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Abstract

The integration of embodied agents with foun-
dation models has led to notable progress in
embodied instruction following. Specifically,
the advanced reasoning capabilities of large lan-
guage models (LLMs) and the visual percep-
tion skills of vision-language models (VLMs)
enable robots to tackle complex, long-horizon
tasks without requiring costly annotated demon-
strations. However, there is still a lack of pub-
lic benchmarks for evaluating the long-horizon
reasoning capabilities of language-conditioned
robots across different scenarios. To address
this gap, this work introduces LoHoRavens,
a simulation benchmark designed for table-
top rearrangement tasks. It includes 40 chal-
lenging tasks and addresses various aspects of
long-horizon reasoning such as color, size, spa-
tiality, arithmetic, reference, shape construc-
tion, commonsense, and occlusion. We eval-
uate two prevalent methods with current ad-
vanced VLMs (such as GPT-40 and Gemini 2.0
Flash) on this benchmark and conduct a thor-
ough analysis of their reasoning performance.
Our findings indicate that both methods strug-
gle with numerous tasks, shedding light on the
most challenging contexts that the community
should be focusing on, as well as underscoring
the need for continued effort to bridge gaps be-
tween modalities and improve current models.

1 Introduction

In embodied instruction following, an embodied
agent such as a robot receives a language-based
instruction and is expected to follow the instruction
to complete the designated task. Of particular in-
terest is long-horizon instruction following: how to
endow embodied agents with long-horizon instruc-
tion following capabilities attracts more and more
attention, as it mirrors real-world scenarios that are
of practical importance in robotics. Long-horizon
tasks involve high-level instructions that cannot be
accomplished in just a few steps. Thus, the embod-
ied agent must not only comprehend the language

instruction well but also demonstrate advanced ca-
pabilities in long-horizon memorizing and com-
plex reasoning. Thanks to the emergent abilities
of LLMs and VLMs, embodied agents are able
to borrow the rich knowledge and commonsense
about the world and the strong reasoning capabil-
ities from LLMs and VLMSs, reducing the need
for large expensive datasets of expert-annotated
demonstrations.

With the rapid progress of LLMs and VLMs,
robots are demonstrating increasingly impressive
capabilities (Ahn et al., 2022; Driess et al., 2023;
Brohan et al., 2023; Zitkovich et al., 2023; Ahn
et al.; Black et al., 2024; Team et al., 2025); still,
they struggle to solve some tasks that are relatively
simple for a human child such as arranging objects
on a table into a circle. Unlike the recent progress
in NLP and computer vision, there are unique chal-
lenges specific to robotics that prevent robots from
developing near-human behavior and intelligence,
such as intensive interaction with environments,
gaps between different modalities and difficulty of
annotating domain data for deep learning based
solutions. Long-horizon tasks further exacerbate
these difficulties since they require multi-step com-
plex reasoning across various aspects (e.g., com-
monsense, spatiality, color). Additionally, they
require overcoming errors accumulated over mul-
tiple action steps, and bridging the modality gap
between visual feedback, action planning, and ac-
tion execution. Each of these challenges is crucial
to the system’s performance.

Despite its clear significance for autonomous
language-conditioned robots, there is little prior
work that systematically evaluates and quantifies
these unique challenges. Existing benchmarks
for long-horizon tasks fall into two main cate-
gories. (1) Real-world evaluations, e.g., Language-
Table (Lynch et al., 2023) and LHManip (Ce-
ola et al.), incorporates real-world uncertain-
ties but at the cost of a quite limited scale
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Figure 1: Examples of long-horizon tasks in LoHoRavens, highlighting the requirements of varying combinations
of multiple reasoning capabilities for reasoning and planning to complete the tasks.

of evaluations. These evaluations are neither
reproducible nor publicly accessible — making
it difficult to verify, reproduce, or build upon
previous results. (ii) Public simulated long-
horizon benchmarks, e.g., RLBench (James et al.,
2020) and CALVIN (Mees et al., 2022), either
lack language-conditioning or require step-by-step
human-provided sub-instructions. Category (ii)
prevents autonomous long-horizon reasoning and
instead evaluates short-horizon execution guided
by human intervention, limiting its ability to test
true high-level reasoning capabilities.'

