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Abstract001

The integration of embodied agents with foun-002
dation models has led to notable progress in003
embodied instruction following. Specifically,004
the advanced reasoning capabilities of large lan-005
guage models (LLMs) and the visual percep-006
tion skills of vision-language models (VLMs)007
enable robots to tackle complex, long-horizon008
tasks without requiring costly annotated demon-009
strations. However, there is still a lack of pub-010
lic benchmarks for evaluating the long-horizon011
reasoning capabilities of language-conditioned012
robots across different scenarios. To address013
this gap, this work introduces LoHoRavens,014
a simulation benchmark designed for table-015
top rearrangement tasks. It includes 40 chal-016
lenging tasks and addresses various aspects of017
long-horizon reasoning such as color, size, spa-018
tiality, arithmetic, reference, shape construc-019
tion, commonsense, and occlusion. We eval-020
uate two prevalent methods with current ad-021
vanced VLMs (such as GPT-4o and Gemini 2.0022
Flash) on this benchmark and conduct a thor-023
ough analysis of their reasoning performance.024
Our findings indicate that both methods strug-025
gle with numerous tasks, shedding light on the026
most challenging contexts that the community027
should be focusing on, as well as underscoring028
the need for continued effort to bridge gaps be-029
tween modalities and improve current models.030

1 Introduction031

In embodied instruction following, an embodied032

agent such as a robot receives a language-based033

instruction and is expected to follow the instruction034

to complete the designated task. Of particular in-035

terest is long-horizon instruction following: how to036

endow embodied agents with long-horizon instruc-037

tion following capabilities attracts more and more038

attention, as it mirrors real-world scenarios that are039

of practical importance in robotics. Long-horizon040

tasks involve high-level instructions that cannot be041

accomplished in just a few steps. Thus, the embod-042

ied agent must not only comprehend the language043

instruction well but also demonstrate advanced ca- 044

pabilities in long-horizon memorizing and com- 045

plex reasoning. Thanks to the emergent abilities 046

of LLMs and VLMs, embodied agents are able 047

to borrow the rich knowledge and commonsense 048

about the world and the strong reasoning capabil- 049

ities from LLMs and VLMs, reducing the need 050

for large expensive datasets of expert-annotated 051

demonstrations. 052

With the rapid progress of LLMs and VLMs, 053

robots are demonstrating increasingly impressive 054

capabilities (Ahn et al., 2022; Driess et al., 2023; 055

Brohan et al., 2023; Zitkovich et al., 2023; Ahn 056

et al.; Black et al., 2024; Team et al., 2025); still, 057

they struggle to solve some tasks that are relatively 058

simple for a human child such as arranging objects 059

on a table into a circle. Unlike the recent progress 060

in NLP and computer vision, there are unique chal- 061

lenges specific to robotics that prevent robots from 062

developing near-human behavior and intelligence, 063

such as intensive interaction with environments, 064

gaps between different modalities and difficulty of 065

annotating domain data for deep learning based 066

solutions. Long-horizon tasks further exacerbate 067

these difficulties since they require multi-step com- 068

plex reasoning across various aspects (e.g., com- 069

monsense, spatiality, color). Additionally, they 070

require overcoming errors accumulated over mul- 071

tiple action steps, and bridging the modality gap 072

between visual feedback, action planning, and ac- 073

tion execution. Each of these challenges is crucial 074

to the system’s performance. 075

Despite its clear significance for autonomous 076

language-conditioned robots, there is little prior 077

work that systematically evaluates and quantifies 078

these unique challenges. Existing benchmarks 079

for long-horizon tasks fall into two main cate- 080

gories. (i) Real-world evaluations, e.g., Language- 081

Table (Lynch et al., 2023) and LHManip (Ce- 082

ola et al.), incorporates real-world uncertain- 083

ties but at the cost of a quite limited scale 084
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Figure 1: Examples of long-horizon tasks in LoHoRavens, highlighting the requirements of varying combinations
of multiple reasoning capabilities for reasoning and planning to complete the tasks.

