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Abstract
The rise of foundation models holds immense
promise for advancing AI, but this progress may
amplify existing risks and inequalities, leaving
marginalized communities behind. In this posi-
tion paper, we discuss that disparities towards
marginalized communities – performance, repre-
sentation, privacy, robustness, interpretability and
safety – are not isolated concerns but rather inter-
connected elements of a cascading disparity phe-
nomenon. We contrast foundation models with
traditional models and highlight the potential for
exacerbated disparity against marginalized com-
munities. Moreover, we emphasize the unique
threat of cascading impacts in foundation mod-
els, where interconnected disparities can trigger
long-lasting negative consequences, specifically
to the people on the margin. We define marginal-
ized communities within the machine learning
context and explore the multifaceted nature of
disparities. We analyze the sources of these dis-
parities, tracing them from data creation, training
and deployment procedures to highlight the com-
plex technical and socio-technical landscape. To
mitigate the pressing crisis, we conclude with a
set of calls to action to mitigate disparity at its
source.

1. Introduction
Foundation models with their ability to learn and adapt
across various domains, are rapidly transforming the land-
scape of AI. However, these large-scale models that often
trained on massive, unfiltered datasets, pose various risks
for marginalized communities. Foundation models can per-
petuate and amplify existing biases, leading to disparities
in performance, privacy, robustness, model understanding,
and even the generation of harmful content for marginalized
communities. For example, large language models (LLMs)
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often perform worse on language tasks involving dialects
spoken by low-resource languages (Liang et al., 2021). An
image generation or diffusion model primarily associating
certain professions with specific genders or ethnicities (Luc-
cioni et al., 2023). Multimodal models can struggle with rec-
ognizing or classifying images of people from marginalized
groups, particularly those with darker skin tones or features
that do not align with dominant beauty standards (Buo-
lamwini & Gebru, 2018; Schwemmer et al., 2020). A voice
assistant models often misinterpret commands spoken with
a regional accent which leads to frustration and exclusion
for the user (Tatman, 2017). Multimodal models might
generate hateful or offensive content that perpetuate dis-
crimination and incite violence against already vulnerable
groups (Zellers et al., 2019).

While extensive research has focused on identifying and ad-
dressing specific types of disparities (see Section 3), a holis-
tic understanding of how these disparities are interconnected
remains largely unaddressed. This narrow focus can worsen
existing biases and introduce new ones, disproportionately
harming marginalized communities. For example, counter-
factual data augmentation (Gardner et al., 2020) that have
shown promising out-of-domain generalizability (Samory
et al., 2021), if implemented without careful consideration,
can reinforce harmful stereotypes or lead models to violate
established social norms (Sen et al., 2022).

Moreover, standard evaluation benchmarks, such as Stere-
oSet (Nadeem et al., 2020), often focus on surface-level as-
sessments of foundation models using non-robust prompting
metrics or post-deployment downstream task evaluations.
These approaches fail to directly probe the deeper sources
of bias embedded within the models.

In this position paper, we argue that these disparities are
interconnected elements of a cascading disparity phe-
nomenon affecting marginalized communities. We dis-
cuss that representational disparities within the model lie
at the root of this phenomenon. The distinct, complex dis-
tributions representing marginalized communities are often
insufficiently captured during training, leading to the ”flat-
tening” of their representations within the model. This, in
turn, manifests as performance disparities, reinforcement of
stereotypes, privacy violations, and other types of harmful
disparities. By analyzing the sources of disparities through-
out the lifecycle of foundation models, from data collection
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and training to adaptation and deployment, we highlight the
complex technical and socio-technical landscape that shapes
this problem. We urge researchers to move beyond conven-
tional loss function optimization when training foundation
models. It’s vital to develop metrics that directly assess
the quality of representations with regards to marginalized
communities, ensuring that the model learns the nuanced,
low-dimensional manifolds associated with these groups.
Additionally, we advocate for investigating how a model’s
capacity should be dynamically allocated across different
distributions to achieve a more equitable representations.
Our contributions in this position paper are as follows: 1)
Identifying and categorizing disparities in foundation mod-
els that disproportionately impact marginalized communi-
ties (Section 3). 2) Defining the cascading disparity phe-
nomenon and how it stems from representational disparities
(Section 4). 3) Analyzing the origins of disparities across
the lifecycle of foundation models (Section 5). 4)Providing
a list of call to actions to address representational disparities
in foundation models (Section 6).

2. Marginalized Communities
Before discussing how and why the current way of training
and deploying models creates disparity towards marginal-
ized communities, it’s important to clearly define what we
mean by marginalized communities or “data at the margin”
in the context of machine learning (ML). Marginalized com-
munities (Allman, 2013) or as Williams and White put it
“marginalized from mainstream society” (Williams & White,
2003) refers to groups systematically excluded and discrim-
inated against based on factors like race, ethnicity, gender,
sexual orientation, socioeconomic status, disability, religion,
or other identity aspects (Allman, 2013; Williams & White,
2003). This historical exclusion often results in ongoing
lack of representation, resources, and ongoing discrimina-
tion. Such historical exclusion is reflected and amplified in
ML applications. Data from marginalized communities is
often missing, underrepresented, or misrepresented in train-
ing datasets. This leads to several data-centric challenges for
ML models: 1) Small sample size: Marginalized communi-
ties are underrepresented in datasets. 2) Disparate distri-
bution: The data distributions associated with marginalized
communities may differ significantly from the majority pop-
ulation. This can encompass factors like demographics,
language use, or behavioral patterns. 3) Complex distribu-
tions: Data may exhibit nuances and complexities due to
intra-group diversity, cultural patterns, or unique historical
contexts.

