploy the best model
f∗ ∈ F such that acc(f∗; C,Xtest,Ytest) is maximized.

Problem setting of zero-shot VLM selection. In this paper, we tackle the challenge of zero-shot
VLM selection, which requires choosing an optimal VLM from F according to C without access
to target images Xtest. To address the absence of target evaluation data, prior work leverages proxy
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data to compute a proxy metric µ(f ; C) that is expected to correlate with the ground-truth accuracy
acc(f ; C,Xtest). Such proxy data may consist of in-the-wild images from large-scale datasets (e.g.,
ImageNet (Deng et al., 2009)) or LLM-generated texts (Ouyang et al., 2022; Touvron et al., 2023)
derived from C. In what follows, we introduce two representative proxy metrics built upon these two
directions.

ImageNet accuracy. A straightforward baseline is to leverage benchmark performance (e.g., accuracy
on ImageNet) as a measure of a VLM’s inherent capability:

µIN(f ; C) = acc(f ; CIN,XIN,YIN), (3)
where CIN and XIN are the category names and the test images of ImageNet, respectively.

Text scores. ModelGPT (Zohar et al., 2023) and its improved derivative SWAB (Yi et al., 2024) use
LLMs to generate captions for each class based on C, forming a “text dataset” LLM(C). Specifically,
given the category names of the target task, an LLM is prompted to produce relevant captions. For
example, for a task with categories Abyssinian and Beagle, it may generate “An adorable Abyssinian
cat lounged in sunshine, eyes gleaming afar.” for Abyssinian, and “A stunning beagle sat on the grass,
gazing into distance.” for Beagle. Based on the cross-modal embedding space, we can treat the
generated captions as target images in the cross-modal embedding spaces of VLMs and convert VLM
evaluation to assessment of text classification capability, with text classification accuracy treated as
an approximation of zero-shot classification accuracy:

µtext(f ; C) = acc(f ; C,LLM(C)). (4)

Beyond text classification accuracy, Zohar et al. (2023) propose using more text-based scores such as
F1-score and Fisher Criterion, which are combined with ImageNet accuracy to build a strong proxy
metric. However, text scores suffer from limited assessment of the visual modality due to the modality
gap (Liang et al., 2022). Moreover, employing LLMs introduces additional computational cost and
makes selection performance highly dependent on the quality of LLM outputs.

4 Methodology of SAGE

High-level idea of SAGE. Our goal is to estimate acc(f∗; C,Xtest,Ytest). The challenge is that only
C is available, while the target data Xtest and labels Ytest are not. To address this, we propose two
sequential steps: (1) replace ground-truth labels Ytest with pseudo-labels Ŷ , and (2) replace target
images Xtest with in-the-wild images X ′.

The first step leads to the AGE (agreement-with-the-ensemble) metric, which leverages VLM
ensembles to generate pseudo-labels for evaluation. The second step adapts AGE to in-the-wild
images, where we incorporate semantic retrieval and robust similarity measures to strengthen this
adaptation. In what follows, we formally introduce AGE and demonstrate its correlation with accuracy,
and then detail how AGE can be adapted to in-the-wild images for zero-shot VLM selection.

4.1 AGE on Target Images

We first tackle the challenge of absence of ground-truth labels. Building on the universal generalization
ability of VLMs (Mayilvahanan et al., 2024; Bielawski et al., 2022; Tu et al., 2023) and advances
in ensemble learning with VLMs (Lu et al., 2024; Jeong et al., 2024; Li et al., 2023; Huang et al.,
2022b), we argue that VLM ensembles provide high-quality pseudo-labels for unlabeled images.
Building on this, we propose AGE (agreement-with-the-ensemble), which measures the consistency
between individual VLMs and their ensemble counterparts.

