
Under review as a conference paper at ICLR 2023

CAN SINGLE-PASS CONTRASTIVE LEARNING WORK
FOR BOTH HOMOPHILIC AND HETEROPHILIC GRAPH?

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing graph contrastive learning (GCL) typically requires two forward pass for
a single instance to construct the contrastive loss. Despite its remarkable suc-
cess, it is unclear whether such a dual-pass design is (theoretically) necessary.
Besides, the empirical results are hitherto limited to the homophilic graph bench-
marks. Then a natural question arises: Can we design a method that works for
both homophilic and heterophilic graphs with a performance guarantee? To an-
swer this, we analyze the concentration property of features obtained by neigh-
borhood aggregation on both homophilic and heterophilic graphs, introduce the
single-pass graph contrastive learning loss based on the property, and provide per-
formance guarantees of the minimizer of the loss on downstream tasks. As a direct
consequence of our analysis, we implement the Single-Pass Graph Contrastive
Learning method (SP-GCL). Empirically, on 14 benchmark datasets with vary-
ing degrees of heterophily, the features learned by the SP-GCL can match or out-
perform existing strong baselines with significantly less computational overhead,
which verifies the usefulness of our findings in real-world cases.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016a; Xu et al., 2018; Veličković et al., 2017;
Hamilton et al., 2017) have demonstrated great power in various graph-related tasks, especially the
problems centered around node representation learning, such as node classification (Kipf & Welling,
2016a), edge prediction (Kipf & Welling, 2016b), graph classification (Xu et al., 2018), etc. Prior
studies posit that the good performance of GNNs largely attribute to the homophily nature of the
graph data (Pei et al., 2020; Lim et al., 2021b; Zhu et al., 2020b; Abu-El-Haija et al., 2019; Chien
et al., 2020; Li et al., 2021; Bo et al., 2021), i.e., the linked nodes are likely from the same class in
homophilic graphs, e.g. social network and citation networks (McPherson et al., 2001). In contrast,
for heterophilic graphs, on which existing GNNs might suffer from performance drop (Pei et al.,
2020; Chien et al., 2020; Zhu et al., 2020b), similar nodes are often far apart (e.g., the majority of
people tend to connect with people of the opposite gender (Zhu et al., 2020b) in dating networks).
As a remedy, researchers have attempted to design new GNNs able to generalize well on heterophilic
graph data (Pei et al., 2020; Abu-El-Haija et al., 2019; Zhu et al., 2020a; Chien et al., 2020; Li et al.,
2021; Bo et al., 2021).

For both homophilic and heterophilic graphs, GNNs, like other modern deep learning approaches,
require a sufficient amount of labels for training to enjoy a decent performance, while the recent
trend of the Graph Contrastive Learning (GCL) (Xie et al., 2021), as an approach for learning better
representation without the demand of manual annotations, has attracted great attention. Existing
work of GCL could be roughly divided into two categories according to whether or not a graph
augmentation is employed. First, the augmentation-based GCL (You et al., 2020; Peng et al., 2020;
Hassani & Khasahmadi, 2020; Zhu et al., 2021a;b; 2020d;c; Thakoor et al., 2021) follows the initial
exploration of contrastive learning in the visual domain (Chen et al., 2020; He et al., 2020) and in-
volves pre-specified graph augmentations (Zhu et al., 2021a); specifically, these methods encourage
representations of the same node encoded from two augmentation views to contain as less informa-
tion about the way the inputs are transformed as possible during training, i.e., to be invariant to a
set of manually specified transformations. Secondly, augmentation-free GCL (Lee et al., 2021; Xia
et al., 2022) follows the recent bootsrapped framework (Grill et al., 2020) and constructs different

1

Under review as a conference paper at ICLR 2023

views through two encoders of different updating strategies and pushes together the representations
of the same node/class.

In both categories, existing GCL methods typically require two graph forward-pass, i.e., one
forward-pass for each augmented graph in the augmentation-based GCL or one for each encoder
in augmentation-free GCL. Unfortunately, theoretical analysis and empirical observation (Liu et al.,
2022; Wang et al., 2022a) show that previous GCL methods tend to capture low-frequency informa-
tion, which limit the success of those methods to the homophilic graphs. Therefore, in this paper,
we ask the following question:

Can one design a simple single-pass graph contrastive learning method effective on both homophilic
and heterophilic graphs?

We provide an affirmative answer to this question both theoretically and empirically. First, we
theoretically analyze the neighborhood aggregation mechanism on a homophilic/heterophilic graph
and present the concentration property of the obtained features. By exploiting such property, we
introduce the single-pass graph contrastive loss and show its minimizer is equivalent to that of Ma-
trix Factorization (MF) over the transformed graph where the edges are constructed based on the
aggregated features. In turn, the transformed graph introduced conceptually is able to help us illus-
trate and derive the theoretical guarantee for the performance of the learned representations in the
down-streaming node classification task.

To verify our theoretical findings, we introduce a direct implementation of our analysis, Single-
Pass Graph Contrastive Learning (SP-GCL). Experimental results show that SP-GCL achieves
competitive performance on 8 homophilic graph benchmarks and outperforms state-of-the-art GCL
algorithms on all 6 heterophilic graph benchmarks with a nontrivial margin. Besides, we analyze
the computational complexity of SP-GCL and empirically demonstrate a significant reduction of
computational overhead brought by SP-GCL. Coupling with extensive ablation studies, we verify
that the conclusions derived from our theoretical analysis are feasible for real-world cases.

Our contribution could be summarized as:
• We show the concentration property of representations obtained by the neighborhood feature

aggregation, which in turn inspires our novel single-pass graph contrastive learning loss. A
directly consequence is a graph contrastive learning method, SP-GCL, without relying on graph
augmentations.

• We provide the theoretical guarantee for the node embedding obtained by optimizing graph
contrastive learning loss in the down-streaming node classification task.

• Experimental results show that without complex designs, compared with SOTA GCL methods,
SP-GCL achieves competitive or better performance on 8 homophilic graph benchmarks and 6
heterophilic graph benchmarks, with significantly less computational overhead.

2 RELATED WORK

Graph neural network on heterophilic graph. Recently, the heterophily has been recognized
as an important issue for graph neural networks, which is outlined by Pei et al. (2020) firstly. To
make graph neural networks able to generalize well on the heterophilic graph, several efforts have
been done from both the spatial and spectral perspectives (Pei et al., 2020; Abu-El-Haija et al.,
2019; Zhu et al., 2020a; Chien et al., 2020; Li et al., 2021; Bo et al., 2021). Firstly, Chien et al.
(2020) and Bo et al. (2021) analyze the necessary frequency component for GNNs to achieve good
performance on heterophilic graphs and propose methods that are able to utilize high-frequency
information. From the spatial perspective, several graph neural networks are designed to capture
important dependencies between distant nodes (Pei et al., 2020; Abu-El-Haija et al., 2019; Bo et al.,
2021; Zhu et al., 2020a). Although those methods have shown their effectiveness on heterophilic
graphs, human annotations are required to guide the learning of neural networks.

Graph contrastive learning. Existing graph contrastive learning methods can be categorized into
augmentation-based and augmentation-free methods, according to whether or not the graph aug-
mentation techniques are employed during training. The augmentation-based methods (You et al.,
2020; Peng et al., 2020; Hassani & Khasahmadi, 2020; Zhu et al., 2021a;b; 2020d; Thakoor et al.,
2021; Zhu et al., 2020c) encourage the target graph encoder to be invariant to the manually spec-
ified graph transformations. Therefore, the design of graph augmentation is critical to the success
of augmentation-based GCL. We summarized the augmentation methods commonly used by recent

2

Under review as a conference paper at ICLR 2023

works in Table 9 of Appendix D. Other works (Lee et al., 2021; Xia et al., 2022) try to get rid of
the manual design of augmentation strategies, following the bootstrapped framework (Grill et al.,
2020). They construct different views through two graph encoders updated with different strate-
gies and push together the representations of the same node/class from different views. In both
categories, those existing GCL methods require two graph forward-pass. Specifically, two aug-
mented views of the same graph will be encoded separately by the same or two graph encoders for
augmentation-based GCLs and the same graph will be encoded with two different graph encoders
for augmentation-free GCLs, which is prohibitively expensive for large graphs. Besides, the theoret-
ical analysis for the performance of GCL in the downstream tasks is still lacking. Although several
efforts have been made in the visual domain (Arora et al., 2019; Lee et al., 2020; Tosh et al., 2021;
HaoChen et al., 2021), the analysis for image classification cannot be trivially extended to graph
setting, since the non-Euclidean graph structure is far more complex.