of evaluations. These evaluations are neither085

reproducible nor publicly accessible – making086

it difficult to verify, reproduce, or build upon087

previous results. (ii) Public simulated long-088

horizon benchmarks, e.g., RLBench (James et al.,089

2020) and CALVIN (Mees et al., 2022), either090

lack language-conditioning or require step-by-step091

human-provided sub-instructions. Category (ii)092

prevents autonomous long-horizon reasoning and093

instead evaluates short-horizon execution guided094

by human intervention, limiting its ability to test095

true high-level reasoning capabilities.1096

To address this gap, this work introduces Lo-097

HoRavens, an open-source simulated benchmark098

designed specifically for long-horizon, language-099

conditioned robotic tabletop rearrangement tasks.100

LoHoRavens enables large-scale autonomous eval-101

uations and provides a comprehensive analysis102

framework for the robotics community. Unlike103

prior benchmarks, LoHoRavens tasks require pro-104

found semantic understanding of high-level instruc-105

tions and complex multistep reasoning capabili-106

ties without external step-by-step guidance. LoHo-107

Ravens covers a wide array of long-horizon reason-108

ing and planning aspects including color, size, spa-109

tiality, arithmetic, reference, commonsense, shape110

construction and occlusion (see examples in Fig. 1).111

To solve each task, a robot must integrate multiple112

reasoning capabilities and formulate a comprehen-113

sive coherent long-horizon plan accordingly.114

We further evaluate two prevalent methods on115

1Because this limitation of short-horizon scenarios, we
limit our comparison in Table 1 to long-horizon benchmarks.

LoHoRavens benchmark, an imitation learning- 116

based method and a Planner-Actor-Reporter 117

method, using current state-of-the-art VLMs like 118

GPT-4o and Gemini 2.0 Flash. We observe that 119

these methods exhibit varied performance levels 120

depending on the specific reasoning capabilities 121

required by each task. Furthermore, both meth- 122

ods struggle greatly with long-horizon tasks, un- 123

derscoring the need for continued improvement in 124

long-horizon language-conditioned robotics tasks. 125

To support ongoing research in this field, we pub- 126

licly release the benchmark, trained models, and 127

the corresponding codebase. 128

2 Related Work 129

2.1 Robotic Manipulation Benchmarks and 130

Datasets 131

The interest in training language-conditioned mod- 132

els for robot manipulation has been growing in 133

recent years thanks to the enormous advances 134

in language processing techniques. As a result, 135

many researchers proposed robotic manipulation 136

datasets and benchmarks. RLBench (James et al., 137

2020), Ravens (Zeng et al., 2021; Shridhar et al., 138

2022), Robosuite (Zhu et al., 2020) introduce 139

manipulation tasks in the household or tabletop- 140

environment household tasks with their corre- 141

sponding natural language instructions. VIMA- 142

Bench (Jiang et al., 2023) is a robot manipula- 143

tion learning benchmark supporting multimodal- 144

prompting tasks. VLMbench (Zheng et al., 2022) 145

contains 3D manipulation tasks with compositional 146
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FurnitureBench (Heo et al., 2023) sim+real ! ! % ! % % 8 auto - % ! ! % ! ! % !

Behaviour-1K (Li et al., 2024) sim ! ! % ! ! % 1000 auto 16 ! ! ! % ! ! % !

CALVIN (Mees et al., 2022) sim ! ! % ! ! ! 34 guided 5 ! % ! % % ! % %

Language-Table (Lynch et al., 2023) sim+real % % % ! ! ! 11 guided 8 ! % ! ! ! ! ! %

LHManip (Ceola et al.) real % % % ! ! ! 20 auto 5 ! ! ! % ! ! % !

CLIPort (Shridhar et al., 2022) sim+real ! ! ! ! ! ! 10 - 7 ! % ! % ! % % %

LoHoRavens (ours) sim ! ! ! ! ! ! 40 auto 15 ! ! ! ! ! ! ! !

Table 1: Comparison of LoHoRavens with other long-horizon robotics benchmarks.

