
Published as a conference paper at ICLR 2024

GRANDE: GRADIENT-BASED DECISION TREE
ENSEMBLES FOR TABULAR DATA

Sascha Marton
University of Mannheim, Germany
sascha.marton@uni-mannheim.de

Stefan Lüdtke
University of Rostock, Germany
stefan.luedtke@uni-rostock.de

Christian Bartelt
University of Mannheim, Germany
christian.bartelt@uni-mannheim.de

Heiner Stuckenschmidt
University of Mannheim, Germany
heiner.stuckenschmidt@uni-mannheim.de

ABSTRACT

Despite the success of deep learning for text and image data, tree-based ensemble
models are still state-of-the-art for machine learning with heterogeneous tabular
data. However, there is a significant need for tabular-specific gradient-based meth-
ods due to their high flexibility. In this paper, we propose GRANDE, GRAdieNt-
Based Decision Tree Ensembles, a novel approach for learning hard, axis-aligned
decision tree ensembles using end-to-end gradient descent. GRANDE is based
on a dense representation of tree ensembles, which affords to use backpropaga-
tion with a straight-through operator to jointly optimize all model parameters.
Our method combines axis-aligned splits, which is a useful inductive bias for tab-
ular data, with the flexibility of gradient-based optimization. Furthermore, we
introduce an advanced instance-wise weighting that facilitates learning represen-
tations for both, simple and complex relations, within a single model. We con-
ducted an extensive evaluation on a predefined benchmark with 19 classification
datasets and demonstrate that our method outperforms existing gradient-boosting
and deep learning frameworks on most datasets. The method is available under:
https://github.com/s-marton/GRANDE

1 INTRODUCTION

Heterogeneous tabular data is the most frequently used form of data (Chui et al., 2018; Shwartz-Ziv
& Armon, 2022) and is indispensable in a wide range of applications such as medical diagnosis (Ul-
mer et al., 2020; Somani et al., 2021), estimation of creditworthiness (Clements et al., 2020) and
fraud detection (Cartella et al., 2021). Therefore, enhancing the predictive performance and robust-
ness of models can bring significant advantages to users and companies (Borisov et al., 2022). How-
ever, tabular data comes with considerable challenges like noise, missing values, class imbalance,
and a combination of different feature types, especially categorical and numerical data. Despite
the success of deep learning (DL) in various domains, recent studies indicate that tabular data still
poses a major challenge and tree-based models like XGBoost and CatBoost outperform them in most
cases (Borisov et al., 2022; Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022). At the same time,
employing end-to-end gradient-based training provides several advantages over traditional machine
learning methods (Borisov et al., 2022). They offer a high level of flexibility by allowing an easy
integration of arbitrary, differentiable loss functions tailored towards specific problems and support
iterative training (Sahoo et al., 2017). Moreover, gradient-based methods can be incorporated easily
into multimodal learning, with tabular data being one of several input types (Lichtenwalter et al.,
2021; Pölsterl et al., 2021). Therefore, creating tabular-specific, gradient-based methods is a very
active field of research and the need for well-performing methods is intense (Grinsztajn et al., 2022).

Recently, Marton et al. (2023) introduced GradTree, a novel approach that uses gradient descent to
learn hard, axis-aligned decision trees (DTs). This is achieved by reformulating DTs to a dense rep-
resentation and jointly optimizing all tree parameters using backpropagation with a straight-through
(ST) operator. Learning hard, axis-aligned DTs with gradient descent allows combining the advan-

1

https://github.com/s-marton/GRANDE

Published as a conference paper at ICLR 2024

tageous inductive bias of tree-based methods with the flexibility of a gradient-based optimization. In
this paper, we propose GRANDE, GRAdieNt-Based Decision Tree Ensembles, a novel approach for
learning decision tree ensembles using end-to-end gradient descent. Similar to Marton et al. (2023),
we use a dense representation for split nodes and the ST operator to deal with the non-differentiable
nature of DTs. We build upon their approach, transitioning from individual trees to a weighted tree
ensemble, while maintaining an efficient computation. As a result, GRANDE holds a significant
advantage over existing gradient-based methods. Typically, DL methods are biased towards smooth
solutions (Rahaman et al., 2019). As the target function in tabular datasets is usually not smooth,
DL methods struggle to find these irregular functions. In contrast, models that are based on hard,
axis aligned DTs learn piece-wise constant functions and therefore do not show such a bias (Grinsz-
tajn et al., 2022). This important advantage is one inherent aspect of GRANDE, as it utilizes hard,
axis-aligned DTs. This is a major difference to existing DL methods for hierarchical representations
like NODE, where soft and oblique splits are used (Popov et al., 2019). Furthermore, we introduce
instance-wise weighting in GRANDE. This allows learning appropriate representations for simple
and complex rules within a single model, which increases the performance of the ensemble. Further-
more, we show that our instance-wise weighting has a positive impact on the local interpretability
relative to other state-of-the-art methods. More specifically, our contributions are as follows:

• We extend GradTree (Marton et al., 2023) from individual trees to an end-to-end gradient-
based tree ensemble, maintaining efficient computation (Section 3.1).

• We introduce softsign as a differentiable split function and show the advantage over com-
monly used alternatives (Section 3.2).

• We propose a novel weighting technique that emphasizes instance-wise estimator impor-
tance (Section 3.3).

We conduct an extensive evaluation on 19 binary classification tasks (Section 4) based on the prede-
fined tabular benchmark proposed by Bischl et al. (2021). GRANDE outperforms existing methods
for both, default and optimized hyperparameters. The performance difference to other methods is
substantial on several datasets, making GRANDE an important extension to the existing repertoire
of tabular data methods.

2 BACKGROUND: GRADIENT-BASED DECISION TREES

GRANDE builds on gradient-based decision trees (GradTree) at the level of individual trees in the
ensemble. Hence, we summarize the relevant aspects and notation of GradTree in this section and
refer to Marton et al. (2023) for a complete overview.

Traditionally, DTs involve nested concatenation of rules. In GradTree, DTs are formulated as arith-
metic functions based on addition and multiplication to facilitate gradient-based learning. Thereby
both, GradTree and GRANDE focus on learning fully-grown (i.e., complete, full) DTs which can be
pruned post-hoc. A DT of depth d is formulated with respect to its parameters as:

t(x|λ, τ , ι) =
2d−1∑
l=0

λl L(x|l, τ , ι) (1)

where L is a function that indicates whether a sample x ∈ Rn belongs to a leaf l, λ ∈ C2d denotes
class membership for each leaf node, τ ∈ R2d−1 represents split thresholds and ι ∈ N2d−1 the
feature index for each internal node.

To support a gradient-based optimization and ensure an efficient computation via matrix operations,
a novel dense DT representation is introduced in GradTree. Traditionally, the feature index vector
ι is one-dimensional, but GradTree expands it into a matrix form. Specifically, this representation
one-hot encodes the feature index, converting ι ∈ R2d−1 into a matrix I ∈ R(2d−1)×n. Similarly,
for split thresholds, instead of a single value for all features, individual values for each feature are
stored, leading to a matrix representation T ∈ R(2d−1)×n. By enumerating the internal nodes in
breadth-first order, we can redefine the indicator function L for a leaf l, resulting in

g(x|λ, T, I) =
2d−1∑
l=0

λl L(x|l,T , I) (2)

2

Published as a conference paper at ICLR 2024

where L(x|l,T , I) =

d∏
j=1

(1− p(l, j)) S(x|Ii(l,j),Ti(l,j)) + p(l, j)
(
1− S(x|Ii(l,j),Ti(l,j))

)
(3)

Here, i is the index of the internal node preceding a leaf node l at a certain depth j and p indicates
whether the left (p = 0) or the right branch (p = 1) was taken.

Typically, DTs use the Heaviside step function for splitting, which is non-differentiable. GradTree
reformulates the split function to account for reasonable gradients:

S(x|ι, τ) = ⌊S (ι · x− ι · τ)⌉ (4)

Where S(z) = 1
1+e−z represents the logistic function, ⌊z⌉ stands for rounding a real number z to

the nearest integer and a · b denotes the dot product between two vectors a and b. We further need
to ensure that ι is a one-hot encoded vector to account for axis-aligned splits. This is achieved by
applying a hardmax transformation before calculating S. Both rounding and hardmax operations are
non-differentiable. To overcome this, GradTree employs the straight-through (ST) operator during
backpropagation. This allows the model to use non-differentiable operations in the forward pass
while ensuring gradient propagation in the backward pass.

3 GRANDE: GRADIENT-BASED DECISION TREE ENSEMBLES

One core contribution of this paper is the extension of GradTree to tree ensembles (Section 3.1).
In Section 3.2 we propose softsign as a differentiable split function to propagate more reasonable
gradients. Furthermore, we introduce an instance-wise weighting in Section 3.3 and regularization
techniques in Section 3.4. As a result, GRANDE can be learned end-to-end with gradient descent,
leveraging the potential and flexibility of a gradient-based optimization.

3.1 FROM DECISION TREES TO WEIGHTED TREE ENSEMBLES

One advantage of GRANDE over existing gradient-based methods is the inductive bias of axis-
aligned splits for tabular data. Combining this property with an end-to-end gradient-based opti-
mization is at the core of GRANDE. This is also a major difference to existing DL methods for
hierarchical representations like NODE, where soft, oblique splits are used (Popov et al., 2019).
Therefore, we can define GRANDE as

G(x|ω,L,T, I) =
E∑

e=0

ωe g(x|Le,Te, Ie) (5)

where E is the number of estimators in the ensemble and ω is a weight vector. By extending L to a
matrix and T, I to tensors for the complete ensemble instead of defining them individually for each
tree, we can leverage parallel computation for an efficient training.

As GRANDE can be learned end-to-end with gradient descent, we keep an important advantage
over existing, non-gradient-based tree methods like XGBoost and CatBoost. Both, the sequential
induction of the individual trees and the sequential combination of individual trees via boosting
are greedy. This results in constraints on the search space and can favor overfitting, as highlighted
by Marton et al. (2023). In contrast, GRANDE learns all parameters of the ensemble jointly and
overcomes these limitations.

3.2 DIFFERENTIABLE SPLIT FUNCTIONS

The Heaviside step function, which is commonly used as split function in DTs, is non-differentiable.
To address this challenge, various studies have proposed the employment of differentiable split func-
tions. A predominant approach is the adoption of the sigmoid function, which facilitates soft deci-
sions (Jordan & Jacobs, 1994; Irsoy et al., 2012; Frosst & Hinton, 2017). A more recent development
in this field originated with the introduction of the entmax transformation (Peters et al., 2019). Re-
searchers utilized a two-class entmax (entmoid) function to turn the decisions more sparse (Popov
et al., 2019). Further, Chang et al. (2021) proposed a temperature annealing procedure to gradually
turn the decisions hard. Marton et al. (2023) introduced an alternative method for generating hard
splits by using a straight-through (ST) operator after a sigmoid split function to generate hard splits.

3

Published as a conference paper at ICLR 2024

10 8 6 4 2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid
Sigmoid Derivative

(a) Sigmoid

10 8 6 4 2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 Entmoid15
Entmoid15 Derivative

(b) Entmoid

10 8 6 4 2 0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0 Adjusted Softsign
Adjusted Softsign Derivative

(c) Adjusted Softsign

Figure 1: Differentiable Split Functions. The sigmoid gradient declines smoothly, while entmoid’s
gradient decays more rapidly but becomes zero for large values. The scaled softsign has high gradi-
ents for small values but maintains a responsive gradient for large values, offering greater sensitivity.

