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Graph Pre-training and Prompt Learning for Recommendation
Anonymous Author(s)

ABSTRACT
GNN-based recommenders have excelled in modeling intricate user-
item interactions through multi-hop message passing. However,
existing methods often overlook the dynamic nature of evolving
user-item interactions, which impedes the adaption to changing
user preferences and distribution shifts in newly arriving data. Thus,
their scalability and performances in real-world dynamic environ-
ments are limited. In this study, we propose GraphPL, a frame-
work that incorporates parameter-efficient and dynamic graph pre-
training with prompt learning. This novel combination empowers
GNNs to effectively capture both long-term user preferences and
short-term behavior dynamics, enabling the delivery of accurate
and timely recommendations. Our GraphPL framework addresses
the challenge of evolving user preferences by seamlessly integrat-
ing a temporal prompt mechanism and a graph-structural prompt
learning mechanism into the pre-trained GNNmodel. The temporal
prompt mechanism encodes time information on user-item inter-
action, allowing the model to naturally capture temporal context,
while the graph-structural prompt learning mechanism enables the
transfer of pre-trained knowledge to adapt to behavior dynamics
without the need for continuous incremental training. We further
bring in a dynamic evaluation setting for recommendation to mimic
real-world dynamic scenarios and bridge the offline-online gap to
a better level. Our extensive experiments including a large-scale
industrial deployment showcases the lightweight plug-in scalabil-
ity of our GraphPL when integrated with various state-of-the-art
recommenders, emphasizing the advantages of GraphPL in terms
of effectiveness, robustness and efficiency.

ACM Reference Format:
Anonymous Author(s). 2023. Graph Pre-training and Prompt Learning for
Recommendation. In Proceedings of ACM Conference (Conference’17). ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Recommender systems are integral to numerous Web platforms,
assisting users in navigating through the overwhelming amount of
information by suggesting relevant items [13, 47]. In recent years,
graph neural networks (GNNs) have emerged as powerful tools for
modeling user-item interactions in recommendation tasks, enabling
effective representation learning on graph-structured data. By treat-
ing users and items as nodes and their interactions as edges, GNNs
can capture intricate multi-hop relationships between users and
items, facilitating the generation of personalized recommendations.

Earlier works [1, 46, 52] on GNN-enhanced recommendation
have primarily focused on designing effective message passing
mechanisms to capture collaborative relations between users and
items. These works aim to leverage the power of GCN to capture
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Figure 1: Our dynamic recommendation setting compared to
the vanilla single-graph training in existing methods.

high-order connectivity in the user-item interaction graph. Subse-
quent research has further explored simplifying the message pass-
ing process [5, 16], reducing the complexity of GNN models [31,
36], and improving the quality of sampling techniques [22]. More
recently, researchers have advanced graph-based recommenders
by incorporating self-supervised learning (SSL) techniques into
GNNs [57]. These methods [2, 49, 56] generally employ the In-
foNCE [32] loss to align contrastive views, thereby denoising and
improving the robustness of the base LightGCN [16] model.

While these methods have shown impressive performance, they
have primarily focused on static scenarios (Figure 1 upper), over-
looking the dynamic nature of recommendation, where new user-
item interactions continue to evolve over time, often with distribu-
tion shifts reflecting changing user interests [50, 51]. In real-world
scenarios (Figure 1 lower), it exhibits a dynamic setting, where the
model recursively learns from newly arriving data, and predicts
for current time. However, existing methods primarily design a
model for single-graph training and evaluation, which leads to a
degradation in recommendation dynamics and widens the offline-
online gap [23]. Additionally, the arrival of new data may exhibit
distribution shifts, further complicating the task of making accu-
rate recommendations for graph-based recommendation models
without incorporating useful contextual information for the newly
arrived data. These challenges significantly limit the scalability of
existing models and hinder their ability to adapt to evolving user
preferences in a timely manner. This is crucial for providing up-to-
date and accurate recommendations in dynamic environments.

To tackle the challenges, we propose a simple yet effective frame-
work named GraphPL, which integrates parameter-efficient and
dynamic Graph Pre-Training with Prompt Learning for recommen-
dation. Our proposed method entails pre-training GNNs on exten-
sive historical interaction data, followed by fine-tuning them on
more recent target data using time-aware graph prompt learning.
In the pre-training phase, the model assimilates knowledge from
a substantial amount of historical interactions, effectively captur-
ing long-term user preferences and item relevance. Subsequently,
during the fine-tuning phase on the target time periods of data,
the model swiftly adapts to evolving user preferences and captures
short-term behavior dynamics. This is achieved through a prompt
learning schema, facilitating effective knowledge transfer.

To ensure that the pre-trained GNN effectively handles evolving
user preferences, our GraphPL framework seamlessly integrates a
temporal prompt mechanism alongside a graph-structural prompt

1
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learning mechanism. This integration enables the injection of time-
aware context from new data, empowering the model to adapt to
changing user preferences. Drawing inspiration from advances in
relative positional encoding techniques [34, 39], we meticulously
design a dedicated temporal prompt mechanism that aligns with
the message aggregation layer of GNNs. Within this prompt mech-
anism, we encode time information on interaction edges as part
of the normalization term for aggregation, all in a parameter-free
manner. This innate capability allows the model to naturally in-
corporate temporal information without the need for additional
fine-tuning. By imbuing the pre-trained graph model with tempo-
ral awareness, we empower the model to effectively capture vital
signals that are more pertinent to the evolving user preferences.

Furthermore, our graph-structural prompt learning mechanism
facilitates the seamless transfer of knowledge from the pre-trained
model to downstream short-term and recent recommendation tasks.
This framework eliminates the requirement for continuous incre-
mental learning of the pre-trained model, instead enabling the
transfer of pre-trained knowledge to any future time period to
effectively adapt to behavior dynamics. In this mechanism, we
incorporate the newly generated interaction edges between the
fine-tuning time and the pre-training time as prompt edges. By
including these prompt edges, we provide the pretrained model
with essential contextual information for the fine-tuning process.
Rather than undergoing extensive training, we perform a single
non-training forward pass on the prompt edges. This prompts the
pretrained model to adapt to the distribution shift of node repre-
sentations and effectively adjusts its predictions accordingly. It is
worthwhile mentioning that our GraphPL is model-agnostic and
parameter-efficient, allowing for seamless integration into existing
GNN recommenders as a plug-in enhancement. In summary, the
main contributions of our work can be summarized as follows:
• We emphasize the criticality of effectively and scalably pre-

training and fine-tuning graph-based recommenders for time-
evolving user preferences, thus facilitating up-to-date and accu-
rate recommendations in dynamic environments.

