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Abstract

Machine unlearning aims to remove the influence of specific training samples from a trained
model without full retraining. While prior work has largely focused on privacy-motivated
settings, we recast unlearning as a general-purpose tool for post-deployment model revision.
Specifically, we focus on utilizing unlearning in clinical contexts where data shifts, device
deprecation, and policy changes are common. To this end, we propose a bilevel optimization
formulation of boundary-based unlearning that can be solved using iterative algorithms.
We provide convergence guarantees when first order algorithms are used to unlearn. Our
method introduces tunable loss design for controlling the forgetting–retention tradeoff and
supports novel model composition strategies that merge the strengths of distinct unlearning
runs. Across benchmark and real-world clinical imaging datasets, our approach outperforms
baselines on both forgetting and retention metrics, including scenarios involving imaging
devices and anatomical outliers. This work establishes machine unlearning as a modular,
practical alternative to retraining for real-world model maintenance in clinical applications.

1 Introduction

In recent years, the awareness of the public regarding data ownership has continued to increase. As large
deep learning models continue to be trained using information from people who may not have explicitly opted
into such a procedure, the question naturally arises: how can they ‘opt-out’ post-fact? To this point, in 2016,
the General Data Protect Regulation (GDPR) was passed by the EU, stating that individuals have the ‘right
to be forgotten’ and businesses have the ‘obligation to erase personal data’ Regulation (2020); Graves et al.
(2021). As the cost and length of training continues to increase, if an individual decides to exercise their right
to be forgotten, retraining the model from scratch without their data may prove to be infeasible from both
a logistic and economic point of view Cottier et al. (2024). Machine unlearning has emerged as a primary
strategy for such purposes Liu et al. (2024a;b).

While machine unlearning was originally developed to satisfy privacy mandates, its potential applica-
tions extend well beyond regulatory compliance Kurmanji et al. (2024). In real-world machine learning
pipelines—particularly in healthcare—there may be a need to revise models over time due to shifting data
distributions, evolving clinical protocols, or the gradual deprecation of imaging devices Guo et al. (2021);
Moreno-Torres et al. (2012); Futoma et al. (2020). Continual learning has been proposed as a method to
continuously update models, but this does not allow for removal of specific samples which may be necessary
in various settings Challen et al. (2019); Lee & Lee (2020). In these scenarios, retraining from scratch is often
infeasible due to computational cost, regulatory restrictions on data reuse, or lack of access to the full original
dataset De Lange et al. (2021); Verwimp et al. (2023). Despite this need, very few studies have explored
unlearning as a practical mechanism for model maintenance and revision in real world settings.

Machine unlearning algorithms that have been proposed thus far can be broadly classified as functioning
through data reorganization or parameter modifications Xu et al. (2023). Prior work on parameter modification
spans noise-injection via Fisher Information Golatkar et al. (2020), gradient approximations Peste et al. (2021),
and layer-limited Langevin dynamics Chien et al. (2024). While empirically effective, these methods lack
convergence guarantees or flexibility.Kurmanji et al. (2024) study unlearning for privacy based applications
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Figure 1: Graphical schematic of our proposed unlearning algorithm. We begin with a pretrained CNN fw0

and a user-defined forget set F (A). In the inner optimization loop (B), we identify boundary points xb
i across

the decision surface of the original model via our perturbed sign-gradient method. For each forget sample xi,
we assign a new label yb

i = arg max fw0(xb
i) based on the closest incorrect class, and construct a relabeled

forget set F̃ = {(xi, yb
i )}. In the outer optimization loop (C), we fine-tune the model on F̃ , optionally

incorporating remain-set supervision. The result is an unlearned model fwu
whose decision boundaries are

shifted to forget the designated samples.

such as bias removal using an adaptation of the membership interference attack (MIA). Chen et al. Chen et al.
(2023) introduced a simple decision-boundary method achieving SOTA, but lacks convergence guarantees and
offers limited flexibility in tuning the tradeoff between forgetting and retention.

Despite growing interest in machine unlearning, significant limitations remain in both experimental scope and
methodological flexibility. Most prior work focuses on benchmark datasets such as CIFAR-10 and MNIST,
which lack the resolution, heterogeneity, and domain-specific information of real-world datasets—particularly
in medical imaging Greenspan et al. (2016); Litjens et al. (2017). Furthermore, selective unlearning, in which
only specific subsets of data (e.g., based on metadata, image quality, or anatomical thresholds) are removed,
is rarely explored. Here, fewer methods provide meaningful control over the forgetting–retention tradeoff,
limiting their utility in settings where both privacy and performance must be carefully balanced Kurmanji
et al. (2024). Moreover, to the best of our knowledge, no existing methods support compositional reuse of
unlearned components to improve downstream performance without full retraining.

In this work, we extend the boundary-based unlearning framework of Chen et al. Chen et al. (2023) by
recasting it as a bilevel optimization problem solvable by first-order methods. This formulation enables
a principled, modular, and scalable approach to deep model unlearning, offering both formal convergence
guarantees and empirical improvements across multiple datasets. Our framework supports both exact and
distributional unlearning, reflecting real-world deployment scenarios where full metadata is often unavailable
at test time, but subgroup-based revisions (e.g., removing the influence of outdated scanners or low-quality
images) are required. Our algorithm supports tunable loss design, allowing users to control the tradeoff
between forgetting and retention via various design choices. This allows us to compose models unlearned
with our algorithm naturally to combine desirable unlearning behaviors. To our knowledge, this is the first
general-purpose unlearning framework applied to clinical imaging datasets, and the first to introduce a
tunable and composable algorithm for both instance-level and distributional-level model maintenance.
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2 Methods

2.1 Problem Setup

We consider supervised classification tasks with deep neural network models fw : X → RK parameterized
by weights w, trained on a dataset D = {(xi, yi)}N

i=1 of image–label pairs, where each yi ∈ {e1, . . . , eK} is a
one-hot vector in {0, 1}K where K is the number of classes.

Model fw is trained by minimizing a suitable loss function L such as cross entropy to predict labels yi

given image xi. After deployment, a subset F ⊂ D is designated for removal due to privacy, policy, or
maintenance considerations. We use R = D \ F to denote the “remain" set that are available for the task.
The machine unlearning problem asks: how can we update fw to a new model fwu

that forgets F while
retaining performance on R, without retraining from scratch with R?

Following prior work, we define unlearning success via two desiderata on model fw: (C1) Forgetting: the
updated model should misclassify (x, y) ∈ F , i.e., fwu

(x) ̸= y; (C2) Remaining: the updated model should
preserve accuracy on R, i.e., fwu

(x) = y for all (x, y) ∈ R.

In practice, we evaluate these goals via held-out splits of F and R. To formalize our algorithm, we view
selective unlearning as a bilevel optimization problem that seeks to modify the model’s decision boundaries
in a targeted and controlled manner.

2.2 Unlearning as Bilevel Optimization

Because post-hoc unlearning must modify a frozen model without full retraining, recent work has focused on
shifting its decision boundaries Chen et al. (2023) by modifying parameters w. We build on the framework
introduced by Chen et al. (2023), which proposes forgetting a sample by modifying the model’s decision
boundary through a two-phase process. First, for each forget set sample (x, y) ∈ F , the method computes a
nearby point xb across the decision boundary. Second, this point is used to assign a new label yb ≠ y for x,
and the model is fine-tuned on (x, yb) to induce forgetting.

We unify both steps into a single bilevel optimization framework:

min
w

∑
i∈R

L(fw(xi), yi)−
∑
i∈F

L(fw(xi), fw0(xb
i ))

s.t. xb
i − xi ∈ arg min

δ:fw0 (xi+δ)⊤yi≤κ
ℓ(δ) ∀i ∈ F, (1)

where w0 are the original model weights, L is the supervised loss (e.g., cross-entropy), ℓ(·) is an inner loss
function designed to penalize large perturbations (such as ℓp norms), and κ < 1/K ensures the boundary
point xb

i lies across the decision surface of class yi. Choosing κ = 1/K corresponds to projecting xi exactly
onto the decision boundary, whereas lesser values correspond to finding xb

i across the boundary.

This objective jointly optimizes the new model weights w while enforcing that forget samples receive
mismatched predictions. The inner constraint defines the boundary search: for each forget sample xi, we
identify the minimal perturbation δ that crosses the decision boundary, subject to a proximity constraint via
ℓ(δ). The resulting boundary point xb

i = xi + δ is used to guide the outer update. A visualization of our
entire algorithm can be seen in Figure 1.

It should be noted that the second term in Eq. 1 coincides with the third term in Eq. 3 of Kurmanji et al.
(2024), enabling our formulation to be viewed as a flexible student–teacher framework. For instance, one may
steer unlearning toward specific incorrect classes by modifying the boundary label assignment yb.