Formal definition of AGE. Consider zero-shot classification on an image set Xtest using VLMs
F = {fi}Mi=1 and a set of category names. For category names C consisting of C classes, we
insert them into a prompt template to obtain textual prompts T , which are then fed into the text
encoders of VLMs to construct text classifiers. For an image x, each VLM fi outputs a probability
vector fi(x; T ) = [p1, . . . , pC ] ∈ ∆C . We then construct an ensemble model f̄ , which produces
predictions

f̄(x; T ) ≜
1

M

M∑
i=1

fi(x; T ). (5)

4
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Figure 3: Linear correlation between AGE and ground-truth accuracy. Each point represents
(acc(fi), µ(fi)) for a VLM fi ∈ F . The X-axis denotes ground-truth accuracy, while the Y-axis
denotes AGE obtained using target images (green) and in-the-wild images (blue) with pseudo-labels
generated by the ensemble model.

Next, for each model fi, we compute AGE µ on X . AGE is defined as the pseudo-label accuracy of
individual models with respect to the pseudo-labels produced by f̄ :

µ(fi; C,Xtest) =
1

|Xtest|
∑

x∈Xtest

I
(
argmax

j
fi(x; T )j = argmax

j
f̄(x; T )j

)
. (6)

Observation: AGE strongly correlates with ground-truth accuracy. We calculate the zero-shot
accuracy acc(fi) and the AGE µ(fi) for the 35 models in the model zoo (see section 5) on selected
datasets. We plot (acc(fi), µ(fi)) in green in Figure 3. As shown in Figure 3, AGE exhibits a
strong correlation with ground-truth accuracy. Note that all models must be inferred during model
selection; therefore, constructing the ensemble model does not significantly increase the time cost.
Consequently, AGE can be used for model selection when target labels are absent.

4.2 Adapting AGE for Zero-Shot VLM Selection

We have demonstrated that when unlabeled target images and category names are available, AGE
can be computed and shows strong correlation with ground-truth accuracy, enabling effective VLM
ranking and selection without labeled data. However, target images are unavailable for zero-shot
VLM selection. In this section, we show that AGE can still serve as a reliable model selection metric
even without target images.

Utilizing in-the-wild images. To address the absence of target images, we propose utilizing in-the-wild
images as surrogates. Prior studies (Shin et al., 2022; Wallingford et al., 2023) have shown that such
images help bridge the modality gap in zero-shot applications. For broad applicability, the selected
in-the-wild images should cover diverse domains to ensure adaptability across downstream tasks. In
this work, we adopt ImageNet (Deng et al., 2009) as the source of in-the-wild images. ImageNet is
both comprehensive and known to approximate the training distribution of many VLMs (Shin et al.,
2022). Specifically, we randomly sample one image from each ImageNet1K class to form a compact
in-the-wild dataset for efficiency, denoted as X ′.

Semantic retrieval for task customization. While in-the-wild images provide general coverage,
they may not align semantically with a specific downstream task, creating a semantic gap. Intuitively,
images semantically closer to the task should contribute more. To this end, we apply a semantic
retrieval strategy: images are weighted by their similarity to the task category names in the embedding
space. Since X ′ is small, retrieving only a few samples risks high variance; instead, we employ soft
retrieval, assigning weights based on semantic similarity and aggregate the results. Formally, each
image x ∈ X ′ is assigned weight

w(x) =
exp

(∑
t∈T sim(x, t; f0)/C

)∑
x∼X ′ exp

(∑
t∈T sim(x, t; f0)/C

) , (7)
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where f0 is any VLM from the model zoo. Adapting Equation 6 with in-the-wild images and semantic
retrieval, we compute

µ(fi; C) =
∑
x∼X ′

w(x) · I
(
argmax

j
fi(x; T )j = argmax

j
f̄(x; T )j

)
. (8)

As shown in Figure 3 (blue points), AGE remains correlated with ground-truth accuracy even
when target images are replaced by ImageNet alternatives. Although this substitution introduces
approximation error, reflected in the weaker correlation compared to using target images (green
points), it still preserves the relative model rankings effectively.

Robust estimation of AGE. Both Equation 6 and Equation 8 are based on Top-1 accuracy, which is
well known to be non-robust under a small sample size. Moreover, working with in-the-wild data
often leads to low confidence, further reducing the reliability of accuracy metrics. To address this,
we explore alternative, more robust evaluation metrics to support AGE in the in-the-wild setting.
In the following, we introduce additional similarity measures to quantify the consistency between
predictions of individual VLMs and pseudo-labels, i.e., consistency between fi(x; T ) and f̄(x; T ),
which are both probabilistic vectors in the simplex ∆C .