• We present GraphPL that effectively handles evolving user pref-
erences by pre-training and fine-tuning GNNs. The proposed
prompt learning paradigm facilitates the transfer of valuable and
relevant knowledge from the pre-trained model to downstream
recommendation tasks in both temporal and structural manners.

• We further introduce a snapshot-based dynamic setting for rec-
ommendation evaluation. Compared to the vanilla single-time
testing, it brings better approximation to real-world scenarios.

• We conduct extensive experiments on diverse datasets to demon-
strate the advantages of GraphPL in terms of robustness, effi-
ciency and performance. To further justify the effectiveness of
our framework, we include an online industry deployment with
A/B testing on a large-scale online platform.
To ensure result reproducibility, we provide the implementation

details and source code of our proposed framework at an anony-
mous link: https://anonymous.4open.science/r/GraphPL-CC81/.

2 PRELIMINARIES
We define the task of pre-training and fine-tuning GNNs for rec-
ommendation. We denote the user set asU and the item set as I.

In the context of collaborative filtering, a typical graph structure,
constructed using existing methods [16], can be represented as
G = (V, E), where V = U ∪ I represents the set of all nodes
in user-item interaction graph G. The edges in E correspond to
interactions between users and items, with a value of 𝑦𝑢,𝑖 = 1.

In order to provide recommendations at time slot 𝑇1, we gather
historical user-item interactions to construct a graph G1 = (V, E1),
where E1 represents the user-item interactions collected before 𝑇1.
Existing stationary graph collaborative filtering models typically
train the model from scratch using the complete dataset G1. The
objective is to optimize time-specific model parameters Θ1 by max-
imizing the likelihood of generating accurate recommendations:

argmax
Θ1

𝑃𝑓Θ1
(𝑦1 |G1) . (1)

Dynamic Learning in Recommender Systems. In real-world
applications, the evaluation of recommenders goes beyond the
simplistic static setting commonly used in existing collaborative fil-
tering method [16, 46]. In practice, researchers assess the long-term
performance of models by deploying them in a live-update envi-
ronment, as discussed in [53], where new user-item interactions
are continuously generated over time. The model is specifically
designed to make ongoing predictions for future user-item interac-
tions based on this evolving data. Formally, the model should have
initial weights Θ𝑛−1 corresponding to different time intervals 𝑇𝑛 ,
which are then updated through learning on new interactions G𝑛

to enhance the accuracy of up-to-date predictions.

argmax
Θ𝑛

𝑃𝑓Θ𝑛 (𝑦𝑛 |G𝑛 ;Θ𝑛−1) . (2)

In this study, we draw inspiration from the work [33] and employ
a series of graph snapshots to simulate practical dynamic recom-
mendation scenarios. These graph snapshots are represented as
[G1,G2, ...,G𝑁 ], where we have a total of 𝑁 snapshots correspond-
ing to different time intervals. Each graph snapshot consists of
subsets of users and items from a global set, and the interactions
between them evolve over time. Specifically, G𝑛 = (V𝑛 ⊂ V, E𝑛),
whereV𝑛 represents the nodes in the snapshot and E𝑛 denotes the
time slot-specific interaction edges. It is important to emphasize
that snapshots G𝑛 are collected within the time period between
two consecutive snapshots, namely [𝑇𝑛−1,𝑇𝑛].

3 METHODOLOGY
In this section, we provide the technical details of our proposed
GraphPL framework, depicted in Figure 2, which illustrates its
architecture. We introduce two crucial components: graph pre-
training with a temporal prompt mechanism and a graph-structural
prompt-enhanced fine-tuning mechanism. These components are
specifically designed to enhance the performance and scalability of
GNN-based recommenders in dynamic recommendation scenarios.

3.1 Graph Pre-training with Temporal
Prompt Mechanism

In practical recommendation scenarios, user-item interaction data
continues to accumulate over time. Online platforms like Amazon
and TikTok constantly receive new user purchases and video watch
logs, respectively, on a daily basis. In such dynamic environments,
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Figure 2: Overall framework of GraphPL.

the availability of fresh user-item interactions provides valuable
information that can be leveraged to guide pre-trained models in
adapting to time-evolving user preferences and providing continu-
ously up-to-date recommendations in dynamic settings.

3.1.1 Temporal Prompt Mechanism. In our framework, we in-
troduce a temporal prompt mechanism to incorporate time-aware
contextual information from the latest user preferences and behav-
iors. This mechanism allows for personalized and timely recom-
mendations by considering the temporal dynamics of user-item
interactions. To capture the temporal sequence of user-item interac-
tions, we propose a relative time encoding scheme, which enables
us to incorporate temporal information into graph convolutions.
By encoding the relative time between interactions, the model can
explicitly capture the temporal dependencies and changes in user
preferences that are reflected in the newly arrived data.

Our temporal prompt mechanism offers two significant advan-
tages over existing time encoding techniques when it comes to
capturing user behavior dependencies across different time slots.
• Generalization. Unlike the use of absolute positional embed-

dings in models like BERT [8], our mechanism takes inspiration
from recent advancements in sequence modeling in NLP and
leverages a relative positional encoding. Absolute positional em-
beddings have limited generalization capabilities across continu-
ous time steps, which is problematic in our dynamic recommen-
dation setting. These embeddings are trained on sequences with
varying lengths but struggle to handle sequences beyond the
trained lengths during fine-tuning and prediction. This leads to a
distribution gap between the pretraining phase, where the model
learns from fixed-length data, and the fine-tuning and prediction
phase, where longer future time steps are encountered.

• Scalability. Our temporal prompt design avoids the need to
add a fixed-length positional embedding to node representations.
Instead, it generates relative temporal-aware weights that can be

seamlessly integrated with message passing. This design allows
our pretrained GNN to be easily applied to longer-range graph
structures during fine-tuning and testing, greatly improving scal-
ability for dynamic recommendation tasks.