To address this gap, this work introduces Lo-
HoRavens, an open-source simulated benchmark
designed specifically for long-horizon, language-
conditioned robotic tabletop rearrangement tasks.
LoHoRavens enables large-scale autonomous eval-
uations and provides a comprehensive analysis
framework for the robotics community. Unlike
prior benchmarks, LoHoRavens tasks require pro-
found semantic understanding of high-level instruc-
tions and complex multistep reasoning capabili-
ties without external step-by-step guidance. LoHo-
Ravens covers a wide array of long-horizon reason-
ing and planning aspects including color, size, spa-
tiality, arithmetic, reference, commonsense, shape
construction and occlusion (see examples in Fig. 1).
To solve each task, a robot must integrate multiple
reasoning capabilities and formulate a comprehen-
sive coherent long-horizon plan accordingly.

We further evaluate two prevalent methods on

"Because this limitation of short-horizon scenarios, we
limit our comparison in Table 1 to long-horizon benchmarks.

LoHoRavens benchmark, an imitation learning-
based method and a Planner-Actor-Reporter
method, using current state-of-the-art VLMs like
GPT-40 and Gemini 2.0 Flash. We observe that
these methods exhibit varied performance levels
depending on the specific reasoning capabilities
required by each task. Furthermore, both meth-
ods struggle greatly with long-horizon tasks, un-
derscoring the need for continued improvement in
long-horizon language-conditioned robotics tasks.
To support ongoing research in this field, we pub-
licly release the benchmark, trained models, and
the corresponding codebase.

2 Related Work

2.1 Robotic Manipulation Benchmarks and
Datasets

The interest in training language-conditioned mod-
els for robot manipulation has been growing in
recent years thanks to the enormous advances
in language processing techniques. As a result,
many researchers proposed robotic manipulation
datasets and benchmarks. RLBench (James et al.,
2020), Ravens (Zeng et al., 2021; Shridhar et al.,
2022), Robosuite (Zhu et al., 2020) introduce
manipulation tasks in the household or tabletop-
environment household tasks with their corre-
sponding natural language instructions. VIMA-
Bench (Jiang et al., 2023) is a robot manipula-
tion learning benchmark supporting multimodal-
prompting tasks. VLMbench (Zheng et al., 2022)
contains 3D manipulation tasks with compositional
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Table 1: Comparison of LoHoRavens with other long-horizon robotics benchmarks.

language instructions. RM-PRT (Ren et al., 2023)
designs four progressive reasoning tasks and inte-
grates the instruction parsing capabilities of LLMs.
ARNOLD (Gong et al., 2023b) addresses the chal-
lenge of understanding continuous object states
in complex tasks. OpenD (Zhao et al., 2022) ad-
dresses language-driven door and drawer open-
ing. Open X-Embodiment (O’Neill et al., 2024)
is a robotic manipulation dataset that contains
1M+ robot trajectories from 22 robot embodiments.
Robo360 (Liang et al., 2023), D3IL (Jia et al.,
2023), LEMMA (Gong et al., 2023a), and Robo-
Script (Chen et al., 2024a) are robotic manipula-
tion benchmarks focusing on specific scenarios like
evaluating closed-loop sensory feedback, multi-
robot collaboration, or code generation. None of
these benchmarks focuses on long-horizon tasks.

FurnitureBench (Heo et al., 2023) and Be-
haviour (Li et al., 2024) introduce simulated long-
horizon benchmarks but they are not language-
conditioned and thus do not focus on understanding
semantic information of complex and ambiguous
task instructions. Inner Monologue (Huang et al.,
2023), Code as Policies (CaP; Liang et al. (2022)),
and Language-Table (Lynch et al., 2023) build
datasets for long-horizon language-conditioned
manipulation tasks, but all of their long-horizon
datasets are not open-source even though their
code is partially released. LHManip (Ceola et al.)
contains 20 real-world long-horizon manipulation
tasks in cluttered tabletop environments; each task
has a pair of natural language instructions and 10
demonstrations collected via teleoperation. How-
ever, their real-world scenarios limit the benchmark
only to enable small-scale training and evaluations.

The works most similar to our proposed LoHo-
Ravens are CALVIN (Mees et al., 2022) and Gen-
Sim (Wang et al., 2023a). CALVIN is also a simu-
lated long-horizon language-conditioned manipula-
tion benchmark. However, CALVIN provides step-

by-step instructions and depends on the correspond-
ing step-by-step evaluations to proceed. Therefore,
the robot does not need to reason and plan for each
step by itself to complete tasks. Furthermore, de-
pending on the step-by-step evaluations severely
limits the freedom of the benchmark. There are no
alternative planning choices, even neglecting the
step-by-step instructions.