These factors create challenges for ML models, making it
difficult to represent marginalized communities accurately.
In statistical terms, these low-sample classes form the “long
tail” of distributions. While this typically refers to low-
occurrence events, in this context, it highlights data samples
rarely seen during training, despite their real-world preva-

lence not necessarily being lower than more common data
classes.

Note that this definition focuses primarily on the data-centric
aspects of marginalization in machine learning and it’s es-
sential to acknowledge that definitions of marginalized com-
munities are not solely technical but also inherently so-
cial and political. In the context of technology and socio-
technical systems, marginalized communities can be un-
derstood as groups of people who experience: i) Systemic
Disadvantage: These communities face historical, social,
political, and economic barriers that limit their access to
opportunities, resources, and power. This systemic disadvan-
tage often stems from factors like discrimination, prejudice,
and social exclusion. ii) Data Exclusion and Invisibility:
Marginalized communities may be underrepresented or even
invisible within data sets used to train and develop techno-
logical systems. And iii) Limited Agency and Participation:
Marginalized communities may have limited opportunities
to participate in the design, development, and deployment of
technological systems that significantly impact their lives.

3. Types of Disparity
In this section, we present how foundation models systemat-
ically disadvantage marginalized communities through the
following eight disparities.

Embedding/Representation disparities Foundation mod-
els serve as powerful tools for representation learning with
the goal of automatically capturing meaningful and gener-
alized features from the data that makes it easier to extract
useful information in down stream tasks. A good representa-
tion is one that captures the underlying explanatory factors
for the observed input. As such representation learning
is closely linked to manifold learning with the hypothesis
that high dimensional data lies on a low dimensional mani-
fold (Gorban & Tyukin, 2018). It is generally understood
that learning complex features leads to better generalization
in downstream tasks (Bengio et al., 2013; Natekar & Sharma,
2020). A representation should be expressive enough to cap-
ture complexities expressed through factors of variation for
every subgroup in of the input space. With that notion, rep-
resentation disparity is defined as constrained complexity
in learned embeddings due to data limitations, resulting
in challenges in manifold creation. Prior work has either
focused on removing sensitive attributes with adverserial
debiasing (Zhang et al., 2018) and contrastive learning (Tian
et al., 2020) or maintaining semantic distances in the em-
bedding space (Zafar et al., 2017; Beutel et al., 2017; Zhang
et al., 2018), addressing the limited complexity issue.

Performance disparities Performance disparity is defined
as disparities in model performance between majority and
minority populations in downstream tasks. Previous work
has shown such performance gap is manifested in health-
care (Hall et al., 2023), text summarization (Yang et al.,
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2023), translation (Prates et al., 2020), image classifica-
tion (Ali et al., 2023), and recommender systems (Moradi &
Farnadi, 2023). Extensive research has explored the perfor-
mance gap, with various fairness metrics like demographic
parity, accuracy parity, equal opportunity, and equalized
odds (Hardt et al., 2016) reflecting these disparities for
marginalized communities.

Privacy disparities Privacy disparity is defined with a
propensity for memorization more pronounced for marginal-
ized communities (Carlini et al., 2022a). Limited model
capacity results in prioritized generalization for larger popu-
lations, exacerbating privacy concerns (Tramèr et al., 2016;
Carlini & Wagner, 2018) and catastrophic forgetting (Luo
et al., 2023). Existing work have shown privacy-enhancing
technologies such as differential privacy in SGD (DP-
SGD) (Abadi et al., 2016) that rely on gradient clipping
and noise injection, disproportionately degrade accuracy
of marginalized communities (Bagdasaryan et al., 2019;
Malekmohammadi et al., 2024). Furthermore, model com-
pression techniques on foundation models such as iterative
magnitude pruning (Maene et al., 2021), which can result in
enhancing overall privacy of the model , proportionately im-
pact on the accuracy of communities at the margin (Hooker
et al., 2020; 2019; Tran et al., 2022; Hashemizadeh et al.,
2023)

Robustness disparities Robustness disparity is the varia-
tion of the performance, accuracy and reliability of the ML
model across different populations that could particularly
impact the marginalized communities. This issue arises
from inadequate representation of these communities in var-
ious stages of ML development, including (i) data creation
(ii) model development and (iii) deployment. On data side,
marginalized communities are usually out-of-distribution
samples. During the learning, their distribution is often
miss-represented and under specified. This would make
marginalized data also more prone to adversarial and poi-
soning attacks due to the lack of generalization of the model
for these groups (Madry et al., 2017; Athalye et al., 2018;
Ma et al., 2022). Finally during the deployment process,
conditions that the model is deployed for the marginalized
communities are often dismissed and they lack proper test-
ing for edge cases, group-specific perturbations and robust-
ness testing towards factors of variation within these groups,
that leads to increased vulnerability to adversarial attacks
and failures in marginalized populations.

Hallucination1 disparities. It is widely acknowledged
that Large Language Models (LLMs) and by extension Vi-
sual Language Models (VLMs) suffer from Hallucinations.
These instances manifest as the model confidently generates
output that while seeming plausible, are unreasonable or
factually untrue with respect to the source of information.
While the source of hallucination is not yet fully understood,
hallucination in LLMs typically arise from the inherent data

1Also referred to as “Confabulation” in literature

limitations in the training data and complexity of the model
architecture (Ji et al., 2023; Dziri et al., 2022). Hallucination
disparity is defined as an elevated likelihood of generating
fabricated or hallucinated outputs for marginalized commu-
nities due to data limitations. Wang & Sennrich (2020)
showed that hallucinations are more prevalent for out-of-
domain distributions compared to in-domain distributions
for Neural Machine Translation. Cohen et al. (2018) also
demonstrated that a mismatch in distribution between source
and target domains in image translation causes the model to
hallucinate confounding factors when generating samples
from the target domain.