3.1.2 Temporal Prompt-enhanced Graph Convolutions. In
order to effectively capture the temporal dynamics of user-item
interactions in our model, we have implemented a temporal prompt
and incorporated relative time encoding into our graph convolu-
tions. This enables our model to consider the most recent contextual
signals from the new data, and adapt to evolving user preferences
over time. Within the context of our user-item interaction graph
G, the edge attributes consist of Unix timestamps denoted as 𝒕unix.
These timestamps represent the exact moments when users 𝑢 in-
teracted with items 𝑣 . To prepare these timestamps for encoding
in our model, we convert them into relative time steps by divid-
ing them by a fixed time interval 𝜏 . This time interval, which is a
hyperparameter, can be defined with a resolution of either hour,
day, or week. As a result, for any given edge 𝑒𝑢,𝑣 in the graph, its
corresponding timestep attribute can be computed as follows:

𝑡𝑢,𝑣 = 𝑓div (𝑡unix𝑢,𝑣 , 𝒕unix) = ⌊
𝑡unix𝑢,𝑣 −min(𝒕unix)

𝜏
⌋, (3)

Here, T𝑒,𝑣 denotes the Unix timestamp assigned to the edge 𝑒𝑢,𝑣 , and
the ⌊∗⌋ notation denotes the floor operation. To avoid the influence
of specific numerical scales and ensure uniformity, we normalize
these time attributes 𝒕 = 𝑡𝑢,𝑣 |𝑒𝑢,𝑣 = 1 to the range of [0, 1].

𝒕 =
𝒕 −min(𝒕)

max(𝒕) −min(𝒕) . (4)

To consider the temporal information among the neighbors during
message aggregation in our GNNs, we apply the softmax function
to the time attributes 𝑡𝑢,𝑣 of the first-order neighbors on the graph.

𝛼𝑢,𝑣 =
𝑒𝑡𝑢,𝑣∑

𝑣′∈N𝑢
𝑒𝑡𝑢,𝑣′

, (5)

To enable dynamic time-aware graph neural network (GNN) for
recommendation pretraining, we introduce an additional normal-
ization term, 𝛼𝑢,𝑣 , into the message passing step of LightGCN. In
this case, N𝑢 represents the neighbors of node 𝑢, and 𝛼𝑢,𝑣 encodes
the weight for aggregating information from node 𝑣 to node 𝑢.

x(𝑙 )𝑢 =
∑︁
𝑣∈N𝑢

( 1
2
√︁
|N𝑢 | |N𝑣 |

+
𝛼𝑢,𝑣

2
)x(𝑙−1)𝑣 , (6)

We introduce a normalization term and apply mean-pooling to in-
corporate time-aware normalization into the original bidirectional
graph normalization while preserving embedding magnitude.
Adaptability and Efficiency. The incorporation of the time-aware
normalization term 𝛼𝑢,𝑣 into the message passing of LightGCN en-
hances the GNN’s adaptability to evolving user-item interactions
over time. By giving more weight to interactions that are closer in
time during neighbor aggregation, the model becomes more atten-
tive to the dynamic nature of user-item interactions and assigns
higher importance to recent interactions. This alignment with the
objective of recommendation tasks ensures that the model captures
timely and relevant user preferences, leading to more accurate
and personalized recommendations. Importantly, our time-aware
regularization approach does not introduce additional embedding

3
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encoding. Instead, it dynamically generates graph regularization
terms based on the relative time order, making it a lightweight and
efficient solution. This design allows the model to handle varying
absolute time lengths effectively, showcasing excellent generaliza-
tion capabilities and requiring minimal computational overhead.

3.2 Fine-Tuning with Graph-Structural
Prompt Mechanism

In this section, we will discuss how we effectively transfer knowl-
edge from a pre-trained Graph Neural Network (GNN) model for
fine-tuning with future user-item interactions. To begin the fine-
tuning process at the target time 𝑇𝑛 , which occurs after the pre-
training time𝑇𝑝 , the intuitiveway is to update themodel parameters
incrementally by simply fine-tuning. That is, we iteratively provide
the model with data from the updated time intervals to fine-tune the
node representations that were previously updated in the preceding
time intervals. Therefore, the initial embeddings for fine-tuning at
𝑇𝑛 are derived from the forward pass after the last fine-tuning step.

X0
𝑛 = forward(X𝑛−1;G𝑛−1), (7)

where forward(∗) represents the complete forward pass of the
model, utilizing the last fine-tuned embeddings X𝑛−1 and the graph
structure G𝑛−1. This method has the advantage of directly cap-
turing users’ continuous interest changes within a specific time
span. However, the incremental fine-tuning mechanism has two
significant drawbacks. First, iteratively updating model parameters
based on small-range interactions may lead the model to converge
to a local optimum specific to that time period, limiting the poten-
tial for continuous fine-tuning on the updated representations in
the future. Secondly, persistently updating the parameters of the
pre-trained model can result in a significant computational burden.

3.2.1 Graph-Structural Prompt Mechanism. In our approach,
we address the mentioned issues by leveraging the interaction edges
between the pre-training time𝑇𝑝 and the current time𝑇𝑛 as prompt
edges. This allows the pretrained model to directly fine-tune on
future time periods without the need for iterative updates. Inspired
by discrete prompt tuning in large language models [35, 37], we
treat the edges of the graph during a specific time period as dis-
crete prompts that guide the propagation of pretrained embeddings.
This captures the representation shift between the pre-training and
fine-tuning time points and provides better temporal-aware initial
embeddings for fine-tuning. To generate prompt structures, we con-
catenate the pre-training graph structure with the sampled future
edges between the pre-training and current fine-tuning time. This
combination enables the model to capture the temporal dynamics
and improve the effectiveness of fine-tuning:

Gprompt = G𝑝 ⊕
𝑛∑︁
𝑖=1

Φ𝑖 ⊙ G𝑖 ; Φ𝑖 =

{
1 − (𝑖 − 1)𝜙, 𝜙 > 0
1 + (𝑛 − 𝑖)𝜙, 𝜙 < 0

, (8)

where "⊕" denotes graph concatenation and "⊙" denotes graph
sampling. Here, a hyper-parameter 𝜙 is introduced as the sampling
decay for prompt structures, where a positive 𝜙 suggests that we
include more early structures and less recent ones, and vice versa.
After generating the prompt structures, we proceed with a forward
pass using the pretrained embeddings X𝑝 on the prompt graph to
generate embeddings for fine-tuning. To mitigate the overfitting

effect and improve generalization for more robust fine-tuning in our
GraphPL framework, we introduce a random gating [3] mechanism
that slightly perturbs the pre-trained embeddings.