(1) Class ranking correlation. A natural way to compare class probability vectors is to treat them as class
rankings and measure the correlation between their induced orderings. Inspired by recommendation
systems, we focus on mutual items in the Top-k predictions to highlight high-probability classes,
which are more relevant to the target and its common confusions:

Sim(fi(x; T ), f̄(x; T )) =
|argmaxk(fi(x; T )) ∩ argmaxk(f̄(x; T ))|

k
, (9)

where argmaxk denotes the indexes of the Top-k components. When k equals 1, the score
Sim(fi(x; T ), f̄(x; T )) reduces to vanilla AGE. In SAGE, we set k ∈ {1, 2, 3}.

(2) Exponential of negative divergence. A common way to measure the discrepancy between two
distributions is via KL divergence. To improve interpretability, we apply the negative exponential to
map it into [0, 1], yielding a similarity score:

Sim(fi(x; T ), f̄(x; T )) = exp
(
−KL(fi(x; T )||f̄(x; T ))

)
. (10)

(3) Normalized total variation distance. Total variation distance is another popular way to measure
distributional discrepancy, enjoying numerical stability. We normalize it to [0, 1] to obtain a similarity
function:

Sim(fi(x; T ), f̄(x; T )) = 1− ∥fi(x; T )− f̄(x; T )∥1
2

. (11)

We replace I
(
argmaxfi(x; T ) = argmaxf̄(x; T )

)
in Equation 8 with Sim(fi(x; T ), f̄(x; T )) to

compute AGE on X ′. We observe that combining multiple implementations of the similarity function
yields better performance than relying solely on accuracy-based implementations.

5 Experiments

In this section, we provide numerical results of our zero-shot VLM selection method.

Model zoo and datasets. To evaluate the effectiveness of VLM selection methods, we construct a
VLM zoo and test across diverse datasets. Following Zohar et al. (2023), we build a VLM zoo of 35
models from Ilharco et al. (2021), covering variations in architecture, training data, and optimization
strategies. We then evaluate selection methods on 23 downstream datasets used in Zohar et al. (2023),
including Stanford Cars (Krause et al., 2013), CIFAR-100 (Krizhevsky, 2009), among others. These
datasets span a broad range of tasks and domains, providing a comprehensive benchmark. Detailed
descriptions of the models and datasets are provided in the appendix.

Competitive methods. We compare against three existing approaches: the ImageNet accuracy
baseline, ModelGPT (Zohar et al., 2023), and the recent SWAB method (Yi et al., 2024), all of which
represent state-of-the-art zero-shot VLM selection techniques.

Metrics. For model ranking, we adopt standard evaluation metrics including Recall@K and Weighted
Kendall’s τ . In addition, we report the accuracy of the selected models to directly assess the
effectiveness of model selection.

6
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Table 1: Results on zero-shot VLM selection benchmark
Method Use of LLM R5 τ R5 + τ

ImageNet Accuracy × 48.7 24.6 73.3
ModelGPT (Zohar et al., 2023) ✓ 49.6 29.0 75.6

SWAB (Yi et al., 2024) ✓ 49.8 31.0 80.8

SAGE × 54.8 31.6 86.4
SAGE + ModelGPT ✓ 57.4 41.4 98.8

5.1 Zero-Shot VLM Selection Benchmark Results

Protocol. Following Zohar et al. (2023), we partition the downstream datasets into one target dataset
and the remaining support datasets. VLM selection methods have full access to the support datasets,
including category names and test accuracies, while only category names are available for the target
dataset. In addition, methods may exploit external in-the-wild data to aid model selection; following
prior work, we use ImageNet1K (Deng et al., 2009) for this purpose. To evaluate performance, we
adopt a leave-one-out strategy: in each round, one dataset is designated as the target while the others
serve as support. The selection methods are required to predict a model ranking for the target dataset,
which is then compared against the ground-truth ranking. Following Zohar et al. (2023); Yi et al.
(2024), we report Recall@5 and Weighted Kendall’s τ , where the weights are assigned uniformly to
the mutual Top-5 items.