3 PRELIMINARY

Notation. Let G = (V, E) denote an undirected graph, where V = {vi}i∈[N] and E ⊆ V × V
denote the node set and the edge set respectively. We denote the number of nodes and edges as N
and E, and the label of nodes as y ∈ RN , in which yi ∈ [1, c], c ≥ 2 is the number of classes.
The associated node feature matrix denotes as X ∈ RN×F , where xi ∈ RF is the feature of node
vi ∈ V and F is the input feature dimension. We denote the adjacent matrix as A ∈ {0, 1}N×N ,
where Aij = 1 if (vi, vj) ∈ E ; and the corresponding degree matrix as D = diag

(
d1, . . . , dN

)
,

di =
∑
j Ai,j . Our objective is to unsupervisedly learn a GNN encoder fθ : X,A → RN×K

receiving the node features and graph structure as input, that produces node representations in low
dimensionality, i.e., K ≪ F . The representations can benefit the downstream supervised or semi-
supervised tasks, e.g., node classification.

Homophilic and heterophilic graph. Various metrics have been proposed to measure the ho-
mophily degree of a graph. Here we adopt two representative metrics, namely, node homophily and
edge homophily. The edge homophily (Zhu et al., 2020b) is the proportion of edges that connect
two nodes of the same class: hedge =

|{(vi,vj):(vi,vj)∈E∧yi=yj}|
E , And the node homophily (Pei et al.,

2020) is defined as, hnode = 1
N

∑
vi∈V

|{vj :(vi,vj)∈E∧yi=yj}|
|{vj :(vi,vj)∈E}| , which evaluates the average propor-

tion of edge-label consistency of all nodes. They are all in the range of [0, 1] and a value close to
1 corresponds to strong homophily while a value close to 0 indicates strong heterophily. As con-
ventional, we refer the graph with high homophily degree as homophilic graph, and the graph with
a low homophily degree as heterophilic graph. And we provided the homophily degree of graph
considered in this work in Table 7 of Appendix A.1.

4 THEORETICAL ANALYSES

In this section, we firstly show the property of node representations obtained through the neighbor
aggregation (Lemma 1). Then, based on the property, we introduce the single-pass graph contrastive
loss (Equation (5)), in which the contrastive pairs are constructed according to the node similarity,
instead of the graph augmentations. And Theorem 1 shows the viability of the pair selection through
the node similarity computed based on node feature. We bridge the graph contrastive loss and
the Matrix Factorization (Lemma 2). Then, leveraging the analysis for matrix factorization, we
obtain the performance guarantee for the embedding learned with SP-GCL in the downstream node
classification task (Theorem 2).

4.1 ANALYSIS OF AGGREGATED FEATURES

Assumptions on graph data. To obtain analytic and conceptual insights of the aggregated features,
we firstly describe the graph data we considered. We assume that the node feature follows the
Gaussian mixture model (Reynolds, 2009). For simplicity, we focus on the binary classification
problem. Conditional on the (binary-) label y and a latent vector µ ∼ N (0, IF /F) where the
identity matrix IF ∈ RF×F , the features are governed by:

xi = yiµ+
qi√
F
, (1)

where random variable qi ∈ RF has independent standard normal entries and yi ∈ {−1, 1} rep-
resenting latent classes with abuse of notation. Then, the features of nodes with class yi follow

3

Under review as a conference paper at ICLR 2023

the same distribution depending on yi, i.e., xi ∼ Pyi(x). Furthermore, we make an assumption
about the neighborhood patterns, For node i, its neighbor’s labels are independently sampled from a
distribution P (yi).

Remark. The above assumption implies that the feature of a node depends on its label and the
neighbor’s label is generated from distribution only dependent on the label of the central node,
which contains both cases of homophily and heterophily.

With this assumption, we present the following Lemma 1, where we denote the learned embedding
through the neighbor aggregation and a linear projection by Z, and Zi is the learned embedding with
respect to input xi, and the W denotes the linear weight.

Lemma 1 (Concentration Property of Aggregated Features) Consider a graph G following the
graph data assumption and Eq. (1), then the expectation of embedding is given by

E[Zi] = W Ey∼P (yi),x∼Py(x)[x], (2)

Furthermore, with a probability at least 1− δ over the distribution for the graph, we have:

∥Zi − E[Zi]∥2 ≤

√
σ2
max(W)F log(2F/δ)

2Dii∥x∥ψ2

(3)

and ∣∣Z⊤
i Zj − E[Z⊤

i Zj]
∣∣ ≤ √

σ2
max(W⊤W) log(2N2/δ)

2D2∥x2∥ψ1

(4)

where Dii is the degree of node vi, D ≡ miniDii, and the sub-gaussian norms ∥x∥ψ2
≡

mini ∥xi,d∥ψ2 , sub-exponential norms ∥x2∥ψ1 ≡ mini ∥x2
i,d∥ψ1 for d ∈ [1, F]. Besides, σ2

max(W)
is the largest singular value of W.

Remark. Extending from Theorem 1 in (Ma et al., 2021), the above lemma indicates that, for any
graph following the graph data assumption, (i) in expectation, nodes with the same label have the
same embedding, Equation (2); (ii) the embeddings of nodes with the same label tends to concen-
trate onto a certain area in the embedding space, which can be regarded as the inductive bias of the
neighborhood aggregation mechanism with the graph data assumption, Equation (3); (iii) the inner
product of hidden representations approximates to its expectation with a high probability, Equa-
tion (4); (iv) with commonly used initialization, e.g. Kaiming initialization (He et al., 2015) and
Lecun initialization (LeCun et al., 2012), the σ2

max(W
⊤W) is bounded and the concentration is

relatively tight. (Proof and detailed discussion are in Appendix C.1 and C.5 respectively.)

Although the Gaussian mixture modeling on the feature, the neighborhood patterns modeling on
the graph structure and the linearization on the graph neural network are commonly adopted in
several recent works for the theoretical analysis of GNNs (Deshpande et al., 2018; Baranwal et al.,
2021; Ma et al., 2021), and their high-level conclusions still hold empirically for a wide range of
real-world cases, we empirically verify the derived Concentration Property (Lemma 1) on the multi-
class real-world graph data and the non-linear graph neural network (Section 6.3 and Table 6) and
provide a discussion about the empirical observations of the concentration property in other recent
works (Wang et al., 2022b; Trivedi et al., 2022) (Appendix E.1).

4.2 SINGLE-PASS GRAPH CONTRASTIVE LOSS

In order to learn a more compact and linearly separable embedding space, we introduce the single-
pass graph contrastive loss based on the property of aggregated features. Exploiting the concen-
tration property explicitly, we regard nodes with small distance in the embedding space as positive
pairs, and nodes with large distance as negative pairs. We formally define the positive and nega-
tive pairs to introduce the loss. We draw a node vi uniformly from the node set V , vi ∼ Uni(V),
and draw the node vi+ uniformly from the set Si, where the set Si is consisted by the Kpos nodes
closest to node vi. Concretely, Si = {v1i , v2i , . . . , v

Kpos
i } = argmaxvj∈V

(
Z⊤
i Zj ,Kpos

)
, where

Kpos ∈ Z+ and argmax(·,Kpos) denotes the operator for the top-Kpos selection. The two sampled
nodes form a positive pair (vi, vi+). Two nodes vj and vk, sampled independently from the node set,
can be regarded as a negative pair (vj , vk) (Arora et al., 2019). Following the insight of Contrastive

4

Under review as a conference paper at ICLR 2023

Learning (Wang & Isola, 2020), similar sample pairs stay close to each other while dissimilar ones
are far apart, the Single-Pass Graph Contrastive Loss is defined as,

LSP-GCL = −2 E vi∼Uni(V)

v
i+

∼Uni(Sipos)

[
Z⊤
i Zi+

]
+ E vj∼Uni(V)

vk∼Uni(V)

[(
Z⊤
j Zk

)2
]
. (5)

4.3 PERFORMANCE GUARANTEE FOR LEARNING LINEAR CLASSIFIER

For the convenience of analysis, we firstly introduce the concept of transformed graph as follows,
which is constructed based on the original graph and the selected positive pairs.

Definition 1 (Transformed Graph) Given the original graph G and its node set V , the trans-
formed graph, Ĝ, has the same node set V but with the selected positive pairs as the edge set,
Ê =

⋃
i{(vi, vki)|Kk=1}.

Note, the transformed graph is formed by positive pairs selected based on aggregated features. Cou-
pling with the Concentration Property of Aggregated Features (Lemma 1), the transformed graph
tends to have a larger homophily degree than the original graph. We provide more empirical verifi-
cations in Section 6.3.

Figure 1: Transformed Graph formed with
Positive Pairs.