language instructions. RM-PRT (Ren et al., 2023)147

designs four progressive reasoning tasks and inte-148

grates the instruction parsing capabilities of LLMs.149

ARNOLD (Gong et al., 2023b) addresses the chal-150

lenge of understanding continuous object states151

in complex tasks. OpenD (Zhao et al., 2022) ad-152

dresses language-driven door and drawer open-153

ing. Open X-Embodiment (O’Neill et al., 2024)154

is a robotic manipulation dataset that contains155

1M+ robot trajectories from 22 robot embodiments.156

Robo360 (Liang et al., 2023), D3IL (Jia et al.,157

2023), LEMMA (Gong et al., 2023a), and Robo-158

Script (Chen et al., 2024a) are robotic manipula-159

tion benchmarks focusing on specific scenarios like160

evaluating closed-loop sensory feedback, multi-161

robot collaboration, or code generation. None of162

these benchmarks focuses on long-horizon tasks.163

FurnitureBench (Heo et al., 2023) and Be-164

haviour (Li et al., 2024) introduce simulated long-165

horizon benchmarks but they are not language-166

conditioned and thus do not focus on understanding167

semantic information of complex and ambiguous168

task instructions. Inner Monologue (Huang et al.,169

2023), Code as Policies (CaP; Liang et al. (2022)),170

and Language-Table (Lynch et al., 2023) build171

datasets for long-horizon language-conditioned172

manipulation tasks, but all of their long-horizon173

datasets are not open-source even though their174

code is partially released. LHManip (Ceola et al.)175

contains 20 real-world long-horizon manipulation176

tasks in cluttered tabletop environments; each task177

has a pair of natural language instructions and 10178

demonstrations collected via teleoperation. How-179

ever, their real-world scenarios limit the benchmark180

only to enable small-scale training and evaluations.181

The works most similar to our proposed LoHo-182

Ravens are CALVIN (Mees et al., 2022) and Gen-183

Sim (Wang et al., 2023a). CALVIN is also a simu-184

lated long-horizon language-conditioned manipula-185

tion benchmark. However, CALVIN provides step-186

by-step instructions and depends on the correspond- 187

ing step-by-step evaluations to proceed. Therefore, 188

the robot does not need to reason and plan for each 189

step by itself to complete tasks. Furthermore, de- 190

pending on the step-by-step evaluations severely 191

limits the freedom of the benchmark. There are no 192

alternative planning choices, even neglecting the 193

step-by-step instructions. 194

Indeed, up to today, existing replicable2 bench- 195

marks, as summarized in Table 1, either neglect 196

language-conditioned instructions (the main topic 197

of this benchmark) or fail to account for au- 198

tonomous long-horizon reasoning (relying on pro- 199

vided step-by-step sub-instructions). These limi- 200

tations hinder progress in developing robots capa- 201

ble of fully autonomous, high-level reasoning in 202

complex tasks. Instead, LoHoRavens allows for 203

high-level instruction and evaluates policies based 204

on the final states, thus is able to test a robot’s 205

long-horizon reasoning and planning capabilities. 206

GenSim is an approach to generate robotic sim- 207

ulation tasks with LLMs. We make use of it to 208

generate tasks. However, even with the most pow- 209

erful commercial LLMs such as GPT-4 (OpenAI, 210

2024a), we still need much effort to check the code 211

and correct the errors manually. 212

2.2 Foundation Models and Methods for 213

Robot Learning 214

The emergent abilities of LLMs such as GPT- 215

4 (OpenAI, 2024a), PaLM (Chowdhery et al., 216

2023), Gemini (Reid et al., 2024), Llama (Tou- 217

vron et al., 2023; Dubey et al., 2024), Mix- 218

tral (Jiang et al., 2024), Claude (Anthropic, 2024), 219

Qwen (Bai et al., 2023; Yang et al., 2024; Bai 220

et al., 2025) have brought significant breakthroughs 221

to many fields, including robotics, due to their 222

rich knowledge and strong reasoning capabili- 223

2Meaning it can validated, used, or expanded, e.g., (Mees
et al., 2022; Shridhar et al., 2022; Heo et al., 2023; Li et al.,
2024).
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ties. At the same time, there has been re-224