X̃𝑝 = X𝑝 ⊙ sigmoid(W̃X𝑝 + b̃), (9)

X0
𝑛 = forward(X̃𝑝 ;Gprompt), (10)

The non-learnable random gating weights, W̃ ∈ R𝑑×𝑑 and b̃ ∈ R𝑑 ,
are generated from a Gaussian distribution. It’s important to note
that the relative time encoding also plays a vital role in facilitating
the model’s ability to sense relative temporal connections during
the prompt propagation process. By propagating the embeddings
learned from extensive pretraining over a large time period on
the prompt edges, which include interactions from subsequent
time periods, we achieve two objectives. Firstly, we enable the
obtained embeddings to maintain stable user interests. Secondly,
we swiftly capture changes in user interests within the subsequent
time span. By refraining from directly training the embeddings on
the short-term graph, we mitigate the risk of the model parameters
becoming trapped in local optima. This approach grants us greater
flexibility for subsequent fine-tuning and enables the model to more
effectively adapt to users’ evolving interests over time.

3.2.2 Prompt Learning with Adaptive Gating Mechanism.
To address the distribution shift in node representations between
the time-aware graph snapshots G𝑛−1 and G𝑛 , we introduce a
learnable gating mechanism that adaptively transforms the input
embeddings X0

𝑛 . This gating mechanism allows for modeling the
changes in user/item representations over time, effectively preserv-
ing the informative signals necessary for making accurate future
recommendations. We employ gradient truncation onX0

𝑛 to prevent
direct optimization of the large-scale pre-trained model. Instead,
we fine-tune X0

𝑛 using newly interaction structual contexts G𝑛 to
improve the accuracy of predictions at the target time interval 𝑇𝑛 .

To prevent direct optimization of the large-scale pre-trained
model, we employ gradient truncation on X0

𝑛 . Instead, we fine-
tune X0

𝑛 using the newly observed interaction structural contexts
G𝑛 , which helps improve the prediction accuracy specifically for
the target time interval 𝑇𝑛 . By combining the gating mechanism
and gradient truncation, we can adaptively update the embeddings
while mitigating the impact of distribution shifts, ensuring the
model’s ability to capture temporal dynamics with good adaptiation.

X̃0
𝑛 = X0

𝑛 ⊙ sigmoid(W𝑙X
0
𝑛 + b𝑙 ), (11)

X𝑛 = forward(X̃0
𝑛 ;G𝑛), (12)

At this stage, we have derived the user and item representations
X𝑛 for making predictions starting from time 𝑇𝑛 . In this process,
the learnable weightsW𝑙 and b𝑙 , which have the same size as the
random gating, are introduced. To estimate the probability of user
𝑢 interacting with item 𝑖 , we calculate the dot product between the
user and item representations x𝑢𝑛 , x𝑖𝑛 , denoted as 𝑦𝑢,𝑖 = x𝑢𝑛

T · x𝑖𝑛 .

3.3 Model Learning and Discussion
3.3.1 Optimized Objective. In both the pre-training and fine-
tuning stages, we define our training objectives based on optimizing
the BPR loss. The BPR loss ensures that the predicted score for an
observed interaction is higher than that of its unobserved negative
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samples. This loss function is commonly used in recommendation
systems to model the preference ranking between items for individ-
ual users. By optimizing this loss, we aim to improve the model’s
ability to accurately rank and predict user-item interactions.

L = −
∑︁

(𝑢,𝑖, 𝑗 ) ∈𝐷
log𝜎 (𝑦𝑢𝑖 − 𝑦𝑢 𝑗 ), (13)

In our training strategy, we utilize a dataset𝐷 that includes negative
items 𝑗 sampled at each training mini-batch. Our approach follows
a two-stage process. In the first stage, we pre-train a GNN-based
recommender on a large-time-scale graph until convergence. This
involves training the model on a comprehensive set of historical
data, allowing it to learn long-term patterns and user preferences. In
the second stage, we fine-tune the pre-trained model on small-time-
scale graph snapshots that include interactions from a more recent
time period. This fine-tuning process helps the model adapt and
capture short-term changes in user interests and item dynamics.

3.3.2 Interplotive Parameter Update. To ensure that the model
parameters are learned in synchronization with the evolving user
and item representations, it is important to update the pre-trained
node embeddings over time steps. Inspired by the investigation
in [33, 53], we propose an interpolative approach for updating the
pre-trained user and item embeddings. Specifically, to estimate the
best initial state for training at the next time step 𝑇𝑛 , we combine
the pre-trained embeddings with the embeddings learned within
a sliding window [𝑇𝑛−𝜔 ,𝑇𝑛−1] using interpolation. This allows
us to leverage both the long-term knowledge captured during pre-
training and the recent changes observedwithin the sliding window,
enabling the model to effectively adapt to the evolving dynamics
of user-item interactions:

Xinit
𝑛 = mean(X𝑝 ,

𝜔∑︁
𝑖=1

𝑖 · X𝑛−𝑖∑𝜔
𝑘=1 𝑘

) (14)

X represents the model parameters, which correspond to the user
and item embeddings. The left term of the equation calculates a
weighted normalization of the weights [X𝑛−1, ...,X𝑛−𝜔 ], where
the more recent fine-tuned representations are given less weight.
This weighting helps to mitigate the local optima effect, where the
model may get stuck in suboptimal solutions based on recent but
noisy information. The hyperparameter 𝜔 controls the size of the
sliding window, which determines the number of previous time
steps considered for fine-tuning. As 𝜔 becomes smaller, the model
updates its evolved representations more frequently, allowing it
to capture recent changes. However, this can increase the risk of
getting trapped in local optima due to the limited historical infor-
mation considered. On the other hand, if 𝜔 is larger, the model
can incorporate longer-term information, but may have reduced
sensitivity to recent fine-tuned weights.

4 EVALUATION
In this section, we compare our proposed GraphPL with state-of-
the-art methods across diverse research lines and settings, with the
aim of addressing the research questions shown below.
• RQ1: CanGraphPL outperform state-of-the-art time-aware graph

learning models and pre-trained GNNs in making dynamic rec-
ommendations across different time slots?

• RQ2: How does GraphPL perform when integrated as a model-
agnostic plug-in componentwith state-of-the-art recommenders?