Implementation details. As in ModelGPT and SWAB, SAGE involves combining multiple proxy
metrics, including ImageNet accuracy and AGE metrics. We strictly follow (Yi et al., 2024; Zohar
et al., 2023) to perform Leave-One-Out evaluation on the 23 datasets, where the coefficients of metrics
on the evaluated dataset is decided by regression on the rest. Inspired by (Yi et al., 2024), we adopt
Huber and ridge regression to fit the coefficients of different metrics. For a fair comparison, we adopt
the same prompt templates to construct text classifiers as in (Yi et al., 2024; Zohar et al., 2023). More
details are provided in the appendix.

Result analysis. Table 1 demonstrates performance comparison between SAGE and baselines.
Notably, SAGE performs better than the three baselines across all criteria without the need for LLM to
generate texts. Note that all methods incorporate ImageNet information during model selection since
ModelGPT and SWAB have combined ImageNet accuracy. Therefore, SAGE does not leverage extra
information by utilizing ImageNet images as proxies of target images. We also combine SAGE and
ModelGPT by combining AGE metrics with the text scores used in ModelGPT, which significantly
boosts VLM selection performance. As shown in Table 1, the AGE metrics and text scores enjoy
complementary advantages.

5.2 Ablation Studies

In this section, we provide ablation experiment results of the designs of SAGE to justify our choices.
We present the benchmark criteria for SAGE and SAGE+ (representing combining AGE scores and
the text scores derived from LLM-generated texts in (Zohar et al., 2023)).

5.2.1 Main Technical Designs in SAGE

In the methodology section, we introduce our core mechanism AGE which quantifies similarity
between individual VLMs and their ensemble counterpart on in-the-wild images and target task
descriptions. In addition, to improve AGE as a proxy metric for VLM selection, we introduce several
technical designs. The main technical designs in SAGE are as follows:

• Semantic Retrieval (SR): We prioritize images from X ′ semantically closer to the task via
weighting, using category names C.

• Composed Similarity (CS): We combine extra similarity measures in addition to Top-1 accuracy
for robust estimation of AGE.

• Regularized Regression (RR): Inspired by (Yi et al., 2024), we use Ridge regression and Huber
regression instead of vanilla linear regression to combine multiple metrics.
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Table 2: Ablation results of the main designs

SR CS RR SAGE SAGE+

R5 τ R5 τ

× × × 53.9 25.0 53.9 28.1
× × ✓ 53.9 25.0 53.9 34.8
× ✓ × 53.9 29.6 54.8 34.8
× ✓ ✓ 53.9 31.0 56.5 39.4
✓ × × 53.0 24.6 53.9 27.5
✓ × ✓ 53.0 27.5 53.9 34.8
✓ ✓ × 54.8 31.0 54.8 35.7
✓ ✓ ✓ 54.8 31.6 57.4 41.4

Table 3: Ablation results of the AGE scores

CC KL TV SAGE SAGE+

R5 τ R5 τ

× × × 53.0 27.5 53.9 34.8
× × ✓ 53.0 27.5 53.9 35.0
× ✓ × 53.0 27.5 53.9 38.5
× ✓ ✓ 53.0 27.5 53.9 39.4
✓ × × 53.0 31.0 56.5 35.9
✓ × ✓ 54.8 31.0 56.5 36.5
✓ ✓ × 53.0 31.0 57.4 39.4
✓ ✓ ✓ 54.8 31.6 57.4 41.4

Table 4: Comparison of methods under the small model pool setting
Method R5 τ R5 + τ

ImageNet accuracy 53.9 30.5 84.4
ModelGPT 56.5 34.8 91.3

SAGE 60.0 50.9 110.9
SAGE +ModelGPT 63.5 50.9 114.4

We present the ablation results in Table 2, which confirm that these designs are essential for SAGE.

5.2.2 Similarity Scores in SAGE

In the methodology section, we propose using multiple metrics to quantify the similarity between the
predictions of individual and ensemble models to enhance robustness. We introduce the following
three extended similarity scores to complement vanilla AGE:

• Class Ranking Correlation (CC): The proportion of mutual items in the Top-k classes predicted
by the individual and the ensemble. We set k ∈ {2, 3} in SAGE in addition to k = 1 (vanilla AGE).