markable progress in the development of vision-225

language models as well, such as CLIP (Rad-226

ford et al., 2021), BLIP-2 (Li et al., 2023), In-227

structBLIP (Dai et al., 2023), Flamingo (Alayrac228

et al., 2022), LLaVA (Liu et al., 2023), MiniGPT-229

4 (Zhu et al., 2024), CogVLM (Wang et al., 2025),230

Chameleon (Team, 2024), PaliGemma (Beyer231

et al., 2024), Molmo (Deitke et al., 2024), In-232

ternVL (Chen et al., 2024b) whose capabilities233

can be extended to robotic closed-loop control,234

enabling new levels of generalization. Moreover,235

there are also some foundation models such as Say-236

Can (Ahn et al., 2022), PaLM-E (Driess et al.,237

2023), RT-1 (Brohan et al., 2023), and vision-238

language-action models such as RT-2 (Zitkovich239

et al., 2023), AutoRT (Ahn et al.), RT-2-X (O’Neill240

et al., 2024), Octo (Mees et al., 2024), Open-241

VLA (Kim et al., 2024), and π0 (Black et al., 2024)242

which are especially designed for robot learning.243

With them, robots show more and more impressive244

capabilities and better generalization to new scenar-245

ios. Our work uses some of these LLMs and VLMs246

as baselines such as GPT-4o, Gemini 2.0 Flash, and247

Qwen2.5-VL to explore solutions to the hard chal-248

lenge of long-horizon language-conditioned tasks.249

Besides the two methods we use as baselines to250

test long-horizon tasks, there is also some work251

trying other ways for long-horizon manipulation252

tasks, such as Language-Table (Lynch et al., 2023)253

and VADER (Ahn et al., 2024), which explore us-254

ing real-time interaction to complete long-horizon255

tasks. These methods can also be tested on our256

LoHoRavens benchmark.257

3 LoHoRavens Benchmark258

As far as we know, LoHoRavens is the first pub-259

lic benchmark supporting large-scale automatic260

evaluation for long-horizon language-conditioned261

robotic tabletop manipulation tasks, without requir-262

ing step-by-step instructions and evaluations for the263

high-level goal of each task (see the comparison264

with other long-horizon benchmarks in Table 1). In265

this section, we give details about the composition266

of the benchmark, as well as its inherent structure,267

design, and evaluation framework.268

3.1 Simulation Environment269

LoHoRavens is built on the Ravens robot simu-270

lator (Zeng et al., 2021; Shridhar et al., 2022) by271

extending it to Long-Horizon tasks. We chose272

Ravens as the base simulator because it is a well- 273

established simulator and widely used for robotic 274

manipulation tasks such as in CLIPort (Shridhar 275

et al., 2022), VIMA-Bench (Jiang et al., 2023). 276

We use the main pick-and-place action primitive 277

supported by Ravens to construct LoHoRavens. 278

Though pick-and-place seems simple, its combi- 279

nations cover a wide range of manipulation tasks 280

and can be used to test very complex reasoning 281

capabilities of agents: see Table 1. In the LoHo- 282

Ravens simulation environment, there are a UR5e 283

robot arm with a suction gripper and some objects 284

on the table. Given a high-level language based 285

instruction (e.g., “stack all the blocks of the same 286

size"), the robot is supposed to rearrange these ob- 287

jects to a desired state. The input to the robot is 288

language instructions and visual observations in 289

the form of top-down RGB-D images from three 290

cameras positioned around a rectangular table. The 291

action space of the robot consists of a language- 292

conditioned pick-and-place motion primitive which 293

is parameterized by two end-effector poses at each 294

time step. Moreover, to simulate disturbance in the 295

real world, we add noise and perturbations to the 296

robot’s environment at test time. Following Inner 297

Monologue (Huang et al., 2023), we add Gaussian 298

noise N (0, 3) to pixel observations and N (0, 2.5) 299

to policy primitive outputs. 300

3.2 Tasks and Dataset 301

Currently, LoHoRavens contains 40 long-horizon 302

tasks. To support complex long-horizon reasoning, 303

there are three low-level pick-and-place primitives 304

that can be used by the foundation model plan- 305

ner: (i) the vanilla pick-and-place-with-color prim- 306

itive, e.g., “pick up the red block and place it on 307

the yellow block", (ii) the pick-and-place-with-size 308

primitive, e.g., “pick up the smaller red block and 309

place it on the bigger yellow block", (iii) the pick- 310

and-place-with-spatiality primitive, e.g., “pick up 311

the red block and place it on the top right area". 312

In addition to the three pick-and-place primitives, 313

LoHoRavens contains 30 manually implemented 314

tasks and 10 tasks automatically generated with the 315

help of GenSim (Wang et al., 2023a).3 316

LoHoRavens covers three kinds of basic objects: 317

block, bowl and zone (see Fig. 1). We made this 318

choice because we do not intend to study the robot’s 319

generalization capability to new or unseen object 320

3We use GenSim with GPT-4o to generate tasks. For each
task, we check the automatically generated code and modify
it if necessary.
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types in this work. Instead, we focus on the long-321

horizon reasoning capabilities that are related to322

the general attributes of objects like size, color and323

spatial position. Such reasoning capabilities can324

be generalized to other objects as well. In addi-325

tion to these general object attributes, we are also326

interested in the reasoning capabilities related to327

attributes of multiple objects. So we include sev-328

eral tasks to test arithmetic and reference reasoning329

capabilities (e.g., “Move all blocks of a color that330

occur in even numbers to the same colored zone.”).331

Moreover, one of the most important reasoning ca-332

pabilities is commonsense reasoning. The tasks333

in LoHoRavens range from simple color common-334

sense reasoning (e.g., “stack the blocks of warm335

colors”) to complex shape construction (e.g., “con-336

struct concentric circles”). The most complex task337

requires commonsense reasoning about what the338

shape to be constructed is first, then manipulating339

as many as sixteen objects where each object has340

to be positioned precisely. Another interesting rea-341

soning capability is to find hidden objects which342

are out of sight (e.g., “pick up the blue block on the343

bottom layer of the pyramid”). To solve this kind344

of task, the agent must move all the objects on top345

of the target object first, which poses further chal-346

lenges to the agent’s reasoning capabilities. Fig. 2347

shows the proportion of each reasoning capability348

in the 40 tasks.349

To understand how the agent performs on the350

tasks, we provide a large-scale dataset for training351

and automatic evaluation. The simulator of Lo-352

HoRavens can generate large-scale expert demon-353

strations automatically with the scripted oracle pro-354

gram as used in CLIPort and VIMA-Bench. The or-355

acle agent has access to ground-truth pick and place356

poses and uses pre-specified heuristics to complete357

the tasks. All the tasks can be instantiated into thou-358

sands of task instances with different random seeds.359

The generated large-scale expert demonstrations360

can be used for further imitation learning or video361

related research. To ensure we have good enough362

pick-and-place primitives, 20,000 demonstrations363

are generated for training each primitive. Then364

they are trained together with multi-task training365

for 12,000,000 steps. The final trained multi-task366

primitive achieves a performance of 91.83%.367

To build the benchmark, we generate, for each368

long-horizon task, 1,000 demonstrations as the369

train set, 100 demonstrations as the validation set,370

and 200 demonstrations as the test set. Note that371

there are 16 colors for each object in the benchmark,372

Figure 2: Reasoning capability frequency across LoHo-
Ravens tasks. Tasks that combine reasoning types are
multiply counted. See Fig. 1.

