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Abstract
Most natural sequential processes involve a spec-
trum of different time scales: from fast-changing
variations responsible for local structure to slowly-
changing dynamics akin to memory that captures
context information. Here we propose a method
for learning such disentangled slow-fast repre-
sentation in activations of a conventional Trans-
former model. We accomplish this by employing
regularization techniques inspired by contrastive
learning. This proposed approach can be further
analyzed by adopting a Gaussian process prior
resulting in a Variational Autoencoder interpre-
tation of a Transformer model. We evaluate our
techniques on synthetic in-context learning tasks
and widely-used text benchmarks, where we show
the emergence of disentangled representations.
We then propose a HyperNetwork-inspired ap-
proach, where the slow representations are em-
ployed to modulate the weights of the transformer
performed on the fast short-range activations. We
demonstrate that adding such modulation makes
it possible to generate models specialized to a
particular context on the fly.

1. Introduction
Sequential data across a variety of domains, including phys-
ical measurements, audio, language, video and numerous
other types, often exhibit rich temporal spectra (Dietterich,
2002; Hu et al., 2016; Birnbaum et al., 2019). The gener-
ative processes underlying different components of these
signal frequently produce distinct spectral components, each
reflecting different mechanisms and carrying different types
of information. For example, a speech recording of a di-
alogue contains higher-frequency audio signals capturing
audio details, while lower-frequency latent features encode
phonemes, then utterances. The lowest-frequency compo-
nents may carry information about speaker’s identity, or
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gradual changes in conversation topic. Similarly, in a text
domain, we expect to find slowly-evolving representations
encoding information about the current topic, text sentiment
and overall context. Another important example that we
address in this paper is few-shot in-context learning. Here,
the nature of the task is expected to be gradually revealed as
more and more examples are being processed. Hence, we
can think of the task representation as a variable that slowly
changes along the sequence and eventually saturates when
the task is fully specified.

In this publication, we investigate the unsupervised disen-
tanglement of different time scales in sequences and time
series. Specifically, we focus on enhancing the emergence of
slow-evolving features within the activations of a standard
Transformer model (Vaswani et al., 2017) by incorporating
novel auxiliary regularization techniques. We demonstrate
the effectiveness of this technique and show that resulting
disentangled representations effectively capture both global
and local information about the sequence. This allows us to
interpret the computation performed by the model in a few-
shot in-context learning setting. We illustrate the process in
which slow features stabilize and saturate as the Transformer
processes an increasing number of examples, and show that
these slow features end up reflecting the information about
the underlying task showcased with given examples.

Recalling that slow features frequently characterize the
global context, we then propose to modify the Transformer
model to explicitly decouple the influence of these slow de-
grees of freedom on the local computation. This allows us
to view a trained sequence model as an entire “manifold” of
sequence models all specialized to particular contexts (that
is dynamically discovered by the model as it is processing
the sequence). We then show that by freezing slow represen-
tations we can recover lightweight models uniquely suited
for performing one specific task, or working in a specific
context. This process is performed in a single step and does
not require any tuning. Furthermore, the resulting model
no longer needs a prompt or few-shot demonstrations in
context.

This paper is structured as follows. In Section 2, we discuss
related work listing publications exploring similar research
topics. Then, in Section 3, we outline two core components
of our method: (a) regularization techniques leading to
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emergence of slow features in Transformer activations and
(b) additional architectural elements that allow these slow
features to have an expressive modulation effect on the local
computation performed by the model. Section 4 starts with a
discussion of datasets that we use in our experimental setup
and then covers our results obtained with these datasets.
Finally, in Section 5, we outline our conclusions.

2. Related Work
Learning representations with various scales. Publica-
tions (Xu et al., 2022; Tang et al., 2022; Rao et al., 2021;
Chen et al., 2023) have explored techniques for assessing
the significance of individual tokens with varying levels of
detail, aiming to reduce computational overhead. Specifi-
cally, (Xu et al., 2022) shares a conceptual similarity with
our approach, which involves applying distinct update mech-
anisms to tokens based on their importance. While their
approach distinguishes between informative and placeholder
tokens, ours divides embedding dimensions into two seg-
ments, each tasked with capturing either local or global
context.

Transformer + VAE. Integrating Transformer and Varia-
tional Autoencoder (VAE) (Kingma & Welling, 2014) has
been a subject of numerous endeavors. (Casale et al., 2018)
employs Gaussian processes as priors for the latent space,
enabling the model to capture intricate data dependencies.
Addressing the issue of controllability in narrative gener-
ation, (Wang & Wan, 2019; Fang et al., 2021) develop a
conditional VAE framework. (Henderson & Fehr, 2023)
introduces a model that incorporates nonparametric vari-
ational methods to enhance the information bottleneck in
Transformers, leading to better capture of latent represen-
tations and improved efficiency across various natural lan-
guage processing tasks. Similarly to the previous work, our
approach proposes a VAE-based method with a meticulously
designed regularizer, enabling more flexible control over the
representations, ensuring they evolve slowly.

In-context learning. In-context learning has garnered sig-
nificant attention among researchers, particularly with the
rise of large language models, owing to its adaptability
to unforeseen tasks (Brown et al., 2020). Several studies
(Von Oswald et al., 2023; von Oswald et al., 2023; Liu et al.,
2022; Min et al., 2022; Zoph et al., 2022) have examined
the mechanics of in-context learning to grasp its function-
ality and rationale. Our proposed slow-fast representation
learning approach is able to effectively bolster in-context
learning for generative models by effectively capturing both
global and local contexts across diverse tasks.

3. Method
In this section, we detail two core components of our
method: (a) learning a slow-evolving global context rep-
resentation in a sequence, and (b) using this representation
to adjust model weights for local computation. The outline
can be summarized as follows:

1. We discuss slow-evolving representations in Sec-
tion 3.1 and introduce element-wise regularization tech-
niques (RC andRD) in Section 3.2;

2. We extend these techniques to Gaussian process priors
in Section 3.3, proposing a VAE-based approach (can
be used in place of the above regularization);

3. In Section 3.4, we explore using slow features to modu-
late local computation and present a novel architecture
for context-specific model generation;

4. Finally, in Section 3.5, we cover an optional auxil-
iary loss Laux and additional feature augmentations
to further disentangle fast-slow representations thus
enhancing model performance.