While this allows using hard splits for calculating the function values, it also introduces a mismatch
between the forward and backward pass. However, we can utilize this to incorporate additional
information: By using a sigmoid function, the distance between a feature value and the threshold
is used as additional information during gradient computation. Accordingly, the gradient behavior
plays a pivotal role in ensuring effective differentiation, especially in scenarios where input values
are close to the decision threshold. The traditional sigmoid function can be suboptimal due to its
smooth gradient decline. Entmoid, although addressing certain limitations of sigmoid, still displays
an undesirable gradient behavior. Specifically, its gradient drops to zero when the difference in val-
ues is too pronounced. This can hinder the model’s ability to accommodate samples that exhibit
substantial variances from the threshold. Therefore, we propose using a softsign function, scaled to
(0, 1), as a differentiable split function:

Sss(z) =
1

2

(
z

1 + |z| + 1

)
(6)

The distinct gradient characteristics of the softsign, which are pronounced if samples are close to the
threshold, reduce sharply but maintain responsive gradients if there is a large difference between the
feature value and the threshold. These characteristics make it superior for differentiable splitting.
This concept is visualized in Figure 1. Besides the intuitive advantage of using a softsign split
function, we also show empirically that this is the superior choice (Table 4).

3.3 INSTANCE-WISE ESTIMATOR WEIGHTS

One challenge of ensemble methods is learning a good weighting scheme of the individual estima-
tors. The flexibility of an end-to-end gradient-based optimization allows including learnable weight
parameters to the optimization. A simple solution would be learning one weight for each estimator
and using a softmax over all weights, resulting in a weighted average. However, this forces a very
homogeneous ensemble, in which each tree aims to make equally good predictions for all samples.
In contrast, it would be beneficial if individual trees can account for different areas of the target
function, and are not required to make confident predictions for each sample.

To address this, we propose an advanced weighting scheme that allows calculating instance-wise
weights that can be learned within the gradient-based optimization. Instead of using one weight
per estimator, we use one weight for each leaf of the estimator as visualized in Figure 2 and thus
define the weights as W ∈ RE×2d instead of ω ∈ RE . We define p(x|L,T, I) : Rn → RE as a
function to calculate a vector comprising the individual prediction of each tree. Further, we define
a function w(x|W ,L,T, I) : Rn → RE to calculate a weight vector with one weight for each tree
based on the leaf which the current sample is assigned to. Subsequently, a softmax is applied on
these chosen weights for each sample. The process of multiplying the post-softmax weights by the
predicted values from each tree equates to computing a weighted average. This results in

G(x|W ,L,T, I) = σ (w(x|W ,L,T, I)) · p(x|L,T, I) (7)

where w(x|W ,L,T, I) =

∑2d−1

l W0,l L(x|L0,l,T0, I0)∑2d−1

l W1,l L(x|L1,l,T1, I1)
...∑2d−1

l WE,l L(x|LE,l,TE , IE)

 , p(x|L,T, I) =

g(x|L0,T0, I0)
g(x|L1,T1, I1)

...
g(x|LE ,TE , IE)

4

Published as a conference paper at ICLR 2024

S

?

S ?

Figure 2: GRANDE Architecture. This figure visualizes the structure and weighting of GRANDE
for an exemplary ensemble with two trees of depth two. For each tree in the ensemble, and for every
sample, we determine the weight of the leaf which the sample is assigned to.

and σ(z) is the softmax function. It is important to note that when calculating L (see Equation 3),
only the value for the leaf to which the sample is assigned in a given tree is non-zero. We want to
note that our weighting scheme permits calculating instance-wise weights even for unseen samples.

Our weighting scheme, in addition to its instance-wise nature, is substantially different to existing
tree ensemble methods and post-hoc weighting schemes (He et al., 2014; Cui et al., 2023), as it is in-
corporated into the training procedure which is necessary to capture local interactions. Furthermore,
the predictions of individual trees are not separate and changes in the instance-wise weights of one
estimator directly impacts the weight of the remaining estimators. In our evaluation, we demonstrate
that instance-wise weights significantly enhance the performance of GRANDE and emphasize local
interpretability by learning representations for simple and complex rules within one model.

3.4 REGULARIZATION: FEATURE SUBSET, DATA SUBSET AND DROPOUT

The combination of tree-based methods with a gradient-based optimization opens the door for the
application of numerous regularization techniques. For each tree in the ensemble, we select a feature
subset. Therefore, we can regularize our model and simultaneously, we solve the poor scalability
of GradTree with an increasing number of features. Similarly, we select a subset of the samples
for each estimator. Furthermore, we implemented dropout by randomly deactivating a predefined
fraction of the estimators in the ensemble and rescaling the weights accordingly.

4 EXPERIMENTAL EVALUATION

As pointed out by Grinsztajn et al. (2022), most papers presenting a new method for tabular data
have a highly varying evaluation methodology, with a small number of datasets that might be bi-
ased towards the authors’ model. As a result, recent surveys showed that tree boosting methods
like XGBoost and CatBoost are still state-of-the-art and outperform new architectures for tabular
data on most datasets (Grinsztajn et al., 2022; Shwartz-Ziv & Armon, 2022; Borisov et al., 2022).
This highlights the necessity for an extensive and unbiased evaluation, as we will carry out in the
following, to accurately assess the performance of a new method and draw valid conclusions. We
want to emphasize that recent surveys and evaluation on predefined benchmarks indicate that there
is no “one-size-fits-all” solution for all tabular datasets. Consequently, we should view new methods
as an extension to the existing repertoire and set our expectations in line with this perspective.

4.1 EXPERIMENTAL SETUP

Datasets and Preprocessing For our evaluation, we used a predefined collection of datasets that
was selected based on objective criteria from OpenML Benchmark Suites and comprises a total of
19 binary classification datasets (see Table 5 for details). The selection process was adopted from
Bischl et al. (2021) and therefore is not biased towards our method. A more detailed discussion on

5

Published as a conference paper at ICLR 2024

Table 2: Performance Comparison. We report the test macro F1-score (mean ± stdev for a 5-fold
CV) with optimized parameters. The datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.612 ± 0.049 (1) 0.581 ± 0.059 (3) 0.588 ± 0.036 (2) 0.564 ± 0.051 (4)
climate-simulation-crashes 0.853 ± 0.070 (1) 0.763 ± 0.064 (4) 0.778 ± 0.050 (3) 0.802 ± 0.035 (2)
cylinder-bands 0.819 ± 0.032 (1) 0.773 ± 0.042 (3) 0.801 ± 0.043 (2) 0.754 ± 0.040 (4)
wdbc 0.975 ± 0.010 (1) 0.953 ± 0.030 (4) 0.963 ± 0.023 (3) 0.966 ± 0.016 (2)
ilpd 0.657 ± 0.042 (1) 0.632 ± 0.043 (3) 0.643 ± 0.053 (2) 0.526 ± 0.069 (4)
tokyo1 0.921 ± 0.004 (3) 0.915 ± 0.011 (4) 0.927 ± 0.013 (1) 0.921 ± 0.010 (2)
qsar-biodeg 0.854 ± 0.022 (1) 0.853 ± 0.020 (2) 0.844 ± 0.023 (3) 0.836 ± 0.028 (4)
ozone-level-8hr 0.726 ± 0.020 (1) 0.688 ± 0.021 (4) 0.721 ± 0.027 (2) 0.703 ± 0.029 (3)
madelon 0.803 ± 0.010 (3) 0.833 ± 0.018 (2) 0.861 ± 0.012 (1) 0.571 ± 0.022 (4)
Bioresponse 0.794 ± 0.008 (3) 0.799 ± 0.011 (2) 0.801 ± 0.014 (1) 0.780 ± 0.011 (4)
wilt 0.936 ± 0.015 (2) 0.911 ± 0.010 (4) 0.919 ± 0.007 (3) 0.937 ± 0.017 (1)
churn 0.914 ± 0.017 (2) 0.900 ± 0.017 (3) 0.869 ± 0.021 (4) 0.930 ± 0.011 (1)
phoneme 0.846 ± 0.008 (4) 0.872 ± 0.007 (2) 0.876 ± 0.005 (1) 0.862 ± 0.013 (3)
SpeedDating 0.723 ± 0.013 (1) 0.704 ± 0.015 (4) 0.718 ± 0.014 (2) 0.707 ± 0.015 (3)
PhishingWebsites 0.969 ± 0.006 (1) 0.968 ± 0.006 (2) 0.965 ± 0.003 (4) 0.968 ± 0.006 (3)
Amazon employee access 0.665 ± 0.009 (2) 0.621 ± 0.008 (4) 0.671 ± 0.011 (1) 0.649 ± 0.009 (3)
nomao 0.958 ± 0.002 (3) 0.965 ± 0.003 (1) 0.964 ± 0.002 (2) 0.956 ± 0.001 (4)
adult 0.790 ± 0.006 (4) 0.798 ± 0.004 (1) 0.796 ± 0.004 (2) 0.794 ± 0.004 (3)
numerai28.6 0.519 ± 0.003 (1) 0.518 ± 0.001 (3) 0.519 ± 0.002 (2) 0.503 ± 0.010 (4)

Normalized Mean ↑ 0.776 (1) 0.483 (3) 0.671 (2) 0.327 (4)
Mean Reciprocal Rank (MRR) ↑ 0.702 (1) 0.417 (3) 0.570 (2) 0.395 (4)

the selection of the benchmark can be found in Appendix A. We one-hot encoded low-cardinality
categorical features and used leave-one-out encoding for high-cardinality categorical features (more
than 10 categories). To make them suitable for a gradient-based optimization, we gaussianized
features using a quantile transformation, as it is common practice (Grinsztajn et al., 2022). In line
with Borisov et al. (2022), we report the mean and standard deviation of the test performance over a
5-fold cross-validation to ensure reliable results.

Table 1: Categorization of Approaches

Standard DTs Oblivious DTs
Tree-based XGBoost CatBoost

Gradient-based GRANDE NODE

Methods We compare our approach to
XGBoost and CatBoost, which achieved
superior results according to recent stud-
ies, and NODE, which is most related
to our approach. With this setup, we
have one state-of-the-art tree-based and
one gradient-based approach for each tree type (see Table 1). In addition, we provide an extended
evaluation including SAINT, RandomForest and ExtraTree as additional benchmarks in Appendix B.
These additional results are in line with the results presented in the following.

Hyperparameters We optimized the hyperparameters using Optuna (Akiba et al., 2019) with 250
trials and selected the search space as well as the default parameters for related work in accordance
with Borisov et al. (2022). The best parameters were selected based on a 5x2 cross-validation as sug-
gested by Raschka (2018) where the test data of each fold was held out of the HPO to get unbiased
results. To deal with class imbalance, we further included class weights. Additional information
along with the hyperparameters for each approach are in Appendix E.