and the colors of objects are chosen randomly, so 373

they are generally different in training, validation 374

and test sets. We split the tasks into 20 seen tasks 375

and 20 unseen tasks. The seen tasks are used for 376

training and writing prompts. The unseen tasks are 377

used to evaluate the model’s generalization abilities 378

to new tasks. Most of the task instances need at 379

least five steps to complete. Some tasks need 15 380

steps to get to the correct final state. 381

3.3 Evaluation 382

For each task, there are one or more manually- 383

defined ground-truth final states. Depending on 384

the task, there are two different match methods 385

for evaluating whether the states of the objects are 386

correct compared to the ground-truth states. One 387

is pose match: an object’s position and rotation 388

are the same as ground truth. The other is zone 389

match: the overlap area of two objects is larger 390

than a threshold. 391

LoHoRavens uses two measures to evaluate the 392

success rate of a task. The first one is binary suc- 393

cess rate. If the final state of objects is the same as 394

the ground truth, the score is 1, otherwise, it is 0. 395

The other evaluation measure is a partial reward- 396

based score, in the range [0, 1]. The score assigns 397

the partial rewards according to the proportion of 398

successful pick-and-place steps. For example, if 399

a task needs ten pick-and-place steps to complete, 400

and the test model finishes eight of them, the score 401

is 8/10 = 80%. 402

4 Experiments 403

4.1 Baseline Methods 404

Imitation Learning Based Model (IL) We use 405

the same architecture and training recipe as CLI- 406

Port for the imitation learning baseline. Using 407

multi-task training, the CLIPort model is trained 408

with the train sets of all 20 seen tasks along with 409

the three pick-and-place primitives for 100K steps. 410

Because the vanilla CLIPort does not know when 411

to stop the execution, following Inner Monologue 412

and CaP, we use an oracle termination variant that 413
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Figure 3: The Planner-Actor-Reporter (PAR) baseline takes the human input and asks an LLM to create the next
step that needs to be done in order to achieve the task.

uses the oracle information from the simulator to414

detect the success and stop the execution process.415

Planner-Actor-Reporter Based Model (PAR)416

The Planner-Actor-Reporter paradigm is frequently417

used in robotics (Dasgupta et al., 2022; Huang et al.,418

2023; Wang et al., 2023b). Usually, as shown in419

Fig.3, LLMs serve as the Planner due to their im-420

pressive planning and reasoning capabilities, and421

humans or VLMs play the role of Reporter to pro-422

vide necessary language feedback for the Planner’s423

planning. The Actor is the agent that interacts with424

the environment. Specifically, we use Llama-3425

8B (Dubey et al., 2024) and the trained pick-and-426

place CLIPort primitives as the Planner and Actor,427

respectively. For the Reporter, we use the VLM428

CogVLM2 (Wang et al., 2025). We also conduct429

smaller-scale experiments using the powerful com-430

mercial model GPT-4o and Gemini 2.0 Flash as the431

Planner and Reporter in §4.3.432

We create 10-shot examples for both LLM and433

VLM prompts and use them for both seen and un-434

seen tasks. When a step’s action has been executed,435

there will be a top-down RGB image rendered by436

the simulator. The VLM as the Reporter module437

will generate the caption feedback based on the438

current image or the whole image history. This cap-439

tion feedback is sent to the LLM for its next-step440

planning. The Planner-Actor-Reporter closed-loop441

process will be iteratively executed until the high-442

level goal is achieved or the maximum number of443

trial steps has been exceeded.444

4.2 Experimental Results445

Our experiments are designed to evaluate the whole446

simulated robotic policy’s performance, rather than447

evaluating the components of LLM planner and vi-448

sual feedback separately. On one hand, evaluating449

the whole system is more in line with real practi-450

cal needs. On the other hand, LLMs cannot read451

the visual observation directly, therefore it’s hard452

to evaluate the planning capabilities of LLMs in453

Figure 4: Performance of the imitation learning-based
model (IL) and the Planner-Actor-Reporter based model
(PAR) on the seen tasks and unseen tasks of LoHo-
Ravens.