We present an equivalent unconstrained formulation of inner maximization in (1) that can be used to relate
the Boundary Shrink method in Chen et al. (2023):
Lemma 2.1 (Unconstrained Unlearning). Assume (xi, yi) ∈ F with yi to be 1-hot vector representation xi’s
class label, and L(·, ·) is a smooth function that decomposes with respect to coordinates of yi, and is decreasing.
The inner minimization problem in (1) is equivalent to maxδ L(f(w0, δ + xi), yi). f(w0, δ + xi) denotes the
label predicted by model with parameters w0 for the perturbed sample δ + xi.
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The proof of Lemma 2.1 is in Appendix A.1. In essence, we apply via standard application of the Karush-
Kuhn-Tucker (KKT) conditions Nocedal & Wright (2006) on the inner minimization problem. The 1-hot
representation assumption of y in Lemma 2.1 is not necessary – our result can be extended to multilabel
classification tasks also. Please see Appendix for more details. Moreover, we show that the above Lemma 2.1
is true for loss function such as Squared ℓ2 norm that are used for regression tasks in the Appendix.
Corollary 2.2 (Boundary Shrink Initialization). Assume δ = 0 at initialization. Then, maximizing L(f(w0, δ+
xi), yi) with respect to δ using any first order method is equivalent to Boundary Shrinking as described in
Chen et al. (2023).

The proof is in Appendix A.2, and involves comparing iterates using Chain rule. One main advantage of our
formulation in (1) is that it is possible to specify a desired objective function (such as closest example in
squared ℓ2 norm, ℓ1 for sparsity etc.) of δ to get minimum perturbation, if desired.

2.3 Solving the Inner Optimization Problem

The inner task in Eq. (1) is to find, for every forget sample xi, a nearby point xi + δ whose logit for the true
class yi drops below the threshold κ. Because fw0(xi + δ) is highly non-convex in δ Salman et al. (2019), the
one-step FGSM update of Goodfellow et al. (2014) often stalls in poor local optima. We therefore adopt a
perturbed sign-gradient scheme that enjoys provable convergence.

Perturbed sign update. We use Lemma 2.1 to reformulate the inner optimization constraint as a
loss maximization. We refer to this loss maximization as “inner" loop from now on. The key insight
is that this allows us to borrow techniques from adversarial attack literature as explained below. Let
g = ∇δL

(
fw0(xi + δ), yi

)
and draw z ∼ N (0, I). With a decaying step size ϵt = c/t (c > 0) we calculate dt

and update δ as,
dt = ϵt sign

(
g + γz

)
, δ ← δ + dt, (2)

where the noise level γ ≥ 0 is fixed for the inner loop. The Gaussian term, inspired by Langevin dynamics,
helps the iterate escape sharp local minima while keeping the update aligned with the true gradient.

The next lemma (proved in Appendix A.3) shows that, in expectation, the update is ascent-aligned with the
objective that drives the boundary search.
Lemma 2.3 (Ascent-direction guarantee). With dt defined in Eq. (2), Ez

[
d⊤

t g
]
≥ 0, with equality iff g = 0.

Convergence rate. Since the update step is ascent-aligned in expectation with respect to the randomness
of z, standard stochastic optimization argument can be used to provide convergence guarantees for our
procedure as below.
Theorem 2.4 (Convergence of perturbed FGSM). Assume we use update direction d as in equation (2) for
T iterations with step size sequence ϵt = O(1/t), t = 1, ..., T , and L has L−Lipschitz continuous gradient wrt
δ. Then the procedure converges to a point δ such that Ez∥∇δL∥1 ≤ ϵacc in T = O(DL/ϵacc) iterations where
D is the dimension of δ.

Please see (Appendix A.4) for our proof of Theorem 2.4.

Optional closeness regularisation. The above Theorem 2.4 guarantees that we find a point xb
i on the

decision boundary. To find the closest boundary point to xi, we may add the penalty ℓ(δ) = 1
2∥δ∥

2
2 weighted

by a hyper-parameter λ ≥ 0. The inner loop update then becomes,

dt = ϵt sign
(
g + λ∇δℓ(δ) + γz

)
. (3)

Setting γ = λ = 0 exactly recovers the implementation of Boundary-Shrink update of Chen et al. (2023),
demonstrating that their method is a special case of our framework. We treat λ (along with γ as hyperparam-
eters which can be tuned. The solution of inner loop, whose output defines the boundary points xb

i = xi + δ
which is used to guide the outer model update in Eq. 1. The pseudocode algorithm of phase 1 can be seen in
Algorithm 1.
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Algorithm 1: Boundary Search via Perturbed Sign Gradient
Input: Pretrained model fw0 , Forget set F , Step size schedule ϵt, Perturbation scale γ > 0, Inner steps

Tinner, (optional) closeness regularization parameter λ > 0
Output: Relabeled forget set F̃ = {(xi, yb

i )}
Initialize F̃ ← ∅;
for (xi, yi) ∈ F do

Initialize δ ← 0;
for t = 1 to Tinner do

Sample z ∼ N (0, I);
g ← ∇δL(fw0(xi + δ), yi);
δ ← δ + ϵt · sign(g + λ∇δℓ(δ) + γz);

Set xb
i ← xi + δ;

Set yb
i ← arg max fw0(xb

i );
Store (xi, yb

i ) in F̃ ;
return F̃

Algorithm 2: Model Update via Relabeled Forget Set
Input: Relabeled forget set F̃ from the inner loop (Alg. 1), Initial model weights w0, Learning rate η,

Outer steps Touter
Output: Unlearned model weights wu

Initialize w ← w0;
for t = 1 to Touter do

Sample minibatch (x, yb) ∼ F̃ ;
w ← w − η · ∇wL(fw(x), yb);

return wu ← w

2.4 Outer Optimization

Once the boundary point xb
i is identified for each forget sample xi ∈ F , we solve the outer minimization to

obtain updated model weights wu. So the success of this two-phase bilevel optimization depends critically on
identifying accurate boundary points xb

i in the inner loop. The goal in outer loop is to satisfy (C1), as a
large loss value L(fw(xi), yb

i ) is typically positively correlated with the distance between the model prediction
and the reassigned label. This is particularly true in affine models of the form fw(x) = Wx + b, where L is a
monotonic function.

To assign the boundary label yb
i , we select the class corresponding to the largest logit of the original model

fw0(xb
i ). The model is then fine-tuned on the reassigned forget set F̃ = ((xi, yb

i )i∈F as:

wu = arg min
w

∑
i∈F̃

L(fw(xi), yb
i ), (4)

where wu are the updated weights after unlearning. The pseudocode of our vanilla outer loop can be seen in
Algorithm 2.

New Heuristics for Unlearning We additionally introduce three practical heuristics for improved
unlearning: (i) incorporating remain-set loss during the outer loop, (ii) using top-k soft logit supervision to
reduce irrelevant weight updates, and (iii) enabling multi-objective tradeoffs by composing unlearned models
across modules. Full mathematical details and pseudocode are provided in Appendix Section A.5. These
heuristics are systematically assessed in our ablation experiments (Section 4.3).
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3 Experiments

3.1 Datasets

We evaluate our method on six image classification datasets: two standard benchmarks and four medical
datasets. The benchmark datasets include CIFAR-10 and FashionMNIST Krizhevsky et al.; Xiao et al.
(2017). The medical datasets include color fundus photographs (CFP-OS), magnetic resonance images (MRI)
Nickparvar (2021), and two clinical datasets collected from real-world settings.

The CFP-OS dataset is a three-class dataset consisting of 1500 open-source images, curated from DRIONS-DB
Porwal et al. (2018), ORIGA Zhang et al. (2010), REFUGE Pachade et al. (2020), and G1020 Bajwa et al.
(2020). The MRI dataset includes 3000 images from each of three classes (Normal, Glioma, Meningioma,
Pituitary), sampled from the dataset of Nickparvar (2021). Full details on the origin of the open-source
datasets is provided in Appendix Table 3.

The first clinical dataset, which we call CFP-Clinic, consists of color fundus photographs drawn from the
Illinois Ophthalmic Database Atlas (I-ODA) Mojab et al. (2021), a collection of over 3 million images collected
over a 12-year period. We randomly sampled 1000 CFP images with ICD-10 codes corresponding to diabetic
retinopathy (DR), glaucoma, or other retinal disorders (retinopathy of prematurity, retinal hemorrhage, and
degenerative maculopathies). Each image belongs to one class, and no patient appears more than once.

The second clinical dataset, which we call Oculoplastic, consists of cropped periocular images from
patients with oculoplastic conditions, spanning three categories: healthy, thyroid eye disease, and craniofacial
dysmorphology. Healthy images were sampled from the Chicago Facial Dataset Ma et al. (2015). As with
CFP-Clinic, all samples are from unique individuals. Metadata for both clinical datasets can be found in
Figure 4.

In clinical unlearning experiments, the forget/remain split is defined by the imaging device metadata associated
with each sample in the I-ODA dataset or by periorbital distances involving the iris Nahass et al. (2025).