• RQ3: Can GraphPL perform on par or even outperform the
vanilla full-data training paradigm?

• RQ4: How does the performance of GraphPL change under differ-
ent ablation settings of key components and hyper-parameters?

• RQ5: How effective is GraphPL in tackling the cold-start issue?
• RQ6: How does the potential scalability of GraphPL facilitate

efficient model convergence with our prompt learning paradigm?
• RQ7: Can GraphPL effectively empower real-world recommen-

dation systems when deployed in industrial applications?

4.1 Experimental Settings
4.1.1 Datasets. We adopt three public datasets covering diverse
real-world scenarios of dynamic recommendation. Taobao records
implicit feedback fromTaobao.com, a Chinese e-commerce platform
during 10 days. Koubei dataset, provided for the IJCAI’16 contest,
records 9 weeks of user interactions with nearby stores on Koubei
in Alipay. Amazon dataset consists of a 13-week’s collection of
product reviews sourced from Amazon. The details can be referred
in Table 3.

4.1.2 Baseline Models. We include the recent dynamic graph
neural networks and graph prompt approaches as our baselines.
Specifically, three most relevant research lines are included for
comparison: Dynamic Recommendation Methods: DGCN [26],
which formulates a dynamic learning task on the single graph.
Graph Prompt Methods: GraphPrompt [29] and GPF [11]. Dy-
namic Graph Neural Networks: EvolveGCN-O, EvolveGCN-
H[33] and ROLAND [53]. For detailed descriptions regarding the
baseline methods, please refer to Appendix A.1.1.

4.1.3 Integration with GNN Recommenders. To highlight its
versatility, GraphPL serves as a general architecture that can be
seamlessly integrated as a plug-in component with any GNN-based
recommender. In our evaluation, we implement GraphPL using the
LightGCN [16] model, renowned for its simplicity and efficiency.
Furthermore, we extend the applicability of GraphPL by integrat-
ing it with SOTA recommenders that incorporate self-supervised
learning designs, such as SGL [49], MixGCF [22], and SimGCL [56],
providing empirical evidence of the GraphPL’s effectiveness in
enhancing them for dynamic and adaptable recommendations.

4.1.4 Evaluation Protocols. Our evaluation settings encompass
graph snapshots of multiple time intervals (e.g., day, week) to fur-
ther simulate the practical challenges of learning dynamics. To
learn from snapshots, we fine-tune all the models using a 2-size
sliding window approach to continuously learn from the current
snapshot and make predictions for the next. For the proposed P-
L paradigm, we take a large portion of the data to pre-train, and
use the remaining snapshots for fine-tuning and testing as shown
in Table 3. To ensure fair comparison free of data inequality, the
baselines also follow the same proposed paradigm. For example, for
dynamic GNNs, the very initial weights for tuning are also trained
over the pre-training time span. We report metrics averaged over all
target future temporal snapshots as following the common setting
in [33, 53]. We report Recall@k and nDCG@k at k=20, following
the common all-rank settings in previous works [16, 17, 49].
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Table 1: When compared to various baselines utilizing differ-
ent backbone architectures, GraphPL consistently exhibits
strong overall performance across different types of datasets.
The script ∗ denotes the statistically significant results com-
pared to the second best at 𝑝 < 0.01 level.

Method Taobao Koubei Amazon

Recall nDCG Recall nDCG Recall nDCG

DGCN 0.0229 0.0228 0.0353 0.0255 0.0158 0.0084

LightGCN+

GraphPrompt 0.0199 0.0195 0.0342 0.0249 0.0154 0.0075
GPF 0.0223 0.0220 0.0348 0.0251 0.0174 0.0088
EvolveGCN-H 0.0224 0.0221 0.0315 0.0231 0.0138 0.0066
EvolveGCN-O 0.0236 0.0232 0.0334 0.0242 0.0157 0.0084
ROLAND 0.0226 0.0226 0.0301 0.0223 0.0150 0.0069
GraphPL 0.0251∗ 0.0245∗ 0.0362∗ 0.0265∗ 0.0191∗ 0.0094∗

SGL+

GraphPrompt 0.0223 0.0220 0.0355 0.0261 0.0161 0.0079
GPF 0.0229 0.0226 0.0363 0.0266 0.0187 0.0096
EvolveGCN-H 0.0235 0.0232 0.0358 0.0263 0.0137 0.0066
EvolveGCN-O 0.0242 0.0238 0.0365 0.0268 0.0173 0.0090
ROLAND 0.0222 0.0222 0.0340 0.0251 0.0161 0.0078
GraphPL 0.0268∗ 0.0264∗ 0.0371∗ 0.0277∗ 0.0221∗ 0.0114∗

MixGCF+

GraphPrompt 0.0248 0.0245 0.0377 0.0276 0.0180 0.0089
GPF 0.0251 0.0247 0.0380 0.0278 0.0182 0.0092
EvolveGCN-H 0.0240 0.0237 0.0354 0.0262 0.0129 0.0061
EvolveGCN-O 0.0271 0.0267 0.0375 0.0276 0.0171 0.0085
ROLAND 0.0232 0.0230 0.0349 0.0260 0.0152 0.0072
GraphPL 0.0280∗ 0.0273∗ 0.0393∗ 0.0291∗ 0.0216∗ 0.0109∗

SimGCL+

GraphPrompt 0.0239 0.0224 0.0348 0.0258 0.0139 0.0069
GPF 0.0237 0.0220 0.0357 0.0264 0.0182 0.0094
EvolveGCN-H 0.0241 0.0238 0.0356 0.0265 0.0134 0.0067
EvolveGCN-O 0.0241 0.0238 0.0351 0.0258 0.0168 0.0088
ROLAND 0.0228 0.0228 0.0333 0.0246 0.0151 0.0075
GraphPL 0.0280∗ 0.0276∗ 0.0368∗ 0.0276∗ 0.0205∗ 0.0108∗

4.2 Performance Comparison (RQ1–RQ3)
4.2.1 Comparison with Baselines. We present the performance
of our GraphPL method as well as other alternative solutions, in-
cluding graph prompt methods and dynamic GNNs, with LightGCN
as the base model, as summarized in Table 1. Analyzing the results,
we have made the following key observations:
• Our GraphPL consistently outperforms graph prompt and dy-

namic graph learning methods, demonstrating the superiority
of our pre-training and prompt learning design. Specifically, we
observe average improvements of 6.0%, 3.2%, and 8.3% in Recall
and nDCG across the three datasets. We attribute these advan-
tages to two key factors: 1) Our temporal prompt mechanism
empowers GraphPL to capture dynamically evolving user-item
interactions throughout both the pre-training and fine-tuning
stages. 2) The graph-structural prompt design facilitates effec-
tive knowledge transfer from the large-scale pre-trained model,
addressing distribution shift issues between temporal snapshots.