Indeed, up to today, existing replicable’ bench-
marks, as summarized in Table 1, either neglect
language-conditioned instructions (the main topic
of this benchmark) or fail to account for au-
tonomous long-horizon reasoning (relying on pro-
vided step-by-step sub-instructions). These limi-
tations hinder progress in developing robots capa-
ble of fully autonomous, high-level reasoning in
complex tasks. Instead, LoHoRavens allows for
high-level instruction and evaluates policies based
on the final states, thus is able to test a robot’s
long-horizon reasoning and planning capabilities.
GenSim is an approach to generate robotic sim-
ulation tasks with LLMs. We make use of it to
generate tasks. However, even with the most pow-
erful commercial LLMs such as GPT-4 (OpenAl,
2024a), we still need much effort to check the code
and correct the errors manually.

2.2 Foundation Models and Methods for
Robot Learning

The emergent abilities of LLMs such as GPT-
4 (OpenAl, 2024a), PaLM (Chowdhery et al.,
2023), Gemini (Reid et al., 2024), Llama (Tou-
vron et al., 2023; Dubey et al., 2024), Mix-
tral (Jiang et al., 2024), Claude (Anthropic, 2024),
Qwen (Bai et al., 2023; Yang et al., 2024; Bai
et al., 2025) have brought significant breakthroughs
to many fields, including robotics, due to their
rich knowledge and strong reasoning capabili-

“Meaning it can validated, used, or expanded, e.g., (Mees

et al., 2022; Shridhar et al., 2022; Heo et al., 2023; Li et al.,
2024).



ties. At the same time, there has been re-
markable progress in the development of vision-
language models as well, such as CLIP (Rad-
ford et al., 2021), BLIP-2 (Li et al., 2023), In-
structBLIP (Dai et al., 2023), Flamingo (Alayrac
etal., 2022), LLaVA (Liu et al., 2023), MiniGPT-
4 (Zhu et al., 2024), CogVLM (Wang et al., 2025),
Chameleon (Team, 2024), PaliGemma (Beyer
et al., 2024), Molmo (Deitke et al., 2024), In-
ternVL (Chen et al., 2024b) whose capabilities
can be extended to robotic closed-loop control,
enabling new levels of generalization. Moreover,
there are also some foundation models such as Say-
Can (Ahn et al., 2022), PaLM-E (Driess et al.,
2023), RT-1 (Brohan et al., 2023), and vision-
language-action models such as RT-2 (Zitkovich
et al., 2023), AutoRT (Ahn et al.), RT-2-X (O’ Neill
et al., 2024), Octo (Mees et al., 2024), Open-
VLA (Kim et al., 2024), and 7o (Black et al., 2024)
which are especially designed for robot learning.
With them, robots show more and more impressive
capabilities and better generalization to new scenar-
i0s. Our work uses some of these LLMs and VLMs
as baselines such as GPT-40, Gemini 2.0 Flash, and
Qwen2.5-VL to explore solutions to the hard chal-
lenge of long-horizon language-conditioned tasks.

Besides the two methods we use as baselines to
test long-horizon tasks, there is also some work
trying other ways for long-horizon manipulation
tasks, such as Language-Table (Lynch et al., 2023)
and VADER (Ahn et al., 2024), which explore us-
ing real-time interaction to complete long-horizon
tasks. These methods can also be tested on our
LoHoRavens benchmark.

3 LoHoRavens Benchmark

As far as we know, LoHoRavens is the first pub-
lic benchmark supporting large-scale automatic
evaluation for long-horizon language-conditioned
robotic tabletop manipulation tasks, without requir-
ing step-by-step instructions and evaluations for the
high-level goal of each task (see the comparison
with other long-horizon benchmarks in Table 1). In
this section, we give details about the composition
of the benchmark, as well as its inherent structure,
design, and evaluation framework.