3.2 Model Training

For the medical image datasets (CFP-OS, MRI, CFP-Clinic, and Oculoplastic), we fine-tune a ResNet-50
pretrained on ImageNet-1k He et al. (2015), replacing the final classification layer with a dataset-specific
output layer and applying a dropout of 0.5 prior to the final layer. As done in prior literature Chen et al.
(2023), for CIFAR-10 and FashionMNIST, we use the All-CNN architecture trained from scratch following
Springenberg et al. (2015).

All training is performed using cross-entropy loss and SGD with momentum 0.9, a learning rate of 1× 10−3,
and L2 regularization with coefficient 1× 10−4. Data augmentation includes random horizontal flips, random
rotations up to 15◦, color jittering, and random cropping. An 80/20 train–test split is used across all datasets.
Training was terminated once the validation accuracy had converged (difference between training accuracy of
previous epoch and current epoch is < 1, and the model with the highest validation accuracy within (latest)
5 epochs before convergence was chosen for testing purposes.

For medical datasets, the ResNet-50 was trained until convergence. For CIFAR-10 and FashionMNIST, the
All-CNN is trained for 25 and 15 epochs, respectively, with a learning rate of 0.01 and batch size 64. All
hyperparameters were selected via grid search. All experiments are run on across 3 NVIDIA GeForce RTX
2080 Ti GPUs.

3.3 Evaluation Metrics

We evaluate unlearning performance using four primary criteria. Forget Set Accuracy (F-Acc) measures the
accuracy on a held-out portion of the forget set F ; lower values indicate more effective forgetting. Remain Set
Accuracy (R-Acc) captures the accuracy on a held-out portion of the remain set R; higher values reflect better
retention of model utility. To assess the balance between these objectives, we compute the F/R Accuracy
Ratio, defined as the ratio of forget to remain accuracy; lower values suggest better selective forgetting
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without compromising performance on R. Finally, we measure vulnerability to Membership Inference Attacks
(MIA) Carlini et al. (2022) following the protocol of Kurmanji et al. (2024). A logistic regression classifier
is trained to distinguish between samples in F and a held-out test set drawn from the same class. The
attack model takes as input the clipped loss L(fw(x), y), truncated to the range [−400, 400]. We use 5-fold
cross-validation and report average classification accuracy, where a perfect defense achieves 50%. Together,
these metrics quantify whether forgetting was successful (C1), model utility was preserved (C2), and whether
post-unlearning privacy risk was mitigated.

3.4 Baselines

We compare our method against several established baselines. Retrain serves as the gold standard: a model
is retrained from scratch using only the remain set R, providing an ideal upper bound on R accuracy
and lower bound on F accuracy, albeit at high computational cost. Boundary Unlearning implementation
provided by authors of Chen et al. (2023) is equivalent to our method with λ = 0 and γ = 0 as in Eq. (3),
where each forget sample is nudged across the decision boundary with a one-step gradient update, and then
fine-tuned on the reassigned label. Fine-tune on Remain updates the original model using only data from
R, leveraging distributional shift to induce forgetting but without direct boundary manipulation. Negative
Gradient Golatkar et al. (2020) reverses learning on the forget set by optimizing the negative of the standard
loss. Catastrophic Forgetting-k (CFK) and Exact Unlearning-k (EUK) Goel et al. (2022) freeze the first k
layers of the original model and fine-tune or retrain the remaining layers on R, offering controlled partial
forgetting. Finally, Scrub Kurmanji et al. (2024) uses a student–teacher framework in which the student
learns from a teacher trained solely on R, aiming to exclude information from F . All baseline comparisons
are included in the main text results (Section 4).

4 Results

We have evaluated our unlearning method across benchmark, medical, and clinical imaging datasets to assess
its ability to selectively forget designated data while preserving performance on the retained set. We have
organized our results into four parts. First, we present quantitative results on four image classification datasets
(CIFAR-10, FashionMNIST, CFP-OS, and MRI), where we systematically unlearn varying proportions of
the training data and evaluated unlearning success using four metrics: Forget Accuracy (F-Acc), Remain
Accuracy (R-Acc), F/R ratio, and Membership Inference Attack (MIA) accuracy. Second, we examined
real-world clinical scenarios, including attribute-based unlearning on color fundus photographs and external
eye images. Third, we conducted ablation experiments to isolate the effects of key loss components and design
choices within our bilevel optimization framework. Finally, we analyzed model composition across baselines
and variants to identify tradeoffs between forgetting performance, model utility, and privacy preservation.
In all experiments, all combinations of λ ∈ [0, 1e− 4, 1e− 3, 1e− 2, 1e− 1] and γ ∈ [0, 1e− 4, 1e− 1, 1] (as
in Eq. (3)) were evaluated and the best pairing were used. The data used for selection of optimal γ and λ
values for all datasets can be found in the Appendix (Figures 10,12).

4.1 Selective Forgetting

We first evaluate the ability of our algorithm to selectively forget varying proportions of a designated class
in CIFAR-10 and FashionMNIST. For each dataset, we constructed forget sets F by sampling increasing
percentages of a single class (1%, 10%, 25%, 50%, and 75%). We report Forget Accuracy (F-Acc), Remain
Accuracy (R-Acc), F/R ratio, and Membership Inference Attack (MIA) accuracy in Figure 2.

Our method consistently achieves lower F-Acc than all baselines—often outperforming Boundary Unlearning
Chen et al. (2023), which is conceptually most similar. Across both datasets, this enhanced forgetting is
achieved with only a modest reduction in R-Acc (typically 2–5%) compared to Fine-Tuning and CFK, which
prioritize utility over explicit forgetting. Our formulation maintains a favorable tradeoff between forgetting
and retention, as captured by a reduced F/R ratio.

As expected, when the forget set comprises only 1% of the data, full retraining is inefficient. While our
method and Boundary Unlearning exhibit higher MIA values in these small-forget settings, they achieve
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Figure 2: Unlearning varying proportions of a target class using our method and standard baselines. R Acc
and F Acc denote the accuracy of the unlearned model on the remain and forget sets, respectively. MIA
refers to robustness against membership inference attacks. Top row: CIFAR-10; bottom row: FashionMNIST.
Arrows indicate the desirable direction for each metric (↑ for higher is better, ↓ for lower is better).

markedly superior F-Acc suppression. On CFP-OS, we observe a small but consistent increase in R-Acc as
the forget percentage approaches 100% (Appendix Figure 5). We believe that this is due to the effective
reduction in class complexity, as the removal of nearly all examples from one class renders the task closer to
binary classification. In such cases, the model no longer needs to learn fine-grained boundaries between three
classes, allowing it to more confidently separate the remaining two, thereby improving R-Acc.

When the forget set includes 100% of a class, the Retrain baseline achieves perfect forgetting by construction,
as the class is entirely excluded from training. However, this scenario also results in near-perfect MIA accuracy,
since the absence of this class makes its easier to detect by the attacker. Results from MRI and CFP-OS
(Appendix Figure 5) mirror the trends observed in CIFAR-10 and FashionMNIST, confirming the consistency
of our approach across domains. Additional numerical results are presented in Appendix Tables 6–11.

Time Analysis On CIFAR-10, full retraining takes 1501.5 seconds. Unlearning with our method takes
134.2 seconds—an 11× speedup. Fine-tuning one epoch of a composed model takes 58.7 seconds. Thus, even
when composing two unlearned models and fine-tuning for one epoch, the total time remains ∼4.5× faster
than retraining.

Additional timing results for medical datasets are provided in Appendix Figure 9.

4.2 Clinical Unlearning

We next evaluate our method in real-world clinical settings using two datasets: CFP-Clinic, comprising color
fundus photographs labeled by disease class, and Oculoplastic, containing periocular images likewise labeled
by disease class.