3.1. Learning Slow Features
Consider a conventional Transformer model processing an
input sequence t := (t1, . . . , tn), where each ti represents
a discrete token. We follow a convention, where all “pro-
cessing stages” (that we later enumerate with ν) including
self-attention and MLP layers have residual connections.
Assuming that the unknown generative process that outputs
t incorporates slowly changing latent variables, we may
attempt to regularize our Transformer model with the goal
of identifying such slow features as a part of the computa-
tion. Here we use the term “slowly” informally, but each
regularizer described below in effect defines it implicitly.
We present a more detailed discussion of this subject in
Appendix A.

In some circumstances, our prior knowledge of the unknown
generative process could be very detailed and include, for ex-
ample, information about an entire spectrum of time scales
involved. Here, however, we attempt to make just a few
simplifying assumptions. For example, while it is possible
to regularize activations at multiple stages of computation,
in the following we target a single stage ν = `. We then
partition model activations z` at this stage into just two parts
z`i := (x`i ,y

`
i) with activation components x` assumed to

be completely unconstrained and using a specially designed
regularizerR for incentivizing y` to change slowly.

3.2. Slow Features: Element-Wise Regularizers
The simplest regularizer that enforces continuity in y` can
simply penalize large time step differences in y`i , or in its
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normalized value, for instance we consider:

R`C ∼
n∑
s=2

∥∥n`s − n`s−1

∥∥2
,

where n`i := y`i/‖y`i‖. In the rest of this section and in
Sec. 3.3, we drop ` for brevity.

In practice, adding the regularization term into the loss
with some non-zero weight wC can incentivize the model
to generate constant activations yi with RC = 0, at least
locally. A common way of stopping y from collapsing
to a constant value is to adopt some form of contrastive
learning approach. For example, inspired by the orthogonal
projection loss (Ranasinghe et al., 2021), we regularize the
scalar product of activations across samples in the batch for
each sequence element independently:

RD ∼
∑
s,α,β

(
n(α)
s · n(β)

s − δα,β
)2

,

where α and β are indices of two samples in the batch and
δα,β is the delta function. We refer to regularizers that do
not depend on cross-element correlations as element-wise.
This particular regularizer is designed to favor orthogonality
of sample representations within the batch and it proved to
be sufficiently effective in our experiments, where we end
up optimizing the joint loss L′ = L+ wCRC + wDRD.

There is also an alternative approach to incentivizing repre-
sentation diversity that is based on parameter estimation that
we discuss in detail in Appendix B. Detailed comparison
with this approach will be the subject of our future work.

3.3. Slow Features: VAE-Based Approach
A more principled approach that extends the element-wise
regularization method and gives us a more nuanced control
over the characteristics and smoothness of y is to view the
Transformer as a Variational Autoencoder model (Kingma
& Welling, 2014) and choose a Gaussian process prior for
y. More specifically, we assume that a prior over y is
a multivariate Gaussian distribution p◦(y1, . . . ,yn) with
〈ys〉 = µy and covariance 〈(ys − µy)(yt − µy)〉 being
given by a known kernel Ks,t = K(|s − t|). This prior
ensures that y do not degenerate becoming constant and that
computed at two nearby points in time, these activations
maintain a certain degree of coherence defined by K.

In this setup, we assume that the probability distribution over
t can be represented as

∫
pφ(t|x,y)p◦(x,y) dx dy with

pφ(t|z) being a causal decoder and p◦(x,y) = p◦(x)p◦(y)
being the prior. Following a conventional Variational Au-
toencoder setup, we can then use a variational approxima-
tion qψ(t|z) of pφ(t|z) and employ the evidence lower

bound (ELBO) to derive a VAE objective:

L = Et∼p(t)

[
Ez∼pφ(z|t) log qψ(t|z)+

+DKL(pφ(z|t)|p◦(z))
]
.

This formulation allows us to view the full Transformer
model as a combination of two parts: an encoder qψ(z|t)
mapping the input t to intermediate activations z at some
layer `, and a decoder pφ(t|z) reconstructing the input from
these latent variables. Choosing causal Transformer layers
for parameterizing pφ and qψ , we see that the only difference
of our model from a conventional Transformer is the fact
that the activations z` are no longer deterministic.

For simplicity, we assume statistical independence of x and
y in both pφ(z|t) and p◦ and adopt the β-VAE approach
relying on two independent constraints, on x and y resulting
in:

L = Et∼p(t)

[
Ez∼pφ(z|t) log qψ(t|z)+

+ βxDKL(pφ(x|t)|p◦(x)) + βyDKL(pφ(y|t)|p◦(y))
]
.

(1)

While it could be useful to define a prior on x, in the fol-
lowing we choose βx = 0 and let x being unconstrained,
only constraining our slow activations y. As a result, we
can view the first term in Eq. (1) as a conventional autore-
gressive sequence reconstruction loss, while the last KL
divergence term acts as a regularizer on y and is described
below.