3.1 Simulation Environment

LoHoRavens is built on the Ravens robot simu-
lator (Zeng et al., 2021; Shridhar et al., 2022) by
extending it to Long-Horizon tasks. We chose

Ravens as the base simulator because it is a well-
established simulator and widely used for robotic
manipulation tasks such as in CLIPort (Shridhar
et al., 2022), VIMA-Bench (Jiang et al., 2023).
We use the main pick-and-place action primitive
supported by Ravens to construct LoHoRavens.
Though pick-and-place seems simple, its combi-
nations cover a wide range of manipulation tasks
and can be used to test very complex reasoning
capabilities of agents: see Table 1. In the LoHo-
Ravens simulation environment, there are a URSe
robot arm with a suction gripper and some objects
on the table. Given a high-level language based
instruction (e.g., “stack all the blocks of the same
size"), the robot is supposed to rearrange these ob-
jects to a desired state. The input to the robot is
language instructions and visual observations in
the form of top-down RGB-D images from three
cameras positioned around a rectangular table. The
action space of the robot consists of a language-
conditioned pick-and-place motion primitive which
is parameterized by two end-effector poses at each
time step. Moreover, to simulate disturbance in the
real world, we add noise and perturbations to the
robot’s environment at test time. Following Inner
Monologue (Huang et al., 2023), we add Gaussian
noise (0, 3) to pixel observations and A/ (0, 2.5)
to policy primitive outputs.

3.2 Tasks and Dataset

Currently, LoHoRavens contains 40 long-horizon
tasks. To support complex long-horizon reasoning,
there are three low-level pick-and-place primitives
that can be used by the foundation model plan-
ner: (i) the vanilla pick-and-place-with-color prim-
itive, e.g., “pick up the red block and place it on
the yellow block", (ii) the pick-and-place-with-size
primitive, e.g., “pick up the smaller red block and
place it on the bigger yellow block", (iii) the pick-
and-place-with-spatiality primitive, e.g., “pick up
the red block and place it on the top right area".
In addition to the three pick-and-place primitives,
LoHoRavens contains 30 manually implemented
tasks and 10 tasks automatically generated with the
help of GenSim (Wang et al., 2023a).>
LoHoRavens covers three kinds of basic objects:
block, bowl and zone (see Fig. 1). We made this
choice because we do not intend to study the robot’s
generalization capability to new or unseen object
*We use GenSim with GPT-4o to generate tasks. For each

task, we check the automatically generated code and modify
it if necessary.



types in this work. Instead, we focus on the long-
horizon reasoning capabilities that are related to
the general attributes of objects like size, color and
spatial position. Such reasoning capabilities can
be generalized to other objects as well. In addi-
tion to these general object attributes, we are also
interested in the reasoning capabilities related to
attributes of multiple objects. So we include sev-
eral tasks to test arithmetic and reference reasoning
capabilities (e.g., “Move all blocks of a color that
occur in even numbers to the same colored zone.”).
Moreover, one of the most important reasoning ca-
pabilities is commonsense reasoning. The tasks
in LoHoRavens range from simple color common-
sense reasoning (e.g., “stack the blocks of warm
colors”) to complex shape construction (e.g., “con-
struct concentric circles”). The most complex task
requires commonsense reasoning about what the
shape to be constructed is first, then manipulating
as many as sixteen objects where each object has
to be positioned precisely. Another interesting rea-
soning capability is to find hidden objects which
are out of sight (e.g., “pick up the blue block on the
bottom layer of the pyramid”). To solve this kind
of task, the agent must move all the objects on top
of the target object first, which poses further chal-
lenges to the agent’s reasoning capabilities. Fig. 2
shows the proportion of each reasoning capability
in the 40 tasks.

To understand how the agent performs on the
tasks, we provide a large-scale dataset for training
and automatic evaluation. The simulator of Lo-
HoRavens can generate large-scale expert demon-
strations automatically with the scripted oracle pro-
gram as used in CLIPort and VIMA-Bench. The or-
acle agent has access to ground-truth pick and place
poses and uses pre-specified heuristics to complete
the tasks. All the tasks can be instantiated into thou-
sands of task instances with different random seeds.
The generated large-scale expert demonstrations
can be used for further imitation learning or video
related research. To ensure we have good enough
pick-and-place primitives, 20,000 demonstrations
are generated for training each primitive. Then
they are trained together with multi-task training
for 12,000,000 steps. The final trained multi-task
primitive achieves a performance of 91.83%.