In contrast to Section 3.4, which focused on forgetting specific training samples from a given class, these
experiments assess whether the model can forget the influence of clinically meaningful subgroups defined by
acquisition device or anatomical features. Here we would like to preserve performance on similar but distinct
examples. This setting mirrors realistic post-deployment revision needs in clinical AI systems. Metadata
distributions for the targeted subgroups are shown in Appendix Figure 4. Importantly, while test samples
were disjoint from training data, they shared the targeted properties. Thus, these experiments measure
distributional unlearning i.e., the ability to remove learned associations tied to a subgroup rather than specific
instances removal. Exact sample forgetting is addressed separately in our selective unlearning experiments.
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Dataset CFP-Clinic Oculoplastics
Unlearned Camera VPF>12mm

Metric R Acc F Acc F/R MIA R Acc F Acc F/R MIA
Retrain 0.71 0.55 0.78 0.62 ± 0.07 0.97 1.00 1.03 0.50 ± 0.00

Finetune 0.65 0.81 1.25 0.59 ± 0.06 0.88 0.63 0.71 0.80 ± 0.24
NegGrad 0.64 0.86 1.35 0.55 ± 0.04 0.88 0.38 0.43 0.30 ± 0.24

CFK 0.70 0.79 1.12 0.57 ± 0.06 0.92 0.88 0.95 0.60 ± 0.20
EUK 0.70 0.79 1.13 0.50 ± 0.09 0.94 0.88 0.93 0.50 ± 0.00
Scrub 0.70 0.82 1.18 0.62 ± 0.15 0.91 0.38 0.41 0.50 ± 0.32

Boundary 0.49 0.09 0.19 0.74 ± 0.05 0.91 0.50 0.55 0.80 ± 0.24
Ours 0.51 0.10 0.20 0.58 ± 0.10 0.91 0.38 0.41 0.70 ± 0.24

Table 1: Performance of unlearning algorithms on clinical datasets. “Camera” (CFP-Clinic) refers to forgetting
images captured with a specific imaging device, while V PF > 12” (Oculoplastic) denotes unlearning based
on a clinical threshold for vertical palpebral fissure. R Acc = Remain set accuracy (higher is better), F
Acc = Forget set accuracy (lower is better), F/R = Forget-to-Remain ratio (lower is better), and MIA =
Membership Inference Attack accuracy (mean ± std). Bolded values indicate best performance column-wise.

We first evaluated unlearning based on acquisition device, removing all training images captured with a
specific scanner (Cirrus 800 FA), a common scenario when a device is deprecated or recalled. Our method
and Boundary Unlearning were the only approaches to reduce F-Acc to ≤ 10%, while maintaining comparable
R-Acc (0.51 vs. 0.49). Although CFK preserved higher utility (R-Acc = 0.70), it failed to suppress F-Acc
effectively, highlighting a utility–forgetting tradeoff that our method manages more explicitly. Overall R-Acc
in this setting was lower than in other experiments (Table 1).

We also evaluated forgetting based on an anatomical criterion: vertical palpebral fissure (VPF) ≥ 12 mm
Dollfus & Verloes (2012). Increased VPF is a common feature of diseases such as Thyroid Eye Disease.
Intuitively, this form of unlearning reflects evolving clinical criteria or quality thresholds Guimarães & Cruz
(1995). Our approach achieved the best tradeoff in this setting, with low F-Acc (0.38) albeit slightly higher
than retraining. However, our approach outperforms or is comparable to all other baselines considered. To
our knowledge, this is the first demonstration of effective unlearning based on a continuous anatomical feature
(Table 1).

Across both scenarios, our method consistently achieved the best or second-best F/R ratio, indicating targeted
forgetting with minimal degradation to remain-set performance—surpassing conventional baselines and
outperforming retraining. While privacy was not the primary goal in these settings, our method also achieved
competitive membership inference (MIA) robustness, indicating reduced overfitting to forget set samples.

4.2.1 Qualitative Comparison

To contextualize unlearning behavior, we present qualitative examples from each clinical unlearning scenario
in Appendix Figure 6. For both the camera model and anatomical feature (VPF ≥ 12 mm) experiments, we
randomly selected pairs of test images from the same disease class: one from the forget set (F ) and one from
the remain set (R).

Qualitative results illustrate that the model was able to suppress correct classification on the targeted samples
in F , while maintaining performance on visually similar examples in R. This suggests that unlearning operated
not just at the class level, but in a clinically specific and metadata-informed way. In the camera-based
unlearning example, images of the same disease captured with a different imaging device were retained. In the
anatomical unlearning case, the model selectively suppressed predictions for high-VPF cases but preserved
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Figure 3: Decision boundary of original (left), retrain (center), and model unlearned of images with VPF ≥
12 mm (right). All points in the test set for R and F were passed through the models and the embeddings
were visualized using t-SNE. Stars denote points in F , and circles denote points in R. Color denotes predicted
label, and in the event of misclassification, edges denote the ground truth label. Decision space was visualized
by training a k-nearest neighbors classifier on the 2D t-SNE embeddings using predicted labels, and plotting
its decision regions as background contours.

others within the same diagnostic category. Together, these examples demonstrate that the forgetting effect
is both targeted and meaningful—removing learned associations tied to acquisition conditions or clinical
phenotypes, rather than globally degrading the model.

4.2.2 Decision Boundary Shifts

To visualize how unlearning alters model behavior in clinical settings, we projected the embeddings of test
samples in F and R using t-SNE and plotted approximate decision boundaries for the original, retrained, and
unlearned models (Figure 3). Since t-SNE is initialized randomly, the absolute positions of class clusters may
vary between runs. In the Oculoplastic dataset, unlearning images with vertical palpebral fissure (VPF) ≥
12 mm caused a visible shift in the decision space: points in the forget set that were originally classified as
Class 2 (Thyroid Eye Disease) were reassigned to the nearest incorrect class (Class 0) in the unlearned model,
consistent with our relabeling mechanism. Notably, this shift occurred without substantial distortion of the
remain-set regions. A small number of points near the original decision boundary became misclassified as a
side effect of the forgetting process, consistent with the expected tradeoff between retention and removal.

We also generated a corresponding decision boundary visualization for the CFP-Clinic dataset (Appendix
Figure 7). Unlike the Oculoplastic setting, the baseline model for CFP exhibited poor separability and
high prediction uncertainty across all classes. So, the t-SNE embeddings produced diffused and overlapping
decision regions. Further discussion on this can be found in Appendix Section A.6.2. In summary, quantitative
metrics showed a consistent drop in F-Acc following unlearning, and qualitative examples confirmed that
targeted images were misclassified as intended (Table 1).

Retraining may not unlearn. Importantly, we note that retraining alone did not result in significant
misclassification of the forget set, as reflected in both the decision boundary (Figure 3) and classification
metrics (Table 1). This is expected, as the forget set comprised a subset of the overall dataset and was spread
across multiple classes. Retraining on the remaining data therefore still exposed the model to a substantial
number of similar examples from the same classes, limiting the extent to which those class boundaries
were altered. In contrast, our method explicitly disrupts the learned associations with the forget set while
preserving classification performance on remain-set samples, leading to a more targeted behavioral shift.

10
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F Acc R Acc
R Logit F Logit Preprocess λ = −1 λ = 1e− 1

−−− −−− −−− 0.094 0.81
+++ −−− −−− 0.48 0.85
−−− +++ −−− 0.062 0.17
+++ +++ −−− 0.062 0.17

+++(80) +++(80) −−− 0.062 0.17
+++(95) +++(95) −−− 0.062 0.17

+++ +++ +++ 0.51 0.89

Table 2: Evaluation of the influence of logits and incorporation of the loss from {R} in unlearning. A ϕ
value of 1e−2 and λ = 1e−1 was used. Results with ϕ = 1e−4 and additional λ values are in the appendix.
Numbers in parentheses after + denote epochs of logit incorporation.

4.3 Ablation Studies

To assess the impact of key design choices in our outer optimization, we conducted ablation experiments on
CIFAR-10 using a fixed forget set (100% of class 0). We evaluated three factors: (1) whether losses were
computed using logits or standard hard labels (argmax), (2) whether logits were preprocessed via top-k
normalization, and (3) whether loss from the remain set R was incorporated during unlearning, either from
the beginning or with a delayed onset. Details on the settings modified in ablation experiments can be found
in Section 2.4

Remain loss was weighted using a regularization parameter ϕ as in Eq. (1), set to ϕ = 10−2 and λ = 10−1

as in Eq. (3). We also varied how logits were used on both F and R as described in Eq. (17). Results are
summarized in Table 2, with additional configurations presented in Appendix Tables 4 and 5.

Computing loss on F using unprocessed logits leads to performance degradation on R (R-Acc = 0.17), despite
strong forgetting. Including remain loss generally improves R accuracy across configurations, at the expected
cost of reduced forgetting. Delaying the introduction of remain loss (e.g., starting at epoch 10) showed
negligible difference compared to early inclusion. Notably, our default setting i.e., argmax labels for F , no
logits, and no remain loss, achieves the best combination of forgetting and retention (F-Acc = 0.094, R-Acc
= 0.81).

These results underscore the method’s sensitivity to outer loop settings, but also its tunability. Seemingly
small adjustments can produce large performance shifts, allowing the model to be steered toward different
points along the forgetting–retention spectrum. This motivates our model composition approach in Section 4.4,
which aims to unify complementary strengths of different configurations.

4.4 Unlearned Model Composition

Our ablation results reveal that different outer-loop configurations can steer the model toward either enhanced
forgetting or improved retention, but rarely both. Motivated by this tradeoff, we explore whether unlearned
models with complementary strengths can be composed to achieve better balance. Specifically, we combine
feature extractors and classifier heads from separately unlearned models—each optimized for a different
objective—and evaluate performance after light fine-tuning.