Insufficient information and memorization tendencies con-
tribute to the model making erroneous assumptions about
the data and consequently leading to higher likelihood of
generating inaccurate outputs for marginalized communi-
ties (Wang & Sennrich, 2020; Cohen et al., 2018; Arjovsky
et al., 2019; Guo et al., 2018). These erroneous assumptions
and misrepresentations manifest themselves in the learned
manifold of the foundational model. From this perspective,
hallucination disparity is closely linked to representation
disparity, wherein the model has not acquired expressive
representations of marginalized groups. The model’s fail-
ure to capture the subtleties inherent to these groups within
its learned representations is a contributing factor to the
emergence of hallucinations in its generated outputs.

Note that while hallucination gap can be categorized under
the broader category of performance disparity, we believe
highlighting hallucinations as a distinct issue allows us to
emphasize the importance of addressing outputs that are
factually incorrect or misleading. This has significant impli-
cations for model reliability and factfulness, that warrants
focused attention beyond the performance disparity in down-
stream tasks that are often focused on supervised learning
tasks with existing measures such as demographic parity or
equalized odds.

Model Understanding disparities Foundation models,
with their vast number of parameters and complex train-
ing data, are often challenging to fully comprehend. The
lack of explainability is amplified when the model’s train-
ing data is not representative of diverse populations (Du
et al., 2020). Trying to understand a model that generates
text with underrepresented groups might lead to inaccurate
assumptions or explanations that are not truly reflective of
how the model works. This can result in misinterpreting the
outputs and assigning incorrect attributions to the model’s
behavior. Since model decisions are based on countless data
points and parameters, determining the specific reasons for
a particular output is often difficult (Zhao et al., 2023). This
becomes even more challenging when a model has not been
exposed to sufficient data or diverse perspectives regarding
marginalized groups. Without deep knowledge of a model’s
inner workings and data, there is a risk of simplifying its
behavior. Moreover, the people developing the models and
interpreting will be less likely to identify issues related to
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marginalized groups. Such oversimplifications may over-
look the nuances or complexities involved when the model
interacts with topics related to marginalized communities.

Model Multiplicity/Underspecification disparities Due
to model uncertainty, the predictions or text generated by
the model can be seemingly arbitrary or random when ad-
dressing topics related to marginalized groups (Black et al.,
2022). The model might generate responses that are off-
topic, insensitive, or even harmful. Foundation models often
involve stochastic (random) processes during the generation
of text. This randomness, combined with a lack of un-
derstanding of underrepresented groups, can amplify the
arbitrary nature of the outputs, making them increasingly
unpredictable (Ganesh et al., 2023; D’Amour et al., 2022).
The stochastic elements in these models can sometimes ex-
aggerate the biases present in the training data. This can
lead to the generation of random outputs that inadvertently
amplify stereotypes or misinformation concerning marginal-
ized communities, Ganesh showed that due to model mul-
tiplicity, the random behavior of the model is higher for
marginalized groups (Ganesh, 2024).

We intend to underscore how model design limitations (e.g.,
architectures that are too broad or too narrow) can specif-
ically lead to ambiguity and uncertainty in model behav-
ior. This connects model architecture choices directly to
issues of bias and fairness towards marginalized commu-
nities. Our classification system aims to draw attention to
these specific nuances within the broader performance dis-
parity category. This will facilitate more targeted analysis
of existing mitigation strategies, even while acknowledging
the interconnected nature of these issues.

Safety disparities Regarding the detection and mitigation
of safety concerns, conflicts could arise due to differing
moral values and cultural contexts between groups (Scherrer
et al., 2023; Benkler et al., 2023). Existing work show
that current models may reflect dominant Western cultural
biases and values (Rao et al., 2023). E.g., A model used
to detect hate speech may have difficulty identifying slurs
or harmful language directed towards certain groups due
to underrepresentation in its data (Deshpande et al., 2023).
Similarly, an AI model used to write text or stories may
generate content that reinforces stereotypes or reflects biases
against marginalized groups if it has limited exposure to
inclusive data (Blodgett et al., 2020).

4. Cascading Disparity: A Systemic Issue of
Interlinked Disparities due to Embedding
Disparity

The eight disparities that we discussed in the previous sec-
tion, while distinct in nature, are not independent issues.
They interact and reinforce each other, creating a cumula-
tive negative impact on marginalized communities. In this
section, we show that at the root of this complex issue lies

embedding disparity that its influence cascades exacerbating
other forms of disparity.

Imbalances in how foundation models represent various
groups within their embedding space directly contribute to
performance disparities in downstream tasks. When models
lack expressive representations of marginalized groups, their
performance suffers in tasks that involve those groups. Such
lack of proper manifold creation for marginalized communi-
ties and their underrepresentation, also force the model to
use it’s capacity to memorize specific data points instead of
learning generalizable representations. Marginalized com-
munities are often underrepresented which can make their
data points seen as outliers, and make them more susceptible
to privacy attacks under the privacy onion effect, outlined by
Carlini et al. (Carlini et al., 2022b). If the model memorizes
specific data points (common for marginalized groups), its
behavior is inconsistent and challenging to even explain or
interpret.

Models with poor embedding representations of marginal-
ized groups are also less robust, leading to higher uncer-
tainty. Limited representation of marginalized groups in the
embedding space leads to unpredictable and arbitrary pre-
dictions due to increased sensitivity to minor input changes.
And while hallucinations can occur for various reasons, they
often stem from model uncertainty. When a model is less
certain about how to handle data from a marginalized group,
it is more likely to fabricate or ”hallucinate” details that are
not grounded in the data.