4.2 RESULTS

GRANDE outperforms existing methods on most datasets We evaluated the performance with
optimized hyperparameters based on the macro F1-Score in Table 2 to account for class imbalance.
Additionally, we report the accuracy and ROC-AUC score in the Appendix B, which are consistent
with the results presented in the following. GRANDE outperformed existing methods and achieved
the highest mean reciprocal rank (MRR) of 0.702 and the highest normalized mean of 0.776. Cat-
Boost yielded the second-best results (MRR of 0.570 and normalized mean of 0.671) followed by
XGBoost (MRR of 0.417 and normalized mean of 0.483) and NODE (MRR of 0.395 and normal-
ized mean of 0.327). Yet, our findings are in line with existing work, indicating that there is no
universal method for tabular data. However, on several datasets such as climate-simulation-crashes

6

Published as a conference paper at ICLR 2024

Table 4: Ablation Study Summary. Left: Comparison of different options for differentiable split
functions (complete results in Table 10). Right: Comparison of our instance-wise weighting based
on leaf weights with a single weight for each estimator (complete results in Table 11).

Differentiable Split Function Weighting Technique

Softsign Entmoid Sigmoid Leaf Weights Estimator Weights

Normalized Mean ↑ 0.7906 (1) 0.4188 (2) 0.2207 (3) 0.8235 (1) 0.1765 (2)
Mean Reciprocal Rank (MRR) ↑ 0.8246 (1) 0.5526 (2) 0.4561 (3) 0.9211 (1) 0.5789 (2)

and cylinder-bands the performance difference to other methods was substantial, which highlights
the importance of GRANDE as an extension to the existing repertoire. Furthermore, as the datasets
are sorted by their size, we can observe that the results of GRANDE are especially good for small
datasets, which is an interesting research direction for future work.

GRANDE efficient for large and high-dimensional datasets GRANDE averaged 47 seconds
across all datasets, with a maximum runtime of 107 seconds. Thereby, the runtime of GRANDE is
robust to high-dimensional (37 seconds for Bioresponse with 1,776 features) and larger datasets (39
seconds for numerai28.6 with 96,320 samples). GRANDE achieved a significantly lower runtime
compared to our gradient-based benchmark NODE, which has an approximately three times higher
average runtime of 130 seconds. However, it is important to note that GBDT frameworks, especially
XGBoost, are highly efficient when executed on the GPU and achieve significantly lower runtimes
compared to gradient-based methods. The complete runtimes are listed in the appendix (Table 9).

Table 3: Default Hyperparameter Performance
Summary. The results are based on the test macro
F1-score with the default setting. Complete re-
sults are listed in Table 8.

Normalized
Mean ↑

Mean Reciprocal
Rank (MRR) ↑

GRANDE 0.6371 (1) 0.6404 (1)
XGB 0.5865 (2) 0.5175 (3)
CatBoost 0.5793 (3) 0.5219 (2)
NODE 0.2698 (4) 0.4035 (4)

GRANDE outperforms existing methods
with default hyperparameters Many meth-
ods, especially DL methods, are heavily reliant
on a proper hyperparameter optimization. Yet,
it is a desirable property that a method achieves
good results even with their default setting.
GRANDE achieves superior results with de-
fault hyperparameters, and significantly outper-
forms existing methods on most datasets. More
specifically, GRANDE has the highest normal-
ized mean performance (0.6371) and the high-
est MRR (0.6404) as summarized in Table 3.

Softsign improves performance As discussed in Section 3.2, we argue that employing softsign
as split index activation propagates informative gradients beneficial for the optimization. In Table 4
we support these claims by showing a superior performance of GRANDE with a softsign activation
(before discretizing with the ST operator) compared to sigmoid as the default choice as well as an
entmoid function which is commonly used in related work (Popov et al., 2019; Chang et al., 2021).

Instance-wise weighting increases model performance GRANDE uses instance-wise weighting
to assign varying weights to estimators for each sample based on selected leaves. This promotes
ensemble diversity and encourages estimators to capture unique local interactions. We argue that
the ability to learn and represent simple, local rules with individual estimators in our ensemble can
have a positive impact on the overall performance as it simplifies the task that has to be solved by
the remaining estimators. As a result, GRANDE can efficiently learn compact representations for
simple rules, where complex models usually tend to learn overly complex representations.

4.3 CASE STUDY: INSTANCE-WISE WEIGHTING FOR THE PHISHINGWEBSITES DATASET

In the following case study, we demonstrate the ability of GRANDE to learn compact representations
for simple rules within a complex ensemble: The PhishingWebsites dataset is concerned with iden-
tifying malicious websites based on metadata and additional observable characteristics. Although
the task is challenging (i.e., it is not possible to solve it sufficiently well with a simple model, as
shown in Table 12), there exist several clear indicators for phishing websites. Thus, some instances
can be categorized using simple rules, while assigning other instances is more difficult. Ideally, if
an instance can be easily categorized, the model should follow simple rules to make a prediction.

7

Published as a conference paper at ICLR 2024

age_of_domain
≥ 0.5

Domain_registe
ration_length

≤ 0.5

Prefix_Suffix
≥ 0.5 PhishingGRANDE

Prefix_Suffix
≥ 0.5 PhishingXGBoost

Prefix_Suffix
≥ 0.5CatBoost

Prefix_Suffix
≥ 0.5NODE

URL_of_Anchor
_1≤ 0.5

having_Sub_
Domain_3
	≥ 0.5

web_traffic_2
≥ 0.5

PhishingURL_of_Anchor
_1≥ 0.5

having_Sub_
Domain_2	
≥ 0.5

Links_in_tags_2
≥ 0.5

PhishingURL_of_Anchor
_1	≤ 0.5

Links_in_tags_3
≥ 0.5

URL_Length_1
≥ 0.5

Precision:	1.00
Coverage:	0.13

Precision:	1.00
Coverage:	0.01

Precision:	1.00
Coverage:	0.02

Precision:	1.00
Coverage:	0.02

Figure 4: Anchors Explanations. This figure shows the local explanations generated by Anchors
for the given instance. The explanation for GRANDE only comprises a single rule. In contrast,
the corresponding explanations for the other methods have significantly higher complexity, which
indicates that these methods are not able to learn simple representations within a complex model.

SSLfinal_State_2
≤ 0.5

Prefix_Suffix
≤ 0.5

𝜆	 = 0.372
𝜔 =−5.14

𝜆	 = 0.794
𝜔 =−4.51

𝜆 = 0.999
𝜔 = 11.45

Estimator	Index:	252
Normalized	Instance-Wise	Estimator	Weight:	0.94

Figure 3: Highest-Weighted Estimator.
This figure visualizes the DT from GRANDE
(1024 total estimators) which has the highest
weight for an exemplary instance.

One example for a rule, which holds universally in
the given dataset, is that an instance can be classi-
fied as phishing if a prefix or suffix was added to
the domain name. By assessing the weights for an
exemplary instance fulfilling this rule, we can ob-
serve that the DT visualized in Figure 3 accounts for
94% of the prediction. Accordingly, GRANDE has
learned a very simple representation and the classi-
fication is derived by applying an easily comprehen-
sible rule. Notably, for the other methods, it is not
possible to assess the importance of individual esti-
mators out-of-the-box similarly, as the prediction is
either derived by either sequentially summing up the
predictions (e.g. XGBoost and CatBoost) or equally
weighting all estimators. Furthermore, this has a sig-
nificant positive impact on the average performance
of GRANDE compared to using one single weight for each estimator (see Table 4).

Instance-wise weighting can be beneficial for local interpretability In addition to the perfor-
mance increase, our instance-wise weighting has a notable impact on the local interpretability of
GRANDE. For each instance, we can assess the weights of individual estimators and inspect the
estimators with the highest importance to understand which rules have the greatest impact on the
prediction. For the given example, we only need to observe a single tree of depth two (Figure 3) to
understand why the given instance was classified as phishing, even though the complete model is
very complex. In contrast, existing ensemble methods require a global interpretation of the model
and do not provide simple, local explanations out-of-the-box.

However, similar explanations can be extracted using Anchors (Ribeiro et al., 2018). Anchors, as
an extension to LIME (Ribeiro et al., 2016), provides model-agnostic explanations by identifying
conditions (called ”anchors”) which, when satisfied, guarantee a certain prediction with a high prob-
ability (noted as precision). These anchors are interpretable, rules-based conditions derived from
input features that consistently lead to the same model prediction. Figure 4 shows the extracted
rules for each approach. We can clearly see that the anchor extracted for GRANDE matches the
rule we have identified based on the instance-wise weights in Figure 3. Furthermore, it is evident
that the prediction derived by GRANDE is much simpler compared to any other approach, as it only
comprises a single rule. Notably, this comes without suffering a loss in the precision, which is 1.00
for all methods. Furthermore, the rule learned by GRANDE has a significantly higher coverage,
which means that the rule applied by GRANDE is more broadly representative. The corresponding
experiment with additional details can be found in the supplementary material, and a more detailed
discussion of the weighting statistics is included in Appendix D.

5 RELATED WORK

Tabular data is the most frequently used type of data, and learning methods for tabular data are a
field of very active research. Existing work can be divided into tree-based, DL and hybrid methods.

8

Published as a conference paper at ICLR 2024

In the following, we categorize the most prominent methods based on these three categories and dif-
ferentiate our approach from existing work. For a more comprehensive review, we refer to Borisov
et al. (2022), Shwartz-Ziv & Armon (2022) and Grinsztajn et al. (2022).

Tree-Based Methods Tree-based methods have been widely used for tabular data due to their
interpretability and ability to capture non-linear relationships. While individual trees usually of-
fer a higher interpretability, tree ensemble methods Breiman (2001); Geurts et al. (2006), most
notably gradient-boosted DTs (GBDT) are commonly used to achieve superior performance (Fried-
man, 2001). The most prominent GBDT methods for tabular data improve the gradient boosting
algorithm by for instance introducing advanced regularization (XGBoost (Chen & Guestrin, 2016)),
a special handling for categorical variables (CatBoost (Prokhorenkova et al., 2018)) or a leaf-wise
growth strategy (LightGBM (Ke et al., 2017)). Regarding the structure, GRANDE is similar to ex-
isting tree-based models. The main difference is the end-to-end gradient-based training procedure,
which offers additional flexibility, and the instance-wise weighting.

Deep Learning Methods With the success of DL in various domains, researchers have started to
adjust DL architectures, mostly transformers, to tabular data (Gorishniy et al., 2021; Arik & Pfister,
2021; Huang et al., 2020; Cai et al., 2021; Kossen et al., 2021). According to recent studies, Self-
Attention and Intersample Attention Transformer (SAINT) is the superior DL method for tabular
data using attention over both, rows and columns (Somepalli et al., 2021). Although GRANDE,
similar to DL methods, uses gradient descent for training, it has a shallow, hierarchical structure
comprising hard, axis-aligned splits.

Hybrid Methods Hybrid methods aim to combine the strengths of a gradient-based optimization
with other algorithms, most commonly tree-based methods (Yang et al., 2018; Abutbul et al., 2020;
Hehn et al., 2020; Chen, 2020; Ke et al., 2019; 2018; Katzir et al., 2020). One prominent way to
achieve this is using soft DTs to apply gradient descent by replacing hard decisions with soft ones,
and axis-aligned with oblique splits (Frosst & Hinton, 2017; Kontschieder et al., 2015; Luo et al.,
2021; Hazimeh et al., 2020; Yu et al., 2021). Neural Oblivious Decision Ensembles (NODE) is
one prominent hybrid method which learns ensembles of oblivious DTs with gradient descent and
is therefore closely related to our work (Popov et al., 2019). Oblivious DTs use the same splitting
feature and threshold for each internal node at the same depth, which allows an efficient, parallel
computation and makes them suitable as weak learners. In contrast, GRANDE uses standard DTs
as weak learners. GRANDE can also be categorized as a hybrid method. The main difference
to existing methods is the use of hard, axis-aligned splits, which prevents overly smooth solution
typically inherent in soft, oblique trees.