4.4.1 Compositional Strategy

We evaluate two architectural compositions on CIFAR-10:
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Composition 1. The feature extractor from a model trained with γ = λ = 0 (strong forgetting, F-Acc =
0.089; moderate retention, R-Acc = 0.84) was combined with the classifier head from a model trained with
γ = 10−4, λ = 10−2 (weaker forgetting, F-Acc = 0.35; strong retention, R-Acc = 0.88). This pairing seeks to
leverage effective boundary suppression from the first model and stable decision regions from the second.

Composition 2. We combined the feature extractor from a model trained with ϕ = 10−2, γ = λ = 0
(F-Acc = 0.001; R-Acc = 0.184) with the classifier head of a model trained using the same settings plus logit
preprocessing (F-Acc = 0.521; R-Acc = 0.89). This tests whether the aggressive forgetting from one model
can be salvaged by coupling it with a classifier that preserves remain performance.

4.4.2 Fine-Tuning on the Remain Set

We fine-tuned each composed model for 1–5 epochs on the remain set R. Without fine-tuning, Composition 1
preserved R-Acc (0.873) and reduced F-Acc to 0.176. After just 5 epochs, F-Acc dropped to 0.056 and R-Acc
increased to 0.916.

Composition 2 performed even better. After a single epoch of fine-tuning, it achieved perfect forgetting
(F-Acc = 0) and R-Acc = 0.907—surpassing retraining and all baseline methods. After 5 epochs, R-Acc
further improved to 0.913 (Supplemental Figure 8).

These results validate the hypothesis that forgetting and retention can be optimized independently and
later recombined. Model composition provides a simple architectural mechanism to overcome the tradeoffs
inherent in traditional unlearning methods. Notably, it requires only two unlearning passes and minimal
fine-tuning—remaining substantially faster than retraining from scratch.

5 Discussion

Machine unlearning is often framed as a privacy-preserving tool to satisfy regulatory mandates like the “right
to be forgotten” Regulation (2020); Graves et al. (2021). In clinical ML systems, where data heterogeneity,
evolving standards, and device turnover are common, full retraining is often infeasible—particularly for
deep architectures Guo et al. (2021); Moreno-Torres et al. (2012); Futoma et al. (2020). To address this,
we propose a bilevel optimization algorithm with convergence guarantees that enables selective removal
of training data from convolutional neural networks. Our experiments span both benchmark and clinical
datasets, each designed to evaluate targeted unlearning under different operational constraints. Our settings
reflect realistic maintenance scenarios and test whether a model can forget a subgroup’s influence rather than
specific samples. In all cases, our approach suppressed classification performance on the targeted group while
preserving retention performance, demonstrating reliable behavioral control.

A key strength of our approach is its tunability, allowing users to prioritize deployment goals without
changing core algorithmic structure. Our model composition mechanism can be used to balance these goals:
by combining the feature extractor of a forgetting-oriented model with the classifier head of a retention-
preserving model.This opens the door to modular, reusable unlearning workflows that are not only efficient
and interpretable, but also better aligned with real-world constraints than conventional retraining strategies.

We have identified two major limitations of our approach. First, our method is tailored to CNNs, and
adaptation to other architectures such as vision transformers (ViTs) remains an open challenge due to their
use of attention and context-rich feature representations Shao et al. (2021); Mahmood et al. (2021). Second,
in distributionally entangled datasets, such as when unlearning glaucoma cases tied to a deprecated scanner,
forgetting can degrade performance on the remain set (Appendix Figure 4). This highlights challenges in
separating acquisition effects from disease labels.

In the future, it would be interesting to see if our bilevel formulation can be adapted to unlearn vision
transformers (ViTs). The main challenge here is that ViTs rely on attention mechanisms and context-aware
representations less amenable to boundary perturbations Shao et al. (2021); Mahmood et al. (2021) that
need to be accounted in the formulation. Furthermore, Additional experiments on larger-scale clinical models
are warranted, especially across diverse imaging modalities (e.g., CT, OCT, histopathology) and deployment
conditions (e.g., continual or federated learning).
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A Appendix

A.1 Proof of Lemma 2.1

Boundary point. Conceptually, our approach to solving the inner optimization problem involves using the
Lagrangian of the constrained problem and then solving the equivalent unconstrained form which is easier to
implement in practice. Given f(w0, δ + xi) ∈ [0, 1]K to be class probability predictions, and yi = ek for some
k (i.e., ek is the k−th standard basis vector), the inner optimization is a optimization problem with a single
inequality constraint given by,

min
δ

0 subject to f(w0, δ + xi)⊤ek ≤ κ.

Recall that for classification tasks, we use L = − log(·) (i.e., cross entropy based loss) which is a monotonic
decreasing function in the positive real numbers. Therefore, the above problem is equivalent to,

min
δ

0 subject to L(fk(w0, δ + xi)) ≥ L(κ). (5)

Now we write down the lagrangian H of (5) as,

L(δ, u) = u · (L(κ)− L(fk(w0, δ + xi))) , (6)

where u ≥ 0 is the lagrange multiplier with dual feasibility constraint. We can ignore the second term of κ
since it is not a function of δ. Moreover, since it is sufficient to find an approximately optimal δ, we can
assume that u > 0, that is, the constraint (5) is active.

This lagrangian L has to be minimized wrt δ and maximized wrt to u. Using the fact that inf(−F ) = sup F
for any function F , we have the desired result. Aside, the complementarity slackness condition necessitates
that u · (L(κ)− L(fk(w0, δ∗ + xi))) = 0 so if u > 0, then the inequality constraint is tight - and we so we
obtain a “boundary” point.

For regression tasks with squared ℓ2 norm loss, yi ∈ RK we may modify the inner optimization as,

min
δ

0 subject to ∥f(w0, δ + xi)− yi∥2
2 ≥ κ,

and proceed with the lagrangian as above.

Closest boundary point. We can show that this approach works for any inner objective l(δ) that is
smooth (or subdifferentiable) and λ ≥ 0 (not necessary to have λ = 0). To this end, consider the case when
l(δ) = 1

2∥δ∥
2
2 that was used in Chen et al. (2023). Our proof of Lemma 3.2 can easily handle this. The

Lagrangian to be minimized wrt δ in this case becomes,

L(δ, u) = 1
2∥δ∥

2
2 + u · (L(κ)− L(fk(δ + xi, w0))),

and the gradient wrt δ is given by δ − u · ∇δL(fk(δ + xi, w0)). Note that since there is only one constraint,
the dual variable u ≥ 0 is a scalar which we consider as a hyperparameter. With this, we can scale the
objective by u, and minimize

L(δ) = 1
2u
∥δ∥2

2 − L(fk(δ + xi, w0)),

or maximize

−L(δ) = − 1
2u
∥δ∥2

2 + L(fk(δ + xi, w0)).

Note that the gradient of L wrt δ is given by 1
2u δ − g.
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Convergence for λ ̸= 0: Notation-wise in (3), we use λ = 1
u > 0 which we consider as a hyperparameter. So

for any fixed λ ≥ 0, the inner optimization problem is simply given by,

max
δ
−λ

2 ∥δ∥
2
2 + L(fk(δ + xi, w0)).

Whence, the convergence result in Safaryan & Richtárik (2021) holds as we can get the exact gradient of
the term λ∥δ∥2

2. So as long as the objective function is a deterministic function of the perturbation δ, our
convergence analysis is valid.

A.2 Proof of Corollary 2.2

We will suppress some notation to make the exposition simpler. For example, we will use ∇δL to denote
∇δL(fk(w0, δ + xi)), and δt to denote t−th iterate of δ in inner loop. In this notation, update rule for
Boundary Shrink in Chen et al. (2023) is given by,

xt+1 = xt + ϵ sign
(
∇xL(xt)

)
, x0 = xi, i ∈ F. (7)

On the other hand, sign gradient ascent with step size/learning rate ϵ on L(xi + δ) (with no closeness
regularization) is given by,

δt+1 = δt + ϵ sign
(
∇δL(xi + δt)

)
, δ0 = 0, i ∈ F. (8)

Note that if we set x = δ + xi (in (8)), then xt = δt + xi, and the jacobian of x wrt δ is identity matrix.
Moreover, using chain rule, we have that,

∇δL(xi + δt) = ∇δx · ∇xL(xt) = ∇xL(xt). (9)

Adding xi to both the sides of our update rule (8), we have the desired result.