The lack of manifold embedding disparity in foundation
models is a critical safety concern. If marginalized groups
are misrepresented in the embedding space, the model may
fail to recognize their unique perspectives, cultural contexts,
needs, and languages specific to those communities (Jha
et al., 2024; Qadri et al., 2023). This lack of representation
can result in outputs that overlook the concerns of marginal-
ized groups or provide inaccurate or inappropriate responses
to their needs, effectively excluding them from the bene-
fits these models could offer or even perpetuate harmful
stereotypes, reinforce exclusion, and amplify hate speech.
When a model fails to learn the patterns associated with
diverse perspectives, it struggles to generalize its knowl-
edge to unseen scenarios or when presented with prompts
related to underrepresented groups. This limitation results
in unpredictable and uncertain outputs. Insufficient and im-
balanced embedding space can cause the model to associate
certain attributes more strongly with some groups than oth-
ers. This might result in inconsistent outputs, where the
same prompts produce different responses depending on the
perceived identity of the subject. This uncertainty can lead
to outputs that are biased or discriminatory.

We intentionally focused on eight well-established cate-
gories of responsible AI to demonstrate the interconnect-
edness of disparities. We highlight how overlooked inter-
sections can magnify harms, alongside widening perfor-
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mance gaps. To mitigate the cascading negative impacts on
marginalized communities, we need to address these inter-
linked disparities at the core. Next, we discuss the sources
of manifold embedding disparities in foundation models.

5. Sources of Disparity
While both traditional ML models and foundation models
can exhibit disparities, the nature and sources of these dis-
parities can differ significantly. Foundation models, due
to their scale and complexity, present unique challenges in
terms of disparity identification, mitigation, and societal
impact. While the previous section highlighted the con-
cerning disparities that can arise with foundation models,
understanding the sources of these disparities is crucial for
effectively addressing them. In this section, we explore how
and why current practices in foundation model development
can amplify and perpetuate harmful disparities, particularly
against marginalized communities, and how they can differ
from traditional models in several key ways.

5.1. Design and Data Collection

One fundamental challenge in training ML models, includ-
ing traditional and foundation models, revolves around the
obstacles posed by data. Here, we argue how and why data
issues are contributing to representation disparity. Tradi-
tional ML models, typically require smaller, and domain-
specific datasets tailored to the specific task, and the dis-
parities often arise from the specific data used to train the
model. If the data is imbalanced or contains inherent histor-
ical disparities, the model will likely learn and perpetuate
those disparities. In foundation models, due to their massive
scale and reliance on diverse datasets, they can be suscep-
tible to a wider range of data biases. Data used to train
foundation models can be orders of magnitude larger than
those used in traditional ML, which presents challenges in
data storage, processing, and ensuring data quality. Uneven
or non-random sampling methods can lead to datasets that
underrepresent or misrepresent certain demographics, cre-
ating skewed data distributions that disadvantage marginal-
ized communities (Passi & Barocas, 2019). The accessi-
bility and availability of data can also vary across different
groups (Olteanu et al., 2019). Moreover, societal biases
ingrained in cultural norms, and historical data can be in-
advertently embedded within datasets, leading to models
that reflect and amplify these biases (Pedreschi et al., 2009;
Richardson et al., 2019). Finally, differences in how indi-
viduals interact with technology, i.e., digital gap (Hargittai,
2011), or provide data (Olteanu et al., 2019) can introduce
biases into datasets. For instance, marginalized commu-
nities may have limited access to technology or may be
hesitant to provide data due to privacy concerns, leading
to models that are less accurate or perform poorly on tasks
involving these groups (Molamohammadi et al., 2023)

5.2. Training Procedure and Learning Algorithm

Disparities in traditional models are typically studied
through the data or the chosen loss function. However,
in foundation models, due to their complex learning pro-
cesses and interactions with vast amounts of data, they can
exhibit disparities that were not present in the training data
or algorithms. These emergent disparities can be difficult
to anticipate and address. Bellow, we discuss the source of
these disparities during the training process that although
they can occur in traditional models, the magnitude of the
issue in foundation model can differ significantly. Sara
Hooker (Hooker, 2021) discussed how we should look be-
yond data to discuss disparities in ML models and consider
the choices that we make, e.g., the algorithms or hyper-
parameters, to study algorithmic discrimination. Bellow,
we extend her analysis and discuss the impact of various
choices that we make during training that can have a signifi-
cant impact on the outcome:

Loss function: Foundation Models diverge significantly
from traditional ML models in terms of their loss function
design. Foundation models often employ self-supervised
learning paradigms that emphasize learning the sequential
structure of data instead of directly optimizing for perfor-
mance on a specific task (Brown et al., 2020; Devlin et al.,
2018). A common example of this is the ”next token pre-
diction” objective, where the model is trained to predict
the next word or token in a given sequence. This shift
towards sequence learning has resulted in remarkable im-
provements in the language capabilities of large language
models, among other areas. In traditional supervised ML,
loss functions are designed to identify features and patterns
in the data that are strongly correlated with a particular la-
bel or target variable. The model learns to prioritize the
features most relevant to the task at hand. However, foun-
dation models trained with sequence prediction objectives
learn representations that capture the sequential dependen-
cies and underlying structure of the data, irrespective of
specific labels. This enhances their ability to generalize to
a diverse range of downstream tasks without the need for
extensive task-specific fine-tuning (Radford et al., 2019).
However, this focus on sequential learning has a profound
impact on how foundation models process and learn from
data, e.g., the pre-training data for the model might reflect
biases related to the order or sequence in which informa-
tion is presented such as sequential exposure to gendered
language can reinforce gender stereotypes (Bolukbasi et al.,
2016; Sun et al., 2019). Existing work indicates that in
scenarios where there exists a non-linear relationship be-
tween group membership (e.g., considering demographics
like race or gender) and a specific outcome, using a single
linear classifier often leads to a performance trade-off. One,
or perhaps both, of the groups involved will experience a
decline in model performance (Dwork et al., 2018). This
is because linear classifiers, by nature, struggle to capture
the complexity of these non-linear relationships. In certain
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cases, however, incorporating information about the group
differences directly into the design of the machine learning
model can lead to the development of simpler learned func-
tions (mathematical representations) that ultimately enhance
the performance across various groups (Dwork et al., 2018;
Suresh & Guttag, 2019). By understanding the nuances of
the group differences, models can be tailored to better learn
the diverse patterns within the data. However, such mitiga-
tion cannot simply be transferred to foundation models due
to the complexity of identifying marginalized groups.