Here we derive DKL loss for a scalar sequence yi, later
generalizing this derivation to vector-valued sequences. The
Gaussian process prior on y is defined by specifying µy

and the kernel K. In our model, we chose µy = 0 and
Ki,j = K2(νδi,j + (1 − ν)KRBF

i,j ) with some constant
K > 0, ν ∈ [0, 1] and a Radial Basis Function (RBF) kernel
KRBF
i,j = exp(−‖i − j‖2/2σ2), where i and j are two se-

quence positions. As a result, our kernel is parameterized by
just two scalars: ν controlling a mixture of delta-correlated
noise and the RBF kernel and σ that controls the smooth-
ness of y. To simplify our calculations further, we define
our encoder pφ(y|t) as

pφ(y|t) ∝ exp

[
−
∑
i

(yi − µi(t))2

2σi(t)2

]
,

effectively treating elements yi taken at different positions
as statistically independent draws from corresponding Gaus-
sian distributions. This, of course, guarantees that DKL

can never reach zero, but it is still expected to adequately
regularize our encoder t→ y. We can then easily compute
the KL divergence of this distribution with our Gaussian
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Figure 1. Model architecture showing processing of a single token
with the activation component yν+1 being a function of (xν ,yν)
and xν+1 being a function of xν alone; activations y` are regu-
larized to be slow-changing (viaR) and are then parameterizing
transformations T(q)(·;y`) mapping xν to x̃ν for ν ≥ `.

process prior:

2DKL = log |K| −
n∑
i=1

log σi − n+

+

n∑
i,j=1

K−1
i,j µiµj +

n∑
i=1

K−1
i,i σi.

Notice that log |K| − n is a constant and K−1 can be pre-
computed making this calculation sufficiently low-cost. For
vector-valued y, the kernel becomes block-diagonal and the
regularizer can be seen to have the same general form with
an additional outer summation over different components
of y.

The complete model can then be seen as a combination
of a conventional autoregressive reconstruction loss and a
regularization term DKL. The latter can be seen to penal-
ize very large and very small values of σi and non-zero
µi. The regularization effect on µ can be studied by com-
puting eigenvectors of K−1. For a sufficiently large σ, the
eigenvalues can typically be seen to grow rapidly with the
number of oscillations in the corresponding eigenvectors,
highlighting the fact that this regularization term suppresses
rapidly changing fluctuations. Also notice that the encoder
mapping t to z is now probabilistic with a deterministic un-
constrained x(t) and y(t) ∼ N (µi, diag (σi)). In practice,
vectors µi and σi can be generated in our Transformer via
a composition of self-attention and MLP layers as conven-
tional activations. In effect, the overall setup can be seen
as a balancing game between the reconstruction objective
and injecting just enough noise in y while penalizing µi for
being non-zero and fast changing.

3.4. Computation Modulation by Slow Features
Assuming that our regularization enforces changes in y`

sufficiently slowly, we observe that these activations influ-
ence subsequent operations (typically matrix multiplications
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Figure 2. Auxiliary loss incentivizing the Transformer to encode
long-range information in y: the auxiliary loss is applied to an
input sequence truncated at ltrunc with the autoregressive loss
applied to all, but the first l∆ tokens, the slow variables y` are
borrowed from the Transformer running on the original sequence
(with a possible smoothing augmentation mapping y to ỹ).

within the ensuing self-attention or MLP layer) essentially
by adding a slowly varying bias term. This happens because
W`z`i can be expressed as W`

xx
`
i + b̃i, where W is a linear

operator and b̃i := W`
yy

`
i is evolving slowly with i. In

other words, we can think of components y` as discovered
slow features that modulate the computations done on the
bulk of the model activations x`.

Since changing layer biases may not be sufficiently expres-
sive, we introduce a more complex mechanisms that allows
y` to affect both biases and weights of the computation
over x at multiple following layers. Furthermore, for the
purposes of discovering specialized models (as will be dis-
cussed below), we decouple the computation on xν from
yν except for explicit y`-dependent transformations applied
to xν for ν ≥ ` (see Fig. 3.3). To be more specific, in all
computation stages ν ≤ `, we make sure that xν are only
dependent on xν−1, while yν are allowed to depend both
on yν−1 and xν−1. This also requires that we process xν

and yν using separate self-attention heads. For ν ≥ `, be-
fore processing each activation xν , we apply an additional
transformation to it producing x̃ν = Tν(xν ;y`), which we
then use in the following MLP or self-attention layers. The
transformation Tν(x;y`) is:

Tν(x;y`) := x+ δŴν(y`)x,

δŴν
ij(y

`)L =
∑
k

L̂νik(y`)R̂ν
jk(y`),

where δŴν(y`) is generated from:

L̂ν(y`) =

M∑
m=1

L̂ν,(m)σνm(y`),

R̂ν(y`) =

M∑
m=1

R̂ν,(m)σνm(y`),
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where L̂ν,(m), R̂ν,(m) are additional learned matrices and
M is their total number. The nonlinearity σ(y`) is typically
chosen to be a hyperbolic tangent σν(y`) = tanh (Sνy`),
or a softmax σν(y`) = softmax (Sνy`) with Sν being a
learned linear transformation.

3.5. Slow Feature Transplantation and Additional
Techniques

Our approach for using y to modulate the computation on x
may be viewed as a way of generating context-specialized
models. Indeed, if y encodes information about the current
context, we can freeze it (essentially keeping it constant
along the sequence after some point) and “fold” generated
near-identity transformations T(x;y`) into the following
matrix multiplications to produce a lightweight context-
specialized model operating on x alone. Therefore, in effect,
training a single modified Transformer model, we can learn
an entire manifold of specialized compact models that can
be isolated and frozen to only act in a given context.

For this technique to work, it is crucial that y encode only
the global, slowly-changing context and not local informa-
tion. Concurrently, it is also important that x does not
absorb long-context dependencies. However, training Trans-
former using techniques described above may not be suffi-
cient to guarantee such perfect disentanglement between x
and y. Thus, in our experiments, we used two additional
techniques to further disentangle these features.