While some works demonstrate strong results of DL methods (Kadra et al., 2021), recent studies
indicate that, despite huge effort in finding high-performant DL methods, tree-based models still
outperform DL for tabular data (Grinsztajn et al., 2022; Borisov et al., 2022; Shwartz-Ziv & Armon,
2022), even though the gap is diminishing (McElfresh et al., 2023). One main reason for the superior
performance of tree-based methods lies in the use of axis-aligned splits that are not biased towards
overly smooth solutions (Grinsztajn et al., 2022). Therefore, GRANDE aligns with this argument
and uses hard, axis-aligned splits combined with the flexibility of a gradient-based optimization.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced GRANDE, a new method for learning hard, axis-aligned tree ensembles
with gradient-descent. GRANDE combines the advantageous inductive bias of axis-aligned splits
with the flexibility offered by gradient descent optimization. In an extensive evaluation on a prede-
fined benchmark, we demonstrated that GRANDE achieved superior results. Both with optimized
and default parameters, it outperformed existing state-of-the-art methods on most datasets. Further-
more, we showed that the instance-wise weighting of GRANDE emphasizes learning representations
for simple and complex relations within a single model, which increases the local interpretability
compared to existing methods.

Currently, the proposed architecture is a shallow ensemble and already achieves state-of-the-art
performance. However, the flexibility of a gradient-based optimization holds potential e.g., by in-
cluding categorical embeddings, stacking of tree layers and an incorporation of tree layers to DL
frameworks, which is subject to future work.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This research was supported in part by the German Federal Ministry for Economic Affairs and
Climate Action of Germany (BMWK), and in part by the German Federal Ministry for Environment,
Nature Conservation and Nuclear Safety (BMUV).

REFERENCES

Ami Abutbul, Gal Elidan, Liran Katzir, and Ran El-Yaniv. Dnf-net: A neural architecture for tabular
data. arXiv preprint arXiv:2006.06465, 2020.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Pieter Gijsbers, Frank Hutter, Michel Lang,
Rafael Gomes Mantovani, Jan N van Rijn, and Joaquin Vanschoren. Openml benchmarking suites.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

Shaofeng Cai, Kaiping Zheng, Gang Chen, HV Jagadish, Beng Chin Ooi, and Meihui Zhang. Arm-
net: Adaptive relation modeling network for structured data. In Proceedings of the 2021 Interna-
tional Conference on Management of Data, pp. 207–220, 2021.

Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi, Toru Akishita, and
Olivier Elshocht. Adversarial attacks for tabular data: Application to fraud detection and imbal-
anced data. arXiv preprint arXiv:2101.08030, 2021.

Chun-Hao Chang, Rich Caruana, and Anna Goldenberg. Node-gam: Neural generalized additive
model for interpretable deep learning. In International Conference on Learning Representations,
2021.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Yingshi Chen. Attention augmented differentiable forest for tabular data. arXiv preprint
arXiv:2010.02921, 2020.

Michael Chui, James Manyika, Mehdi Miremadi, Nicolaus Henke, Rita Chung, Pieter Nel, and
Sankalp Malhotra. Notes from the ai frontier: Insights from hundreds of use cases. McKinsey
Global Institute, 2, 2018.

Jillian M Clements, Di Xu, Nooshin Yousefi, and Dmitry Efimov. Sequential deep learning for credit
risk monitoring with tabular financial data. arXiv preprint arXiv:2012.15330, 2020.

Shijie Cui, Agus Sudjianto, Aijun Zhang, and Runze Li. Enhancing robustness of gradient-boosted
decision trees through one-hot encoding and regularization. arXiv preprint arXiv:2304.13761,
2023.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

10

Published as a conference paper at ICLR 2024

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine learning,
63:3–42, 2006.

Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
models for tabular data. Advances in Neural Information Processing Systems, 34:18932–18943,
2021.

Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based models still outper-
form deep learning on typical tabular data? In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

Hussein Hazimeh, Natalia Ponomareva, Petros Mol, Zhenyu Tan, and Rahul Mazumder. The tree
ensemble layer: Differentiability meets conditional computation. In International Conference on
Machine Learning, pp. 4138–4148. PMLR, 2020.

Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine Atallah, Ralf
Herbrich, Stuart Bowers, et al. Practical lessons from predicting clicks on ads at facebook. In
Proceedings of the eighth international workshop on data mining for online advertising, pp. 1–9,
2014.

Thomas M Hehn, Julian FP Kooij, and Fred A Hamprecht. End-to-end learning of decision trees
and forests. International Journal of Computer Vision, 128(4):997–1011, 2020.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar Karnin. Tabtransformer: Tabular data
modeling using contextual embeddings. arXiv preprint arXiv:2012.06678, 2020.

Ozan Irsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In Proceedings of the
21st international conference on pattern recognition (ICPR2012), pp. 1819–1822. IEEE, 2012.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

Arlind Kadra, Marius Lindauer, Frank Hutter, and Josif Grabocka. Well-tuned simple nets excel on
tabular datasets. Advances in neural information processing systems, 34:23928–23941, 2021.

Liran Katzir, Gal Elidan, and Ran El-Yaniv. Net-dnf: Effective deep modeling of tabular data. In
International conference on learning representations, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

Guolin Ke, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. Tabnn: A universal neural network
solution for tabular data. openreview preprint, 2018.

Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, and Tie-Yan Liu. Deepgbm: A deep learning
framework distilled by gbdt for online prediction tasks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 384–394, 2019.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, pp.
1467–1475, 2015.

Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. Self-
attention between datapoints: Going beyond individual input-output pairs in deep learning. Ad-
vances in Neural Information Processing Systems, 34:28742–28756, 2021.

David Lichtenwalter, Peter Burggräf, Johannes Wagner, and Tim Weißer. Deep multimodal learning
for manufacturing problem solving. Procedia CIRP, 99:615–620, 2021.

11

Published as a conference paper at ICLR 2024

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Haoran Luo, Fan Cheng, Heng Yu, and Yuqi Yi. Sdtr: Soft decision tree regressor for tabular data.
IEEE Access, 9:55999–56011, 2021.

Sascha Marton, Stefan Lüdtke, Christian Bartelt, and Heiner Stuckenschmidt. Gradtree: Learning
axis-aligned decision trees with gradient descent. In NeurIPS 2023 Second Table Representation
Learning Workshop, 2023.

Duncan C. McElfresh, Sujay Khandagale, Jonathan Valverde, Vishak Prasad C, Ganesh Ramakrish-
nan, Micah Goldblum, and Colin White. When do neural nets outperform boosted trees on tabu-
lar data? In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=CjVdXey4zT.

Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence models. arXiv
preprint arXiv:1905.05702, 2019.

Sebastian Pölsterl, Tom Nuno Wolf, and Christian Wachinger. Combining 3d image and tabular
data via the dynamic affine feature map transform. In Medical Image Computing and Com-
puter Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,
September 27–October 1, 2021, Proceedings, Part V 24, pp. 688–698. Springer, 2021.

Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
deep learning on tabular data. arXiv preprint arXiv:1909.06312, 2019.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. Advances in neural information
processing systems, 31, 2018.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Sebastian Raschka. Model evaluation, model selection, and algorithm selection in machine learning.
arXiv preprint arXiv:1811.12808, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should I trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp.
1135–1144, 2016.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic
explanations. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning deep
neural networks on the fly. arXiv preprint arXiv:1711.03705, 2017.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information
Fusion, 81:84–90, 2022.

Sulaiman Somani, Adam J Russak, Felix Richter, Shan Zhao, Akhil Vaid, Fayzan Chaudhry, Jes-
sica K De Freitas, Nidhi Naik, Riccardo Miotto, Girish N Nadkarni, et al. Deep learning and the
electrocardiogram: review of the current state-of-the-art. EP Europace, 23(8):1179–1191, 2021.

Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
arXiv preprint arXiv:2106.01342, 2021.

12

https://openreview.net/forum?id=CjVdXey4zT

Published as a conference paper at ICLR 2024

Dennis Ulmer, Lotta Meijerink, and Giovanni Cinà. Trust issues: Uncertainty estimation does not
enable reliable ood detection on medical tabular data. In Machine Learning for Health, pp. 341–
354. PMLR, 2020.

Yongxin Yang, Irene Garcia Morillo, and Timothy M Hospedales. Deep neural decision trees. arXiv
preprint arXiv:1806.06988, 2018.

Gyeong-In Yu, Saeed Amizadeh, Sehoon Kim, Artidoro Pagnoni, Ce Zhang, Byung-Gon Chun,
Markus Weimer, and Matteo Interlandi. Windtunnel: towards differentiable ml pipelines beyond
a single model. Proceedings of the VLDB Endowment, 15(1):11–20, 2021.

A BENCHMARK DATASET SELCTION

We decided against using the original CC18 benchmark, as the number of datasets (72) is extremely
high and as reported by Grinsztajn et al. (2022), the selection process was not strict enough, as
there are many simple datasets contained. Similarly, we decided not to use the tabular benchmark
presented by Grinsztajn et al. (2022), as the datasets were adjusted to be extremely homogenous by
removing all side-aspects (e.g. class imbalance, high-dimensionality, dataset size). We argue that
this also removes some main challenges when dealing with tabular data. As a result, we decided
to use the benchmark proposed by Bischl et al. (2021)1, which has a more strict selection process
than CC18. The benchmark originally includes both, binary and multi-class tasks. For this paper,
due to the limited scope, we focused only on binary classification tasks. Yet, our benchmark has a
large overlap with CC18 as 16/19 datasets are also contained in CC18. The overlap with Grinsztajn
et al. (2022) in contrast is rather small. This is mainly caused by the fact that most datasets in
their tabular benchmark are binarized versions of multi-class or regression datasets, which was not
allowed during the selection of our benchmark. Table 5 lists the used datasets, along with relevant
statistics and the source based on the OpenML-ID.

Table 5: Datasets

Samples Features Categorical
Features

Features
(preprocessed)

Minority
Class OpenML ID

dresses-sales 500 12 11 37 42.00% 23381
climate-simulation-crashes 540 18 0 18 8.52% 40994
cylinder-bands 540 37 19 82 42.22% 6332
wdbc 569 30 0 30 37.26% 1510
ilpd 583 10 1 10 28.64% 1480
tokyo1 959 44 2 44 36.08% 40705
qsar-biodeg 1,055 41 0 41 33.74% 1494
ozone-level-8hr 2,534 72 0 72 6.31% 1487
madelon 2,600 500 0 500 50.00% 1485
Bioresponse 3,751 1,776 0 1,776 45.77% 4134
wilt 4,839 5 0 5 5.39% 40983
churn 5,000 20 4 22 14.14% 40701
phoneme 5,404 5 0 5 29.35% 1489
SpeedDating 8,378 120 61 241 16.47% 40536
PhishingWebsites 11,055 30 30 46 44.31% 4534
Amazon employee access 32,769 9 9 9 5.79% 4135
nomao 34,465 118 29 172 28.56% 1486
adult 48,842 14 8 37 23.93% 1590
numerai28.6 96,320 21 0 21 49.43% 23517

B ADDITIONAL RESULTS

1The notebook for dataset selection can be accessed under https://github.com/openml/
benchmark-suites/blob/master/OpenML%20Benchmark%20generator.ipynb.