Aggregation Method: The aggregation method for cal-
culating the overall loss across samples influences how
the model learns the representation of different groups
within data. When data points are aggregated with similar
weights, the model tends to prioritize learning the distribu-
tion of larger populations. If a loss function overempha-
sizes majority groups, existing work show that this leads to
under-representation or misrepresentation of marginalized
groups (Suresh & Guttag, 2019; Mehrabi et al., 2021). This
results in the model neglecting the complexities of marginal-
ized communities, often leading to performance gaps and a
tendency towards memorization rather than generalization
in representing these groups (as discussed in Section 3).

Data order: The order in which data points are presented
during training, particularly in the context of marginal-
ized groups, can significantly impact the model’s perfor-
mance (Ganesh et al., 2023). When data points are read
randomly, there is a risk of catastrophic forgetting (Kirk-
patrick et al., 2017), that the model will tend to forget the
patterns associated with marginalized groups encountered
earlier in the training process. This oversight often results in
suboptimal model performance for these groups. However,
research into the effects of fine-tuning has demonstrated that
strategically positioning marginalized group data toward the
end of the training process can improve their representation
in the model (Dodge et al., 2020). This is because, in the
fine-tuning stage, the model has a chance to reinforce its un-
derstanding of the marginalized group’s patterns while the
knowledge of the majority groups remains relatively stable,
potentially leading to better performance for the marginal-
ized communities.

Batch size: In the presence of random data selection, the ag-
gregation of gradients from various data samples also plays
a crucial role in determining the model’s gradient norms
and update directions. Due to the inherent distributional
differences between marginalized communities and major-
ity groups, gradient updates from these groups are likely
to conflict, potentially in terms of both their directions and
magnitudes (Suresh & Guttag, 2019). When the training
dataset comprises a significantly larger proportion of data
from the majority groups, the model’s overall learning tra-
jectory is likely to be dominated by these majority data
points. As a result, the learning of patterns from marginal-
ized groups, effectively their ’voices’, can be suppressed
during the training process.

Batch Composition: Similar to the considerations of batch
size and data presentation order, the composition of the
training batch can also exert significant influence on the
model’s behavior, particularly when it comes to learning
about marginalized communities. If smaller batch sizes
are employed, and these batches disproportionately consist
of data from a marginalized community, there is a higher
likelihood that the aggregated gradient updates from these
batches will notably influence the model’s learning trajec-
tory, making it more receptive to the patterns and character-
istics present in the marginalized group’s data.

Learning Rate: Learning rate and training duration exhibit
a disproportionate influence on error rates on marginalized
communities specifically those on the long tail of the dis-
tribution. Studies on deep neural network memorization
demonstrate a delayed learning process for the marginal-
ized communities (Jiang et al., 2020). Consequently, a
common early stopping approach can carry the potential to
systematically bias performance against certain data distri-
butions (Hooker, 2021).

5.3. Deployment and Adaptation

One of the challenges of traditional supervised models are
their adaptability to a new task or domain. Traditional ML
models are often designed and trained from scratch for spe-
cific tasks. This focused training while beneficial for per-
formance on targeted task, restricts their transferability to
new tasks and domains. Transfer learning approaches try to
address this limitation by leveraging knowledge from source
tasks to target tasks and domains without the need to train
from scratch. These approaches could be Homogeneous
(Zhuang et al., 2020; Weiss et al., 2016), when the feature
and label spaces remain consistent across domains but differ
slightly in their distributions. Homogeneous techniques aim
to minimize these distribution discrepancies. On other other
hand, transfer learning approaches could be Heterogeneous
techniques (Zhuang et al., 2020; Weiss et al., 2016) when
labels, and feature spaces differs and they aim to bridge the
gaps between different distributions and feature spaces.

Creation of the foundation models created a significant boost
to the improvement of transferablity of the knowledge be-
tween domains, and tasks. However, unlocking the potential
of foundation models for real-world applications requires
effective adaptation to specific downstream tasks. There are
two primary adaptation paradigms for foundation models:
fine-tuning and prompt engineering. In this section, we
explore their distinct strengths, and limitations, and discuss
how each approach can potentially mitigate or amplify the
disparities towards marginalized community.

5.3.1. FINE-TUNING

One of the most widely used transfer learning ap-
proaches, that is usually a homogeneous approach, is fine-
tuning (Brown et al., 2020). Fine-tuning offers a means to
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tailor foundation models to specific tasks and domains by
adjusting internal parameters based on task-specific data
and domain knowledge. This can significantly improve
performance and achieve high accuracy for downstream
tasks which requires specialized knowledge. However, fine-
tuning poses several challenges such as catastrophic for-
getting (Kirkpatrick et al., 2017). Minimizing the loss for
adjusting the pre-trained model to a new task or data, could
substantially drop the performance on some of the original
seen data.