The transformed graph is illustrated in Figure 1. We
denote the adjacency matrix of transformed graph
as Â ∈ {0, 1}N×N , the number of edges as Ê,
and the symmetric normalized matrix as Âsym =

D̂−1/2ÂD̂−1/2, where D̂ = diag
(
d̂1, . . . , d̂N

)
, d̂i =∑

j Âi,j . Correspondingly, we denote the symmet-

ric normalized Laplacian as L̂sym = I − Âsym =

UΛU⊤. Here U ∈ RN×N = [u1, . . . ,uN], where ui ∈ RN denotes the i-th eigenvector of L̂sym
and Λ = diag (λ1, . . . , λN) is the corresponding eigenvalue matrix. λ1 and λN be the smallest and
largest eigenvalue respectively.

Then we show that optimizing a model with the contrastive loss (Equation (5)) is equivalent to the
matrix factorization over the transformed graph, as stated in the following lemma:

Lemma 2 Denote the learnable embedding for matrix factorization as F ∈ RN×K . Let Fi =
Fψ(vi). Then, the matrix factorization loss function Lmf is equivalent to the contrastive loss, Equa-
tion (5), up to an additive constant:

Lmf(F) =
∥∥∥Âsym − FF⊤

∥∥∥2

F
= LSP-GCL + const (6)

The above lemma bridges the graph contrastive learning and the graph matrix factorization and
therefore allows us to provide the performance guarantee of SP-GCL by leveraging the power of
matrix factorization. We leave the derivation in Appendix C.2. With the Lemma 1 and 2, we
arrive at a conclusion about the expected value of the inner product of embeddings (More details in
Appendix C.3):

Theorem 1 For a graph G following the graph data assumption, then when the optimal of the
contrastive loss is achieved, i.e., Lmf(F

∗) = 0, we have,

E[Z⊤
i Zj |yi=yj]−E[Z⊤

i Zj |yi ̸=yj] ≥ 1− ϕ̄, (7)

where ϕ̄ = Evi,vj∼Uni(V)

(
Âi,j · 1[yi ̸= yj]

)
.

Remark. The theorem shows that the embedding inner product of nodes from the same class is
larger than the inner product of nodes from different classes. Besides, the 1 − ϕ̄, indicating the
probability of an edge connecting two nodes from the same class, can be regarded as the edge
homophily of the transformed graph. Therefore, the theorem implies that if the edge homophily of
the transformed graph is larger, embeddings of nodes from the same class will be more compact in
the high dimensional space.

Finally, with the Theorem 1 and Lemma 1, we obtain a performance guarantee for node embeddings
learned by SP-GCL with a linear classifier in the downstream task (More details in Appendix C.4):

5

Under review as a conference paper at ICLR 2023

Theorem 2 Let f∗
SP-GCL ∈ argminf :X→RK be a minimizer of the contrastive loss, LSP-GCL. Then

there exists a linear classifier B∗ ∈ Rc×K with norm ∥B∗∥F ≤ 1/ (1− λK) such that, with a
probability at least 1− δ,

Evi
[∥∥y⃗i −B∗f∗

gcl(v)
∥∥2

2

]
≤ ϕ̄

λ̂K+1

+

√
σ2
max(W⊤W) log(2N2/δ)

2D2∥x2∥ψ1 λ̂
2
K+1

, (8)

λ̂i are the i smallest eigenvalues of the symmetrically normalized Laplacian matrix of the trans-
formed graph.

5 SINGLE-PASS GRAPH CONTRASTIVE LEARNING (SP-GCL)

As a direct consequence of our theory, we introduce the Single-Pass Graph Contrastive Learning
(SP-GCL) to verify our findings. Instead of relying on the graph augmentation function or the
exponential moving average, our new learning framework only forwards single time and the con-
trastive pairs are constructed based on the aggregated features. As we shall see, this exceedingly
simple, theory motivated method also yields better performance in practice compared to dual-pass
graph contrastive learning methods on both homophilic and heterophilic graph benchmarks. As
the analysis revealed, for each class, the embedding obtained from neighbor aggregation will con-
centrate toward the expectation of embedding belonging to the class. Inspired by this, we design
the self-supervision signal based on the obtained embedding and propose a novel single-pass graph
contrastive learning framework, SP-GCL, which selects similar nodes as positive node pairs. As

Figure 2: Overview of SP-GCL. The graph data is encoded by a graph neural network fθ and a
following projection head gω . The contrastive pairs are constructed based on the representation Z.

shown in Figure 2, In each iteration, the proposed framework firstly encodes the graph with a graph
encoder fθ denoted by H = fθ(X,A). Then, a projection head with L2-normalization, gω , is
employed to project the node embedding into the hidden representation Z = gω(H). To scale up
SP-GCL on large graphs, the the node pool, P , are constructed by the T -hop neighborhood of b
nodes (the seed node set S) uniformly sampled from V . For each seed node vi ∈ S, the top-Kpos

nodes with highest similarity from the node pool are selected as positive set for it which denote as
Sipos = argmaxvj∈P

(
Z⊤
i Zj ,Kpos

)
, and Kneg nodes are sampled from V to form the negative set

Sineg , Sineg ⊆ V . Concretely, the framework is optimized with the following objective:

L̂SP-GCL = − 2

N ·Kpos

∑
vi∈V

∑
v
i+

∈Sipos

[
Z⊤
i Zi+

]
+

1

N ·Kneg

∑
vj∈V

∑
vk∈Sineg

[(
Z⊤
j Zk

)2
]
, (9)

Notably, the empirical contrastive loss is an unbiased estimation of the Equation (5). Overall, the
training algorithm SP-GCL is summarized in Algorithm 1.

Although we provide a theoretical discussion about the manner of self-selection for positive pairs
and the proposed method, whether the method is effective and whether the self-selected manner is
feasible for real-world cases are still not answered. In the following section, we empirically verify
the effectiveness of the method and usefulness of our findings over a wide range of graph datasets.

6 EXPERIMENTS

6.1 PERFORMANCE ON HOMOPHILIC AND HETEROPHILIC GRAPH

The homophilic graph benchmarks have been studied by several previous works (Velickovic et al.,
2019; Peng et al., 2020; Hassani & Khasahmadi, 2020; Zhu et al., 2020d; Thakoor et al., 2021;
Lee et al., 2021). We re-use their configuration and compare SP-GCL with those methods and
leave the detailed description about the experiment setting in Appendix A. And we leave the imple-
mentation details and the hyperparameter selection in Appendix A.4. The result is summarized in
Table 1, in which the best performance achieved by self-supervised methods is marked in boldface.

6

Under review as a conference paper at ICLR 2023

Algorithm 1: Single-Pass Graph Contrastive Learning (SP-GCL).
Input: Graph neural network fθ, MLP projection head gω , input adjacency matrix A, node
features X, batch size b, number of hops T , number of positive nodes Kpos.
for epoch← 1, 2, · · · do

1. Obtain the node embedding, H = fθ(X,A).
2. Obtain the hidden representation, Z = gω(H).
3. Sample b nodes as seed node set S and construct the node pool P with the T -hop neighbors
of each node in the set S.
4. Select top-Kpos similar nodes for every vi ∈ S to form the positive node set Sipos.
5. Compute the contrastive objective with Eq. (5) and update parameters by applying
stochastic gradient.

end for
return Final model fθ.

Compared with augmentation-based and augmentation-free GCL methods, SP-GCL outperforms
previous methods on 2 datasets and achieves competitive performance on the others, which shows
the effectiveness of the single-pass contrastive loss on homophilic graphs. We further assess the
model performance on heterophilic graph benchmarks that employed in Pei et al. (Pei et al., 2020)
and Lim et al. (Lim et al., 2021a). As shown in Table 2, SP-GCL achieves the best performance on
6 of 6 heterophilic graphs by an evident margin. The above result indicates that, instead of relying
on the augmentations which are sensitive to the graph type, SP-GCL is able to work well over a
wide range of real-world graphs (described in Appendix A.1) with different homophily degree.

Table 1: Graph Contrastive Learning on Homophilic Graphs. The highest performance of unsuper-
vised models is highlighted in boldface. OOM indicates Out-Of-Memory on a 32GB GPU.