13

https://github.com/openml/benchmark-suites/blob/master/OpenML%20Benchmark%20generator.ipynb
https://github.com/openml/benchmark-suites/blob/master/OpenML%20Benchmark%20generator.ipynb

Published as a conference paper at ICLR 2024

Figure 5: Performance Profile (HPO 250 Trials). The performance profile is based on the macro
F1-Score with optimized hyperparameters (complete grids, 250 trials). The x-axis represents a tol-
erance factor, and the y-axis is a proportion of the evaluated datasets.

Table 6: ROC-AUC Performance Comparison (HPO 250 Trials). We report the test ROC-AUC
(mean ± stdev for a 5-fold CV) with optimized parameters (complete grids, 250 trials) and the
ranking of each approach in parentheses. The datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.623 ± 0.049 (2) 0.589 ± 0.060 (4) 0.607 ± 0.040 (3) 0.632 ± 0.041 (1)
climate-simulation-crashes 0.958 ± 0.031 (1) 0.923 ± 0.031 (4) 0.938 ± 0.036 (2) 0.933 ± 0.030 (3)
cylinder-bands 0.896 ± 0.032 (1) 0.872 ± 0.019 (3) 0.879 ± 0.046 (2) 0.837 ± 0.037 (4)
wdbc 0.993 ± 0.006 (1) 0.990 ± 0.010 (4) 0.990 ± 0.010 (3) 0.993 ± 0.007 (2)
ilpd 0.748 ± 0.046 (1) 0.721 ± 0.047 (4) 0.728 ± 0.055 (3) 0.745 ± 0.048 (2)
tokyo1 0.983 ± 0.005 (2) 0.982 ± 0.006 (3) 0.984 ± 0.005 (1) 0.980 ± 0.005 (4)
qsar-biodeg 0.934 ± 0.008 (1) 0.925 ± 0.008 (3) 0.933 ± 0.011 (2) 0.920 ± 0.009 (4)
ozone-level-8hr 0.925 ± 0.013 (1) 0.879 ± 0.012 (4) 0.910 ± 0.011 (2) 0.906 ± 0.021 (3)
madelon 0.875 ± 0.008 (3) 0.904 ± 0.014 (2) 0.928 ± 0.012 (1) 0.612 ± 0.016 (4)
Bioresponse 0.872 ± 0.003 (3) 0.873 ± 0.007 (1) 0.873 ± 0.002 (2) 0.859 ± 0.008 (4)
wilt 0.994 ± 0.007 (2) 0.981 ± 0.015 (4) 0.991 ± 0.009 (3) 0.996 ± 0.003 (1)
churn 0.928 ± 0.014 (1) 0.919 ± 0.018 (4) 0.920 ± 0.013 (3) 0.927 ± 0.014 (2)
phoneme 0.939 ± 0.006 (3) 0.955 ± 0.007 (2) 0.959 ± 0.005 (1) 0.934 ± 0.010 (4)
SpeedDating 0.859 ± 0.012 (1) 0.827 ± 0.017 (4) 0.856 ± 0.014 (2) 0.853 ± 0.014 (3)
PhishingWebsites 0.996 ± 0.001 (2) 0.996 ± 0.001 (1) 0.996 ± 0.001 (4) 0.996 ± 0.001 (3)
Amazon employee access 0.830 ± 0.010 (3) 0.778 ± 0.015 (4) 0.842 ± 0.014 (1) 0.841 ± 0.009 (2)
nomao 0.994 ± 0.001 (3) 0.996 ± 0.001 (1) 0.995 ± 0.001 (2) 0.993 ± 0.001 (4)
adult 0.910 ± 0.005 (4) 0.927 ± 0.002 (1) 0.925 ± 0.003 (2) 0.915 ± 0.003 (3)
numerai28.6 0.529 ± 0.003 (3) 0.529 ± 0.002 (2) 0.529 ± 0.002 (1) 0.529 ± 0.003 (4)

Normalized Mean ↑ 0.769 (1) 0.419 (3) 0.684 (2) 0.395 (4)
Mean Reciprocal Rank (MRR) ↑ 0.645 (1) 0.461 (3) 0.575 (2) 0.404 (4)

14

Published as a conference paper at ICLR 2024

Table 7: Accuracy Performance Comparison (HPO 250 Trials). We report the test balanced
accuracy (mean ± stdev for a 5-fold CV) with optimized parameters (complete grids, 250 trials) and
the ranking of each approach in parentheses. The datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.613 ± 0.048 (1) 0.585 ± 0.060 (3) 0.589 ± 0.037 (2) 0.581 ± 0.037 (4)
climate-simulation-crashes 0.875 ± 0.079 (1) 0.762 ± 0.060 (4) 0.832 ± 0.035 (2) 0.773 ± 0.052 (3)
cylinder-bands 0.817 ± 0.032 (1) 0.777 ± 0.045 (3) 0.798 ± 0.042 (2) 0.751 ± 0.040 (4)
wdbc 0.973 ± 0.010 (1) 0.952 ± 0.029 (4) 0.963 ± 0.023 (3) 0.963 ± 0.017 (2)
ilpd 0.709 ± 0.046 (1) 0.673 ± 0.042 (3) 0.689 ± 0.062 (2) 0.548 ± 0.054 (4)
tokyo1 0.925 ± 0.002 (2) 0.918 ± 0.012 (4) 0.932 ± 0.010 (1) 0.920 ± 0.007 (3)
qsar-biodeg 0.853 ± 0.024 (2) 0.856 ± 0.022 (1) 0.847 ± 0.028 (3) 0.831 ± 0.032 (4)
ozone-level-8hr 0.774 ± 0.016 (1) 0.733 ± 0.021 (3) 0.735 ± 0.034 (2) 0.669 ± 0.033 (4)
madelon 0.803 ± 0.010 (3) 0.833 ± 0.018 (2) 0.861 ± 0.012 (1) 0.571 ± 0.022 (4)
Bioresponse 0.795 ± 0.009 (3) 0.799 ± 0.011 (2) 0.801 ± 0.014 (1) 0.780 ± 0.011 (4)
wilt 0.962 ± 0.026 (1) 0.941 ± 0.012 (4) 0.955 ± 0.021 (2) 0.948 ± 0.024 (3)
churn 0.909 ± 0.014 (1) 0.895 ± 0.022 (3) 0.894 ± 0.014 (4) 0.904 ± 0.021 (2)
phoneme 0.859 ± 0.011 (4) 0.882 ± 0.005 (2) 0.886 ± 0.006 (1) 0.859 ± 0.013 (3)
SpeedDating 0.752 ± 0.020 (2) 0.740 ± 0.017 (3) 0.758 ± 0.012 (1) 0.694 ± 0.015 (4)
PhishingWebsites 0.969 ± 0.006 (1) 0.968 ± 0.006 (2) 0.965 ± 0.003 (4) 0.968 ± 0.006 (3)
Amazon employee access 0.707 ± 0.010 (2) 0.701 ± 0.015 (3) 0.775 ± 0.009 (1) 0.617 ± 0.007 (4)
nomao 0.961 ± 0.001 (3) 0.969 ± 0.002 (2) 0.969 ± 0.001 (1) 0.956 ± 0.001 (4)
adult 0.817 ± 0.008 (3) 0.841 ± 0.004 (2) 0.841 ± 0.004 (1) 0.778 ± 0.008 (4)
numerai28.6 0.520 ± 0.004 (2) 0.520 ± 0.000 (3) 0.521 ± 0.002 (1) 0.519 ± 0.003 (4)

Normalized Mean ↑ 0.793 (1) 0.523 (3) 0.730 (2) 0.126 (4)
Mean Reciprocal Rank (MRR) ↑ 0.689 (2) 0.404 (3) 0.693 (1) 0.298 (4)

Table 8: Default Parameter Performance Comparison. We report the test macro F1-score (mean
± stdev over 10 trials) with default parameters and the ranking of each approach in parentheses. The
datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.596 ± 0.014 (1) 0.570 ± 0.056 (3) 0.573 ± 0.031 (2) 0.559 ± 0.045 (4)
climate-simulation-crashes 0.758 ± 0.065 (4) 0.781 ± 0.060 (1) 0.781 ± 0.050 (2) 0.766 ± 0.088 (3)
cylinder-bands 0.813 ± 0.023 (1) 0.770 ± 0.010 (3) 0.795 ± 0.051 (2) 0.696 ± 0.028 (4)
wdbc 0.962 ± 0.008 (3) 0.966 ± 0.023 (1) 0.955 ± 0.029 (4) 0.964 ± 0.017 (2)
ilpd 0.646 ± 0.021 (1) 0.629 ± 0.052 (3) 0.643 ± 0.042 (2) 0.501 ± 0.085 (4)
tokyo1 0.922 ± 0.014 (1) 0.917 ± 0.016 (4) 0.917 ± 0.013 (3) 0.921 ± 0.011 (2)
qsar-biodeg 0.851 ± 0.032 (1) 0.844 ± 0.021 (2) 0.843 ± 0.017 (3) 0.838 ± 0.027 (4)
ozone-level-8hr 0.735 ± 0.011 (1) 0.686 ± 0.034 (3) 0.702 ± 0.029 (2) 0.662 ± 0.019 (4)
madelon 0.768 ± 0.022 (3) 0.811 ± 0.016 (2) 0.851 ± 0.015 (1) 0.650 ± 0.017 (4)
Bioresponse 0.789 ± 0.014 (2) 0.789 ± 0.013 (3) 0.792 ± 0.004 (1) 0.786 ± 0.010 (4)
wilt 0.933 ± 0.021 (1) 0.903 ± 0.011 (3) 0.898 ± 0.011 (4) 0.904 ± 0.026 (2)
churn 0.896 ± 0.007 (3) 0.897 ± 0.022 (2) 0.862 ± 0.015 (4) 0.925 ± 0.025 (1)
phoneme 0.860 ± 0.008 (3) 0.864 ± 0.003 (1) 0.861 ± 0.008 (2) 0.842 ± 0.005 (4)
SpeedDating 0.725 ± 0.007 (1) 0.686 ± 0.010 (4) 0.693 ± 0.013 (3) 0.703 ± 0.013 (2)
PhishingWebsites 0.969 ± 0.006 (1) 0.969 ± 0.007 (2) 0.963 ± 0.005 (3) 0.961 ± 0.004 (4)
Amazon employee access 0.602 ± 0.006 (4) 0.608 ± 0.016 (3) 0.652 ± 0.006 (1) 0.621 ± 0.010 (2)
nomao 0.955 ± 0.004 (3) 0.965 ± 0.003 (1) 0.962 ± 0.003 (2) 0.955 ± 0.002 (4)
adult 0.785 ± 0.008 (4) 0.796 ± 0.003 (2) 0.796 ± 0.005 (3) 0.799 ± 0.003 (1)
numerai28.6 0.503 ± 0.003 (4) 0.516 ± 0.002 (2) 0.519 ± 0.001 (1) 0.506 ± 0.009 (3)

Normalized Mean ↑ 0.637 (1) 0.587 (3) 0.579 (1) 0.270 (4)
Mean Reciprocal Rank (MRR) ↑ 0.640 (1) 0.518 (3) 0.522 (2) 0.404 (4)

15

Published as a conference paper at ICLR 2024

Table 9: Runtime Performance Comparison. We report the runtime (mean ± stdev for a 5-fold
CV) with optimized parameters (complete grids, 250 trials) and the ranking of each approach in
parentheses. The datasets are sorted based on the data size. For all methods, we used a single
NVIDIA RTX A6000.