RLHF (Reinforcement Learning from Human Feedback) is
a broader adaptability technique compared to traditional fine-
tuning that is only optimizing the model for limited tasks
and domains. RLHF is a multifaceted training approach
that refines the model behavior with human preferences
and feedback (Bai et al., 2022). RLAIF (Reinforcement
Learning from AI Feedback) is similar to RLHF, however,
it leverages another AI model to automatically generate
feedback on the outputs of the base model being trained (Lee
et al., 2023). Note that although these models could be
aligned with some human values and feedback, it can also
inherit the biases of the people whose feedback is involved
in the model after fine-tuning.

5.3.2. PROMPT ENGINEERING

The training process for fine-tuning can be computationally
expensive. Hence, instead of extensive fine-tuning, recent
and popular paradigm of adaptation of foundation models
is though well-crafted prompts that can guide foundation
models to generate desired outputs or perform specific tasks
without additional training. Popular prompt engineering and
in context-learning approaches suggest that instead of exten-
sive fine-tuning, well-crafted prompts can guide foundation
models to generate desired outputs or perform specific tasks
without additional training.

Although recent in-context learning efforts attempt to de-
bias foundation models (Dwivedi et al., 2023), these ap-
proaches have limitations. Since in-context learning does
not modify model parameters, which would fundamen-
tally increase the model’s representational capacity, post-
processing techniques alone cannot fully address represen-
tation disparity or alter the model’s core understanding of
marginalized communities. While in-context learning can
influence model behavior through text conditioning, and
safeguards can mitigate specific biases or manage harmful
responses, these strategies offer limited bias reduction and
cannot fundamentally change the model’s inherent represen-
tations issues.

6. Technical Gaps & Call To Actions
As outlined earlier, marginalized communities experience
multifaceted disparities rooted in the lifecycle of foundation
models. Here, we mainly focus on the technical limita-

tions that hinder efforts to address these issues. We will
demonstrate how training methodologies, despite relying
on high-quality data, can reinforce cascading disparity phe-
nomena and we propose a set of call for actions to mitigate
the root of such disparities, i.e., representation disparity. We
acknowledge that the calls for action in this position paper
are mainly technical, and we note other sociotechnical di-
mensions of disparities that are important to notice but out
of the scope of our position paper in the impact statements.

Call to Action: Developing Guidelines for Training un-
der Mixtures of Heterogeneous Distributions: First, we
must emphasize that the data used to train foundation models
often originates from diverse underlying distributions. One
of the fallacies in training foundation models is the simpli-
fying assumption that the underlying distribution is a long-
tailed distribution (see Figure 1, sub-figure (a), Dm). While
long-tailed distributions (like those in recommender systems
due to popularity bias) are a relevant factor, specifically in
traditional ML models, the disparities facing marginalized
communities stem not just from limited data points, but
from fundamental differences within their distributions.

As we defined in Section 2, we account for three character-
istics for marginalized community, size, distinct distribution
and distribution complexity. Hence, to mitigate representa-
tion disparity, this distinction with long-tailed distribution
and the consideration of mixture of distribution is essential
to grasp (see Figure 1, sub-figure (a)). Furthermore, even
considering the mixture of distributions assumption, meth-
ods are needed to address high-dimensional datasets that
inherently exist across multiple low-dimensional manifolds
(see the left plot on Figure 1). We argue that considering
low-dimensional manifolds to learn representation of each
distinct distribution can significantly improve the representa-
tion of marginalized communities and reduce the representa-
tion gap. One could consider hierarchical manifold learning
similar to hierarchical Bayesian models to capture global
and local variances or dependencies, such as Bayesian meta
learning (Ravi & Beatson, 2018).

While increasing model capacity could theoretically help
learn under mixtures of heterogeneous distributions, it is
important to consider practical limitations (i.e., learning all
the underlying dimensions x1, x2, x3, x4, x5 in Figure 1).
The computational complexity of blindly pouring data into
the training would quickly drive up costs, making it an un-
sustainable solution in real world applications. Here, we
speculate less computational and resource extensive solu-
tions to address the representation disparity by fixing the
data ordering and batch aggregation problems discussed in
section 5. We suggest to strategically organizing data points
based on their underlying distributions. Grouping data from
similar distributions minimizes conflicting gradient signals
in training. We believe that success of foundation models
to enhance downstream algorithmic fairness during adapta-
tion phases by allowing changes to better reflect marginal-
ized communities, that have been documented by existing
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(a) (b) (c) (d) (e)

Figure 1. Simplified example of data with a mixture of heterogeneous distributions. The aggregated distribution, commonly assumed for
training machine learning models, is represented in Figure (a) by a black dotted line Dm, while the underlying distributions are depicted
in blue D1, orange D2, green D3, and red D4. In this example, all distributions are assumed to be Gaussian with equal weight, which
is not reflective of real-world scenarios where marginalized communities often have smaller data sizes. Despite this simplification, the
aggregated distribution still differs significantly from all the underlying distributions. Learning based solely on the aggregated distribution
not only fails to accurately represent any of the underlying distributions, as shown in (a), but also risks missing variations if the dimensions
of the underlying distributions differ, as shown in (b-e). While simply reweighting or adding more data points to marginalized distributions
is not helpful, the complexities of the distributions can significantly impact the learning process and should be reflected in the method of
aggregation.

work (Mao et al., 2023), are due to better arrangements of
data at such smaller scale. However, accurately grouping
data requires a comprehensive understanding of underlying
distributions.

The challenge of training machine learning models under
heterogeneous data distributions is a significant area of re-
search, particularly within the domain of federated learn-
ing (FL). In FL, models are trained collaboratively across
clients that possess diverse datasets, reflecting real-world
scenarios where data is not uniformly distributed (McMa-
han et al., 2017). While conventional FL treats each client
as a unique distribution, there are often underlying sub-
distributions within the broader heterogeneous dataset. To
address this, advanced clustering techniques has been em-
ployed to identify and group these distinct sub-distributions,
enabling more targeted model training (Ghosh et al., 2019;
Malekmohammadi et al., 2024).