Auxiliary loss. The first idea is that x may be forced to
rely on extracting global information from y alone if we
can limit the model attention to a smaller local window. We
accomplished this by adding a new auxiliary loss compo-
nent Laux(t̄; ȳ`) computed by a Transformer applied to a
truncated sequence t̄ (see Fig. 3.3) with ·̄ referring to ten-
sors in this model. In most of our experiments, the slow
variable sequence ȳ`(t) was frozen and set to be equal to y`

pre-computed on the full sequence and truncated to match
the time shift in t̄. The sequence t̄ was a truncated ver-
sion of ti with only i ≥ ltrunc elements kept for randomly
sampled ltrunc. The autoregressive reconstruction loss Laux

was also only computed after l∆ tokens thus giving local
activations x̄ access to a local context of size l∆, but com-
municating long-distance information via pre-computed ȳ`

alone. We observed that this technique was very efficient at
forcing the model to rely almost solely on y for maintain-
ing long-context information. Interestingly, this technique
was also crucial for a proper operation of our VAE model
since without this loss, VAE can typically ignore heavily
regularized random y` in favor of keeping all information
in deterministically generated x`.

y sequence augmentations. We also used another tech-
nique for making it difficult for our model to keep local
context information in y. First of all, the injection of noise

in the VAE model naturally limits what it may communi-
cate via y`, but a model with the element-wise regularizer
can (and frequently does) “hide” local information in “slow”
activations. Therefore, in our experiments with element-
wise regularizers, we utilized random augmentations that
smoothed and shifted the sequence y` making it more diffi-
cult for the model to store local information in these slow
features. The augmentations were either introduced in the
forward path of the core model, or only used when generat-
ing ȳ` for the auxiliary loss. Another augmentation we used
extensively is to extend a value of y`i at position i∗ = ltrunc

to the rest of the sequence (i > i∗). In other words, ȳ` was
held constant value throughout the entire sequence in the
auxiliary loss. This augmentation can alone force y` to be a
slowly changing variable. More details about our full model
can be found in Appendix C.

4. Experiments
4.1. Datasets
In this section, we describe two dataset families used in
our experiments. The first dataset is synthetic with each
sequence containing multiple arithmetic in-context learn-
ing tasks, each of which could be resolved approximately
by solving a system of two linear equations. The second
family which we call text mixture is based on frequently
used wikipedia (Raffel et al., 2020) and c4 (Founda-
tion) datasets, where we combine two random excerpts to
form a single training example.

Synthetic In-Context Learning Setup. Here we de-
scribe a simple synthetic in-context learning setup, where
each individual sequence contains multiple in-context learn-
ing tasks. All sequences in our synthetic dataset contain
ntasks ≥ 1 individual in-context learning tasks, each defined
by its own two real-valued hidden parameters (ai, bi)

ntasks
i=1 .

An individual in-context learning task i is encoded via a se-
quence of nex examples {νi,j := h(ξi,j ; ai, bi)}nex

j=1, where
ξi,j are random example-specific arguments and h is a func-
tion mapping these random arguments and task parameters
into the actual example representation νi,j .

In our dataset, ξi,j are two d-digit integer numbers Ai,j
and Bi,j with d = 3. Coefficients ai and bi are floating
point numbers sampled uniformly from [0, 10) and [−9, 10)
correspondingly. The actual sample h(Ai,j , Bi,j ; ai, bi) in-
cludes two d-digit arguments and a signed and truncated1

(d + 2)-digit result aiAi,j + biBi,j . In other words, we
encoded linear combinations of two arguments with some
unknown ai and bi and provided with several such exam-
ples, expected the model to perform this computation on
entirely new d-digits numbers. In most of our experiments,
we used ntasks = 4 and provided nex = 4 examples for

1Not rounded, but using b·c instead
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Figure 3. The dot product ni · nj plot for normalized y embed-
dings at two different locations in the sequence with 4 tasks and 4
examples per task.

each task. All examples were separated by a special token
and all tasks within a sequence were separated by a dif-
ferent special token. A typical example with a = 1 and
b = 1 could look like 012*023=+00035 and the same
arguments for an example with a = 0.5, b = −1.5 would re-
sult in 012*023=-00028. Examples of actual sequences
are presented in Appendix D.

Since each task is specified by two unknowns a and b, one
typically needs 2 examples to find these multipliers. On
top of that, since we only observe rounded results, there is
an additional uncertainty in the reconstruction of a and b.
Therefore, we would expect a powerful model to reach a
next-token-prediction accuracy close to 100% only in the
limit of seeing infinitely many examples.

Text Mixture Datasets. In another set of experiments, we
use text datasets such as wikipedia and c4. Our models
are trained on sequences constructed from individual text
samples, or combinations of 2 independent text samples
coming from the source dataset. When 2 input text samples
are concatenated to form a single sequence, we cut the
first text excerpt at a random position sampled uniformly
from the range [lstart, lfinish] and concatenate the second
text sequence to it. The concatenation is done after both text
sequences are tokenized and the final produced sample is
truncated at the maximum sequence length lmax. In most of
our experiments, the total sequence length was lmax = 512,
lstart = 256 and lfinish = 384.

4.2. In-Context Learning Results
Our first experiments were conducted with the synthetic in-
context learning dataset described in Sec. 4.1 with ntasks =
4, nex = 4 and d = 3. We trained GPT2-style Transformer
models (Radford et al., 2019) following both the element-
wise regularization method (Sec. 3.2) and the VAE-based
approach (Sec. 3.3).

Slow representation. After a brief hyper-parameter tun-
ing stage, we identified a range of parameter values, for
which regularized model activations were slowly changing
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Figure 4. Linear regression results for the multipliers a and b given
the average value of y, the plot shows agreement between predicted
and groundtruth values.
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Figure 5. Evolution of y along the sequence containing two c4
text excerpts joined at 305.

and yet not collapsing to a constant value. For our element-
wise regularizer, we picked wC between 0.04 and 0.08 and
wD = wC/2. For VAE, we chose the delta-correlated noise
component given by ν = 0.03 or 0.1, temporal scale given
by σ = 0.1 (10% of the sequence length) and β ranging
between 0.01 and 1.0. Detailed model parameters can be
found in Appendix C.

First, we analyzed the properties of the learned slow vari-
ables, discovering that both element-wise regularization
and VAE-based approaches produced qualitatively similar
results.