• Exponential of Negative KL Divergence (KL): Similarity induced by KL-divergence.

• Normalized Total Variance Distance (TV): Similarity induced by total variance distance.

We present ablation results in Table 3, which demonstrate that these similarity scores are complementary
in SAGE. In the base case (without applying similarity scores), we combine ImageNet accuracy with
vanilla AGE (induced by pseudo-accuracy) for SAGE, and further incorporate text scores for SAGE+.

5.3 Significance Experiments

5.3.1 Results on Smaller Model Pools

Although SAGE involves VLM ensembles, it is insensitive to the construction of the VLM zoo. To
demonstrate this, we select a subset from the full group of 35 models, excluding the “strong models”
to form a “small model pool.” As shown in Table 4, SAGE still significantly outperforms the baselines
under this setting. The construction of the subset is described in the appendix.

5.3.2 Stability on the Choice of in-the-Wild Images

The set of in-the-wild images used for SAGE is randomly sampled from ImageNet1K, with one image
per class. In Table 5, we conduct 20 random experiments using different samples to evaluate the
stability of SAGE with respect to the randomness of the in-the-wild data. Results indicate that SAGE
is stable with regard to the choice of in-the-wild images.
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Figure 4: Accuracy of different methods. The y-axis represents average accuracy across 23 datasets.
The left three figures are: accuracy of Top-1 model, Top-2 ensembles, and Top-3 ensembles selected
by ImageNet accuracy, ModelGPT, and SAGE. We additionally evaluate Tip-Adapter as a few-shot
adaptation baseline for reference.

Table 5: Stability of SAGE under randomness of in-the-wild images

Method R5 τ R5 + τ

SAGE 0.548± 0.007 0.316± 0.016 0.829± 0.02
SAGE+ModelGPT 0.563± 0.006 0.365± 0.017 0.928± 0.022

5.4 From Ensembles for Selection to Selection for Ensembles

We have shown that ensembles can benefit VLM selection, and in practice, ensemble methods are
widely used to improve VLM performance (Lu et al., 2024; Jeong et al., 2024; Li et al., 2023; Huang
et al., 2022b). Here, we show that model rankings from SAGE can be used to construct superior VLM
ensembles compared to baselines.

Building ensembles from model ranks. In selective ensemble methods (Caruana et al., 2004; Wood
et al., 2023), ranking-based approaches aim to generate a model ranking such that selecting the Top-k
models yields a strong ensemble.

SAGE produces better ensembles. We construct Top-k ensembles using rankings from ImageNet
accuracy, ModelGPT (Zohar et al., 2023), and SAGE, following (Lu et al., 2024) with zero-shot
output averaging. Evaluated on 23 datasets, Figure 4 shows that SAGE consistently produces superior
Top-k ensembles.

Comparison to few-shot adaptation. Few-shot adaptation methods (Gao et al., 2024; Zhang
et al., 2022; Silva-Rodriguez et al., 2024) fine-tune VLMs with limited target samples. Using
Tip-Adapter (Zhang et al., 2022) on the Top-1 model by ImageNet accuracy as a baseline, we report
averages over 30 trials. As shown in Figure 4, ensembles from SAGE achieve performance comparable
to Tip-Adapter with 3-shot samples, demonstrating that zero-shot ensembling can rival few-shot
adaptation and compensate for data scarcity by increasing the number of models.

6 Conclusion

We address the challenge of zero-shot VLM selection for image recognition tasks. We propose
Selection via AGreement-with-the-Ensemble (SAGE), a method that quantifies the similarity between
individual VLMs and their ensemble counterparts using in-the-wild images and target category names.
We provide empirical evidence to support our method. SAGE outperforms existing approaches on
established benchmarks.
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A Appendix

A.1 Use of LLMs

LLMs are used to assist in polishing writing, including grammar checking and improving expression.