An additional challenge lies in distinguishing low-quality
data distributions from those representing marginalized com-
munities. There is no universal definition of low-quality
data; however, techniques designed to mitigate data poi-
soning and adversarial attacks can inadvertently misclas-
sify data from marginalized communities as low-quality.
While channeling inferences based on data distribution may
help address poisoning and adversarial attacks, extensive
research is needed to differentiate between truly low-quality
data and unique characteristics of marginalized groups’ data
distributions.

Call to Action: Metrics for Representation Disparity via
Manifold Embedding: Our second call to action, is a call to
address the potential flattening of latent dimensions learned
during training for marginalized communities. The flatten-
ing of latent dimensions suggests that the model may not
fully capture the complexities of their distributions, unlike
those of majority groups.

To better grasp this, consider Figure 1. If distribution D4

(sub-figure (e)) relies primarily on dimensions x3 and x5,
learning dimensions x1, x2, x3, x4 from other distributions
might obscure crucial nuances of x5. While distributions
can share common elements such as sentence structure,
alphabet, or cultural norms in language, they also possess
unique dimensions, e.g., consider x3 in Figure 1 which
is a shared dimension between distributions D2 and D4.
Dedicating model capacity specifically to learn these distinct
dimensions would enable far more accurate representation.

Based on the theoretical foundation of manifold embed-
dings (Melas-Kyriazi, 2020), we need to build fair repre-
sentation for marginalized communities within data (Wan,
2021). Comprehensive metrics to measure the multifaceted
impact of data selection bias on model behavior are lack-
ing, hindering effective evaluation. Existing fairness bench-
marks often lack robustness, present wide range of ambigui-
ties, social science pitfalls (Blodgett et al., 2021; Gallegos
et al., 2023) and fail to address core issues within learned
representations. Also, there is need for metrics that go
beyond measuring disparities in downstream tasks. In sin-
gle task machine learning models, disparities are typically
measured within the output space specific to that particular
downstream task. Consequently, most available metrics that
consider fairness and disparities among different groups
focus on evaluations within this output space. Foundation
models, however, diverge from this paradigm as they are
intended to serve as versatile representations applicable to
a wide array of tasks, including those that may emerge in
the future. Given the expansive scope of application for
foundation models, it becomes imperative to consider met-
rics that are robust enough to assess group disparities within
the representation space. Evaluating the learned manifold
involves assessing various geometric properties that can cap-
ture richness and nuances of the data representation. We
want to emphasize that simple distance metrics in embed-
ding spaces, as proposed in the literature (Zhao et al., 2017),
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fail to fully assess the quality of embeddings for different
communities. Collapsing many dimensions during the em-
bedding process leads to a loss of nuance for marginalized
communities, potentially assigning identical embeddings
to distinct concepts. Lipschitz continuity can be used to
evaluate how smoothly the manifold transitions between dif-
ferent regions.Szegedy et al. (2013) showed that for CNNs,
a lower Lipschitz constant indicates more robust features
and results in higher generalizability.

Call to Action: Guiding Capacity via Mixture of Expert
Models: Our next call to action lies in developing measures
that both quantify differences between distributions within
the embedding space and determine the capacity a model
should allocate to each distribution.

Mixture of Experts (MoE) models offer a promising ap-
proach to address the challenges inherent in training with
heterogeneous data (Fedus et al., 2022). Their architec-
ture, consisting of specialized ”expert” neural networks
and a learned ”gating” network, enables intelligent rout-
ing of inputs to the most appropriate expert(s). This al-
lows for targeted training on specific data aspects or sub-
distributions, making MoEs well-suited to the nuanced com-
plexities we’ve outlined.

Furthermore, recent research into sparse networks suggests
that a substantial portion of model capacity may be dispens-
able without sacrificing accuracy on majority-class data.
This opens up potential avenues for exploration using tech-
niques like Parameter-Efficient Tuning (PEFT) (Gordon
et al., 2023) or LoRA (Hu et al., 2021) to optimize MoE
performance and reduce computational overhead.

In addition, PEFT has a potential to facilitate collaborative
federated model training with low-resource marginalized
communities. By tailoring resource allocation based on the
size of individual communities distribution, we can ensure
privacy protection in federated paradigms while avoiding
the mismatched noise levels that often arise in differential
privacy applications sensitive to distribution size (see Sec-
tion 3).

Call for Action: Model-guided Data Collection: Our last
call for action is to address a fundamental challenge faced by
marginalized communities which is the non-uniform sam-
pling of their data (see Section 5). This leads to frequent
distribution shifts (as discussed in Section 3) and hinders
model generalization. To counter this, we propose auto-
mated methods to identify sparse areas within marginalized
data distributions and strategically employ active learning
techniques (Wang et al., 2017). Active learning enables mod-
els to proactively query for the most informative data points,
guiding targeted curation and collection efforts to improve
model performance on underrepresented areas (Holzinger
et al., 2016).