To build the benchmark, we generate, for each
long-horizon task, 1,000 demonstrations as the
train set, 100 demonstrations as the validation set,
and 200 demonstrations as the test set. Note that
there are 16 colors for each object in the benchmark,

- - -ml
& & & & & & & &
& & & & & ¢
& & & N
§ R R
s o

Figure 2: Reasoning capability frequency across LoHo-
Ravens tasks. Tasks that combine reasoning types are
multiply counted. See Fig. 1.

and the colors of objects are chosen randomly, so
they are generally different in training, validation
and test sets. We split the tasks into 20 seen tasks
and 20 unseen tasks. The seen tasks are used for
training and writing prompts. The unseen tasks are
used to evaluate the model’s generalization abilities
to new tasks. Most of the task instances need at
least five steps to complete. Some tasks need 15
steps to get to the correct final state.

3.3 Evaluation

For each task, there are one or more manually-
defined ground-truth final states. Depending on
the task, there are two different match methods
for evaluating whether the states of the objects are
correct compared to the ground-truth states. One
is pose match: an object’s position and rotation
are the same as ground truth. The other is zone
match: the overlap area of two objects is larger
than a threshold.

LoHoRavens uses two measures to evaluate the
success rate of a task. The first one is binary suc-
cess rate. If the final state of objects is the same as
the ground truth, the score is 1, otherwise, it is 0.
The other evaluation measure is a partial reward-
based score, in the range [0, 1]. The score assigns
the partial rewards according to the proportion of
successful pick-and-place steps. For example, if
a task needs ten pick-and-place steps to complete,
and the test model finishes eight of them, the score
is 8/10 = 80%.

4 Experiments

4.1 Baseline Methods

Imitation Learning Based Model (IL) We use
the same architecture and training recipe as CLI-
Port for the imitation learning baseline. Using
multi-task training, the CLIPort model is trained
with the train sets of all 20 seen tasks along with
the three pick-and-place primitives for 100K steps.
Because the vanilla CLIPort does not know when
to stop the execution, following Inner Monologue
and CaP, we use an oracle termination variant that
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uses the oracle information from the simulator to
detect the success and stop the execution process.

Planner-Actor-Reporter Based Model (PAR)
The Planner-Actor-Reporter paradigm is frequently
used in robotics (Dasgupta et al., 2022; Huang et al.,
2023; Wang et al., 2023b). Usually, as shown in
Fig.3, LLMs serve as the Planner due to their im-
pressive planning and reasoning capabilities, and
humans or VLMs play the role of Reporter to pro-
vide necessary language feedback for the Planner’s
planning. The Actor is the agent that interacts with
the environment. Specifically, we use Llama-3
8B (Dubey et al., 2024) and the trained pick-and-
place CLIPort primitives as the Planner and Actor,
respectively. For the Reporter, we use the VLM
CogVLM?2 (Wang et al., 2025). We also conduct
smaller-scale experiments using the powerful com-
mercial model GPT-40 and Gemini 2.0 Flash as the
Planner and Reporter in §4.3.

We create 10-shot examples for both LLM and
VLM prompts and use them for both seen and un-
seen tasks. When a step’s action has been executed,
there will be a top-down RGB image rendered by
the simulator. The VLM as the Reporter module
will generate the caption feedback based on the
current image or the whole image history. This cap-
tion feedback is sent to the LLM for its next-step
planning. The Planner-Actor-Reporter closed-loop
process will be iteratively executed until the high-
level goal is achieved or the maximum number of
trial steps has been exceeded.

4.2 Experimental Results

Our experiments are designed to evaluate the whole
simulated robotic policy’s performance, rather than
evaluating the components of LLM planner and vi-
sual feedback separately. On one hand, evaluating
the whole system is more in line with real practi-
cal needs. On the other hand, LLMs cannot read
the visual observation directly, therefore it’s hard
to evaluate the planning capabilities of LLMs in
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NN PAR-partial

Success rate
A 5

Seen Unseen

Figure 4: Performance of the imitation learning-based
model (IL) and the Planner-Actor-Reporter based model
(PAR) on the seen tasks and unseen tasks of LoHo-
Ravens.

isolation on a large scale.

We aim to answer the following questions from
the experiments and analysis in §4.3: (i) How do
the two baselines perform on the long-horizon tasks
in the LoHoRavens benchmark? (ii) How do the
models perform under different combinations of
reasoning capabilities? (iii) How do the gaps be-
tween the modalities language, vision, and action
influence the performance of models?

Fig. 4 shows how the two baselines perform
on all seen and unseen tasks. Numbers are av-
erages over tasks. We can see that the imitation
learning-based CLIPort model (IL) performs a lit-
tle worse than the Planner-Actor-Reporter based
model (PAR) on seen tasks. However, when gen-
eralizing to the unseen tasks, the IL model drops
quite a lot while the PAR counterpart is relatively
less affected. The binary success rate of both mod-
els is quite low, indicating it is hard for them to
finish all the steps of the long-horizon tasks.