Fig. 4.2 shows a typical plot of the average dot-product
〈ni ·nj〉 of normalized slow embeddings ni = yi/‖yi‖ or
of individual components 〈ni,k · nj,k〉 emerging in most
of our experiments. In that specific example we used
ntasks = 4 and nex = 4 so is has a global block-diagonal
structure with 4 blocks corresponding to 4 independent tasks.
In models trained with element-wise regularizer, the slow
embedding generally evolved in the first half of each task,
when the model processed the first two examples, but then
stabilized and hardly changed when processing the last two
examples. This is consistent with y gradually “learning” the
representation of the current task (ai, bi) while processing
first 2 examples (which are generally sufficient to narrow
down multiplier values).
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Auxiliary autoregressive lossin context

(a)

Auxiliary autoregressive loss

(b)

Figure 6. Two different training schemes for learning specialized
models: (a) previous examples are included in context: the model
uses l∆ tokens both for computing the frozen replicated y` and the
final answer; (b) previous examples are excluded from the context
when computing the final answer.

Predicting the task from y. We also verified that y did
in fact encode task multipliers a and b by performing linear
regression. For this purpose, we computed y for each task
in each sequence creating an auxiliary dataset of records
(ai, bi, 〈yi〉), where ai and bi are task parameters and 〈yi〉
is a value of y within this task averaged across 4 tokens
(to reduce the effect of noise) in a random position in the
last two examples. A typical linear fit for both of these
coefficients in a model with element-wise regularization
is illustrated in Fig. 4.2, where it can be seen that the pre-
dicted values of a(〈y〉) and b(〈y〉) with a simple linear
model agree very well with the actual values used in the
corresponding sequences. We also observed similar linear
correspondence between y` and the task multipliers a and b
in VAE models, where higher β values were typically asso-
ciated with smoother y`. At lower values of β and without
y` augmentations in the auxiliary loss, the model would
typically encode some task information in rapid localized
changes of y` (see Appendix F).

Model performance. All models were compared to base-
line models running on x alone without Tν(·;y`) transfor-
mations. Baseline models had 6 layers, an inner dimension
of 112, and 7 heads. Accuracy measurements were done on
5 or 6 independent runs, reporting the highest2 and average
test accuracy. Baseline models achieved 78.4% next-token
prediction accuracy (0.2% error3) on numeric answers in
the last 2 examples of each of 4 tasks and the average ac-

2The model is chosen based on the validation accuracy
3Here and later we report 3 times the standard error as our

statistical error.
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Figure 7. Average accuracies on the last two examples in different
specialization runs for ` = 3, 4, 5 (average and 3 times the standard
error are also plotted): with previous examples in context (ctx) and
without them.

curacy across all models was 77.7%. Introducing a 16- or
32-dimensional y` at layer 5 and adding a regularizer with
wC = 0.08 and wD = 0.04 increased peak accuracy to
80.4% (0.3% error) and average accuracy to 79.1%. Varia-
tional autoencoder models, without extensive hyperparame-
ter tuning, had comparable average accuracy of 79.0% for
β = 0.1. Accuracy degraded with increased regularization,
but representations y` became smoother (see Fig. 15(a) and
discussion in Appendix F).

Even though the accuracy increase is attributed to y` in-
creasing model complexity and the total number of model
parameters, our trained models can act as specialized mod-
els if we communicate the task information via y`. To assess
model specialization via y`, we considered two setups, as
illustrated in Fig. 6. In the first, y` was computed on a
sequence of task examples to generate a new specialized
model with frozen Tν operators. This model, was then run
on new examples of the same task with the old examples
(used to generate Tν) being provided in context. It reached
80.6% peak accuracy and 78.9% average accuracy for ` = 5
(see Fig. 4.2), higher than the baseline accuracy.

In the second setup, y` and Tν were computed similarly,
but the model was applied to new samples without using
the original examples in context. For ` = 4, the specialized
model’s peak accuracy was 78.5% (0.3% error) and average
accuracy was 77.3% (see Fig. 4.2). This shows that a few
task examples can generate a new specialized Transformer
that effectively performs the task without additional exam-
ples in context. By training our model, we effectively con-
verted multiple task demonstrations into specialized model
weights that requires no prompting or tuning.

Both setups used the same training parameters, but with
dimy` = 64. The auxiliary loss with y` augmentation
copied y` across the entire sequence. In the first setup, ỹ`k =
y`ltrunc+l∆−1 for k ≥ ltrunc + l∆, and in the second, ỹ`k =

y`ltrunc−1 for k ≥ ltrunc (see Fig. 6). This optimization
allowed fixed Tν operators and accommodated previous
examples in context.
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4.3. Text Mixture Results
We began our text dataset experiments by training models
using our element-wise regularizer and examining the prop-
erties of the learned slow features. The Transformer model
we selected had 12 layers and was trained on a blend of two
distinct c4 text excerpts. Similar to the synthetic dataset,
we chose wC from 0.04 to 0.1, set wD = wC/2, and ` = 8
(see more details in Appendix E). The emergence of clear
transitions between text documents in the slow representa-
tions y` of our trained models was notable, as depicted in
Fig. 4.2, despite this dataset property not being explicitly
utilized in our training approach. Additionally, we validated
that y` values serve as sensible embeddings for the current
document or passage by calculating y across hundreds of
wikipedia pages from 8 distinct categories (see details
in Appendix E). The t-SNE (van der Maaten & Hinton,
2008) plot in Fig. 4.3 shows the clustering of pages from
the same categories4, with noticeable distinction between
different categories, except for ”Mathematical identities”
and ”Theoretical physics,” which aligns with their semantic
similarity. Moreover, we assessed our model on various
out-of-distribution mixtures of 3 text excerpts, observing
transitions of y within approximately 10 to 20 tokens from
the joined text locations (see Fig. 12(b) in Appendix).

In a separate set of experiments, we trained VAE models on
the c4 and wikipedia datasets. We used ν between 0.1
and 0.3, σ = 0.1, and β from 0.1 to 10. Increasing β made
the learned slow feature y smoother. The features remained
predictive of the text subject (confirmed by t-SNE plots).
Very high β values, however, resulted in overly smooth
representations that couldn’t reliably separate different texts
(see Appendix F).