GRANDE XGB CatBoost NODE

dresses-sales 11.121 ± 1.0 (3) 0.052 ± 0.0 (1) 4.340 ± 2.0 (2) 31.371 ± 17.0 (4)
climate-simulation-crashes 16.838 ± 3.0 (3) 0.077 ± 0.0 (1) 8.740 ± 9.0 (2) 97.693 ± 10.0 (4)
cylinder-bands 20.554 ± 2.0 (3) 0.093 ± 0.0 (1) 4.887 ± 2.0 (2) 38.983 ± 12.0 (4)
wdbc 29.704 ± 4.0 (3) 0.151 ± 0.0 (1) 1.046 ± 0.0 (2) 83.548 ± 16.0 (4)
ilpd 11.424 ± 1.0 (3) 0.049 ± 0.0 (1) 3.486 ± 3.0 (2) 59.085 ± 24.0 (4)
tokyo1 21.483 ± 3.0 (3) 0.078 ± 0.0 (1) 1.485 ± 1.0 (2) 84.895 ± 5.0 (4)
qsar-biodeg 21.565 ± 2.0 (3) 0.087 ± 0.0 (1) 1.195 ± 0.0 (2) 96.204 ± 20.0 (4)
ozone-level-8hr 56.889 ± 6.0 (3) 0.092 ± 0.0 (1) 0.851 ± 0.0 (2) 137.910 ± 27.0 (4)
madelon 44.783 ± 24.0 (3) 0.360 ± 0.0 (1) 1.247 ± 0.0 (2) 90.529 ± 13.0 (4)
Bioresponse 37.224 ± 2.0 (3) 0.865 ± 0.0 (1) 2.136 ± 0.0 (2) 309.178 ± 54.0 (4)
wilt 44.476 ± 7.0 (3) 0.127 ± 0.0 (1) 1.090 ± 0.0 (2) 199.653 ± 20.0 (4)
churn 49.096 ± 5.0 (3) 0.099 ± 0.0 (1) 4.117 ± 3.0 (2) 150.088 ± 33.0 (4)
phoneme 59.286 ± 7.0 (3) 0.201 ± 0.0 (1) 1.793 ± 1.0 (2) 240.607 ± 33.0 (4)
SpeedDating 83.458 ± 24.0 (4) 0.207 ± 0.0 (1) 7.033 ± 1.0 (2) 66.560 ± 22.0 (3)
PhishingWebsites 107.101 ± 37.0 (3) 0.271 ± 0.0 (1) 8.527 ± 2.0 (2) 340.660 ± 102.0 (4)
Amazon employee access 37.190 ± 1.0 (4) 0.047 ± 0.0 (1) 2.021 ± 0.0 (2) 30.309 ± 4.0 (3)
nomao 95.775 ± 11.0 (3) 0.268 ± 0.0 (1) 10.911 ± 2.0 (2) 208.682 ± 34.0 (4)
adult 96.737 ± 6.0 (3) 0.125 ± 0.0 (1) 3.373 ± 1.0 (2) 171.783 ± 34.0 (4)
numerai28.6 39.031 ± 3.0 (3) 0.083 ± 0.0 (1) 1.323 ± 1.0 (2) 47.520 ± 38.0 (4)

Mean ↓ 46.512 (3) 0.175 (1) 3.66 (2) 130.80 (4)

Table 10: Ablation Study Split Activation. We report the test macro F1-Score (mean ± stdev for a
5-fold CV) with optimized parameters (complete grids, 250 trials) and the ranking of each approach
in parentheses. The datasets are sorted based on the data size.

Softsign Entmoid Sigmoid

dresses-sales 0.612 ± 0.049 (1) 0.580 ± 0.047 (2) 0.568 ± 0.052 (3)
climate-simulation-crashes 0.853 ± 0.070 (1) 0.840 ± 0.038 (2) 0.838 ± 0.041 (3)
cylinder-bands 0.819 ± 0.032 (1) 0.802 ± 0.028 (3) 0.807 ± 0.020 (2)
wdbc 0.975 ± 0.010 (1) 0.970 ± 0.007 (3) 0.972 ± 0.008 (2)
ilpd 0.657 ± 0.042 (2) 0.652 ± 0.047 (3) 0.663 ± 0.047 (1)
tokyo1 0.921 ± 0.004 (1) 0.920 ± 0.010 (3) 0.921 ± 0.008 (2)
qsar-biodeg 0.854 ± 0.022 (3) 0.855 ± 0.018 (2) 0.845 ± 0.018 (1)
ozone-level-8hr 0.726 ± 0.020 (1) 0.710 ± 0.024 (3) 0.707 ± 0.031 (2)
madelon 0.803 ± 0.010 (1) 0.773 ± 0.009 (2) 0.747 ± 0.009 (3)
Bioresponse 0.794 ± 0.008 (2) 0.795 ± 0.012 (1) 0.792 ± 0.010 (3)
wilt 0.936 ± 0.015 (1) 0.932 ± 0.014 (2) 0.929 ± 0.012 (3)
churn 0.914 ± 0.017 (1) 0.899 ± 0.010 (2) 0.887 ± 0.015 (3)
phoneme 0.846 ± 0.008 (1) 0.829 ± 0.002 (2) 0.828 ± 0.010 (3)
SpeedDating 0.723 ± 0.013 (3) 0.725 ± 0.012 (1) 0.725 ± 0.012 (2)
PhishingWebsites 0.969 ± 0.006 (1) 0.968 ± 0.006 (2) 0.967 ± 0.006 (3)
Amazon employee access 0.665 ± 0.009 (1) 0.663 ± 0.010 (3) 0.664 ± 0.016 (2)
nomao 0.958 ± 0.002 (1) 0.956 ± 0.002 (2) 0.954 ± 0.003 (3)
adult 0.790 ± 0.006 (2) 0.793 ± 0.005 (1) 0.790 ± 0.006 (3)
numerai28.6 0.519 ± 0.003 (2) 0.520 ± 0.004 (1) 0.519 ± 0.003 (3)

Normalized Mean ↑ 0.791 (1) 0.419 (2) 0.221 (3)
Mean Reciprocal Rank (MRR) ↑ 0.825 (1) 0.553 (2) 0.456 (3)

16

Published as a conference paper at ICLR 2024

Table 11: Ablation Study Weighting. We report the test macro F1-Score (mean ± stdev for a 5-
fold CV) with optimized parameters (complete grids, 250 trials) and the ranking of each approach
in parentheses. The datasets are sorted based on the data size.

Leaf Weights Estimator Weights

dresses-sales 0.612 ± 0.049 (1) 0.605 ± 0.050 (2)
climate-simulation-crashes 0.853 ± 0.070 (1) 0.801 ± 0.040 (2)
cylinder-bands 0.819 ± 0.032 (1) 0.787 ± 0.051 (2)
wdbc 0.975 ± 0.010 (1) 0.970 ± 0.009 (2)
ilpd 0.657 ± 0.042 (1) 0.612 ± 0.064 (2)
tokyo1 0.921 ± 0.004 (2) 0.922 ± 0.016 (1)
qsar-biodeg 0.854 ± 0.022 (1) 0.850 ± 0.019 (2)
ozone-level-8hr 0.726 ± 0.020 (1) 0.711 ± 0.020 (2)
madelon 0.803 ± 0.010 (1) 0.606 ± 0.028 (2)
Bioresponse 0.794 ± 0.008 (1) 0.784 ± 0.010 (2)
wilt 0.936 ± 0.015 (1) 0.930 ± 0.019 (2)
churn 0.914 ± 0.017 (1) 0.873 ± 0.018 (2)
phoneme 0.846 ± 0.008 (1) 0.845 ± 0.011 (2)
SpeedDating 0.723 ± 0.013 (2) 0.728 ± 0.009 (1)
PhishingWebsites 0.969 ± 0.006 (1) 0.965 ± 0.006 (2)
Amazon employee access 0.665 ± 0.009 (2) 0.675 ± 0.008 (1)
nomao 0.958 ± 0.002 (1) 0.954 ± 0.002 (2)
adult 0.790 ± 0.006 (1) 0.790 ± 0.005 (2)
numerai28.6 0.519 ± 0.003 (1) 0.519 ± 0.003 (2)

Normalized Mean ↑ 0.824 (1) 0.177 (2)
Mean Reciprocal Rank (MRR) ↑ 0.921 (1) 0.579 (2)

Table 12: Pairwise Confusion Matrix PhishingWebsites We compare the predictions of each ap-
proach with the predictions of a CART DT. It becomes evident, that a simple model is not sufficient
to solve the task well, as CART makes more than twice as many mistakes as state-of-the-art models.

Correct DT Incorrect DT Total
Correct GRANDE 2012 128 2140
Incorrect GRANDE 15 56 71
Total 2027 184

Correct DT Incorrect DT Total
Correct XGBoost 2018 115 2133
Incorrect XGBoost 9 69 78
Total 2027 184

Correct DT Incorrect DT Total
Correct CatBoost 2019 105 2124
Incorrect CatBoost 8 79 87
Total 2027 184

Correct DT Incorrect DT Total
Correct NODE 2012 112 2124
Incorrect NODE 15 72 87
Total 2027 184

C ADDITIONAL BENCHMARKS

In addition to the representative evaluation in the main paper, we provide an extended comparison
with additional benchmarks, including tree ensemble methods Random Forest (Breiman, 2001) and
ExtraTrees (Geurts et al., 2006), as well as SAINT Somepalli et al. (2021) as an additional DL
benchmark, which is the superior gradient-based method according to Borisov et al. (2022). In the
following, we present results using default hyperparameters for all methods (Table 15) and optimized
hyperparameters (Table 13 and Table 14). The results for HPO are presented twofold. In Table 13,
we report the results of an extensive search comprising 250 trials. Due to the very long runtime of
SAINT, we were not able to optimize 250 trials for SAINT. Therefore, we present results from an