isolation on a large scale. 454

We aim to answer the following questions from 455

the experiments and analysis in §4.3: (i) How do 456

the two baselines perform on the long-horizon tasks 457

in the LoHoRavens benchmark? (ii) How do the 458

models perform under different combinations of 459

reasoning capabilities? (iii) How do the gaps be- 460

tween the modalities language, vision, and action 461

influence the performance of models? 462

Fig. 4 shows how the two baselines perform 463

on all seen and unseen tasks. Numbers are av- 464

erages over tasks. We can see that the imitation 465

learning-based CLIPort model (IL) performs a lit- 466

tle worse than the Planner-Actor-Reporter based 467

model (PAR) on seen tasks. However, when gen- 468

eralizing to the unseen tasks, the IL model drops 469

quite a lot while the PAR counterpart is relatively 470

less affected. The binary success rate of both mod- 471

els is quite low, indicating it is hard for them to 472

finish all the steps of the long-horizon tasks. 473

We then investigate the effects of different rea- 474

soning capabilities. Due to the low binary success 475

rates, we only use the partial reward based metric 476

to study model performance under different com- 477

binations of reasoning capabilities. As we can see 478

from Fig. 5, the overall tendency is that model per- 479

formance drops as the number of reasoning capabil- 480

ities required increases. This observation fits with 481

our intuition that the more reasoning capabilities 482

6



Figure 5: Performance of the imitation learning-based model (IL) and the Planner-actor-reporter-based model (PAR)
under different combinations of reasoning capabilities. (spa = spatiality, arm = arithmetics, cs = commonsense, hid
= occlusion, ref=reference, shape = shape construction)

VLMs
VLM as P VLM as P & R

Partial Binary Partial Binary

GPT-4o 23.96 10.50 6.76 0.2
GPT-4o-mini 23.41 7.70 7.04 0.4
Gemini 2.0 Flash 25.20 10.30 8.97 1.1
Qwen-2.5-VL-7B 11.63 2.80 3.41 0.1
Qwen-2.5-VL-72B 13.11 4.17 3.50 0.1

Table 2: Performance of different VLMs in the PAR
framework.