We also studied specialized models by freezing y` through-
out the sequence. Starting with a pre-trained model on c4
and testing on the validation set, we split 11,600 samples
into two parts, typically at the end of a sentence around
400 characters (roughly 100 tokens) from the start. The
model was run on the first part, then y` was frozen and the
model was run on the second part with y` fixed, creating
a specialized model. The per-token cross-entropy loss was
computed and averaged over all samples. The specialized
model had lower loss initially, but the non-specialized model
caught up and surpassed it after roughly 200 tokens (see
Fig. 4.3). This suggests that y` helped the specialized model
near its measured position but became less useful further
down the sequence, degrading performance when forcefully
fixed. Similar behavior was observed when comparing the
specialized model to a separately trained baseline model,
with performance leveling around 300 tokens (see Fig. 12(a)
in Appendix).

4The models trained on individual documents learn even better
embeddings, see Fig. 14
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Figure 9. Average difference between the cross-entropy losses of
the specialized (fixed y`) and non-specialized (dynamic y`) mod-
els; the specialized model is better where this difference is below
zero.

Additionally, instead of clamping y` to its value at the end
of the first part of the document, we conducted experiments
updating y` as a moving average (with the values computed
on the second part). We then witnessed an improved cross-
entropy loss throughout the entire sequence (see Fig. 13 in
Appendix) thus having a way of injecting information about
the first part of the text into the second part while allowing
y` to adjust to shifting context. In other words, y` might be
interpreted as a topic embedding or topic vector that we can
flexibly manipulate.

5. Discussion
Learning slow features that carry information about the
global context in a sequence is important for understanding
and interpreting data. Here we propose an approach for
incentivizing a Transformer model to discover such slow
representation within its inner activations. We then modify
the model architecture to parameterize local computation by
these learned slow features, showing that it is then possible
to generate models that are uniquely specialized to a partic-
ular local context and no longer need to have direct access
to it. While we only consider several simple examples in
our experiments (a synthetic few-shot in-context learning
task and a mixture of texts), we believe that this approach
can prove useful for representation learning, model inter-
pretability and generation of specialized models.
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A. Slowly Evolving Activations
The precise definition of what it means for activations y to change “slowly” can be defined on a case-by-case basis. For
example, we could say that the sequence yi is K-slow if there exist K-Lipshitz f : R → Rd such that yi = f(i). In the
main text we frequently consider y to be slow if viewed across all samples, the distribution of y mimics that of a Gaussian
random process with Ki,j = νδi,j + (1− ν)KRBF

i,j with a sufficiently small ν and KRBF
i,j = exp(−‖i− j‖2/2σ2) being a

Radial Basis Function (RBF) kernel with a sufficiently large σ.

Yet another family of meaningful definitions can be motivated by information theory. As a simple example, given a particular
quantization scheme, we could define n̂ as a quantized value of n = y/‖y‖ and say that n changes slowly if the conditional
entropy H(n̂i|n̂1, . . . , n̂i−1) is sufficiently small. In other words, if the new observations of n̂ are almost pre-determined by
the history, which can happen, for example, if ni stay in individual quantization cells for a sufficiently long time.

B. Additional Regularizers
While the element-wise regularizers described in Section 3.2 proved to be sufficiently effective in practice, we can formulate
a more principled approach to regularizing y. The goal of the designed regularizer is to guarantee that y seen as a random
variable (considering per-sample realizations) should ideally be seen as samples from a prescribed distribution function
p(y). Since estimating probability distribution of a high-dimensional random process is typically complicated, we need to
rely on a simpler approach. Specifically, we consider a sufficiently flexible parametric family pθ and then regularize the
values of the parameter estimators θ̂(y) to be equal to their predefined values by using, for example, a regularizer

RP ∼
∥∥∥θ̂(y)− θ0

∥∥∥2

. (2)

Here we utilize a naı̈ve L2 regularization of the distribution parameters, but other choices could also be considered.

Gaussian process example. Instead of regularizing the derivative of ys, here we introduce a more natural constraint on y
requesting that these slow activations are a stationary Gaussian process with zero mean and kernel K depending only on the
relative position of two elements in the sequence. Different choices of K can control how slowly ys is expected to change
along the sequence.

Assuming that y is a multi-variate Gaussian distribution, we can estimate the mean and covariance matrix:

µs = 〈ys〉 and Σs,t = 〈(ys − µs)(yt − µt)〉,

where the averaging is performed over the batch of samples. Remembering our Gaussian process assumption, we can then
expect that µs = 0 and Σs,t,i,j = K(|s− t|)δi,j , which we can enforce by utilizing the regularizer (2):

RP ∼
1

N

∑
s

‖µs‖2 +
1

N2

∑
s,t,i,j

(
〈∆ys,i∆yt,j〉α −K|s−t|δi,j

)2
,

where N is the total number of elements in each sequence and ∆ys := ys −µs. Here 〈·〉 denotes averaging over individual
samples in the batch. Notice that in practice, we can reduce the cost of the proposed computation by sampling only a small
set of all possible sequence elements (s, t) or embedding dimensions (i, j).

Notice that we can also use a simplified form of this regularizer, where we remove constraints on cross-token correlations:

R′D ∼
∑
s

‖〈ys〉‖2 +
∑
i,j

(〈∆ys,i∆ys,j〉 − δi,j)2

 ,
where ∆y := y− 〈y〉 and 〈·〉 denotes averaging over individual elements in a batch. Compared to the orthogonal projection
loss used in Section 3.1, here we instead compute and regularize sample statistics.

C. Model Details and Parameters
In all of our experiments, we used GPT-2 style Transformer models with GELU nonlinearities.

11



Learning Fast and Slow: Representations for In-Context Weight Modulation

Each MLP layer separated x and y transformations, effectively using two MLPs for processing x and y correspondingly:

xν+1 = Wx
2 σ(Wx

1x
ν),

yν+1 = Wy
2σ(Wy

1 [xν ,yν ]),

where [·, ·] denotes vector concatenation, W∗
∗ are linear operators with corresponding matrices Ŵx

1 ∈ Rix×dx , Ŵx
2 ∈

Rdx×ix , Ŵy
1 ∈ Riy×(dx+dy), Ŵy

2 ∈ Rdy×iy . The inner dimensions were typically chose to be ix := 4dx = 4 dimx and
iy := 4dy = 4 dimy.