• The absence of a consistent winner among the baseline methods
indicates the challenging nature of the dynamic recommenda-
tion task. Despite EvolveGCN’s impressive performance on the
Taobao dataset, it does not exhibit a distinct advantage over
other models on the remaining datasets. This discrepancy may
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Figure 3: Key component ablation study for fine-tuning stage.
Y-axis denotes performance metrics on the left and epochs
(displayed as ▽) for convergence on the right.

be due to potential overfitting issues related to short-term user
patterns, resulting from the use of complex neural architectures
to encode user-item interactions in each new time period. In con-
trast, our GraphPL utilizes lightweight prompt mechanisms that
effectively capture both long-term user interests and incorporate
new preference context from recently observed behavior data.

• Despite being regarded as the meticulously-designed dynamic
GNN, ROLAND does not demonstrate superior performance.
This limitation may be attributed to its intricate model param-
eter update schemes, which introduce larger perturbations to
embeddings. Consequently, the representation learning for users
and items is disrupted, rendering it less effective in capturing
the time-evolving user preferences in recommendation tasks.

4.2.2 Integration with SOTA Methods. Additionally, we as-
sess the adaptability of GraphPL across different backbone recom-
menders, namely MixGCF, SGL, and SimGCL. We re-implement all
methods on these base models using the same evaluation settings.
The evaluation results, averaged across multiple time slots, are
presented in Table 1. Our observations are summarized as follows:
• GraphPL continues to demonstrate superior performance when

integrated with state-of-the-art recommenders. This highlights
the remarkable adaptability of our approach, enhancing the per-
formance of different state-of-the-art models in diverse scenarios.
Baseline methods exhibit diverse performance rankings across
different base recommenders and datasets. No single method
consistently outperforms others across all three datasets. On
Taobao, EvolveGCN-O is generally on par as the second-best
method. However, on Amazon, GPF consistently outperforms
other baselines with all three base recommenders. This sensitiv-
ity to data characteristics and base models hinders the baseline
methods from yielding stable and significant results.

• In general, better representation learning capabilities in the base
model lead to higher performance. When comparing GraphPL’s
performance in the SGL+Taobao and SimGCL+Taobao settings,
there is a 4.5% improvement. This indicates that our approach
effectively benefits from the enhanced representation provided
by the base model and performs exceptionally well in dynamic
scenarios. However, methods like EvolveGCN-O do not show
improved performance as the base model’s representation capa-
bilities increase. This suggests that their designs may lack strong
generalization ability and could even yield negative outcomes.

4.2.3 Comparison with Full-Data Training. We place the re-
sults and discussion in Appendix A.2.2 due to space limitation.

4.3 Ablation Study (RQ4)
6
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4.3.1 Key Components in Fine-Tuning. We conduct a com-
prehensive ablation study to examine the effectiveness of the key
components in the design of GraphPL, both in the pre-training
and fine-tuning stages. To facilitate comparisons with the original
design, we create three variants of GraphPL, with each variant
removing one key component. Specifically, these variants are:

• (-)PT: We disable the Prompt Tuning module, which utilizes
prompt edges derived from historical interactions. Instead, we
directly fine-tune the pretrained weights using new edges.

• (-)GT: We suppress the adaptive GaTing mechanism during the
fine-tuning, which endows dynamic knowledge transformation.

• (-)IU: We exclude the Interplotive Update module and keep the
pretrained weights unchanged for each fine-tuning step.

Based on the results in Figure 3, wemake the following observations:
1) All three key components contribute positively to our GraphPL
design. Removing any component leads to a significant decrease in
recommendation accuracy and, in some cases, longer convergence
epochs. This demonstrates the effectiveness of these components. 2)
The structural prompt and interplotive update mechanisms enhance
accuracy and mitigate local optima effects in dynamic learning. Dis-
abling these components allows faster convergence but results in
significantly worse accuracy. 3) The adaptive gating mechanism
acceleratesmodel convergence by facilitating better gradient discov-
ery, leading to improved accuracy. Removing the gating mechanism
results in substantially longer convergence epochs and worse accu-
racy, suggesting its importance in addressing the distribution gap
between the fine-tuning on snapshots.

4.3.2 Effect of Pre-trained Model. We examine the impact of
different pretrained model designs on downstream fine-tuning per-
formance by comparing four variants. These variants investigate
the effects of relative time encoding and representation power of the
pretrained models. The original model, "LGN(+)TE," is trained on
LightGCN with time encoding (TE). "LGN(-)TE" removes the time
encoding design during pretraining. Additionally, "MixGCF(+)TE"
and "SimGCL(+)TE" utilize stronger models for pretraining while
keeping the fine-tuning model as LightGCN. Figure 4 presents the
performance comparison of both pretraining and fine-tuning stages.

• The temporal prompt mechanism significantly accelerates con-
vergence and improves prediction accuracy in both pretraining
and fine-tuning stages. It effectively guides the model to leverage
important temporal information during message passing.

• Stronger pretrained models yield better performance, aligning
with findings in pre-trained language [8] and vision models [9].
This demonstrates the scalability and adaptability of our frame-
work, enabling powerful pretrained models to achieve superior
performance. It highlights the potential of leveraging large pre-
trained models in recommendation tasks, fine-tuning powerful
embeddings with lightweight models for downstream benefits.

4.4 Learning Impact Analysis (RQ5 & RQ6)
4.4.1 Fine-tuned v.s. Untuned (Cold-start) Nodes. This section
analyzes how the fine-tuning design benefits the learning of node
representations for recommendation. We categorize users into two
groups based onwhether they undergo fine-tuning during each time
step. The untuned users represent cold-start users in that period.
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Figure 4: Ablation study for pretrained models.
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Figure 5: Evaluation performance for tuned and untuned
users on Amazon compared with the best baseline, GPF.