are required, the harder the tasks become.483

Another interesting finding is that the two base-484

lines perform differently regarding different reason-485

ing capabilities. On the seen tasks requiring spatial486

reasoning capability, the IL model usually performs487

better. It is probably because current LLMs and488

VLMs do not have good spatial understanding. In489

contrast, the PAR model usually outperforms the IL490

model on tasks requiring commonsense. Another491

observation is that the PAR model cannot deal with492

tasks requiring reference since LLMs cannot indi-493

cate the objects accurately if there are more than494

one object with the same size and color. This also495

prevents the PAR model from solving tasks requir-496

ing arithmetic reasoning since these tasks usually497

comprise multiple objects of the same kind.498

The experiments also show that some tasks are499

extremely hard for both models. For tasks that500

contain occluded objects, both models struggle to501

reason to remove the top object that blocks the bot-502

tom target objects. Moreover, they are almost com-503

pletely unable to solve shape construction tasks.504

4.3 Analysis and Case Study505

Performance of Different VLMs in PAR Dif-506

ferent VLMs have different strengths and weak-507

nesses. Therefore, besides CogVLM2, we further508

test some other prominent VLMs, including Gem- 509

ini 2.0 Flash (DeepMind, 2025), GPT-4o (Ope- 510

nAI, 2024b), and Qwen-2.5-VL-7B/72B (Bai et al., 511

2025). We select ten hard tasks in LoHoRavens 512

(i.e., the baseline method Llama3+CogVLM2 513

shows subpar performance) and test two settings 514

for these VLMs: (i) using the VLM solely as a 515

Planner with image inputs; (ii) using the VLM as 516

both Planner and Reporter, where it first generates 517

textual observations as a Reporter, then uses these 518

descriptions for planning as a Planner. As shown 519

in Table 2, the performance of the popular commer- 520

cial VLMs such as GPT-4o and Gemini 2.0 Flash is 521

quite close, but the current prominent open-sourced 522

VLM Qwen-2.5-VL is far behind. Moreover, even 523

the most powerful commercial VLMs still strug- 524

gle to solve the challenging long-horizon tasks in 525

LoHoRavens, indicating the necessity of develop- 526

ing better models for such long-horizon reasoning 527

tasks. 528

Case Study We further perform case studies with 529

the powerful GPT-4o model on the 10 hard LoHo- 530

Ravens tasks. Table 3 demonstrates that GPT-4o, 531

functioning solely as Planner, surpasses GPT-4o 532

serving both as Planner and Reporter in nearly all 533

tasks. This suggests that intermediate observation 534

descriptions will bring information loss and further 535

interrupt the Planner’s strategy. Moreover, the GPT- 536

4o Reporter severely struggles with object enumer- 537

ation, which likely hinders its ability to aid the Plan- 538

ner in the arithmetic reasoning task. While GPT-4o 539

clearly outperforms Llama 3 8B+CogVLM2, it is 540

still completely incapable of solving tasks involv- 541

ing occlusion and shape construction. Many ac- 542

tions in these tasks are not explicitly described in in- 543

structions, requiring the model to infer them based 544

7



Tasks
BM GPT-4 as P GPT-4 as P&R
Prt Prt Bin Prt Bin

Move blocks between absolute positions. (cl+spa) 20.30 48.58 14.00 16.79 1.00
Move blocks between absolute positions by size. (size+spa) 20.20 37.62 10.00 16.55 0.00
Move blocks between absolute positions by color. (cl+spa+cs) 25.20 38.36 7.00 17.40 0.00
Move blocks between absolute positions by color and size. (cl+size+spa+cs) 18.50 31.53 3.00 16.51 1.00
Move all blocks of a color that occur in even numbers to the same colored zone. (cl+ref+arm) 8.70 78.81 67.00 0.31 0.00
Stack blocks by absolute position and color in size order. (cl+size+spa+cs) 0.00 4.67 4.00 0.00 0.00
Put all the hidden objects in 3-layer stacked towers into the bowls with matching colors. (cl+hid+cs) 0.00 0.02 0.00 0.03 0.00
Put the hidden objects in the pyramid into the bowls with matching colors. (cl+hid+cs) 0.00 0.01 0.00 0.00 0.00
Build concentric circles. (ref+shape+cs) 0.00 0.00 0.00 0.00 0.00
Build a rectangle on the zone. (ref+shape+cs) 0.00 0.00 0.00 0.00 0.00

Table 3: Results of GPT-4o on 10 hard LoHoRavens tasks. We test the performance of GPT-4o as only Planner (P)
and as both Planner&Reporter (P&R) against the baseline (BM = Llama3+CogVLM2) on 100 instances per task.
Partial (Prt): the success of intermediate steps. Binary (Bin): the success of finishing the whole task. cl = color. See
Fig. 5 for other task abbreviations.

Tasks
GPT-4 as P GPT-4 as P & R

Planner Actor Planner Actor Reporter

Move blocks between absolute positions by color. 58.1 35.8 68.5 37.5 60.7
Move blocks between absolute positions by size and color. 73.3 59.8 100.0 - 64.3
Move all blocks of a color that occur in even numbers to the same colored zone. 40.9 32.7 - - 100.0
Put the hidden objects in the pyramid into the bowls with matching colors. 83.3 - - - 100.0
Build a rectangle on the zone. 100.0 - - - 100.0

Table 4: Error analysis for five tasks with GPT-4o-mini (GPT4) models. We use precision
(ncorrect_outputs/nall_outputs) to analyze errors of Planner and Reporter. We use plan-conditioned precision
(nsuccessful_exec/ncorrect_plans) to analyze Actor errors. We don’t report other modules’ error rates if the error rate
of Planner or Reporter is too high.

on commonsense knowledge. This indicates the545

need for more refined prompts and alternative ap-546

proaches like Code as Policies (Liang et al., 2022)547

for these complex challenges.548

Ablation Study For 5 typical tasks, we manually549

examine 10 failed instances each to categorize the550

errors and quantify the modality gaps. We calculate551

the precision of Planner’s planning (number cor-552

rectly generated plans / total number of plans) and553

the plan-conditioned precision of Actor’s actions554

(number of actions executed correctly / number555

correctly generated plans). Table 4 reveals that556

the Actor often fails, particularly in spatially re-557

lated tasks, despite a high success rate depicted558

in § 3.2. We hypothesize that the failures are due559

to: (i) the Planner generating incorrect instructions560

not present in the primitive training set, and (ii)561

the primitive’s inability to generalize well to en-562

tirely new situations. With GPT-4 as the Planner563

(column 2), issues arise when (i) it occasionally564

produces the incorrect format despite precise for-565

matting prompts, and (ii) it struggles with com-566

plex instructions and managing its previous history567

without highly task-specific prompt design. For568

GPT-4 functioning as both Planner and Reporter,569

the primary issue is the Reporter’s performance on570

complex tasks, highlighting the big gap between vi- 571

sion and language/actions; thus, we omit reporting 572

error rates for other modules if the Reporter’s error 573

rate is excessively high. The Reporter struggles 574

to accurately describe object positions and count 575

objects. Sometimes it cannot even recognize the 576

correct color of objects. Additionally, it’s hard for 577

the Planner to plan accurately for complicated long- 578

horizon tasks. These observations suggest that the 579

modality gaps between language, vision, and ac- 580

tions have a significant impact on the long-horizon 581

performance of the models. 582

5 Conclusion 583

We introduce LoHoRaves, the first open-source 584

long-horizon language-conditioned tabletop rear- 585

rangement benchmark. It covers diverse reasoning 586

capabilities, such as color, size, spatiality, arith- 587

metic, reference, shape construction, common- 588

sense, and occlusion. Two popular baselines per- 589

form well on some subsets of the reasoning tasks. 590

However, their performance on other tasks is poor. 591

These findings indicate that LoHoRavens contains 592

highly challenging tasks. We believe LoHoRavens 593

will be beneficial for evaluating and guiding future 594

research in robotics field. 595
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6 Limitations596