Similarly, each self-attention layer had separate Hx heads acting on x alone and producing the final output that was com-
pletely y-independent. Total of Hy (dy/Hy)-dimensional heads were reserved for self-attention on y with key/query/value
vectors generated from the complete state (x,y) thus allowing y to absorb information from x:

kx = Kxx, qx = Qxx, vx = Vxx,

ky = Ky[x,y], qy = Qy[x,y], vy = Vy[x,y],

where we omitted the computation stage index ν and the head index h for brevity.

Each Transformer block contained self-attention layer followed by the MLP layer, as described above, with inner normaliza-
ton operations applied separately to x and y.

Before layer `, the computation on x was completely independent of y, but at and after layer `, we applied an additional
transformation Tl(xl;y`) on xl before each self-attention and each MLP operation.

C.1. Model Parameters

We trained our models using ADAM optimizer with the learning rate typically set to 2.5 · 10−4 or 5 · 10−4 for the total of
400,000 steps with cosine learning rate decay (warmup of 10,000 steps) and batch size of 128. We used Google TPU v5e
4x4 as our training hardware platform, which took us to spend about 10 hours training the model. We did not use dropout in
most of our experiments, which allowed us to reach higher accuracies in the in-context learning setup, but resulted in a
degraded model stability: the final model accuracy for different initial seeds could differ by as much as 2%. High values of
weight decay were also observed to hurt the model performance and we set it to 10−8 in most of our experiments.

In-Context Learning. In most of our experiments with the synthetic dataset, we used a 6-layer model with 7 to 11
self-attention heads. The baseline model had hx = 7 heads with the embedding size of dx = 112. The model with
dy-dimensional y` used 7 +hy heads, where hy = dy/16, making the total embedding size equal to dx + dy = 112 + 16hy .
In our experiments with specialized models, we chose dy = 64 (and hence hy = 4) and the rank of δŴν was 4 and M = 16

(total number of L̂ and R̂ matrices). We chose wC = 0.08 and wD = 0.04. When using augmentations with auxiliary losses,
we typically chose l∆ = 30 and computed the auxiliary loss on the entire sequence from ltrunc + l∆ to n with n being the
total sequence length and ltrunc being sampled uniformly from [0, (3/4)n− l∆]. We also experimented with smaller-sized
contexts in auxiliary loss where the cross-attention was only computed on [ltrunc + l∆, ltrunc + l∆ + lω] with lω being
equal to n/4. Choosing this smaller sequence length increase loss variance, but appeared to improve the average model
performance by 0.2%.

Ablation studies. We conducted additional ablation studies varying three parameters:

1. rank r of the generated matrix (Fig. 10(a)),

2. value of wC with wD = wC/2 (Fig. 10(b)),

3. value of wD for a fixed wC = 0.08 (Fig. 10(c)).

All experiments measured the performance of specialized models with dimy` = 64 with examples used to generate y`

presented in context (first setup in Sec. 4.2). While it is clear that confident statements require significantly more experiments
for statistically significant results, we may draw some preliminary conclusions. Firstly, models with generated rank-2 and
rank-4 matrices appear to outperform models with rank-1 matrices. Increasing derivative regularization strength wC appears
to hurt performance above wC = 0.04. And increasing the orthogonal projection loss weight wD appears to not hurt model
performance and possibly even improves it.
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Figure 10. Ablation study results: (a) varying the rank of the generated matrices with wC = 2wD = 0.08; (b) varying wC with
wD = wC/2; (c) varying wD for a fixed wC = 0.08.

Text Mixture. In our text experiments, we chose wC = 2wD = 0.08 and our models contained 12 layers with ` = 8. The
total number of tokens was equal to 8000 byte pair encoding subwords (Sennrich et al., 2015) and the total sequence size
was 512.

VAE Parameters. Our VAE model was typically trained with ν = 0.03 in the in-context learning setup and 0.1 in text
datasets. The characteristic auto-correlation size was chosen as σ = 0.1 (10% of the sequence length) and β varied from
0.01 to 10.0.

D. In-Context Learning: Additional Details
D.1. Dataset Examples

In our experiments, we typically chose ntasks = 4 with nex = 4, or ntasks = 1 with nex = 8. An example of a generated
ASCII sequence before tokenization is:

154*709=+07058|648*011=+05920|526*187=+06230|893*495=+11997|#
122*395=-00273|827*301=+00526|216*082=+00134|399*879=-00480|#
913*075=+01063|748*228=+01204|508*205=+00918|186*523=+01232|#
349*703=+04547|343*849=+04785|868*591=+08994|124*356=+01828|#

All these lines concatenated together form a single sample. Here we put different tasks on different lines for clarity.

D.2. Additional Experimental Results

In addition to our experiments with ntasks = 4 and nex = 4, we also conducted experiments using a single-task dataset
(ntasks = 1) with nex = 8 examples. The plot of the dot-product ni · nj (see Fig. 11(b)) can again be seen to reflect a
gradual convergence of y as more and more examples are being processed (see Fig. 11(a)). Here we used a larger baseline
model with 8 layers instead of 6, which reached the top accuracy of 82.7%. We then verified that multiple models trained
with element-wise regularization, 32-dimensional y, ` being 4 or 5, softmax-based rank-4 matrix generator, our auxiliary
loss and augmentation methods were able to achieve accuracies in the range 82.6% to 82.8% while using a frozen value of y
obtained using several samples from the same task.

E. Text Mixture Dataset: Additional Details
8 different categories “Mathematical identities” (0), “Real-time operating systems” (1), “Songs about nights” (2),
“American abstract artists” (3), “Theoretical physics” (4), “State parks of Washington (state)” (5), “Film genres” (6) and
“Three-ingredient cocktails” (7).
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Figure 11. (a) A typical dependence on y` on the sequence index for a synthetic in-context learning task with 8 examples; (b) dot product
ni · nj for normalized y` embeddings at two different locations for this synthetic dataset.