17

Published as a conference paper at ICLR 2024

Table 13: Extended Performance Comparison (HPO 250 trials). We report the test macro F1-
score (mean for a 5-fold CV) with optimized parameters based on a HPO with 250 trials. The
datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE ExtraTree RandomForest

dresses-sales 0.612 (1) 0.581 (4) 0.588 (3) 0.564 (5) 0.589 (2) 0.559 (6)
climate-model-simulation 0.853 (1) 0.763 (4) 0.778 (3) 0.802 (2) 0.754 (5) 0.751 (6)
cylinder-bands 0.819 (1) 0.773 (4) 0.801 (2) 0.754 (6) 0.762 (5) 0.782 (3)
wdbc 0.975 (1) 0.953 (4) 0.963 (3) 0.966 (2) 0.951 (5) 0.949 (6)
ilpd 0.657 (1) 0.632 (5) 0.643 (3) 0.526 (6) 0.645 (2) 0.640 (4)
tokyo1 0.921 (3) 0.915 (5) 0.927 (1) 0.921 (2) 0.916 (4) 0.909 (6)
qsar-biodeg 0.854 (2) 0.853 (3) 0.844 (5) 0.836 (6) 0.851 (4) 0.855 (1)
ozone-level-8hr 0.726 (1) 0.688 (6) 0.721 (2) 0.703 (3) 0.695 (5) 0.697 (4)
madelon 0.803 (3) 0.833 (2) 0.861 (1) 0.571 (6) 0.766 (4) 0.764 (5)
Bioresponse 0.794 (3) 0.799 (2) 0.801 (1) 0.780 (6) 0.794 (5) 0.794 (4)
wilt 0.936 (2) 0.911 (6) 0.919 (3) 0.937 (1) 0.917 (5) 0.918 (4)
churn 0.914 (2) 0.900 (3) 0.869 (6) 0.930 (1) 0.899 (4) 0.899 (5)
phoneme 0.846 (6) 0.872 (2) 0.876 (1) 0.862 (5) 0.868 (4) 0.868 (3)
SpeedDating 0.723 (1) 0.704 (6) 0.718 (2) 0.707 (5) 0.708 (3) 0.707 (4)
PhishingWebsites 0.969 (1) 0.968 (2) 0.965 (4) 0.968 (3) 0.963 (5) 0.963 (5)
Amazon employee access 0.665 (2) 0.621 (6) 0.671 (1) 0.649 (3) 0.642 (5) 0.648 (4)
nomao 0.958 (3) 0.965 (1) 0.964 (2) 0.956 (4) 0.951 (6) 0.955 (5)
adult 0.790 (5) 0.798 (1) 0.796 (2) 0.794 (3) 0.785 (6) 0.790 (4)
numerai28.6 0.519 (1) 0.518 (5) 0.519 (2) 0.503 (6) 0.519 (4) 0.519 (3)

Normalized Mean ↑ 0.817 (1) 0.518 (3) 0.705 (2) 0.382 (6) 0.385 (5) 0.404 (4)
Mean Reciprocal Rank (MRR) ↑ 0.668 (1) 0.365 (3) 0.541 (2) 0.352 (4) 0.251 (6) 0.275 (5)

additional HPO consisting of 30 trials for each method (similar to McElfresh et al. (2023)) including
SAINT (Table 13). Details on the HPO can be found in Appendix E. The implementation for SAINT,
similar to NODE, was adopted from Borisov et al. (2022).

In all experiments, GRANDE demonstrated superior results over existing methods, achieving the
highest normalized accuracy, mean reciprocal rank (MRR) and number of wins in almost all scenar-
ios. In line with the experiments from the paper, CatBoost achieved the second-best and XGBoost
the third-best results. The only exception is using default parameters, where XGBoost achieved
a slightly higher normalized mean, but GRANDE still an significant higher MRR. While SAINT
provided competitive results for some datasets (1 wins with HPO), it also achieved a very perfor-
mance in some cases (e.g. for the madelon dataset, the prediction of SAINT was only predicting the
majority class). Similarly, ExtraTree and RandomForest, especially with optimized hyperparame-
ters achieved competitive results, but were almost consistently outperformed by gradient-boosting
methods and GRANDE.

18

Published as a conference paper at ICLR 2024

Table 14: Extended Performance Comparison (HPO 30 trials). We report the test macro F1-score
(mean for a 5-fold CV) with optimized parameters (30 trials). The datasets are sorted based on the
data size.

GRANDE XGB CatBoost NODE ExtraTree RandomForest SAINT

dresses-sales 0.596 (1) 0.567 (5) 0.592 (2) 0.564 (6) 0.583 (3) 0.570 (4) 0.516 (7)
climate-model-simulation-crashes 0.841 (1) 0.764 (6) 0.782 (5) 0.802 (3) 0.802 (2) 0.793 (4) 0.744 (7)
cylinder-bands 0.799 (1) 0.769 (4) 0.787 (3) 0.754 (6) 0.766 (5) 0.753 (7) 0.791 (2)
wdbc 0.966 (2) 0.959 (4) 0.964 (3) 0.966 (1) 0.955 (5) 0.951 (7) 0.952 (6)
ilpd 0.656 (1) 0.625 (5) 0.650 (2) 0.526 (6) 0.650 (3) 0.642 (4) 0.425 (7)
tokyo1 0.933 (1) 0.919 (6) 0.925 (3) 0.921 (4) 0.929 (2) 0.920 (5) 0.915 (7)
qsar-biodeg 0.857 (1) 0.841 (6) 0.850 (5) 0.836 (7) 0.850 (4) 0.855 (2) 0.850 (3)
ozone-level-8hr 0.716 (2) 0.676 (6) 0.736 (1) 0.703 (3) 0.695 (5) 0.697 (4) 0.659 (7)
madelon 0.787 (3) 0.833 (2) 0.861 (1) 0.571 (6) 0.656 (5) 0.774 (4) 0.333 (7)
Bioresponse 0.794 (5) 0.799 (1) 0.797 (2) 0.780 (6) 0.796 (3) 0.795 (4) 0.780 (6)
wilt 0.934 (3) 0.913 (6) 0.919 (4) 0.937 (2) 0.938 (1) 0.916 (5) 0.574 (7)
churn 0.914 (2) 0.899 (4) 0.869 (7) 0.930 (1) 0.903 (3) 0.899 (5) 0.873 (6)
phoneme 0.855 (6) 0.870 (2) 0.881 (1) 0.862 (4) 0.852 (7) 0.868 (3) 0.858 (5)
SpeedDating 0.728 (1) 0.704 (6) 0.715 (2) 0.707 (5) 0.709 (4) 0.709 (3) 0.678 (7)
PhishingWebsites 0.966 (4) 0.968 (1) 0.964 (5) 0.968 (2) 0.953 (7) 0.962 (6) 0.966 (3)
Amazon employee access 0.622 (6) 0.620 (7) 0.671 (2) 0.649 (3) 0.633 (5) 0.647 (4) 0.696 (1)
nomao 0.955 (5) 0.963 (2) 0.964 (1) 0.956 (3) 0.944 (7) 0.954 (6) 0.956 (4)
adult 0.790 (5) 0.798 (1) 0.796 (2) 0.794 (3) 0.784 (6) 0.790 (4) 0.774 (7)
numerai28.6 0.521 (1) 0.518 (5) 0.519 (3) 0.503 (7) 0.518 (4) 0.520 (2) 0.509 (6)

Normalized Mean ↑ 0.804 (1) 0.609 (3) 0.787 (2) 0.510 (6) 0.523 (5) 0.585 (4) 0.244 (7)
Mean Reciprocal Rank (MRR) ↑ 0.597 (1) 0.368 (3) 0.491 (2) 0.341 (4) 0.299 (5) 0.257 (6) 0.240 (7)

Table 15: Extended Performance Comparison (Default Parameters). We report the test macro
F1-score (mean for a 5-fold CV) with default parameters. The datasets are sorted based on the data
size.

GRANDE XGB CatBoost NODE ExtraTree RandomForest SAINT

dresses-sales 0.596 (1) 0.570 (3) 0.573 (2) 0.559 (4) 0.545 (6) 0.554 (5) 0.422 (7)
climate-model-simulation-crashes 0.758 (5) 0.781 (2) 0.781 (3) 0.766 (4) 0.728 (6) 0.714 (7) 0.850 (1)
cylinder-bands 0.813 (1) 0.770 (5) 0.795 (2) 0.696 (7) 0.780 (4) 0.787 (3) 0.733 (6)
wdbc 0.962 (3) 0.966 (1) 0.955 (4) 0.964 (2) 0.940 (7) 0.942 (6) 0.945 (5)
ilpd 0.646 (1) 0.629 (3) 0.643 (2) 0.501 (6) 0.582 (5) 0.592 (4) 0.416 (7)
tokyo1 0.922 (1) 0.917 (6) 0.917 (5) 0.921 (2) 0.917 (3) 0.917 (4) 0.907 (7)
qsar-biodeg 0.851 (1) 0.844 (2) 0.843 (3) 0.838 (4) 0.836 (7) 0.838 (5) 0.836 (6)
ozone-level-8hr 0.735 (1) 0.686 (3) 0.702 (2) 0.662 (4) 0.601 (7) 0.605 (6) 0.651 (5)
madelon 0.768 (5) 0.811 (2) 0.851 (1) 0.650 (6) 0.773 (4) 0.773 (3) 0.333 (7)
Bioresponse 0.789 (4) 0.789 (5) 0.792 (3) 0.786 (6) 0.799 (2) 0.801 (1) 0.786 (6)
wilt 0.933 (1) 0.903 (5) 0.898 (6) 0.904 (4) 0.916 (2) 0.911 (3) 0.486 (7)
churn 0.896 (3) 0.897 (2) 0.862 (7) 0.925 (1) 0.892 (5) 0.893 (4) 0.867 (6)
phoneme 0.860 (6) 0.864 (3) 0.861 (5) 0.842 (7) 0.875 (2) 0.880 (1) 0.862 (4)
SpeedDating 0.725 (1) 0.686 (4) 0.693 (3) 0.703 (2) 0.642 (6) 0.640 (7) 0.643 (5)
PhishingWebsites 0.969 (1) 0.969 (2) 0.963 (6) 0.961 (7) 0.968 (3) 0.968 (3) 0.964 (5)
Amazon employee access 0.602 (7) 0.608 (6) 0.652 (4) 0.621 (5) 0.662 (3) 0.682 (1) 0.682 (2)
nomao 0.955 (6) 0.965 (1) 0.962 (2) 0.955 (7) 0.956 (4) 0.961 (3) 0.956 (5)
adult 0.785 (5) 0.796 (2) 0.796 (3) 0.799 (1) 0.784 (6) 0.793 (4) 0.768 (7)
numerai28.6 0.503 (7) 0.516 (2) 0.519 (1) 0.506 (6) 0.514 (3) 0.512 (4) 0.509 (5)

Normalized Mean ↑ 0.673 (2) 0.691 (1) 0.666 (3) 0.460 (6) 0.518 (5) 0.596 (4) 0.228 (7)
Mean Reciprocal Rank (MRR) ↑ 0.586 (1) 0.422 (2) 0.397 (3) 0.326 (5) 0.267 (6) 0.365 (4) 0.235 (7)

D DISCUSSION WEIGHTING STATISTICS

Within our paper, we showed in an ablation study that our instance-wise weighting has a positive
impact on the performance of GRANDE. In addition, we showcased a real-world scenario where
the weighting significantly increases local interpretability by enabling the model to learn represen-
tations for simple and complex rules. In the following, we provide a more detailed evaluation of
the instance-wise weighting, including statistics on the highest weighted estimators and the weight
distributions.

The following statistics were obtained by calculating the post-softmax weights for each sample and
averaging the values over all samples. In addition, we calculated the same statistics for the top 5%
of samples with the highest weights. This provides additional insights since we agrue that unique
local interactions might exist only for a subset of the samples.