Model Cora CiteSeer PubMed WikiCS Amz-Comp. Amz-Photo Coauthor-CS Coauthor-Phy.
MLP 47.92 ± 0.41 49.31 ± 0.26 69.14 ± 0.34 71.98 ± 0.42 73.81 ± 0.21 78.53 ± 0.32 90.37 ± 0.19 93.58 ± 0.41
GCN 81.54 ± 0.68 70.73 ± 0.65 79.16 ± 0.25 93.02 ± 0.11 86.51 ± 0.54 92.42 ± 0.22 93.03 ± 0.31 95.65 ± 0.16
DeepWalk 70.72 ± 0.63 51.39 ± 0.41 73.27 ± 0.86 74.42 ± 0.13 85.68 ± 0.07 89.40 ± 0.11 84.61 ± 0.22 91.77 ± 0.15
Node2cec 71.08 ± 0.91 47.34 ± 0.84 66.23 ± 0.95 71.76 ± 0.14 84.41 ± 0.14 89.68 ± 0.19 85.16 ± 0.04 91.23 ± 0.07
GAE 71.49 ± 0.41 65.83 ± 0.40 72.23 ± 0.71 73.97 ± 0.16 85.27 ± 0.19 91.62 ± 0.13 90.01 ± 0.71 94.92 ± 0.08
VGAE 77.31 ± 1.02 67.41 ± 0.24 75.85 ± 0.62 75.56 ± 0.28 86.40 ± 0.22 92.16 ± 0.12 92.13 ± 0.16 94.46 ± 0.13
DGI 82.34 ± 0.71 71.83 ± 0.54 76.78 ± 0.31 75.37 ± 0.13 84.01 ± 0.52 91.62 ± 0.42 92.16 ± 0.62 94.52 ± 0.47
GMI 82.39 ± 0.65 71.72 ± 0.15 79.34± 1.04 74.87 ± 0.13 82.18 ± 0.27 90.68 ± 0.18 OOM OOM
MVGRL 83.45 ± 0.68 73.28 ± 0.48 80.09 ± 0.62 77.51 ± 0.06 87.53 ± 0.12 91.74 ± 0.08 92.11 ± 0.14 95.33 ± 0.05
GRACE 81.92 ± 0.89 71.21 ± 0.64 80.54 ± 0.36 78.19 ± 0.10 86.35 ± 0.44 92.15 ± 0.25 92.91 ± 0.20 95.26 ± 0.22
GCA 82.07 ± 0.10 71.33 ± 0.37 80.21 ± 0.39 78.40 ± 0.13 87.85 ± 0.31 92.49 ± 0.11 92.87 ± 0.14 95.68 ± 0.05
BGRL 81.44 ± 0.72 71.82 ± 0.48 80.18 ± 0.63 76.96 ± 0.61 89.62 ± 0.37 93.07 ± 0.34 92.67 ± 0.21 95.47 ± 0.28
AFGRL 81.60 ± 0.54 71.02 ± 0.37 80.02 ± 0.48 77.98 ± 0.49 89.66 ± 0.40 93.14 ± 0.36 93.27 ± 0.17 95.69 ± 0.10

SP-GCL 83.16 ± 0.13 71.96 ± 0.42 79.16 ± 0.73 79.01 ± 0.51 89.68 ± 0.19 92.49 ± 0.31 91.92 ± 0.10 95.12 ± 0.15

Table 2: Graph Contrastive Learning on Heterophilic Graphs. The highest performance of unsuper-
vised models is highlighted in boldface. OOM indicates Out-Of-Memory on a 32GB GPU.

Model Chameleon Squirrel Actor Twitch-DE Twitch-gamers Genius
MLP 47.59 ± 0.73 31.67 ± 0.61 35.93 ± 0.61 69.44 ± 0.67 60.71 ± 0.18 86.62 ± 0.11
GCN 66.45 ± 0.48 53.03 ± 0.57 28.79 ± 0.23 73.43 ± 0.71 62.74 ± 0.03 87.72 ± 0.18
DeepWalk 43.99 ± 0.67 30.90 ± 1.09 25.50 ± 0.28 70.39 ± 0.77 61.71 ± 0.41 68.98 ± 0.15
Node2cec 31.49 ± 1.17 27.64 ± 1.36 27.04 ± 0.56 70.70 ± 1.15 61.12 ± 0.29 67.96 ± 0.17
GAE 39.13 ± 1.34 34.65 ± 0.81 25.36 ± 0.23 67.43 ± 1.16 56.26 ± 0.50 83.36 ± 0.21
VGAE 42.65 ± 1.27 35.11 ± 0.92 28.43 ± 0.57 68.62 ± 1.82 60.70 ± 0.61 85.17 ± 0.52
DGI 60.27 ± 0.70 42.22 ± 0.63 28.30 ± 0.76 72.77 ± 1.30 61.47 ± 0.56 86.96 ± 0.44
GMI 52.81 ± 0.63 35.25 ± 1.21 27.28 ± 0.87 71.21 ± 1.27 OOM OOM
MVGRL 53.81 ± 1.09 38.75 ± 1.32 32.09 ± 1.07 71.86 ± 1.21 OOM OOM
GRACE 61.24 ± 0.53 41.09 ± 0.85 28.27 ± 0.43 72.49 ± 0.72 OOM OOM
GCA 60.94 ± 0.81 41.53 ± 1.09 28.89 ± 0.50 73.21 ± 0.83 OOM OOM
BGRL 64.86 ± 0.63 46.24 ± 0.70 28.80 ± 0.54 73.31 ± 1.11 60.93 ± 0.32 86.78 ± 0.71
AFGRL 59.03 ± 0.78 42.36 ± 0.40 27.43 ± 1.31 69.11 ± 0.72 OOM OOM

SP-GCL 65.28 ± 0.53 52.10 ± 0.67 28.94 ± 0.69 73.51 ± 0.97 62.04 ± 0.17 90.06 ± 0.18

7

Under review as a conference paper at ICLR 2023

Table 3: Computational requirements on a set of
standard benchmark graphs. OOM indicates run-
ning out of memory on a 32GB GPU.

Dataset CS. Phy. Genius Gamers.
Nodes 18,333 34,493 421,961 168,114
Edges 327,576 991,848 984,979 6,797,557
GRACE 13.21 GB 30.11 GB OOM OOM
BGRL 3.10 GB 5.42 GB 8.18 GB 26.22 GB
SP-GCL 2.07 GB 3.21 GB 6.24 GB 22.15 GB

Table 4: The performance of SP-GCL with differ-
ent hidden dimension. The average accuracy over
10 runs is reported.

WikiCS Comp. Actor Twitch-DE.
K = 256 78.32 88.40 28.12 72.53
K = 512 79.01 89.01 28.94 72.87
K = 1024 79.07 89.68 29.87 73.51

6.2 COMPUTATIONAL COMPLEXITY ANALYSIS

In order to illustrate the advantages of SP-GCL, we provide a brief comparison of the time and space
complexities between SP-GCL, the previous strong contrastive method, GCA (Zhu et al., 2021b),
and the memory-efficient contrastive method, BGRL (Thakoor et al., 2021). Consider a graph with
N nodes and E edges, and a graph neural network (GNN), f , that compute node embeddings in time
and space O(N +E). BGRL performs four GNN computations per update step, in which twice for
the target and online encoders, and twice for each augmentation, and a node-level projection; GCA
performs two GNN computations (once for each augmentation), plus a node-level projection. Both
methods backpropagate the learning signal twice (once for each augmentation), and we assume
the backward pass to be approximately as costly as a forward pass. Both of them will compute
the augmented graphs by feature masking and edge masking on the fly, the cost for augmentation
computation is nearly the same. Thus the total time and space complexity per update step for BGRL
is 6Cencoder(E+N)+4CprojN+CprodN+Caug and 4Cencoder(E+N)+4CprojN+CprodN

2+
Caug for GCA. The Cprod depends on the dimension of node embedding and we assume the node
embeddings of all the methods with the same size. For our proposed method, only one GNN encoder
is employed and we compute the inner product of b nodes to construct positive samples and Kpos

and Kneg inner product for the loss computation. Then for SP-GCL, we have: 2Cencoder(E +
N) + 2CprojN +Cprod(Kpos +Kneg)

2. We empirically measure the peak of GPU memory usage
of SP-GCL, GCA and BGRL. As a fair comparison, we set the embedding size as 128 for all those
methods on the four datasets and keep the other hyper-parameters of the three methods the same as
the main experiments. As shown by Table 3, the computational overhead of SP-GCL is much
less than the previous methods.

Table 5: True positive ratio of selected edges at the
end of training. The minimal, maximal, average,
standard deviation of 20 runs are presented.

Dataset hedge of Ĝ
Cora 0.812↑ ± 0.0022 (0.810)
CiteSeer 0.691↓ ± 0.0018 (0.736)
PubMed 0.819↑ ± 0.0011 (0.802)
Coauthor CS 0.883↑ ± 0.0018 (0.808)
Coauthor Phy. 0.952↑ ± 0.0021 (0.931)
Amazon Comp. 0.866↑ ± 0.0019 (0.777)
Amazon Photo 0.908↑ ± 0.0012 (0.827)
WikiCS 0.751↑ ± 0.0027 (0.654)
Chameleon 0.631↑ ± 0.0047 (0.234)
Squirrel 0.526↑ ± 0.0042 (0.223)
Actor 0.378↑ ± 0.0026 (0.216)
Twitch-DE 0.669↑ ± 0.0033 (0.632)
Twitch-gamers 0.617↑ ± 0.0021 (0.545)
Genius 0.785↑ ± 0.0028 (0.618)

Table 6: Edge homophily of the transformed graph
at the initial stage. Homophily value of original
graphs is shown in parentheses.