On the Amazon data, we evaluate the two user groups separately
at each time step, visualizing the results in Figure 5.
• GraphPL effectively learns refined representations for both tuned

and untuned (cold-start) users. It achieves dominant performance
for both groups in most cases. This advantage is attributed to the
structural prompt design, where previous interactions provide
informative knowledge for improving representation learning.

• GraphPL exhibits greater performance enhancement from long-
term tuning and prediction compared to the baseline. While
the baseline initially outperform GraphPL in the first snapshot,
GraphPL consistently outperforms the strongest baseline from𝑇2
to 𝑇8. This demonstrates the superiority of our GraphPL design
in mitigating local optima effects and achieving better long-term
gains in dynamic learning scenarios.

4.4.2 Efficiency in Learning. This section focuses on the learn-
ing efficiency of our GraphPL design. GraphPL is a parameter-
efficient method that minimizes the number of learnable weights
for pretraining and fine-tuning, in contrast to incremental training
methods. This leads to minimal additional training cost in terms
of time and computation. To demonstrate the efficiency gains and
faster convergence of our design, we compare the training curves
of GraphPL with the second baseline methods (EvolveGCN-O and
GPF) on the Taobao and Koubei datasets, as shown in Figure 6. The
results clearly indicate that GraphPL achieves significantly better
performance while requiring fewer learning epochs. For instance,
GraphPL converges after four fine-tuning stages, consuming ap-
proximately half the epochs and training time compared to the
baselines. These findings highlight the substantial learning effi-
ciency improvements offered by GraphPL.

4.5 Online Deployment and A/B Test (RQ7)
We deploy GraphPL on a large-scale online content consumption
platforms (specific name withheld due to anonymous requirements)
with millions of users, to evaluate its effectiveness in personalized
content recommendation. We integrate GraphPL with the main
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Figure 6: The training curves for GraphPL and the baselines
on the Taobao and Koubei datasets are shown. The scatters
indicate the evolving performances across different stages
(pre-training and fine-tuning) with respect to training epochs.
The star marker represents the final convergence point, and
the right y-axis represents the overall time consumption.

Table 2: Online A/B test results spanning 5 days. HPC: highly-
personalized content. CC: click count. VCC: video click count.
Model CTR HPC CTR Avg. CC Avg. VCC

Online Model 10.61% 13.42% 0.6716 0.0188
GraphPL 10.78% 13.89% 0.6831 0.0194
# Improve 1.53%± 0.68% 3.45%± 0.64% 1.71%± 0.84% 3.28%± 1.76%

CTR prediction model, utilizing user embeddings trained with un-
supervised deep graph infomax (DGI) as pretrainedweights. Prompt
edges are created using historical item-to-user interactions, and
the pretrained user embeddings are fine-tuned with a 1-layer GNN
to derive item representations for training the main model. The
pretrained embeddings are updated synchronously with the main
model at a ten-minute granularity. In the online A/B test, we allo-
cate an equal user engagement of around 2 million users to GraphPL
and the online model separately. We evaluate the performance on 4
metrics related to CTR and click count over a 5-day period, as shown
in Table 2. The results demonstrate that GraphPL significantly im-
proves the real-world recommender system by effectively modeling
evolving user and item representations and leveraging deep user
interests through pretraining and fine-tuning. Notably, GraphPL
is easy to deploy with minimal effort, making it a cost-effective
solution for enhancing online recommender systems.

5 RELATEDWORKS
GNNs for Recommendation. GNNs have gained prominence in
recommenders for extracting multi-hop collaborative signals [12].
NGCF [46] and PinSage [52] are popular GNN models that re-
fine user and item embeddings recursively using message-passing.
GCCF [6] introduces a residual structure, while LightGCN [16]
simplifies the architecture by removing non-linear transformations.
Researchers have also explored extending GNNs to model com-
plex collaborative relationships, using techniques such as hyper-
graph learning [27, 55] and intent disentanglement [45, 48]. Self-
supervised learning (SSL) has recently been applied to address
sparsity issues in graph-based recommenders, with methods like
contrastive learning on user-item graphs [25, 38].
Pre-training and Fine-tuning on GNNs. Inspired by successful
pre-training and fine-tuning in NLP, researchers have explored em-
powering GNNs with similar techniques. Strategies like contrastive
learning and infomax-based pre-training have been developed for
better representation learning [20, 41, 44, 54]. Pre-training methods,
such as link prediction and feature generation, and prompt-based

fine-tuning have also been proposed [11, 18, 21, 29, 42, 43]. How-
ever, these approaches have not fully addressed the challenges of
pre-training and fine-tuning in dynamic graph learning, leading to
suboptimal performance in temporal-transfer tasks. In contrast, our
proposed GraphPL excels in temporally dynamic graph learning
under the pre-training and fine-tuning paradigm.

For recommendation tasks, [15, 28] propose pre-training models
specifically for user and itemmodeling. In [15], a GNN is pre-trained
as a pretext task to simulate the cold-start scenario. In [28], a side-
information-based pre-training scheme is designed. However, these
methods primarily focus on stationary recommendation scenarios
and overlook the time-evolving nature of user preferences. As a
result, their generalization as time-aware recommenders is limited.
Dynamic Graph Learning. Learning on temporally evolving
graphs is an emerging research trend. Existing approaches, includ-
ing EvolveGCN [33], Dyngraph2vec [14], DGNN [30], ROLAND
[53], and WinGNN [59], employ various techniques such as RNNs,
dense layers, and recurrent layers to capture graph dynamics. How-
ever, these methods lack a pre-training and fine-tuning framework
for dynamic graph learning, and may introduce noisy perturba-
tions to user and item representations. DGCN [26] incorporates
dynamics in graph-based recommendation learning, but it does not
explicitly consider a dynamic graph setting with snapshots and is
limited to evaluation within a single graph.
Sequential Recommendation. Sequential recommendation, also
known as next-item recommendation, is another research area that
focuses on temporal-aware recommendation settings. Representa-
tive works in this field include i) attention-based methods: SASRec
[24], BERT4Rec [40], STOSA [10]; ii) GNN-based recommenders:
SURGE [4] amd Retagnn [19]; iii) SSL-enhanced models: S3-rec [58]
and ICL [7]. While our approach also considers temporal dynamics,
it differs significantly from next-item recommendation methods.
Firstly, sequential recommenders typically employ auto-regressive
encoders, which limit their capability to accurately predict the next
item and are not directly comparable to graph-based methods that
can recall top-K items. Secondly, existing sequential methods do
not explicitly consider time in terms of daily or weekly intervals.
Instead, they retrieve a fixed-length historical sequence.