We then investigate the effects of different rea-
soning capabilities. Due to the low binary success
rates, we only use the partial reward based metric
to study model performance under different com-
binations of reasoning capabilities. As we can see
from Fig. 5, the overall tendency is that model per-
formance drops as the number of reasoning capabil-
ities required increases. This observation fits with
our intuition that the more reasoning capabilities
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Figure 5: Performance of the imitation learning-based model (IL) and the Planner-actor-reporter-based model (PAR)
under different combinations of reasoning capabilities. (spa = spatiality, arm = arithmetics, cs = commonsense, hid

= occlusion, ref=reference, shape = shape construction)

VLMs VLM as P VLM as P & R
Partial Binary | Partial Binary
GPT-40 2396  10.50 6.76 0.2
GPT-40-mini 23.41 7.70 7.04 0.4
Gemini 2.0 Flash 2520 10.30 8.97 1.1
Qwen-2.5-VL-7B 11.63 2.80 3.41 0.1
Qwen-2.5-VL-72B | 13.11 4.17 3.50 0.1

Table 2: Performance of different VLMs in the PAR
framework.

are required, the harder the tasks become.

Another interesting finding is that the two base-
lines perform differently regarding different reason-
ing capabilities. On the seen tasks requiring spatial
reasoning capability, the IL model usually performs
better. It is probably because current LLMs and
VLMs do not have good spatial understanding. In
contrast, the PAR model usually outperforms the IL
model on tasks requiring commonsense. Another
observation is that the PAR model cannot deal with
tasks requiring reference since LLLMs cannot indi-
cate the objects accurately if there are more than
one object with the same size and color. This also
prevents the PAR model from solving tasks requir-
ing arithmetic reasoning since these tasks usually
comprise multiple objects of the same kind.

The experiments also show that some tasks are
extremely hard for both models. For tasks that
contain occluded objects, both models struggle to
reason to remove the top object that blocks the bot-
tom target objects. Moreover, they are almost com-
pletely unable to solve shape construction tasks.

4.3 Analysis and Case Study

Performance of Different VLMs in PAR Dif-
ferent VLMs have different strengths and weak-
nesses. Therefore, besides CogVLM?2, we further

test some other prominent VLMs, including Gem-
ini 2.0 Flash (DeepMind, 2025), GPT-40 (Ope-
nAl, 2024b), and Qwen-2.5-VL-7B/72B (Bai et al.,
2025). We select ten hard tasks in LoHoRavens
(i.e., the baseline method Llama3+CogVLM2
shows subpar performance) and test two settings
for these VLMs: (i) using the VLM solely as a
Planner with image inputs; (ii) using the VLM as
both Planner and Reporter, where it first generates
textual observations as a Reporter, then uses these
descriptions for planning as a Planner. As shown
in Table 2, the performance of the popular commer-
cial VLMs such as GPT-40 and Gemini 2.0 Flash is
quite close, but the current prominent open-sourced
VLM Qwen-2.5-VL is far behind. Moreover, even
the most powerful commercial VLMs still strug-
gle to solve the challenging long-horizon tasks in
LoHoRavens, indicating the necessity of develop-
ing better models for such long-horizon reasoning
tasks.

Case Study We further perform case studies with
the powerful GPT-40 model on the 10 hard LoHo-
Ravens tasks. Table 3 demonstrates that GPT-4o,
functioning solely as Planner, surpasses GPT-40
serving both as Planner and Reporter in nearly all
tasks. This suggests that intermediate observation
descriptions will bring information loss and further
interrupt the Planner’s strategy. Moreover, the GPT-
40 Reporter severely struggles with object enumer-
ation, which likely hinders its ability to aid the Plan-
ner in the arithmetic reasoning task. While GPT-40
clearly outperforms Llama 3 8B+CogVLM?2, it is
still completely incapable of solving tasks involv-
ing occlusion and shape construction. Many ac-
tions in these tasks are not explicitly described in in-
structions, requiring the model to infer them based