Dataset Min Max Avg Std
Cora 0.817 0.836 0.826 0.0061
CiteSeer 0.708 0.719 0.713 0.0033
PubMed 0.820 0.832 0.825 0.0037
Coauthor CS 0.892 0.905 0.901 0.0025
Coauthor Phy. 0.952 0.963 0.959 0.0028
Amazon Comp. 0.874 0.896 0.878 0.0076
Amazon Photo 0.903 0.926 0.916 0.0054
WikiCS 0.757 0.771 0.761 0.0040
Chameleon 0.703 0.785 0.711 0.0183
Squirrel 0.529 0.541 0.530 0.0024
Actor 0.388 0.399 0.396 0.0016
Twitch-DE 0.693 0.726 0.703 0.0073
Twitch-gamers 0.620 0.633 0.627 0.0022
Genius 0.786 0.797 0.790 0.0029

6.3 EMPIRICAL VERIFICATION FOR THE THEORETICAL ANALYSIS

Effect of embedding dimension (Scaling Behavior). We observe performance gains by scaling up
models, as shown in Table 4. These observations are aligned with our analysis (Theorem 2), a larger
hidden dimension, K, leads to better performance (larger λ̂K+1 leads to a lower bound). Coupling
with the efficiency property (Section 6.2), our scalable approach allows for learning high-capacity
models that generalize well under the same computational requirement.

Homophily of transformed graph (Initial Stage). The positive sampling depends largely on how
the hidden representation is obtained. In other words, if starting from a “poor” initialization, the
GNN encoder could yield false positive samples since the inner product is not correctly evaluated in

8

Under review as a conference paper at ICLR 2023

the beginning. Although, our analysis shows that the concentration property (Lemma 1) is relatively
tight with commonly used initialization methods (σmax(W

⊤W) of the Equation (4) is bounded,
Appendix C.5) and indicates that the transformed graph formed by selected positive pairs will have
large edge homophily degree, we empirically measure the edge homophily of the transformed graph
at the beginning of the training stage with 20 runs. The mean and standard deviation are reported
in Table 6. The edge homophily of all transformed graphs are larger than the original one with a
small standard deviation, except the CiteSeer in which a relatively high edge homophily (0.691) can
still be achieved. The result indicates that the initialization is “good” enough at the beginning stage
to form a useful transformed graph and, in turn, support the feasibility of the Lemma 1 over the
real-world data.

Distance to class center and Node Coverage (Learning Process). We measure change of the
average cosine distance (1−CosineSimilarity) between the node embeddings and the class-center
embeddings during training. Specifically, the class-center embedding is the average of the node
embeddings of the same class. As shown in Figure 3, we found that the node embeddings will
concentrate on their corresponding class centers during training, which implies that the learned
embedding space becomes more compact and the learning process is stable. Intuitively, coupling
with the “good” initialization as discussed above, the SP-GCL iteratively leverage the inductive
bias in the stable learning process and refine the embedding space. Furthermore, to study which
nodes are benefited during the learning process, we measure the Node Cover Ratio and Overlapped
Selection Ratio on four graph datasets. We denote the set of edges forming by the Kpos positive
selection at epoch t as et and define the Overlapped Selection Ratio as et+1∩et

|et+1| . Besides, we denote
the set of positive nodes at at epoch t as vt. Then the Node Cover Ratio at epoch t is defined as:
|v0∩v1···vt|

N . Following the hyperparameters described in the previous section, we measure the Node
Cover Ratio and Overlapped Selection Ratio during training. The results are shown in Figure 4,
which shows that all nodes are benefited from the optimization procedure. Besides, we attribute the
relatively small and non-increasing overlapped selection ratio to the batch training.

Selected positive pairs (End of Training). To further study the effect of the proposed method, we
provide the true positive ratio (TPR) of the selected pairs at the end of training with 20 runs. As
shown in Table 5, the relatively large TPR and low variance suggests that the quality of the selected
positive pairs is good and the learning process is stable.

Figure 3: Average cosine distance between
node embeddings and their corresponding class
centers.

Figure 4: The Node Cover Ratio and Over-
lapped Selection Ratio.

7 CONCLUSION

In this work, we firstly analyze the concentration property of embedding obtained through neigh-
borhood aggregation which holds for both homophilic and heterophilic graphs. Then, exploiting
the concentration property, we introduce the single-pass graph contrastive loss. We theoretically
show that the equivalence between the contrastive objective and the matrix factorization. Further,
leveraging the analysis of the matrix factorization, we provide a theoretical guarantee for the node
embedding, obtained through minimizing the contrastive loss, in the downstream classification task.
To verify the usefulness of our findings in real-world datasets, we implement the Single-Pass Graph
Contrastive Learning framework (SP-GCL). Empirically, we show that SP-GCL can outperform
or be competitive with SOTA methods on 8 homophilic graph benchmarks and 6 heterophilic graph
benchmarks with significantly less computational overhead. The empirical results verify the fea-
sibility and effectiveness of our analysis in real-world cases. We leave the discussion about the
connection with existing observation, limitation and future work in Appendix E.

9

Under review as a conference paper at ICLR 2023

8 REPRODUCIBILITY STATEMENT

To ensure the results and conclusions of our paper are reproducible, we make the following efforts:

Theoretically, we state the full set of assumptions and include complete proofs of our theoretical
results in Section 4 and Appendix C.

Experimentally, we provide our code, and instructions needed to reproduce the main experimental
results. And we specify all the training and implementation details in Section 6 and Appendix A.
Besides, we independently run experiments and report the mean and standard deviation.

10

Under review as a conference paper at ICLR 2023

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learn-
ing, pp. 21–29. PMLR, 2019.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis, and Nikunj Saun-
shi. A theoretical analysis of contrastive unsupervised representation learning. arXiv preprint
arXiv:1902.09229, 2019.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization.
arXiv preprint arXiv:2102.06966, 2021.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. arXiv preprint arXiv:2101.00797, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Fan RK Chung and Fan Chung Graham. Spectral graph theory. Number 92. American Mathematical
Soc., 1997.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems, 31, 2018.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
arXiv preprint arXiv:1903.02428, 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, 33:21271–21284, 2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. arXiv preprint arXiv:1706.02216, 2017.

Jeff Z HaoChen, Colin Wei, Adrien Gaidon, and Tengyu Ma. Provable guarantees for self-supervised
deep learning with spectral contrastive loss. arXiv preprint arXiv:2106.04156, 2021.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738, 2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

11

Under review as a conference paper at ICLR 2023

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–48. Springer, 2012.

Jason D Lee, Qi Lei, Nikunj Saunshi, and Jiacheng Zhuo. Predicting what you already know helps:
Provable self-supervised learning. arXiv preprint arXiv:2008.01064, 2020.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning
on graphs. arXiv preprint arXiv:2112.02472, 2021.

Shouheng Li, Dongwoo Kim, and Qing Wang. Beyond low-pass filters: Adaptive feature propaga-
tion on graphs. In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pp. 450–465. Springer, 2021.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. arXiv preprint
arXiv:2205.07308, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34, 2021a.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-
homophilous graphs. arXiv preprint arXiv:2104.01404, 2021b.

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning
from the perspective of graph spectrum. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=L0U7TUWRt_X.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Zhen Peng, Wenbing Huang, Minnan Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Junzhou
Huang. Graph representation learning via graphical mutual information maximization. In Pro-
ceedings of The Web Conference 2020, pp. 259–270, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Pro-
ceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 1150–1160, 2020.

Douglas A Reynolds. Gaussian mixture models. Encyclopedia of biometrics, 741(659-663), 2009.

12

https://openreview.net/forum?id=L0U7TUWRt_X

Under review as a conference paper at ICLR 2023

Benedek Rozemberczki and Rik Sarkar. Twitch gamers: a dataset for evaluating proximity preserv-
ing and structural role-based node embeddings. arXiv preprint arXiv:2101.03091, 2021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković,
and Michal Valko. Bootstrapped representation learning on graphs. arXiv preprint
arXiv:2102.06514, 2021.

Christopher Tosh, Akshay Krishnamurthy, and Daniel Hsu. Contrastive learning, multi-view redun-
dancy, and linear models. In Algorithmic Learning Theory, pp. 1179–1206. PMLR, 2021.