A.3 Proof of Lemma 2.3

We first compute E[d] and so assume that ϵ = 1 – this is without of loss of generality since E is a linear
operator. Since z has a continuous density function, P(z = −g/γ) = 0, and since the sign is computed
elementwise/coordinatewise, we will compute d coordinatewise. So we have that,

Ez[d] = E[sign(g + γz)] = +1 · P
(

z ≥ − g

γ

)
− 1 · P

(
z ≤ − g

γ

)
= 1− 2 · P

(
z ≤ − g

γ

)
= 1− 2

[
1
2

(
1 + erf

(
−g

γ
√

2

))]
= erf

(
g

γ
√

2

)
, (10)

where we used the definition of CDF of z using erf(·) ∈ (−1, +1), the Gaussian Error Function. Note that
erf(g) > 0 if and only if g > 0, that is, g and erf(g) share the same sign along all the coordinates. So, we
have that Ez[d⊤g] = Ez[d]⊤g ≥ 0 finishing the proof. By substituting the CDF of Laplacian or Cauchy in
equation (10), we can see that the results holds for these distributions also.

A.4 Proof of Theorem 2.4

First, we will use l to denote −L. So the inner optimization becomes the following minimization problem,

max
δ

L(δ) = min
δ
−L(δ) = min

δ
l(δ). (11)

Since l is differentiable and satisfies lipschitz assumption, we have that, for any λ, δ ∈ RD,

l(λ) ≤ l(δ) +∇l(δ)⊤(λ− δ) + L

2 ∥λ− δ∥2
2. (12)
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By setting λ = δt+1, and δ = δt in the above inequality, we get

l(δt+1) ≤ l(δt)− ϵt∇l(δt)⊤ sign(∇δl(δt) + γ · z) + Lϵ2
t

2 ∥ sign(∇δl(δt) + γ · z)∥2
2

≤ l(δt)− ϵt∇l(δt)⊤ sign(∇δl(δt) + γ · z) + LDϵ2
t

2 , (13)

where the second inequality becomes an equality almost surely. Taking expectations with respect to z on
both sides of the inequality in (13) we get,

E[l(δt+1)] ≤ E[l(δt)]− ϵt∇l(δt)⊤ erf
(
∇l(δt)
γ
√

2

)
+ LDϵ2

t

2

= E[l(δt)]− ϵt

∣∣∇l(δt)
∣∣⊤

∣∣∣∣erf
(
∇l(δt)
γ
√

2

)∣∣∣∣ + LDϵ2
t

2 , (14)

where we used the fact that ∇l and erf(∇l) have the same sign, and that erf is an odd function. Subtracting
infδ l(δ) from both the sides of the inequality, rearranging, and taking expectation with respect to all the
perturbations added, we get,

ϵtE
[∣∣∇l(δt)

∣∣⊤ erf
(
|∇l(δt)|

γ
√

2

)]
= ϵt

∣∣∇l(δt)
∣∣⊤

∣∣∣∣erf
(
∇l(δt)
γ
√

2

)∣∣∣∣
≤ E[l(δt)− inf l]−

(
E[l(δt+1)]− inf l

)
+ LDϵ2

t

2 . (15)

Summing up the inequalities in (15) from t = 0 to t = T − 1 we get,
T −1∑
t=0

ϵtE
[∣∣∇l(δt)

∣∣⊤ erf
(
|∇l(δt)|

γ
√

2

)]
≤ E[l(δ0)− inf l]−

(
E[l(δT )]− inf l

)
+

T −1∑
t=0

LDϵ2
t

2

= l(δ0)− inf l −
(
E[l(δT )]− inf l

)
+ LDϵ2

t

2

≤ l(δ0)− inf l +
T −1∑
t=0

LDϵ2
t

2 , (16)

where we used the fact δ0 is initialized at 0, and that
(
E[l(δT )]− inf l

)
≥ 0. By choosing γ to be the

coordinatewise minimum value of gradient magnitude |∇l(δt)|, we can assure that |∇l(δt)|⊤ erf
(
|∇l(δt)|

γ
√

2

)
=

c∥∇l∥1, and the claim follows by following similar techniques as in Garrigos & Gower (2023) Theorem 5.12,
since the step size/learning rate ϵt = 1/t.

A.5 New Heuristics for Improved Unlearning

Our formulation provides three practical extensions that are not available in Chen et al Chen et al. (2023).
First, the remain set loss can be incorporated during the outer loop to preserve performance on R:

wu = arg min
w

∑
i∈F̃

L(fw(xi), yb
i ) + ϕ

∑
i∈R

L(fw(xi), yi). (17)

The proportion of the loss from R incorporated is controlled by ϕ.

Second, we allow the outer loss to be computed using dense logits instead of hard labels. To interpolate
between sparse (argmax) and dense supervision, we define a simple top-k logit preprocessing step. In all
experiments, k was set to 3. In detail, let fw(xi) ∈ RK denote the logits for sample xi, and let Top-k(fw(xi))
denote the indices of the largest k logits. We define a sparse logit vector f̃w(xi) as:

f̃w,j(xi) =
{

fw,j(xi), if j ∈ Top-k(fw(xi))
0, otherwise
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We then normalize the retained logits to form a soft target:

p̃j(xi) = f̃w,j(xi)∑
j′∈Top-k f̃w,j′(xi)

.

These soft targets p̃(xi) are used in place of one-hot labels during fine-tuning. This modification reduces unnec-
essary updates to weights associated with classes far from the decision boundary. These settings—including
top-k logit selection, the use of soft versus hard labels, and whether the remain loss is included—are
systematically explored in our ablation experiments (see Section 4.3).

Finally, by modifying the settings within our formulation, the unlearning process (as in Eqs. (3), eq:outopt)
can be steered toward different performance tradeoffs. When unlearning is significantly more efficient than
retraining from scratch, it becomes feasible to generate multiple unlearned models—each optimized for distinct
objectives (e.g., high accuracy on R at the expense of F , and vice versa)—and combine them post hoc to
leverage their respective strengths. Note that the number of possible layer-wise combinations in deep neural
networks is combinatorial in the number of layers. Fortunately, standard architectures for classification and
regression are typically structured into a feature extractor and a classification head. This modular design
reduces the combinatorial burden and enables practical strategies for composing unlearned models. We have
included the pseudocode of our outer loop with the above three extensions in the Appendix (Algorithm 3).
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A.6 Additional Results and Details on the Methods

In the following sections, we present additional experiments and implementation details that supplement
the main results. These include dataset summaries, extended unlearning benchmarks, timing analysis,
hyperparameter sweeps, and the raw data underlying selective unlearning plots.

A.6.1 Datasets

We used a diverse set of datasets spanning both open-source and clinical imaging domains. This section
outlines the composition of the open source CFP dataset that we curated as well as our clinical datasets
(Appendix Table 3. For clinical experiments, we selected data based on imaging modality and anatomical
measurements, ensuring real-world relevance (Appendix Figure 4).

IDRiD RFMID ORIGA G1020 Total
DR 260 240 0 0 500
Glaucoma 0 0 168 296 464
Other 0 500 0 0 500

Table 3: Open source data details. For DR, 260 images from the Indian Diabetic Retinopathy Image Dataset
Porwal et al. (2018) with severity of > 2 were chosen, and 240 images having a diagnosis of only DR from the
Retinal Fundus Multi-Disease Image dataset (RFMID) Pachade et al. (2020) were selected. For Glaucoma,
168 images from the Online Retinal Fundus Image Database for Glaucoma Zhang et al. (2010) and 296 images
from the G1020 Bajwa et al. (2020) dataset were selected. ‘Other’ images were selected by randomly sampling
500 images from RFMID that did not have DR or Glaucoma as a label. These images have diagnoses of
AMD, macular hole, and more Bajwa et al. (2020).

Figure 4: Distributions of clinical data and parameters for unlearning used in this study. On the histogram,
the dashed line denotes vertical palpebral fissure (VPF) of 11- images with a VPF greater than this were
unlearned. On bar graphs, ’red’ denotes the samples that were unlearned in targeted medical unlearning
experiments.

A.6.2 Additional Unlearning

In this section, we show extended results from class-wide unlearning across two domains: 2D brain MRI slices
and fundus images (CFP). We report forgetting accuracy (F-Acc), retention accuracy (R-Acc), their ratio,
and mean ± std of MIA attack success (Appendix Figure 5). We also provide a pseudocode algorithm of our
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Figure 5: Unlearning various proportions of the class to be forgotten using our method and other standard
baselines. R and F acc denote the accuracy of the unlearned model on the R and F subsets. MIA denotes
robustness to membership inference attacks. Top row displays results on MRI dataset, bottom row displays
results on CFP open source dataset. Directionality of arrows indicates whether high or low values are the
desired output.

outer loop of optimization with the extensions studied in ablation experiments. Full results on ablation using
different ϕ and λ values are reported in Tables 5 and 4.

For completeness, we include a t-SNE visualization of the decision boundary shift following unlearning on the
CFP-Clinic dataset (Figure 7). In contrast to the Oculoplastic dataset, the CFP-Clinic embeddings exhibited
poor baseline separability and high uncertainty in predictions across all models. As a result, the decision
regions appear diffuse, and no clearly structured shift is visible after unlearning. This reflects the low-quality
latent space induced by the initial model, rather than a failure of the unlearning algorithm itself. In fact,
forgetting metrics still showed a consistent drop in F-Acc (Table 1), and qualitative examples confirm that
forgotten images were suppressed even when embedded in noisy regions. This example highlights both the
utility and limitations of decision-boundary visualization in low-performing clinical domains.