Recent fine-tuning techniques like RLHF and RLAIF (see
Section 5) can be adapted to guide active data creation mech-

anisms, too. This offers a targeted approach to alleviate data
sparsity within marginalized communities (Hemmat et al.,
2023). Our proposal emphasizes strategic data acquisition
over simplistic model scaling or unguided data curation.
While existing model capacity might be sufficient to learn
marginalized data distributions, focused data collection is
crucial. However, it’s important to note that solely relying
on model-identified sparsity may not fully reflect real-world
data complexities. This approach primarily serves to im-
prove the efficiency of data collection efforts. We fully
acknowledge the potential for model-guided data collection
to perpetuate existing biases. We emphasize that our ap-
proach is not a replacement for addressing fundamental data
quality issues like the lack of digitized data in low-resource
languages or marginalized communities. However, we be-
lieve that uncritically collecting more data can also reinforce
existing disparities. Our method intentionally seeks out un-
derrepresented areas, aiming to break those cycles. Our goal
in this call for action is to optimize the data collection pro-
cess within existing constraints. By identifying areas where
the model’s representations are inadequate, we can target
data collection to fill gaps and broaden the model’s under-
standing of underrepresented distributions instead of blindly
increasing the dataset size. The inspiration from active learn-
ing highlights this point – the model itself suggests where
to focus collection efforts. We propose a dynamic process
where the model actively identifies its representational short-
comings. This targeted approach could potentially be more
effective in broadening a model’s understanding, especially
in multilingual settings where conceptual gaps are readily
detectable e.g., the significant variation, or even near-zero
distance, between representations of distinct concepts across
or within languages.

Finally, we believe covering all the nuances of the repre-
sentation disparity and how all other courses of disparity
stemmed from it by studying it thought the ML pipeline
is an important aspect to picture and show the complexity
of the cascading phenomena. Our focus on addressing this
root cause through training procedures and novel metrics is
an intentional and focused call to action. Current metrics
are insufficient, and we believe developing new evaluations
and metrics targeting capacity and embedding gaps is cru-
cial for tackling representation disparities. Furthermore, as
discussed earlier, we believe overemphasizing on solutions
such as scaling laws and indiscriminate data collection can
mask biases favoring majority groups. Recent literature
on pruning indicates that we may be using unnecessarily
large models for majority representation and it is even an
*overkill”. In this position paper, we advocate for opti-
mizing model capacity during training to ensure inclusivity
across diverse distributions, i.e., MoE models. We empha-
size that our calls to action are intentionally interconnected,
forming a unified framework to address the cascading effect
and prioritizing one call to action over another would miss
the systemic nature of the problem.
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Impact Statement
Addressing the multifaceted problem of disparities in foun-
dation models requires a holistic sociotechnical approach
that goes beyond isolated technical fixes. While in previous
section, we solely focused on technical gaps and position
our work around the cascading disparity towards better train-
ing paradigms, we would like to emphasize on the need for
community engagement and involve marginalized commu-
nities throughout the development process to ensure that
their perspectives and concerns are addressed.

Foundation models democratize AI by empowering smaller
organizations and communities with limited data or exper-
tise. They unlock previously impossible applications like
creative text generation and code translation. However, they
also introduce unique challenges that emerge after deploy-
ment which impact marginalized community. While a com-
prehensive discussion of the societal impacts of foundation
models is beyond the scope of this work, to conclude our pa-
per, next, we highlight three critical areas that directly affect
marginalized communities and require urgent attention.

Measurements beyond Representation Disparity: The
size and complexity of foundation models make it difficult to
comprehensively assess their disparities. Traditional dispar-
ity detection methods often fall short due to the model’s abil-
ity to mask disparities in subtle ways. Foundation models,
specifically multi-modal versions, often process multiple
types of data, such as text, images, and audio. This means
that disparities can manifest in different forms, making it
challenging to develop a universal evaluation framework.
Additionally, disparities can emerge in different contexts
and evolve over time. Static evaluation methods may not
capture these dynamic patterns. Finally, currently, no widely
accepted set of metrics exists to measure disparities in foun-
dation models. Different researchers and organizations may
prioritize different fairness criteria, which makes compar-
isons and bench marking very difficult and challenging.

Monopoly Effects: Unlike traditional ML models, training
foundation models necessitates vast amounts of data and
specialized hardware, often inaccessible to most organiza-
tions and researchers. This creates a high barrier to entry for
marginalized communities, and leads to a concentration of
power among a few large tech companies with the resources
to develop and control these models. This concentration can
stifle competition and innovation, as smaller players are of-
ten unable to challenge the dominance of large players with
their proprietary foundation models. Moreover, as more or-

ganizations rely on foundation models from a few providers
to power their products and services, a widespread depen-
dence on these models emerges which lead to propagation
of disparities in various downstream tasks that are stemmed
from a single model. This can also create a lock-in effect,
which makes it difficult to transition to alternative models
or providers, as entire ecosystems become built upon a lim-
ited set of foundation models. This concentration of power
grants a few companies significant control over the develop-
ment and direction of AI research and applications while the
root of disparities are the same and create a systematic way
that disparities impact society, specifically, marginalized
communities.

Long-term Impact: Foundation models undergo training
using data obtained from internet scraping. As mentioned in
previous sections, this data is not selectively chosen; rather,
it is randomly sampled from the internet. Consequently, the
distribution of this data is biased, reflecting the cultures and
attributes of regions with greater internet access and usage.
Given that foundation models find application in numerous
generative tasks across various modalities (e.g., text, image,
video, music, etc.), this exacerbates the existing gap in the
representations of data on the internet. The data used to train
these foundation models in subsequent iterations contributes
to a snowball effect, potentially resulting in almost zero
representations of certain marginalized groups.

Evaluation for downstream task: Addressing various bi-
ases towards marginalized communities in foundation mod-
els requires an in-depth understanding of interconnected
harms and the development of holistic solutions. Future
research should focus on the development of robust met-
rics and approaches that surpass surface-level evaluations.
Existing work suggests conflicting empirical results about
the relations of intrinsic biases and extrinsic biases (Gupta
et al., 2022; Kiela et al., 2022; Stafanovičs et al., 2022; Mo-
hanty et al., 2022). We encourage future research to focus
on theoretical foundations to analyze the relations between
various intrinsic biases and extrinsic biases through the lens
of representation disparity.
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