Sample composed of 3 text excerpts. Phrase composed of 3 different texts used in our experiments for verifying
transitions of y (see Fig. 12(b)):

The horned sungem (Heliactin bilophus) is a species of hummingbird native to much of central Brazil and parts of
Bolivia and Suriname. It prefers open habitats such as savanna and grassland and readily occupies human-created
habitats such as gardens. It recently expanded its range into southern Amazonas and Espirito Santo, probably
as a result of deforestation; few other hummingbird species have recently expanded their range. The horned
sungem is a small hummingbird with a long tail and a comparatively short, black bill. The sexes differ markedly
in appearance, with males sporting two feather tufts (’horns’) above the eyes that are shiny red, golden, and green.
Linux was originally developed for personal computers based on the Intel x86 architecture, but has since been
ported to more platforms than any other operating system. Because of the dominance of Linux-based Android on
smartphones, Linux, including Android, has the largest installed base of all general-purpose operating systems
as of May 2022. Linux is, as of March 2024, used by around 4 percent of desktop computers, the Chromebook,
which runs the Linux kernel-based ChromeOS, dominates the US K–12 education market and represents nearly
20 percent of sub-$300 notebook sales in the US. Horse races vary widely in format, and many countries have
developed their own particular traditions around the sport. Variations include restricting races to particular breeds,
running over obstacles, running over different distances, running on different track surfaces, and running in
different gaits. In some races, horses are assigned different weights to carry to reflect differences in ability, a
process known as handicapping. Horse racing has a long and distinguished history and has been practiced in
civilizations across the world since ancient times. Archaeological records indicate that horse racing occurred in
Ancient Greece, Ancient Rome, Babylon, Syria, Arabia, and Egypt.

Token probabilities. We conducted additional experiments with specialized language models obtained by freezing y`

value to a constant throughout the sequence. Specifically, we verified that replacing y` for one sequence with y` values
from a different sequence has an expected impact on output token likelihoods. For example, by using y` from a “Theoretical
Physics” page on a text from “American abstract artists” category, we observe that among top 500 tokens, the logits of
“engine”, “theory”, “mechanics”, “science”, “condit”, “chem”, “physics” and other similar tokens, increased the most on
average.

F. VAE Results
The effect of varying β in our VAE experiments with the in-context few-shot learning dataset are shown in Figure 15.
We trained multiple models with different values of β and observed that the model with β = 0.01 and hence virtually
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Figure 12. (a) average difference (on the second part of the document) between cross-entropies of a specialized model with y` pre-
computed on the first part and a baseline language model; (b) dot-product plot ni · nj for a combination of 3 different text excerpts
described in Appendix E (with boundaries shown).
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Figure 13. Average difference between the cross-entropy losses of the “informed” and “uninformed” (non-specialized) models. The
informed model is generally better across the entire sequence (the difference is below zero). The informed model used dynamic value of
y` initialized with (y`)init computed at the end of the first part and then maintained with a moving average with the rate γ = 1/300. In
other words, we used (y`)used

i = (1− γ)(y`)used
i−1 + γ(y`)computed

i with (y`)used
0 = (y`)init. Maintaining this moving average allowed

us to utilize information about the topic of the first part of the text without freezing y` throughout the entire sequence. The uninformed
model maintained a dynamic computed y` without any direct or indirect access to the first part of the text.
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Figure 14. t-SNE plot for pages from 8 wikipedia categories using a model trained on individual c4 articles instead of pairs of
randomly joined samples. This plot shows a much better separation between different categories, which is probably due to this test
distribution being closer to the training set distribution (where each sample was generally touching a single topic).

non-existent KL divergence term exhibited strong periodicity (on task boundaries), but as we increased β, model activations
y` became smoother (see Fig. 15(a)). Also, while for smaller β, the model tended to encode some task information in
rapidly changing activation components, this behavior almost vanished at higher values of β and model activations became
a good predictor of the task multipliers a and b. The effect of β on model accuracy was also unsurprising in that strong
regularization with higher values of β appeared to hurt model performance (see Fig. 15(b)) suggesting that there might be a
minor conflict between learning maximally useful representations y` and these representations adhering perfectly to our
desired prior.

Additional VAE results with c4 dataset and varying values of β are presented in Fig. 16, 17 and 18. First we show the
dot-product ni · nj on a mixture of 3 distinct texts described in Appendix E for different values of β (Fig. 16). We then
illustrate t-SNE plots of learned features on 8 distinct wikipedia categories (Fig. 17). Finally, in Fig. 18, we show traces
of y` activations on a mixture of 3 texts. It can be seen that increasing β makes learned slow activations much smoother.
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Figure 15. (a) Normalized averaged intensity 〈|fk|2〉 of discrete Fourier transform spectra fk of all y` components for VAEs with β equal
to 0.01, 0.1, 0.3 and 1.0. The averaging is performed over all components of y` and over 256 samples. The averaged intensity is then
normalized to 1 for each experiment for comparison. The model with β = 0.01 can be seen to have a peak around the 4th harmonic.
As β increases, the spectrum smooths and higher harmonics disappear; (b) Model accuracies measured for the last 2 examples in VAE
models with different β values (showing individual accuracies, means and 3σ).
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Figure 16. Dot product ni ·nj plot computed for 3 different VAE models trained on c4 and evaluated on a mixture of 3 distinct texts (see
Appendix E): (a) β = 1, (b) β = 3, (c) β = 10.
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Figure 17. t-SNE plots for 3 different VAE models trained on c4 and evaluated on wikipedia pages from 8 distinct categories: (a)
β = 1, (b) β = 3, (c) β = 10.
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Figure 18. Slow activation y evolution along the sequence for 3 different VAE models trained on c4 and evaluated on a mixture of 3
distinct texts (see Appendix E): (a) β = 1, (b) β = 3, (c) β = 10.
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