Table 4: Evaluation of the influence of logits and incorporation of the loss from R in unlearning. A ϕ value of
1e − 4 was used. A number after the plus sign in parentheses denotes the epoch at which the logits were
incorporated during outer optimization.

F Acc R Acc
R Logit F Logit Preproc. λ = 0 λ = 1e− 4 λ = 1e− 1 λ = 0 λ = 1e− 4 λ = 1e− 1

−−− −−− −−− 0.089 0.12 0.094 0.84 0.81 0.81
+++ −−− −−− 0.49 0.52 0.48 0.87 0.85 0.86
−−− +++ −−− 0.001 0.047 0.062 0.18 0.17 0.17
+++ +++ −−− 0.001 0.047 0.062 0.18 0.17 0.17

+++(80) +++(80) −−− 0.001 0.047 0.062 0.18 0.17 0.17
+++(90) +++(90) −−− 0.001 0.047 0.062 0.18 0.17 0.17

+++ +++ +++ 0.44 0.49 0.49 0.88 0.87 0.88

21



Under review as submission to TMLR

Figure 6: Example images from both clinical unlearning scenarios, drawn from the forget set (F ) and remain
set (R). All images belong to the same disease class, but forget samples were either collected using the Cirrus
800 FA imaging device (left) or had a vertical palpebral fissure (VPF) ≥ 12mm (right), and were explicitly
targeted for unlearning.

Figure 7: Decision boundary of original (left), retrain (center), and unlearned (right) models. All points in
the test set for R and F were passed through the models and the embeddings were visualized using t-SNE.
Stars denote points in F , and circles denote points in R. Color denotes predicted label, and in the event of
misclassification, edges denote the ground truth label. Decision space was visualized by training a k-nearest
neighbors classifier on the 2D t-SNE embeddings using predicted labels, and plotting its decision regions as
background contours.
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Table 5: Evaluation of the influence of logits and incorporation of the loss from R in unlearning. A ϕ value of
1e − 2 was used. A number after the plus sign in parentheses denotes the epoch at which the logits were
incorporated during outer optimization.

F Acc R Acc
R Logit F Logit Preproc. λ = 0 λ = 1e− 4 λ = 1e− 1 λ = 0 λ = 1e− 4 λ = 1e− 1

−−− −−− −−− 0.089 0.12 0.094 0.84 0.81 0.81
+++ −−− −−− 0.49 0.52 0.48 0.87 0.85 0.85
−−− +++ −−− 0.001 0.047 0.062 0.18 0.17 0.17
+++ +++ −−− 0.001 0.047 0.062 0.18 0.17 0.17

+++(80) +++(80) −−− 0.001 0.047 0.062 0.18 0.17 0.17
+++(90) +++(90) −−− 0.001 0.047 0.062 0.18 0.17 0.17

+++ +++ +++ 0.52 0.55 0.51 0.89 0.88 0.89

Algorithm 3: Configurable Outer Loop with Remain Loss and Logit-Based Labeling
Input: Relabeled forget set F̃ , Remain set R, initial weights w0, learning rate η,

remain loss weight ϕ, top-k parameter k, use_soft_labels, use_remain_loss
Output: Unlearned model parameters wu

Initialize w ← w0;
for t = 1 to Touter do

Sample minibatch (xf , yb
f ) ∼ F̃ ;

; // Load forget-set samples
if use_soft_labels then

zf ← fw0(xb
f ) ; // Compute logits from original model

Keep top-k entries of zf , zero others;
Normalize retained logits to form p̃f ;
; // Create soft target distribution
Lf ← L(fw(xf ), p̃f ) ; // Compute outer loss with soft targets

else
Lf ← L(fw(xf ), yb

f ) ; // Use hard labels

if use_remain_loss then
Sample minibatch (xr, yr) ∼ R;
; // Load remain-set samples
Lr ← L(fw(xr), yr);
; // Compute loss on retained data
Ltotal ← Lf + ϕ · Lr;
; // Weighted combination

else
Ltotal ← Lf ;

Update w ← w − η · ∇wLtotal;
; // Perform gradient step

return wu ← w
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Figure 8: Accuracies on the forget set (F) and remain set (R) for both model compositions. Dashed lines
indicate the best F and R accuracies achieved by the constituent models used in each composition.
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A.6.3 Timing

We report wall-clock timing of unlearning procedures as a function of forget set size for each clinical dataset.
As shown in Appendix Figure 9, our method scales efficiently even at high forget ratios, with runtimes
remaining significantly lower than full retraining in all cases.

Figure 9: Timing results of unlearning on all clinical datasets evaluated where various percentages of the
class to be unlearned where designated as the forget set. n denotes the total size of the class to be unlearned.

A.6.4 Hyperparameter Tuning

To evaluate the impact of hyperparameters γ (noise scale) and λ (closeness regularization), we performed
grid sweeps and measured accuracy on F and R sets. Columns 1 and 2 of the heatmaps show performance on
each subset; Column 3 shows Euclidean distance from retrain baseline, a composite proxy for closeness to
retrain performance (Appendix Figures 10 and 12).
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Figure 10: Unlearning results using various combinations of γ and λ on non-medical imaging datasets. Column
1 denotes the accuracy of all combinations on R, Column 2 Denotes the accuracy of all combinations on F,
and Column 3 denotes the Euclidean distance of [Facc, Racc] obtained using all combinations of γ and λ from
[Facc, Racc] obtained using the retrained model.
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Figure 11: Results of unlearning an entire class using various combinations of γ and λ on medical imaging
datasets. Column 1 denotes the accuracy of all combinations on R, Column 2 Denotes the accuracy of
all combinations on F, and Column 3 denotes the Euclidean distance of [Facc, Racc] obtained using all
combinations of γ and λ from [Facc, Racc] obtained using the retrained model. OP denotes oculoplastic
dataset, and US denotes ultrasound dataset. Directionality of arrows indicates whether high or low values
are the desired output.
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Figure 12: Results of unlearning subsets of images based on clinical parameters using various combinations of
γ and λ on medical imaging datasets. Column 1 denotes the accuracy of all combinations on R, Column 2
Denotes the accuracy of all combinations on F, and Column 3 denotes the Euclidean distance of [Facc, Racc]
obtained using all combinations of γ and λ from [Facc, Racc] obtained using the retrained model. A-C
represents the results of unlearning images acquired with a specific imaging device, and D-F are the results of
unlearning images of eyes that had a vertical palpebral fissure > 11mm. Directionality of arrows indicates
whether high or low values are the desired output.
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A.6.5 Selective Unlearning Raw Data

The following tables provide detailed performance metrics for each forget percentage from 1% to 100%, as
used in the selective unlearning plots (Figure 2 and 5). This allows finer inspection of forgetting trends across
subset sizes.

B Disclosures

S.H.: Stock or stock options e Horizon Surgical Systems. P.S.: Consultant Oyster Point Pharma; Leadership
or fiduciary role in other board, society, committee or advocacy group, Board member of American Society of
Ophthalmic Plastic and Reconstructive Surgery; Stock or stock options Lodestone Pharmaceuticals. A.Q.T.:
Consultant Genetech/Roche. J.C.P, author on provisizonal patents US20230194734A1, WO2024145070A1
(University of Miami holds all rights)
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Dataset fashioMNIST CIFAR-10
Metric R Acc F Acc MIA R Acc F Acc MIA
Retrain 0.973 0.8 0.5 +/- 0.0 0.955 0.9 0.4 +/- 0.2

Finetune 0.984 0.7 0.8 +/- 0.245 0.957 0.8 0.6 +/- 0.374
NegGrad 0.973 0.7 0.7 +/- 0.245 0.933 0.5 0.6 +/- 0.2

CFK 0.981 1 0.5 +/- 0.0 0.97 1 0.7 +/- 0.245
EUK 0.982 1 0.7 +/- 0.245 0.97 1 0.5 +/- 0.316

SCRUB 0.991 1 0.4 +/- 0.2 0.982 1 0.5 +/- 0.0
Boundary 0.93 0.7 0.7 +/- 0.245 0.919 0.5 0.8 +/- 0.245

Ours 0.93 0.7 0.9 +/- 0.2 0.924 0.6 0.7 +/- 0.245

Table 6: Selective unlearning of all datasets retaining 1% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.