A.2 Models and Datasets

Following Zohar et al. (2023), we use the OpenCLIP library Ilharco et al. (2021) to form a VLM
zoo. As shown in Table 6, these VLMs differ in terms of model architecture (e.g., ResNet He et al.
(2016b), Transformer Vaswani et al. (2017), ConvNext Liu et al. (2022)), pretraining datasets (e.g.,
OpenAI’s data Radford et al. (2021), LAION 2B Schuhmann et al. (2021)), and other factors. As
shown in Table 7, LOVM utilizes 23 datasets from different domains. Table 6 and Table 7 are from
Zohar et al. (2023) and Yi et al. (2024).

A.3 Implementation Details of SAGE

Semantic retrieval. We calculate the semantic similarity between samples in the ImageNet subset
and the textual prompts T of target tasks using a VLM f0 as:

w(x) =
exp

(∑
t∈T sim(x, t; f0)/C

)∑
x∼X ′

IN
exp

(∑
t∈T sim(x, t; f0)/C

) . (12)
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Table 6: The 35 VLMs used in LOVM.
ID Model Name Dataset Name
1 RN50 RN50 openai WIT
2 RN101 RN101 openai WIT
3 RN50x4 RN50x4 openai WIT
4 RN50-16 RN50x16 openai WIT
5 RN50x64 RN50x64 openai WIT
6 ViT-B-32 ViT-B/32 laion400m_e31 L400m
7 ViT-B-32 ViT-B/32 laion400m_e32 L400m
8 ViT-B-32-quickgelu ViT-B/32 laion400m_e32 L400m
9 ViT-B-32 ViT-B/32 openai WIT
10 ViT-B-32 ViT-B/32 laion2b_s34b_b79k L2b-b
11 ViT-B-32 ViT-B/32 laion2b_e16 L2b-c
12 ViT-B-16 ViT-B/16 laion400m_e32 L400m
13 ViT-B-16 ViT-B/16 openai WIT
14 ViT-B-16-240 ViT-B/16-240 laion400m_e32 L400m
15 ViT-L-14 ViT-L/14 laion400m_e31 L400m
16 ViT-L-14 ViT-L/14 laion400m_e32 L400m
17 ViT-L-14 ViT-L/14 laion2b_s32b_b82k L2b-b
18 ViT-L-14 ViT-L/14 openai WIT
19 ViT-L-14-336 ViT-L/14-336 openai WIT
20 ViT-G-14 ViT-G/14 laion2b_s12b_b42k L2b-a
21 ViT-G-14 ViT-G/14 laion2b_s34b_b88k L2b-a
22 ViT-H-14 ViT-H/14 laion2b_s32b_b79k L2b-b
23 coca_ViT-B-32 CoCa-ViT-B/32 laion2b_s13b_b90k L2b-c
24 coca_ViT-B-32 CoCa-ViT-B/32 mscoco_finetuned_laion2b_s13b_b90k L2b-c + coco
25 coca_ViT-L-14 CoCa-ViT-L/14 laion2b_s13b_b90k L2b-c
26 coca_ViT-L-14 CoCa-ViT-L/14 mscoco_finetuned_laion2b_s13b_b90k L2b-c + coco
27 convnext_base ConvNEXT-B laion400m_s13b_b51k L400m-c
28 convnext_base_w ConvNEXT-BW laion2b_s13b_b82k L2b-d
29 convnext_base_w ConvNEXT-BW laion2b_s13b_b82k_augreg L2b-e
30 convnext_base_w ConvNEXT-BW laion_aesthetic_s13b_b82k L2b-f
31 convnext_base_w_320 ConvNEXT-BW-320 laion_aesthetic_s13b_b82k L2b-f
32 convnext_base_w_320 ConvNEXT-BW-320 laion_aesthetic_s13b_b82k_augreg L2b-g
33 convnext_large_d ConvNEXT-LD laion2b_s26b_b102k_augreg L2b-h
34 convnext_large_d_320 ConvNEXT-LD-320 laion2b_s29b_b131k_ft L2b-i
35 convnext_large_d_320 ConvNEXT-LD-320 laion2b_s29b_b131k_ft_soup L2b-j

Here, f0 can be any VLM in the model zoo since the image embeddings are precomputed and we infer
T through all VLMs during VLM selection. We recommend to use large VLMs to ensure the quality
of cross-modal embedding. In terms of implementation in this paper, we choose ViT-H/14-L2b-b (ID
22 in Table 6) as f0.