6 CONCLUSION
This study proposes a novel framework, GraphPL, that integrates
dynamic graph pre-training with prompt learning to improve the
adaptation and scalability of time-aware recommender systems. By
employing a temporal prompt mechanism, our framework enables
the transfer of valuable knowledge from the pre-trained model
to downstream recommendation tasks on newly arrived data. In
addition, the inclusion of graph-structured prompt learning with
adaptive gating mechanism, allowing for the incorporation of cru-
cial contextual information, facilitating fine-tuning and adaptation
to changing behavior dynamics. Through a comprehensive set of
experiments on diverse real-world datasets, we demonstrate that
GraphPL outperforms state-of-the-art baselines in making dynamic
recommendations across different time slots. Our future work lies
in investigating the interpretability of the prompt graph edges in
GraphPL, which can provide insights into the contextual informa-
tion that is used to fine-tune the pre-trained GNNs.
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A APPENDIX
A.1 Evaluation Details
A.1.1 Baseline Models. Here are detailed descriptions of the
baseline models used as competitors in our model evaluation:
Dynamic Recommendation Methods. We include DGCN [26]
which also studies dynamic learning in collaborative filtering. It
categorizes edges as past and current ones, and designs a new
GNN framework that makes information flow from past edges to
current. However, it does not include an explicit dynamic setting
with snapshots, and focuses learning on a single graph.
Graph Prompt Methods. This line aims to unify the pre-training
and downstream tasks using a common template while leveraging
prompts for task-specific knowledge retrieval.

• GraphPrompt [29]. It introduces an approach to pretraining and
prompting in the context of graphs. It utilizes a learnable prompt
to guide downstream tasks, enabling them to access relevant
knowledge from pretrained models using a shared template.

• GPF [11]. This method introduces prompts within the feature
space of the graph, thereby establishing a general approach for
tuning prompts in any pre-trained graph neural networks.

Dynamic Graph Neural Networks. They focus on addressing
dynamic graphs by updating previously learned embeddings in a
time-aware manner, and handling graph dynamics. As competitors
for comparison, we include EvolveGCN [33] and ROLAND [53].
• EvolveGCN [33]. This method addresses the dynamism of graph

sequences by utilizing an RNN to adapt the parameters of the
Graph Convolutional Network (GCN) over time. The GCN param-
eters can be either hidden states (referred to as the -H variant) or
inputs of a recurrent architecture (referred to as the -O variant).

• ROLAND [53]. This state-of-the-art dynamic graph learning
baseline utilizes a meta-learning approach to update previously
learned embeddings for re-initialization. These updated embed-
dings are then fused with layer-wise hidden states of GNN.

Table 3: Statistics of the experimental datasets.

Statistics Taobao Koubei Amazon

# Users 117,450 119,962 131,707
# Items 86,718 101,404 107,028
# Interactions 8,795,404 3,986,609 876,237
# Density 8.6e-4 3.3e-4 6.2e-5

Temporal Segmentation

# Pre-training Span 5 days 4 weeks 4 weeks
# Tuning-Predicting Span 5 days 5 weeks 9 weeks
# Snapshot Granularity daily weekly weekly

A.2 Additional Experiments
A.2.1 Hyper-parameter Sensitivity. Here we study how sensi-
tive GraphPL is towards hyper-parameter settings change. On the
three datasets, we include all the hyper-parameters of our GraphPL
design, which are time interval 𝜏 for the temporal prompt, updating
window 𝜔 for interplotive update, and sampling decay 𝜙 for the
structural prompt. The search space varying from datasets are:

• 𝜏 : Taobao-[0.5, 1, 4, 12]; Koubei and Amazon-[24, 48, 72, 96]
• 𝜔 : Taobao and Koubei-[1, 2, 3]; Amazon-[2, 4, 6]
• 𝜙 : [0.05, 0.1,−0.05,−0.1]
We present the results in Figure 8 and summarize our findings as: 1)
Generally, GraphPL is more sensitive to these hyper-parameters on
Amazon than on Taobao and Koubei. This may due to the longer
fine-tuning and predicting span onAmazon (9 weeks). This suggests
that the hyper-parameters in GraphPL have larger effect on long-
term performances. To obtain better long-term performances, the
hyper-parameters should be chosen more carefully. 2) GraphPL is
more sensitive to updating window 𝜔 than other HPs. A shorter
window size may be insufficient to include useful updates of user
and item representations, while a longer one may risk bringing
more noise that is relevant to current representation learning. 3)
Overall, small adjustments to these hyper-parameters do not lead to
significant performance degradation, indicating the robustness of
our model to hyper-parameter variations. We recommend selecting
suitable hyper-parameters based on the data characteristics.
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Figure 8: Performance change w.r.t. key hyperparameters.

A.2.2 Comparsionwith Full-Data Training. In this section, we
investigate whether GraphPL can perform on par or even outper-
forms the vanilla full-data training method ("FULL"). On all three
datasets, we analyze the performances of GraphPL and FULL on
every snapshot in terms of Recall and average epoch time. We plot
the results in Figure 7, where we can have following observations:
1) On Taobao and Koubei, GraphPL consistently outperforms FULL
on all testing snapshots by a significant margin, which is a counter-
intuitive finding. This confirms that on these datasets, taking time
as an important factor and dynamically learning from temporal
snapshots derive better recommendation accuracy. On Amazon,
GraphPL and FULL generally perform on par. Specifically, GraphPL
wins on the starting snapshots and for the rest, the performances
are tightly close, which demonstrates that switching to the dynamic
paradigm of GraphPL would yield potential performance improve-
ments with minimal to no noticeable performance degradation,
comparing to full training. 2) Our dynamic GraphPL framework
greatly reduces the average epoch training time by a great margin,
compared to FULL. Concretely the efficiency is boosted by 60x, 24x
and 81x separately on Taobao, Koubei and Amazon. We attribute
this advantage to the pre-training and prompt learning paradigm
design. This advantage makes our model well-suited for efficient
recommendation learning and prediction in real-world scenarios.
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Figure 7:We conducted a comparison between ourGraphPL and a full-data training framework using LightGCN. The comparison
focused on the average training time for a single epoch, with the results depicted by a horizontal line on the right Y-axis.
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