Puja Trivedi, Ekdeep Singh Lubana, Yujun Yan, Yaoqing Yang, and Danai Koutra. Augmentations
in graph contrastive learning: Current methodological flaws & towards better practices. In Pro-
ceedings of the ACM Web Conference 2022, pp. 1538–1549, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. ICLR (Poster), 2(3):4, 2019.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Augmentation-free graph contrastive learning.
arXiv preprint arXiv:2204.04874, 2022a.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Yuansheng Wang, Wangbin Sun, Kun Xu, Zulun Zhu, Liang Chen, and Zibin Zheng. Fastgcl:
Fast self-supervised learning on graphs via contrastive neighborhood aggregation. arXiv preprint
arXiv:2205.00905, 2022b.

Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions i. In The
Collected Works of Eugene Paul Wigner, pp. 524–540. Springer, 1993.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework for
graph contrastive learning without data augmentation. In Proceedings of the ACM Web Confer-
ence 2022, pp. 1070–1079, 2022.

Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. Self-supervised learning
of graph neural networks: A unified review. arXiv preprint arXiv:2102.10757, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in Neural Information Processing Systems,
33:5812–5823, 2020.

Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed, and Danai
Koutra. Graph neural networks with heterophily. arXiv preprint arXiv:2009.13566, pp. 11168–
11176, 2020a.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. arXiv preprint
arXiv:2006.11468, 2020b.

13

Under review as a conference paper at ICLR 2023

Qi Zhu, Yidan Xu, Haonan Wang, Chao Zhang, Jiawei Han, and Carl Yang. Transfer learn-
ing of graph neural networks with ego-graph information maximization. arXiv preprint
arXiv:2009.05204, 2020c.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, 2020d.

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
2021a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In Proceedings of the Web Conference 2021, pp. 2069–2080, 2021b.

14

Under review as a conference paper at ICLR 2023

A APPENDIX: EXPERIMENT SETTING

A.1 DATASET INFORMATION

We analyze the quality of representations learned by SP-GCL on transductive node classification
benchmarks. Specifically, we evaluate the performance of using the pretraining representations on
8 benchmark homophilic graph datasets, namely, Cora, Citeseer, Pubmed (Kipf & Welling, 2016a)
and Wiki-CS, Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics (Shchur et al.,
2018), as well as 6 heterophilic graph datasets, namely, Chameleon, Squirrel (Rozemberczki et al.,
2021), Actor (Pei et al., 2020), Twitch-DE, Twitch-gamers (Rozemberczki & Sarkar, 2021), and
Genius (Lim et al., 2021b). The datasets are collected from real-world networks from different
domains; their detailed statistics are summarized in Table 7. For the 8 homophilic graph data,
we use the processed version provided by PyTorch Geometric (Fey & Lenssen, 2019). Besides,
for the 6 heterophilic graph data, 3 of them, e.g., Chameleon, Squirrel and Actor are provided by
PyTorch Geometric library. The other three dataset, genius, twitch-DE and twitch-gamers can be
obtained from the official github repository1, in which the standard splits for all the 6 heterophilic
graph datasets can also be obtained. Those graph datasets follow the MIT license, and the personal
identifiers are not included. We do not foresee any form of privacy issues.

Table 7: Statistics of datasets used in experiments.

Name Nodes Edges Classes Feat. hnode hedge
Cora 2,708 5,429 7 1,433 .825 .810
CiteSeer 3,327 4,732 6 3,703 .717 .736
PubMed 19,717 44,338 3 500 .792 .802
Coauthor CS 18,333 327,576 15 6,805 .832 .808
Coauthor Phy. 34,493 991,848 5 8,451 .915 .931
Amazon Comp. 13,752 574,418 10 767 .785 .777
Amazon Photo 7,650 287,326 8 745 .836 .827
WikiCS 11,701 216,123 10 300 .658 .654
Chameleon 2,277 36,101 5 2,325 .103 .234
Squirrel 5,201 216,933 5 2,089 .088 .223
Actor 7,600 33,544 5 9,31 .154 .216
Twitch-DE 9,498 153,138 2 2,514 .529 .632
Twitch-gamers 168,114 6,797,557 2 7 .552 .545
Genius 421,961 984,979 2 12 .477 .618

A.2 BASELINES

We consider representative baseline methods belonging to the following three categories (1) Tra-
ditional unsupervised graph embedding methods, including DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover & Leskovec, 2016) , (2) Self-supervised learning algorithms with graph neural
networks including Graph Autoencoders (GAE, VGAE) (Kipf & Welling, 2016b) , Deep Graph In-
fomax (DGI) (Velickovic et al., 2019) , Graphical Mutual Information Maximization (GMI) (Peng
et al., 2020), and Multi-View Graph Representation Learning (MVGRL) (Hassani & Khasahmadi,
2020), graph contrastive representation learning (GRACE) (Zhu et al., 2020d) Graph Contrastive
learning with Adaptive augmentation (GCA) (Zhu et al., 2021b), Bootstrapped Graph Latents
(BGRL) (Thakoor et al., 2021), Augmentation-Free Graph Representation Learning (AFGRL) (Lee
et al., 2021), (3) Supervised learning and Semi-supervised learning, e.g., Multilayer Perceptron
(MLP) and Graph Convolutional Networks (GCN) (Kipf & Welling, 2016a), where they are trained
in an end-to-end fashion.

A.3 EVALUATION PROTOCOL

We follow the evaluation protocol of previous state-of-the-art graph contrastive learning approaches.
Specifically, for every experiment, we employ the linear evaluation scheme as introduced in (Velick-
ovic et al., 2019), where each model is firstly trained in an unsupervised manner; then, the pretrained

1https://github.com/CUAI/Non-Homophily-Large-Scale

15

https://github.com/CUAI/Non-Homophily-Large-Scale

Under review as a conference paper at ICLR 2023

representations are used to train and test via a simple linear classifier. For the datasets that came with
standard train/valid/test splits, we evaluate the models on the public splits. For datasets without stan-
dard split, e.g., Amazon-Computers, Amazon-Photo, Coauthor-CS, Coauthor-Physics, we randomly
split the datasets, where 10%/10%/80% of nodes are selected for the training, validation, and test
set, respectively. For most datasets, we report the averaged test accuracy and standard deviation over
10 runs of classification. While, following the previous works (Lim et al., 2021b;a), we report the
test ROC AUC on genius and Twitch-DE datasets.

A.4 IMPLEMENTATION DETAILS

Model architecture and hyperparamters. We employ a two-layer GCN (Kipf & Welling, 2016a)
as the encoder for all methods. The propagation for a single layer GCN is given by,

GCNi(X,A) = σ
(
D̄− 1

2 ĀD̄− 1
2XWi

)
,

where Ā = A + I is the adjacency matrix with self-loops, D̄ is the degree matrix, σ is a non-
linear activation function, such as ReLU, and Wi is the learnable weight matrix for the i’th layer.
Besides, following the previous works (Lim et al., 2021a;b), we use batch normalization within
the graph encoder for the heterophilic graphs. The hyperparameters setting for all experiments are
summarized in Table 8. We would like to release our code after acceptance.

Linear evaluation of embeddings. In the linear evaluation protocol, the final evaluation is over
representations obtained from pretrained model. When fitting the linear classifier on top of the
frozen learned embeddings, the gradient will not flow back to the encoder. We optimize the one
layer linear classifier 1000 epochs using Adam with learning rate 0.0005.

Hardware and software infrastructures. Our model are implemented with PyTorch Geometric
2.0.3 (Fey & Lenssen, 2019), PyTorch 1.9.0 (Paszke et al., 2017). We conduct experiments on a
computer server with four NVIDIA Tesla V100 SXM2 GPUs (with 32GB memory each) and twelve
Intel Xeon Gold 6240R 2.40GHz CPUs.

Table 8: Hyperparameter settings for all experiments.

lr. Kpos Kneg b T K
Cora .0010 5 100 512 2 1024
CiteSeer .0020 10 200 256 2 1024
PubMed .0010 5 100 256 2 1024
WikiCS .0010 5 100 512 2 1024
Amz-Comp. .0010 5 100 256 2 1024
Amz-Photo .0010 5 100 512 2 1024
Coauthor-CS .0010 5 100 512 2 1024
Coauthor-Phy. .0010 5 100 256 2 1024
Chameleon .0010 5 100 512 3 1024
Squirrel .0010 5 100 512 3 1024
Actor .0010 10 100 512 4 1024
Twitch-DE .0010 5 100 512 4 1024
Twitch-gamers .0010 5 100 256 4 128
Genius .0010 5 100 256 3 512

B APPENDIX: ABLATION STUDY

B.1 EFFECT OF TOP-K POSITIVE SAMPLING

We study the effect of top-K positive sampling on the node classification performance by measuring
the classification accuracy and the corresponding standard deviation with a wide range of K. The
results over WikiCS, Chameleon, Squirrel, Cora, and Photo are summarized in Figure 5. We observe
that the performance achieved by SP-GCL is insensitive to the selection of K from 2 to 18.