BM GPT-4asP | GPT-4 as P&R

Tasks Pt | Pt Bin| Prt Bin
Move blocks between absolute positions. (cl+spa) 20.30 | 48.58 14.00 | 16.79 1.00
Move blocks between absolute positions by size. (size+spa) 20.20 | 37.62 10.00 | 16.55 0.00
Move blocks between absolute positions by color. (cl+spa+cs) 25.20 | 38.36  7.00 | 17.40 0.00
Move blocks between absolute positions by color and size. (cl+size+spa+cs) 18.50 | 31.53  3.00 | 16.51 1.00

Move all blocks of a color that occur in even numbers to the same colored zone. (cl+ref+arm) 8.70
Stack blocks by absolute position and color in size order. (cl+size+spa+cs)

78.81 67.00 | 0.31 0.00
0.00 | 467 4.00 | 0.00 0.00

Put all the hidden objects in 3-layer stacked towers into the bowls with matching colors. (cl+hid+cs) | 0.00 | 0.02  0.00 | 0.03 0.00

Put the hidden objects in the pyramid into the bowls with matching colors. (cl+hid+cs) 0.00 | 0.01 0.00

Build concentric circles. (ref+shape+cs)
Build a rectangle on the zone. (ref+shape+cs)

0.00 0.00
0.00 | 0.00 0.00 | 0.00 0.00
0.00 | 0.00 0.00 | 0.00 0.00

Table 3: Results of GPT-40 on 10 hard LoHoRavens tasks. We test the performance of GPT-40 as only Planner (P)
and as both Planner&Reporter (P&R) against the baseline (BM = Llama3+CogVLM?2) on 100 instances per task.
Partial (Prt): the success of intermediate steps. Binary (Bin): the success of finishing the whole task. cl = color. See

Fig. 5 for other task abbreviations.

Tasks GPT-4 as P GPT-4asP &R
Planner Actor | Planner Actor Reporter
Move blocks between absolute positions by color. 58.1 358 68.5 375 60.7
Move blocks between absolute positions by size and color. 733 59.8 100.0 - 64.3
Move all blocks of a color that occur in even numbers to the same colored zone. 409 327 - - 100.0
Put the hidden objects in the pyramid into the bowls with matching colors. 83.3 - - - 100.0
Build a rectangle on the zone. 100.0 - - - 100.0

Table 4:

Error analysis for five tasks with GPT-40-mini (GPT4) models.

We use precision

(Ncorrect_outputs/Mall_outputs) t0 analyze errors of Planner and Reporter. We use plan-conditioned precision
(Msuccessful_exec/Mcorrect_plans) t0 analyze Actor errors. We don’t report other modules’ error rates if the error rate

of Planner or Reporter is too high.

on commonsense knowledge. This indicates the
need for more refined prompts and alternative ap-
proaches like Code as Policies (Liang et al., 2022)
for these complex challenges.

Ablation Study For 5 typical tasks, we manually
examine 10 failed instances each to categorize the
errors and quantify the modality gaps. We calculate
the precision of Planner’s planning (number cor-
rectly generated plans / total number of plans) and
the plan-conditioned precision of Actor’s actions
(number of actions executed correctly / number
correctly generated plans). Table 4 reveals that
the Actor often fails, particularly in spatially re-
lated tasks, despite a high success rate depicted
in § 3.2. We hypothesize that the failures are due
to: (1) the Planner generating incorrect instructions
not present in the primitive training set, and (ii)
the primitive’s inability to generalize well to en-
tirely new situations. With GPT-4 as the Planner
(column 2), issues arise when (i) it occasionally
produces the incorrect format despite precise for-
matting prompts, and (ii) it struggles with com-
plex instructions and managing its previous history
without highly task-specific prompt design. For
GPT-4 functioning as both Planner and Reporter,
the primary issue is the Reporter’s performance on

complex tasks, highlighting the big gap between vi-
sion and language/actions; thus, we omit reporting
error rates for other modules if the Reporter’s error
rate is excessively high. The Reporter struggles
to accurately describe object positions and count
objects. Sometimes it cannot even recognize the
correct color of objects. Additionally, it’s hard for
the Planner to plan accurately for complicated long-
horizon tasks. These observations suggest that the
modality gaps between language, vision, and ac-
tions have a significant impact on the long-horizon
performance of the models.