Regression methods. To combine multiple proxy metrics in the Leave-One-Out evaluation, we
follow Yi et al. (2024) and apply regularized regression methods. We apply Ridge regression with
α = 1e− 5 for SAGE to combine ImageNet accuracy with AGE metrics. We apply Huber regression
with α = 1.15 for SAGE+ModelGPT as in Yi et al. (2024), which combines ImageNet accuracy,
AGE metrics and text scores from ModelGPT.

A.4 Construction of the Small Model Pool

The small model pool described in Section 5.3 consists of all models in Table 6 except for the following
(by ID): 5, 18, 19, 20, 21, 22, 31, 32, 33, 34, and 35. These excluded models exhibit significantly
higher average performance across the datasets.

A.5 Discussions on the Methodology

Why not use labels from the original ImageNet dataset? In SAGE, we utilize ImageNet images as
in-the-wild images and discard their labels in the original ImageNet dataset. We argue that there is a
gap between the ImageNet classes TIN and the target task T . For example, in a car brand classification
task, an ImageNet image labeled as “car” may be useful for evaluating VLMs. However, the label “car”
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Table 7: The 23 tasks used in LOVM.
Dataset Classes Task Domain

Imagenet (Deng et al., 2009) 1000 classification natural image
SUN397 (Xiao et al., 2010) 397 scene und. natural image

Country211 (Radford et al., 2021) 211 geolocation natural image
Stanford Cars (Krause et al., 2013) 196 classification natural image

Flowers102 (Nilsback & Zisserman, 2008) 102 classification natural image
CIFAR100 (Krizhevsky, 2009) 100 classification natural image

DTD (Cimpoi et al., 2014) 46 classification textural image
RESISC45 (Cheng et al., 2017) 45 classification satellite images
GTSRB (Stallkamp et al., 2011) 43 classification natural image
Oxford Pets (Parkhi et al., 2012) 37 classification natural image

VOC2007 (Everingham et al., 2007) 20 classification natural image
STL10 (Coates et al., 2011) 10 classification natural image

EuroSAT (Helber et al., 2019) 10 classification satellite images
MNIST (LeCun et al., 2010) 10 classification hand-writing
SVHN (Netzer et al., 2011) 10 OCR natural image

CLEVR-C (Johnson et al., 2017) 8 object counting natural image
CLEVR-D (Johnson et al., 2017) 8 distance est. natural image

FER2013 (Goodfellow et al., 2013) 7 fac. exp. rec. natural image
DMLab (Zhai et al., 2020) 6 distance est. synthetic

Retinopathy (Kaggle & EyePacs, 2015) 5 classification retina scan
KITTI (Geiger et al., 2013) 4 distance est. natural image
PCam (Veeling et al., 2018) 2 classification histopathology

Rendered SST2 (Radford et al., 2021) 2 OCR text image

does not provide enough detail to determine the specific brand. Furthermore, valuable information in
a natural image is not always reflected in its original label. For instance, a photo of a car parked in the
mud (labeled “car”) could be helpful for a land-use classification task, even though the label provides
no clue about the context.

Inference cost of SAGE compared to previous methods. LLM-based methods like ModelGPT Zohar
et al. (2023) mainly involve the following procedures. First, they need to generate a large-scale caption
dataset (K-shot for each of the C classes) with an LLM. Then, they need to feed the K × C texts
along with the text descriptions T to the text encoders of the M VLMs in the model zoo. In contrast,
SAGE does not require access to an LLM interface. Additionally, the embeddings of the in-the-wild
images X ′ remain invariant across different downstream tasks and can therefore be precomputed
offline. As a result, the only online inference cost in SAGE is computing the embeddings of the task
descriptions T . Thus, SAGE does not increase the overall cost compared to previous LLM-based
methods.

A.6 Experiments Compute Resources

We conduct our experiments on a single NVIDIA RTX 4090 GPU (24GB). The primary computational
cost arises from performing inference on the ImageNet-1K sample images across 35 VLMs, which
takes approximately 3 GPU hours. The remaining components of our experiments are lightweight
and can be executed with minimal computational overhead.
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