16

Under review as a conference paper at ICLR 2023

Figure 5: The effect of top-K positive sam-
pling on the Performance.

Figure 6: The effect of T -hop neighborhood on
the Performance.

B.2 EFFECT OF T -HOP NEIGHBORS

Factor T is the other factor involved in node sampling. We provide a study about the the effect of
T -hop neighbors on the node classification performance by measuring the classification accuracy
or ROCAUC score and the corresponding standard deviation with different T . Specifically, with
the same evaluation protocol described in Section A.3, we measure the classification accuracy on
Squirrel, Cora, Actor, and Chameleon dataset and ROCAUC score on twitch-DE. As shown in
Figure 6, the performance achieved by SP-GCL is insensitive to the selection of T .

C APPENDIX: DETAILED PROOFS

C.1 PROOF OF LEMMA 1

Proof. We first calculate the expectation of aggregated embedding:

E[fθ(xi)] = E
[
W

∑
j∈N (i)

1

Dii
xj

]
= WEy∼Pyi ,x∼Py(x)[x] (10)

This equation is based on the graph data assumption such that xj ∼ Pyi(x) for every j. Now
we provide a concentration analysis. Because each feature xi is a sub-Gaussian variable, then by
Hoeffding’s inequality, with probability at least 1− δ′ for each d ∈ [1, F], we have,∣∣∣∣ 1

Dii

∑
j

(xj,d − E[xj,d])
∣∣∣∣ ≤

√
log(2/δ′)

2Dii∥xj,d∥ψ2

(11)

where ∥xj,d∥ψ2
is sub-Gaussian norm of xj,d. Furthermore, because each dimension of xj is i.i.d.,

thus we have ∥xj∥ψ2
= ∥xj,d∥ψ2

, for d ∈ [1, F]. Then we apply a union bound by setting δ′ = Fδ
on the feature dimension k. Then with probability at least 1− δ we have∣∣∣∣ 1

Dii

∑
j

(xj,d − E[xj,d])
∣∣∣∣ ≤

√
log(2F/δ)

2Dii∥x∥ψ2

(12)

Next, we use the matrix perturbation theory,∥∥∥∥ 1

Dii

∑
j

(xj,d − E[xj,d])
∥∥∥∥
2

≤
√
F

∣∣∣∣ 1

Dii

∑
j

(xj,d − E[xj,d])
∣∣∣∣

≤

√
F log(2F/δ)

2Dii∥x∥ψ2

(13)

Finally, plug the weight matrix into the inequality,

∥fθ(xi)− E[fθ(xi)]∥ ≤ σmax(W)

∥∥∥∥ 1

Dii

∑
j

(xj,k − E[xj,k])
∥∥∥∥
2

(14)

17

Under review as a conference paper at ICLR 2023

where σmax is the largest singular value of weight matrix.

Next, we perform a concentration analysis for the inner product. We first write down the detailed
expression for each pair of i, j,

si,j ≡ x⊤
i W

⊤Wxj (15)

We first bound x⊤
i xj . Because xi and xj are independently sampled from an identical distribu-

tion, then the product x⊤
i xj is sub-exponential. This can been seen from Orilicz norms relation

that ∥x2∥ψ1 = (∥x2∥ψ2)
2, where ∥x∥ψ2 is sub-exponential norm of x2. Then by the Hoeffding’s

inequality for sub-exponential variable, with a probability at least 1− δ, we have

|x⊤
i xj − Exi∼Pyi ,xj∼Pyj [x

⊤
i xj]| ≤

√
σ2
max(W⊤W) log(2/δ)

2∥x2∥ψ1

(16)

Because that the aggregated feature is normalized by the degree of corresponding node, we have,
for each pair of i, j

|si,j − E[si,j]| ≤

√
log(2/δ)σ2

max(W⊤W)

2∥x2∥ψ1DiiDjj
≤

√
σ2
max(W⊤W) log(2/δ)

2∥x2∥ψ1D
2

(17)

where D = miniDii for i ∈ [1, N]. Finally we apply a union bound over a pair of i, j. Then with
probability at least 1− δ we have

∣∣Z⊤
i Zj − E[Z⊤

i Zj]
∣∣ ≤ √

σ2
max(W⊤W) log(2N2/δ)

2D2∥x2∥ψ1

(18)

C.2 PROOF OF LEMMA 2

To prove this lemma, we first introduce the concept of the probability adjacency matrix. For the
transformed graph Ĝ, we denote its probability adjacency matrix as Ŵ, in which ŵij =

1

Ê
·Âij . ŵij

can be understood as the probability that two nodes have an edge and the weights sum to 1 because
the total probability mass is 1:

∑
i,j ŵi,j′ = 1, for vi, vj ∈ V . The corresponding symmetric

normalized matrix is Ŵsym = D̂
−1/2
w ŴD̂

−1/2
w , and the D̂w = diag

(
[ŵ1, . . . , ŵN]

)
, where ŵi =∑

j ŵij . We then introduce the Matrix Factorization Loss which is defined as:

min
F∈RN×k

Lmf(F) :=
∥∥∥Âsym − FF⊤

∥∥∥2

F
. (19)

By the classical theory on low-rank approximation, Eckart-Young-Mirsky theorem (Eckart & Young,
1936), any minimizer F̂ of Lmf(F) contains scaling of the smallest eigenvectors of Lsym (also, the
largest eigenvectors of Âsym) up to a right transformation for some orthonormal matrix R ∈ RK×K .
We have F̂ = F∗. diag

([√
1− λ1, . . . ,

√
1− λK

])
R, where F∗ = [u1,u2, · · · ,uK] ∈ RN×K .

To proof the Lemma 2, we first present the Lemma 3.

Lemma 3 For transformed graph, its probability adjacency matrix Ŵ, and adjacency matrix Â

are equal after the symmetric normalization, Ŵsym = Âsym.
Proof. For any two nodes vi, vj ∈ V and i ̸= j, we denote the the element in i-th row and j-th
column of matrix Ŵsym as Ŵij

sym.

Ŵij
sym =

1√∑
k ŵik

√∑
k ŵkj

1

E
Âij =

1√∑
k Âik

√∑
k Âkj

Âij = Âij
sym. (20)

Leveraging the Lemma 3, we present the proof of Lemma 2.

18

Under review as a conference paper at ICLR 2023

Proof of Lemma 2 We start from the matrix factorization loss over Âsym to show the equivalence.

∥Âsym − FF⊤∥2F = ∥Ŵsym − FF⊤∥2F

=
∑
ij

(ŵij√
ŵi

√
ŵj

− fmf(vi)
⊤fmf(vj)

)2
=

∑
ij

(fmf(vi)
⊤fmf(vj))

2 − 2
∑
ij

ŵij√
ŵi

√
ŵj

fmf(vi)
⊤fmf(vj) + ∥Ŵsym∥2F

=
∑
ij

ŵiŵj
[(1√

ŵi
· fmf(vi)

)⊤(1√
ŵj

· fmf(vj)
)]2

− 2
∑
ij

ŵij
(1√

ŵi
· fmf(vi)

)⊤(1√
ŵj

· fmf(vj)
)
+ C

(21)

where fmf(vi) is the i-th row of the embedding matrix F. The ŵi which can be understood as
the node selection probability which is proportional to the node degree. Then, we can define the
corresponding sampling distribution as Pdeg . If and only if

√
wi · Fψ(vi) = fmf(vi) = Fi, the we

have:
E vi∼Pdeg
vj∼Pdeg

(
Fψ(vi)

⊤Fψ(vj)
)2

− 2 E vi∼Uni(V)
v
i+

∼Uni(N(vi))

(
Fψ(vi)

⊤Fψ(vi+)
)
+ C (22)

where N (vi) denotes the neighbor set of node vi and Uni(·) is the uniform distribution over the
given set. Because we constructed the transformed graph by selecting the top-Kpos nodes for each
node, then all nodes have the same degree. We can further simplify the objective as:

E vi∼Uni(V)
vj∼Uni(V)

(
Z⊤
i Zj

)2

− 2 E vi∼Uni(V)

v
i+

∼Uni(Sipos)

(
Z⊤
i Zi+

)
+ C. (23)

Due to the node selection procedure, the factor
√
wi is a constant and can be absorbed by the neural

network, Fψ . Then, because Zi = Fψ(vi), we can have the Equation 23. Therefore, the minimizer
of matrix factorization loss is equivalent with the minimizer of the contrastive loss.