5 Conclusion

We introduce LoHoRaves, the first open-source
long-horizon language-conditioned tabletop rear-
rangement benchmark. It covers diverse reasoning
capabilities, such as color, size, spatiality, arith-
metic, reference, shape construction, common-
sense, and occlusion. Two popular baselines per-
form well on some subsets of the reasoning tasks.
However, their performance on other tasks is poor.
These findings indicate that LoHoRavens contains
highly challenging tasks. We believe LoHoRavens
will be beneficial for evaluating and guiding future
research in robotics field.



6 Limitations

Due to the design of Ravens simulator, current Lo-
HoRavens benchmark only contains tasks which
can be evaluated based on only final states. So
any tasks require detecting the states of middle pro-
cess cannot be added to the benchmark. Moreover,
many tasks in LoHoRavens require the final po-
sition and states of objects are quite certain and
fixed. Take the tasks of stacking blocks as an ex-
ample, the task should be designed as the format
of stacking blocks on a specified zone. Otherwise,
the simulator cannot support the evaluations. Lo-
HoRavens only contains three very basic objects,
so it does not test reasoning capabilities based on
daily objects’ commonsense.

Use of AI Assistance We used Al assistant tools
(ChatGPT and GitHub Copilot) to aid in rewrit-
ing code and text. All Al-generated content was
thoroughly reviewed and verified by the authors.
Al was not used to generate new research ideas
or original findings; rather, it served as a support
tool to improve clarity, efficiency, and organization.
In accordance with ACL guidelines, our use of Al
aligns with permitted assistance categories, and we
have transparently reported all relevant usage in
this paper. While Al contributed to enhancing the
quality of the work, no direct research outputs are
the result of Al assistance.
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A Task List

We list the tasks in LoHoRavens in Table 5. The
tasks are designed to test various reasoning capa-
bilities, including color, size, spatiality, common-
sense, reference, and arithmetic. Each task is asso-
ciated with the reasoning required to complete it.
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Task list

Reasoning required

Stack all the blocks on a zone.

Stack blocks of the same color.

Stack blocks in alternate colors.

Stack blocks by color.

Stack blocks of the same size.

Stack blocks by color and size.

Stack blocks by color in size order.

Stack smaller blocks over bigger blocks of the same color.

Stack blocks of the same color in the zone with the same color, with the bigger blocks underneath.
Stack blocks by relative position and color.

Stack blocks by relative position and color and size.

Stack blocks by absolute position and color in size order.

Stack blocks by absolute position and color and size.

Move blocks between absolute positions.

Move blocks between absolute positions by size.

Move blocks between absolute positions by color.

Move blocks between absolute positions by color and size.

Move all blocks of a color that occur in even numbers to the same colored zone.

Move all blocks of a color that occur in odd numbers to the same colored zone.

Put the blocks into the bowls with matching colors.

Put the blocks into the bowls with mismatching colors.

Put the hidden color object under the color object into the bowls with matching colors.
Put all the hidden objects in two-layer stacked towers into the bowls with matching colors.
Put all the hidden objects in three-layer stacked towers into the bowls with matching colors.
Put the hidden objects in the pyramid into the bowls with matching colors.

(step-by-step) Put the blocks into the bowls with matching colors.

(step-by-step) Stack all the blocks on a zone.

(step-by-step) Stack blocks by relative position and color.

(step-by-step) Put the hidden color object under the color object into the bowls with matching colors.

(step-by-step) Move blocks between absolute positions.
Align color boxes on line.

Align size boxes on circle.

Align size boxes on line.

Build concentric circles.

Stack most colored blocks.

Put max even number blocks into same colored zone.
Put max odd number blocks into same colored zone in size order.
Construct circle with block in the middle.

Construct letter M.

Build rectangular on the zone.

color

color

color

color, commonsense

color, size

color, size, commonsense

color, size, commonsense

color, size

color, size

color, spatiality, commonsense
color, size, spatiality, commonsense
color, size, spatiality, commonsense
color, size, spatiality, commonsense
spatiality

size, spatiality

color, spatiality

color, size, spatiality

color, reference, arithmetic

color, reference, arithmetic

color

color

color, hidden objects, commonsense
color, hidden objects, commonsense
color, hidden objects, commonsense
color, hidden objects, commonsense
color

color

color, spatial, commonsense

color, hidden objects, commonsense
color, spatiality

color, spatiality

color, size, spatiality

color, size, spatiality

spatiality, reference, shape

color, reference, arithmetics

color, reference, arithmetics

color, size, reference, arithmetics
spatiality, reference, shape

spatiality, reference, shape, commonsense

reference, shape

Table 5: LoHoRavens task list
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