Dataset fashionMNIST CIFAR-10 MRI CFP-Open Source
Metric R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA
Retrain 0.969 0.87 0.44 +/- 0.073 0.946 0.92 0.47 +/- 0.081 0.958 0.92 0.552 +/- 0.059 0.919 0.86 0.52 +/- 0.075

Finetune 0.985 0.88 0.46 +/- 0.058 0.952 0.94 0.49 +/- 0.058 0.965 0.975 0.491 +/- 0.052 0.881 0.78 0.56 +/- 0.08
NegGrad 0.965 0.81 0.61 +/- 0.037 0.944 0.74 0.65 +/- 0.055 0.944 0.833 0.594 +/- 0.068 0.902 0.82 0.52 +/- 0.04

CFK 0.982 0.99 0.59 +/- 0.08 0.969 1 0.56 +/- 0.073 0.966 0.914 0.576 +/- 0.033 0.916 0.84 0.72 +/- 0.075
EUK 0.982 0.99 0.49 +/- 0.049 0.968 0.99 0.57 +/- 0.081 0.967 0.975 0.509 +/- 0.03 0.943 0.86 0.5 +/- 0.089

SCRUB 0.99 0.94 0.46 +/- 0.058 0.979 0.99 0.54 +/- 0.02 0.961 0.938 0.533 +/- 0.056 0.895 0.86 0.48 +/- 0.098
Boundary 0.908 0.42 0.76 +/- 0.097 0.878 0.3 0.72 +/- 0.108 0.719 0.111 0.752 +/- 0.07 0.758 0.36 0.7 +/- 0.11

Ours 0.907 0.4 0.65 +/- 0.032 0.874 0.28 0.72 +/- 0.06 0.729 0.191 0.691 +/- 0.059 0.763 0.36 0.64 +/- 0.15

Table 7: Selective unlearning of all datasets retaining 10% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.

Dataset fashionMNIST CIFAR-10 MRI CFP-Open Source
Metric R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA
Retrain 0.971 0.824 0.584 +/- 0.054 0.956 0.92 0.5 +/- 0.061 0.943 0.931 0.494 +/- 0.034 0.905 0.792 0.616 +/- 0.048

Finetune 0.986 0.896 0.512 +/- 0.035 0.954 0.928 0.456 +/- 0.069 0.952 0.928 0.553 +/- 0.02 0.917 0.848 0.592 +/- 0.047
NegGrad 0.96 0.684 0.66 +/- 0.018 0.94 0.612 0.668 +/- 0.043 0.932 0.79 0.635 +/- 0.054 0.924 0.792 0.688 +/- 0.109

CFK 0.981 0.972 0.516 +/- 0.034 0.969 0.988 0.524 +/- 0.023 0.97 0.938 0.565 +/- 0.036 0.941 0.816 0.568 +/- 0.082
EUK 0.982 0.964 0.48 +/- 0.052 0.969 0.992 0.576 +/- 0.066 0.965 0.97 0.509 +/- 0.009 0.932 0.864 0.576 +/- 0.125

SCRUB 0.989 0.976 0.532 +/- 0.037 0.98 0.984 0.524 +/- 0.045 0.954 0.958 0.459 +/- 0.009 0.912 0.848 0.536 +/- 0.074
Boundary 0.898 0.256 0.776 +/- 0.015 0.859 0.22 0.748 +/- 0.085 0.675 0.049 0.78 +/- 0.033 0.794 0.32 0.696 +/- 0.041

Ours 0.897 0.268 0.804 +/- 0.029 0.86 0.208 0.784 +/- 0.05 0.636 0.032 0.738 +/- 0.037 0.777 0.424 0.736 +/- 0.041

Table 8: Selective unlearning of all datasets retaining 25% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.
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Dataset fashionMNIST CIFAR-10 MRI CFP-Open Source
Metric R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA
Retrain 0.97 0.908 0.514 +/- 0.058 0.949 0.864 0.526 +/- 0.043 0.954 0.877 0.556 +/- 0.032 0.915 0.748 0.592 +/- 0.097

Finetune 0.965 0.912 0.474 +/- 0.05 0.945 0.924 0.494 +/- 0.023 0.962 0.912 0.581 +/- 0.025 0.911 0.724 0.628 +/- 0.035
NegGrad 0.97 0.722 0.638 +/- 0.027 0.944 0.644 0.616 +/- 0.051 0.898 0.749 0.568 +/- 0.015 0.833 0.228 0.648 +/- 0.032

CFK 0.982 0.98 0.492 +/- 0.032 0.968 0.978 0.504 +/- 0.053 0.968 0.906 0.579 +/- 0.009 0.933 0.748 0.624 +/- 0.032
EUK 0.982 0.968 0.472 +/- 0.028 0.969 0.98 0.498 +/- 0.031 0.969 0.904 0.564 +/- 0.024 0.927 0.792 0.612 +/- 0.027

SCRUB 0.99 0.968 0.49 +/- 0.03 0.981 0.982 0.548 +/- 0.017 0.949 0.936 0.536 +/- 0.036 0.928 0.808 0.6 +/- 0.038
Boundary 0.896 0.27 0.788 +/- 0.049 0.852 0.158 0.786 +/- 0.036 0.612 0.01 0.777 +/- 0.029 0.847 0.252 0.716 +/- 0.015

Ours 0.898 0.292 0.766 +/- 0.026 0.865 0.21 0.784 +/- 0.036 0.599 0.019 0.749 +/- 0.057 0.837 0.236 0.696 +/- 0.05

Table 9: Selective unlearning of all datasets retaining 50% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.

Dataset fashionMNIST CIFAR-10 MRI CFP-Open Source
Metric R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA
Retrain 0.967 0.796 0.577 +/- 0.031 0.948 0.84 0.548 +/- 0.035 0.95 0.542 0.733 +/- 0.011 0.939 0 0.749 +/- 0.036

Finetune 0.986 0.879 0.559 +/- 0.014 0.956 0.907 0.473 +/- 0.033 0.972 0.767 0.621 +/- 0.012 0.921 0.395 0.661 +/- 0.051
NegGrad 0.969 0.764 0.581 +/- 0.025 0.94 0.625 0.617 +/- 0.03 0.947 0.36 0.749 +/- 0.033 0.931 0.341 0.708 +/- 0.046

CFK 0.982 0.976 0.481 +/- 0.02 0.968 0.987 0.553 +/- 0.024 0.975 0.855 0.594 +/- 0.022 0.959 0.541 0.651 +/- 0.057
EUK 0.981 0.953 0.468 +/- 0.017 0.968 0.964 0.54 +/- 0.025 0.975 0.853 0.602 +/- 0.013 0.965 0.56 0.641 +/- 0.054

SCRUB 0.99 0.98 0.516 +/- 0.014 0.982 0.979 0.529 +/- 0.028 0.965 0.803 0.616 +/- 0.019 0.951 0.595 0.614 +/- 0.068
Boundary 0.894 0.26 0.801 +/- 0.014 0.867 0.165 0.775 +/- 0.024 0.6 0.013 0.77 +/- 0.018 0.94 0.149 0.705 +/- 0.049

Ours 0.896 0.277 0.784 +/- 0.03 0.866 0.188 0.761 +/- 0.038 0.648 0.011 0.78 +/- 0.022 0.954 0.165 0.671 +/- 0.075

Table 10: Selective unlearning of all datasets retaining 75% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.

Dataset fashionMNIST CIFAR-10 MRI CFP-Open Source
Metric R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA R Acc F Acc MIA
Retrain 1 0 0.81 +/- 0.08 0.975 0 0.876 +/- 0.022 0.899 0 0.943 +/- 0.011 0.942 0 0.945 +/- 0.019

Finetune 1 0 0.84 +/- 0.066 0.983 0 0.816 +/- 0.047 0.889 0.921 0.514 +/- 0.013 0.938 0.862 0.552 +/- 0.025
NegGrad 0.969 0 0.83 +/- 0.121 0.983 0.094 0.756 +/- 0.04 0.903 0.557 0.635 +/- 0.021 0.942 0.649 0.67 +/- 0.035

CFK 0.99 0 0.84 +/- 0.073 0.987 0.597 0.684 +/- 0.051 0.906 0.914 0.5 +/- 0.01 0.939 0.911 0.519 +/- 0.021
EUK 0.984 0 0.81 +/- 0.066 0.986 0.666 0.625 +/- 0.02 0.905 0.926 0.502 +/- 0.024 0.94 0.894 0.531 +/- 0.018

SCRUB 0.995 0 0.75 +/- 0.055 0.973 0.322 0.744 +/- 0.029 0.913 0.913 0.484 +/- 0.017 0.944 0.897 0.57 +/- 0.028
Boundary 0.87 0.058 0.8 +/- 0.095 0.84 0.089 0.756 +/- 0.038 0.66 0.016 0.808 +/- 0.031 0.99 0.094 0.826 +/- 0.015

Ours 0.89 0.084 0.68 +/- 0.068 0.81 0.094 0.703 +/- 0.06 0.7 0.009 0.797 +/- 0.021 0.99 0.042 0.854 +/- 0.005

Table 11: Selective unlearning of all datasets retaining 100% of the forget class. Blue and red highlight denote
best and worst performance on F and R accuracy.
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