C.3 PROOF OF THEOREM 1

Proof. Now we provide the proof for the inner product of embedding. In particular, when we
can achieve near-zero contrastive learning loss, i.e., Lmf(F) = 0, the minimizer F∗ of Lmf(F)

contains scaling of the smallest eigenvectors of L̂sym (also, the largest eigenvectors of Âsym),
F∗ = [u1,u2, · · · ,uK] ∈ RN×K , according to the Eckart-Young-Mirsky theorem (Eckart &
Young, 1936). Recall that y = {1,−1}N ∈ RN×1 is label of all nodes. Then we show there is
a constraint on the quadratic form with respect to the optimal classifier. According to graph spectral
theory (Chung & Graham, 1997), the quadratic form

y⊤L̂symy =
1

2

∑
i,i′

(Âsym)i,i′(yi − yi′)
2

which captures the amount of edges connecting different labels. Furthermore, suppose that the
expected homophily over distribution of graph feature and label, i.e., y ∼ P (yi),x ∼ Py(x),
through similarity selection satisfies E[hedge(Ĝ)] = 1 − ϕ̄. Here ϕ̄ = Evi,vj∼Uni(V)

(
Âi,j · 1[yi ̸=

yj]
)
. Since we have defined that ϕ̄ as the density of edges that connects different labels, we can

directly show that y⊤L̂symy ≤ ϕ̄N . Then we expand the above expression accoding to L̂sym =

I− Âsym,
y⊤L̂symy = y⊤(I− Âsym)y = N − y⊤Âsymy

Next we consider the situation that we achieve the optimal solution of the contrastive loss, Z =

argminLSP-GCL. Then, we have Lmf (F∗) = 0, which implies that Âsym = (F∗)⊤F∗. As we
analyzed in Section C.2, we have Z = F∗ in this case. Furthermore, we have,

y⊤L̂symy = y⊤(I− Âsym)y = N − y⊤Z⊤Zy = N − y⊤(Z⊤
i Zj)(i,j∈n×n)y

= N − (
∑
i,j

Z⊤
i Zj |yi=yj −

∑
i,j

Z⊤
i Zj |yi ̸=yj)

(24)

19

Under review as a conference paper at ICLR 2023

This leads to,

1

N

[∑
i,j

Z⊤
i Zj |yi=yj −

∑
i,j

Z⊤
i Zj |yi ̸=yj

]
= E[Z⊤

i Zj |yi=yj]−E[Z⊤
i Zj |yi ̸=yj] ≥ 1− ϕ̄ (25)

C.4 PROOF OF THEOREM 2

Recently, HaoChen et al. (2021) presented the following theoretical guarantee for the model learned
with the matrix factorization loss.

Lemma 4 For a graph G, let f∗
mf ∈ argminfmf :V→RK be a minimizer of the matrix factorization

loss, Lmf(F), where Fi = fmf(vi). Then, for any label y, there exists a linear classifier B∗ ∈ Rc×K
with norm ∥B∗∥F ≤ 1/ (1− λK) such that

Evi
[
∥y⃗i −B∗f∗

mf(vi)∥
2
2

]
≤ ϕy

λK+1
, (26)

where y⃗i is the one-hot embedding of the label of node vi. The difference between labels of connected
data points is measured by ϕy, ϕy := 1

E

∑
vi,vj∈V Aij · 1 [yi ̸= yj] .

Proof of Theorem 2. This proof is a direct summary on the established lemmas in previous section.
By Lemma 2 and Lemma 4, we have,

Evi
[∥∥y⃗i −B∗f∗

gcl(vi)
∥∥2

2

]
≤ ϕy

λ̂K+1

(27)

where λ̂i is the i-th smallest eigenvalue of the Laplacian matrix L̂sym = I− Âsym. Note that ϕy in
Lemma 4 equals 1− hedge.

Then we apply Theorem 1 and Lemma 1 for hedge to conclude the proof:

Evi
[∥∥y⃗i −B∗f∗

gcl(v)
∥∥2

2

]
≤ 1− hedge

λ̂K+1

≤
ϕ̄+

√
σ2
max(W

⊤W) log(2N2/δ)

2D2∥x2∥ψ1

λ̂K+1

=
ϕ̄

λ̂K+1

+

√
σ2
max(W⊤W) log(2N2/δ)

2D2∥x2∥ψ1 λ̂
2
K+1

(28)

C.5 INFLUENCE OF RANDOM INITIALIZATION

Recall that the concentration inequality for inner product of embedding in Lemma 1 is:

∣∣Z⊤
i Zj − E[Z⊤

i Zj]
∣∣ ≤√

σ2
max(W

⊤W) log(2N2/δ)

2D2∥x2∥ψ1

As shown by Lemma 1, the accuracy of using the graph encoder to obtain the similarity between
two nodes is determined by the maximum singular value of the weight of the graph encoder. In
other words, the quality of the transformed graph is guaranteed if we can be sure that the maximum
singular value of the weight (of the graph encoder) is bounded. When initializing the network, we
generally use Gaussian initialization, such as, Kaiming and Lecun initialization (He et al., 2015;
LeCun et al., 2012). Then W⊤W will be a Wishart matrix, and the limiting spectral density can
be shown to be the Marchenko-Pastur distribution (Wigner, 1993), whose largest singular value is
bounded when K/F is bounded, where W ∈ RF×K . As a result, the quality of the transformed
graph can be guaranteed with a high probability under condition that K/F is bounded.

On the other hand, we assume that for node i, its neighbor’s labels are independently sampled from
a distribution P (yi). This means that the probability of an edge between two nodes can be fixed
given labels. In this case, the degree scales linearly with number of nodes N . In the large graph
limit, D will tends to infinity, thus our bound can be tighter.

20

Under review as a conference paper at ICLR 2023

Table 9: Summary of graph augmentations used by representative GCL models. Multiple∗ denotes multiple
augmentation methods including edge removing, edge adding, node dropping and subgraph induced by random
walks.

Method Topology Aug. Feature Aug.
DGI (Velickovic et al., 2019) Node Shuffling -

GMI (Peng et al., 2020) Node Shuffling -
MVGRL (Hassani & Khasahmadi, 2020) Diffusion -

GCC (Qiu et al., 2020) Subgraph -
GraphCL (You et al., 2020) Multiple∗ Feature Dropout
GRACE (Zhu et al., 2020d) Edge Removing Feature Masking

GCA (Zhu et al., 2021b) Edge Removing Feature Masking
BGRL (Grill et al., 2020) Edge Removing Feature Masking

D AUGMENTATIONS IN EXISTING WORKS

E DISCUSSION

E.1 CONNECTION WITH EXISTING OBSERVATIONS

In Lemma 1, we theoretically analyze the concentration property of aggregated features of graphs
following the Graph Assumption (Section 4.1). The concentration property has also been empirically
observed in some other recent works (Wang et al., 2022b; Trivedi et al., 2022). Specifically, in the
Figure 1 of Wang et al. (2022b), a t-SNE visualization of node representations of the Amazon-Photo
dataset shows that the representations obtained by a randomly initialized untrained SGC (Wu et al.,
2019) model will concentrate to a certain area if they are from the same class. This observation also
provides an explanation for the salient performance achieved by SP-GCL on the Amazon-Photo,
as shown in Table 1.

E.2 LIMITATION AND FUTURE WORK

Our work is only the first step in understanding the possibility of single-pass graph contrastive learn-
ing and the corresponding performance guarantee on both the homophilic graph and heterophilic
graph. There is still a lot of future work to be done. Below we indicate three questions that need to
be addressed.

• Our theoretical framework is built upon the graph assumption (Section 4.1) in which we assume
the neighbor pattern. The graph assumption includes the homophilic graph and the “benign”
heterophilic graph. However, there could exist graphs in which the neighbor pattern is messy or
arbitrarily distributed. It is still an open question to understand the graph contrastive learning on
those graphs.

• Recently, several Graph neural networks (Zhu et al., 2020b; Chien et al., 2020; Luan et al.,
2021; Li et al., 2022) have been proposed to work on heterophilic graphs. Whether further
improvement can be achieved through combining with those GNNs is still an open question.

• To verify the effectiveness of our theoretical findings, we keep the implementation to be simple.
Whether a better performance can be achieved by involving more complex techniques still need
to be explored.

21

	Introduction
	Related work
	Preliminary
	Theoretical analyses
	Analysis of aggregated features
	Single-pass graph contrastive loss
	Performance Guarantee for Learning Linear Classifier

	Single-pass graph contrastive learning (SP-GCL)
	Experiments
	Performance on homophilic and heterophilic graph
	Computational complexity analysis
	Empirical verification for the theoretical analysis

	Conclusion
	Reproducibility Statement
	Appendix: Experiment Setting
	Dataset information
	Baselines
	Evaluation Protocol
	Implementation details

	Appendix: Ablation Study
	Effect of top-k positive sampling
	Effect of T-hop neighbors

	Appendix: Detailed proofs
	Proof of lemma 1
	Proof of lemma 2
	Proof of theorem 1
	Proof of theorem 2
	Influence of random initialization

	Augmentations in existing works
	Discussion
	Connection with existing observations
	Limitation and future work