Due to the design of Ravens simulator, current Lo-597

HoRavens benchmark only contains tasks which598

can be evaluated based on only final states. So599

any tasks require detecting the states of middle pro-600

cess cannot be added to the benchmark. Moreover,601

many tasks in LoHoRavens require the final po-602

sition and states of objects are quite certain and603

fixed. Take the tasks of stacking blocks as an ex-604

ample, the task should be designed as the format605

of stacking blocks on a specified zone. Otherwise,606

the simulator cannot support the evaluations. Lo-607

HoRavens only contains three very basic objects,608

so it does not test reasoning capabilities based on609

daily objects’ commonsense.610

Use of AI Assistance We used AI assistant tools611

(ChatGPT and GitHub Copilot) to aid in rewrit-612

ing code and text. All AI-generated content was613

thoroughly reviewed and verified by the authors.614

AI was not used to generate new research ideas615

or original findings; rather, it served as a support616

tool to improve clarity, efficiency, and organization.617

In accordance with ACL guidelines, our use of AI618

aligns with permitted assistance categories, and we619

have transparently reported all relevant usage in620

this paper. While AI contributed to enhancing the621

quality of the work, no direct research outputs are622

the result of AI assistance.623
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A Task List904

We list the tasks in LoHoRavens in Table 5. The905

tasks are designed to test various reasoning capa-906

bilities, including color, size, spatiality, common-907

sense, reference, and arithmetic. Each task is asso-908

ciated with the reasoning required to complete it.909

910

12



Task list Reasoning required

Stack all the blocks on a zone. color
Stack blocks of the same color. color
Stack blocks in alternate colors. color
Stack blocks by color. color, commonsense
Stack blocks of the same size. color, size
Stack blocks by color and size. color, size, commonsense
Stack blocks by color in size order. color, size, commonsense
Stack smaller blocks over bigger blocks of the same color. color, size
Stack blocks of the same color in the zone with the same color, with the bigger blocks underneath. color, size
Stack blocks by relative position and color. color, spatiality, commonsense
Stack blocks by relative position and color and size. color, size, spatiality, commonsense
Stack blocks by absolute position and color in size order. color, size, spatiality, commonsense
Stack blocks by absolute position and color and size. color, size, spatiality, commonsense
Move blocks between absolute positions. spatiality
Move blocks between absolute positions by size. size, spatiality
Move blocks between absolute positions by color. color, spatiality
Move blocks between absolute positions by color and size. color, size, spatiality
Move all blocks of a color that occur in even numbers to the same colored zone. color, reference, arithmetic
Move all blocks of a color that occur in odd numbers to the same colored zone. color, reference, arithmetic
Put the blocks into the bowls with matching colors. color
Put the blocks into the bowls with mismatching colors. color
Put the hidden color object under the color object into the bowls with matching colors. color, hidden objects, commonsense
Put all the hidden objects in two-layer stacked towers into the bowls with matching colors. color, hidden objects, commonsense
Put all the hidden objects in three-layer stacked towers into the bowls with matching colors. color, hidden objects, commonsense
Put the hidden objects in the pyramid into the bowls with matching colors. color, hidden objects, commonsense
(step-by-step) Put the blocks into the bowls with matching colors. color
(step-by-step) Stack all the blocks on a zone. color
(step-by-step) Stack blocks by relative position and color. color, spatial, commonsense
(step-by-step) Put the hidden color object under the color object into the bowls with matching colors. color, hidden objects, commonsense
(step-by-step) Move blocks between absolute positions. color, spatiality
Align color boxes on line. color, spatiality
Align size boxes on circle. color, size, spatiality
Align size boxes on line. color, size, spatiality
Build concentric circles. spatiality, reference, shape
Stack most colored blocks. color, reference, arithmetics
Put max even number blocks into same colored zone. color, reference, arithmetics
Put max odd number blocks into same colored zone in size order. color, size, reference, arithmetics
Construct circle with block in the middle. spatiality, reference, shape
Construct letter M. spatiality, reference, shape, commonsense
Build rectangular on the zone. reference, shape

Table 5: LoHoRavens task list
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