19

Published as a conference paper at ICLR 2024

Table 16: Weighting Statistics Estimator

Number
Internal
Nodes

Number
Leaf
Nodes

Percentage
Highest
Estimator

Percentage
Highest Estimator
Top 5%

Count
Highest
Estimator

Count Highest
Estimator
Top 5%

dresses-sales 1.12 2.12 0.470 0.667 10.20 2.40
climate-model-simulation 3.12 4.12 0.241 0.467 15.80 4.00
cylinder-bands 5.44 6.44 0.124 0.400 31.20 4.00
wdbc 1.16 2.16 0.587 0.733 4.20 1.60
ilpd 3.96 4.96 0.319 0.600 15.00 3.40
tokyo1 3.20 4.20 0.273 0.780 19.80 2.00
qsar-biodeg 2.80 3.80 0.191 0.745 29.80 2.60
ozone-level-8hr 2.00 3.00 0.198 0.662 27.80 5.40
madelon 3.92 4.92 0.322 0.741 19.60 3.20
Bioresponse 3.96 4.96 0.099 0.311 82.00 11.80
wilt 1.76 2.76 0.274 0.604 19.20 5.00
churn 2.28 3.28 0.111 0.408 72.00 11.40
phoneme 3.28 4.28 0.163 0.636 40.80 4.40
SpeedDating 6.96 7.96 0.168 0.640 90.20 5.00
PhishingWebsites 5.60 6.60 0.178 0.594 116.80 12.20
Amazon employee access 0.24 1.24 0.882 0.999 2.80 1.20
nomao 3.20 4.20 0.113 0.260 218.20 15.80
adult 0.36 1.36 0.905 0.912 5.20 1.60
numerai28.6 1.08 2.08 0.559 0.824 19.60 4.40

Mean 2.92 3.92 0.325 0.631 44.22 5.35

We can observe that on average, the highest weighted estimator comprises a moderate number of
≈3 internal and ≈4 leaf nodes, allowing an easy interpretation (see Table 16). Furthermore, on
average, the highest weighted estimator is the same for ≈33% of the data instances, with a total of
≈44 different estimators having the highest weight for at least one instance. If we further inspect
the top 5% of instances with the highest weight for a single estimator, we can additionally observe
that the highest weighted estimator is the same for ≈63% of these instances and only 5̃ different
estimators have the highest weight for at least one instance. This suggests the presence of a limited
number of local experts in most datasets, which have high weights for specific instances where local
rules are applicable.

In addition, Table 17 summarizes the skewness as measure of the asymmetry of a distribution, and
kurtosis as measure of the tailedness of a distribution, for all datasets. In general, it stands out
that both values increase significantly when considering only the top 5% of samples with the highest
weight for a single estimator. This again indicates the presence of local expert estimators for a subset
of the data, where unique local interactions were identified. In addition, there are major differences
in the values depending on the datasets, which we will discuss more detailled in the following:

Skewness In total, for 16/19 datasets the weights have a skewed (10) or very skewed (6) distribu-
tion, i.e., are long-tailed (see Table 18). Generally, left-skewed distributions suggest a few estimators
with very low weights, thereby contributing significantly less and resulting in a more compact en-
semble. However, right-skewed distributions are more desired as they indicate a small number of
trees having high weights (which we consider as local experts), while the majority of estimators have
small weights. Considering the top 5% of samples with the highest weights of a single estimator, we
can see that the number of very skewed distributions increases from 6 to 13 (see Table 19), indicating
samples that can be assigned to a class more easily based on a small number of trees (similar to the
example in the case study). In general, we are most interested in right-skewed distributions as this
indicates a small number of estimators with high weights, which we can consider as local experts.

(Excess) Kurtosis We can observe that 11/19 distributions are leptokurtic, i.e., have heavy tails,
with 4 considered as very leptokurtic (see Table 20). In general, distributions with heavy tails are
interesting, as this indicates outliers (estimators with significantly higher / lower weights). Trees
comprising significantly higher weights can be considered as local experts that have learned unique
local interactions. Again, when considering the top 5% of samples with the highest weights of a
single estimator, the number of leptokurtic distributions increases from 11 to 15 with the number of

20

Published as a conference paper at ICLR 2024

Table 17: Weighting Statistics Distribution. We provide the skewness, as measure of the asym-
metry of a distribution, and kurtosis, as measure of the tailedness of a distribution, for all datasets.
The measures are split in an average over all samples and an average over the top 5% of the samples
with the highest maximum weight.

Skewness Skewness Top 5% Kurtosis Kurtosis Top 5%

dresses-sales 0.946 1.187 0.617 1.597
climate-model-simulation 1.259 1.909 0.742 3.095
cylinder-bands 0.853 1.199 -0.562 0.230
wdbc 0.082 0.251 -1.084 -0.980
ilpd 0.180 0.385 -0.649 -0.528
tokyo1 0.975 1.839 1.322 4.919
qsar-biodeg 0.875 1.194 0.200 1.302
ozone-level-8hr 0.752 1.462 -0.048 1.972
madelon 1.901 2.208 2.797 4.465
Bioresponse 0.777 1.139 -0.496 0.317
wilt 0.508 1.150 -0.499 1.100
churn 2.369 3.488 5.912 13.419
phoneme 0.563 0.789 -0.447 0.119
SpeedDating 1.069 1.180 1.148 1.627
PhishingWebsites 1.263 1.978 1.136 4.343
Amazon employee access -0.029 -0.119 3.348 3.081
nomao 2.411 4.190 6.920 24.791
adult 0.621 0.679 3.345 3.280
numerai28.6 -0.297 -0.269 0.833 0.829

Mean 0.899 1.360 1.291 3.630

Table 18: Skewness

Very skewed
(−∞,−1.0) or (1.0,∞)

Skewed
[−1.0,−0.5) or (0.5, 1.0]

Slight skew
[−0.5, 0.5]

Sum

Left skew 0 1 1 2
Right skew 6 9 2 17
Sum 6 10 3

very leptokurtic distributions increasing from 4 to 8. Again, this indicates that there exists samples
that can be assigned to a class more easily with simple rules (from local experts) in many datasets.

Overall, the additional statistics are in line with the discussion in the paper. For several datasets, the
distribution of weight is long- and/or heavy-tailed, indicating the presence of local expert estima-
tors. However, the benefit of learning local expert estimators is dataset-dependent and not feasible
in all scenarios. This is also confirmed by our results, as there are datasets where the distribution
is symmetric and mesokurtic. This is valid for instance for numerai28.6, which is a very complex
dataset without many simple rules (as indicated by the poor performance of all methods). In addi-
tion, it should be noted that a more comprehensive analysis is necessary to confirm these additional
findings.

Table 19: Skewness Top 5%

Very skewed
(−∞,−1.0) or (1.0,∞)

Skewed
[−1.0,−0.5) or (0.5, 1.0]

Slight skew
[−0.5, 0.5]

Sum

Left skew 0 1 1 2
Right skew 13 1 3 17
Sum 13 2 4

21

Published as a conference paper at ICLR 2024

Table 20: Kurtosis

Excess Kurtosis Count Count Top 5%

Very leptokurtic (3.0,∞) 4 8
Moderately leptokurtic (0.5, 3.0] 7 6
Mesokurtic [−0.5, 0.5] 5 3
Platykurtic (−∞,−0.5) 3 2

E HYPERPARAMETERS

We optimized the hyperparameters using Optuna (Akiba et al., 2019) with 250 trials and selected
the search space and default parameters for related work in accordance with Borisov et al. (2022).
The best parameters were selected based on a 5x2 cross-validation as suggested by Raschka (2018)
where the test data of each fold was held out of the HPO to get unbiased results. To deal with
class imbalance, we further included class weights. In line with Borisov et al. (2022), we did not
tune the number of estimators for XGBoost and CatBoost, but used early stopping. To validate our
approach of not tuning the estimators, we conducted an additional HPO with tuning the estimators
for XGBoost and CatBoost (see Table 21 and Table 22) and show that this results in similar (slightly
worse) results.

While using 250 trials can be considered as a very exhaustive search, we include additional results
for a HPO with only 30 trials, similar to McElfresh et al. (2023). Based on the results in Table 23,
we can verify that even with a small number of trials, GRANDE achieves strong results. Yet, we
can also observe that searching for more trials is especially beneficial for GRANDE.

Furthermore, GRANDE has a total of 11 hyperparameters that were optimized during the HPO. In
contrast, for XGBoost and CatBoost we only optimized 4 and 3 hyperparameters, respectively. The
choice to optimize only a small number of hyperparameters was in accordance with Borisov et al.
(2022) based on the assumption that an exhaustive search on the most relevant parameters is benefi-
cial for the performance. To account for this, we performed an additional HPO for GRANDE, where
we similarly only optimized 4 parameters (one overall learning rate, focal factor, cosine decay steps
and dropout). The results are displayed in Table 24 and show that GRANDE still achieves SOTA
results. However, it becomes evident, that GRANDE benefits from using a larger grid, especially
since using different learning rates for the different components (split values, split indices, leaf prob-
abilities and leaf weights) has a positive impact on the performance.

For GRANDE, we used a batch size of 64 and early stopping after 25 epochs. Similar to
NODE Popov et al. (2019), GRANDE uses an Adam optimizer with stochastic weight averaging
over 5 checkpoints (Izmailov et al., 2018) and a learning rate schedule that uses a cosine decay with
optional warmup (Loshchilov & Hutter, 2016). Furthermore, GRANDE allows using a focal fac-
tor (Lin et al., 2017), similar to GradTree Marton et al. (2023). In the supplementary material, we
provide the notebook used for the optimization along with the search space for each approach.

22

Published as a conference paper at ICLR 2024

Table 21: Comparison XGB HPO (250 Trials). We compare a HPO for XGBoost with and without
tuning the number of estimators based on 250 trials. Tuning the estimators does not improve the
performance, and using early stopping in addition to setting the number of estimators to a high
number is sufficient.

Without
tuning estimators

With
tuning estimators Difference

dresses-sales 0.5755 0.5813 -0.0058
climate-model-simulation-crashes 0.7932 0.7626 0.0306
cylinder-bands 0.7670 0.7734 -0.0064
wdbc 0.9568 0.9531 0.0037
ilpd 0.6316 0.6321 -0.0005
tokyo1 0.9147 0.9147 0.0000
qsar-biodeg 0.8486 0.8526 -0.0039
ozone-level-8hr 0.7044 0.6885 0.0159
madelon 0.8226 0.8334 -0.0108
Bioresponse 0.7924 0.7988 -0.0064
wilt 0.9102 0.9114 -0.0012
churn 0.9003 0.8998 0.0005
phoneme 0.8725 0.8718 0.0007
SpeedDating 0.7071 0.7043 0.0028
PhishingWebsites 0.9674 0.9683 -0.0009
Amazon employee access 0.6225 0.6209 0.0016
nomao 0.9642 0.9650 -0.0008
adult 0.7977 0.7980 -0.0003
numerai28.6 0.5187 0.5180 0.0007

Mean ↑ 0.7930 0.7920 0.0010

Table 22: Comparison CatBoost HPO (250 Trials). We compare a HPO for CatBoost with and
without tuning the number of estimators based on 250 trials. Tuning the estimators does not improve
the performance, and using early stopping in addition to setting the number of estimators to a high
number is sufficient.

Without
tuning estimators

With
tuning estimators Difference

dresses-sales 0.5611 0.5880 -0.0270
climate-model-simulation-crashes 0.7902 0.7775 0.0127
cylinder-bands 0.8080 0.8014 0.0066
wdbc 0.9551 0.9625 -0.0074
ilpd 0.6379 0.6428 -0.0049
tokyo1 0.9249 0.9274 -0.0025
qsar-biodeg 0.8467 0.8444 0.0023
ozone-level-8hr 0.7330 0.7206 0.0124
madelon 0.8650 0.8607 0.0042
Bioresponse 0.7992 0.8013 -0.0021
wilt 0.9227 0.9187 0.0040
churn 0.8734 0.8693 0.0042
phoneme 0.8828 0.8763 0.0065
SpeedDating 0.7182 0.7184 -0.0001
PhishingWebsites 0.9657 0.9650 0.0007
Amazon employee access 0.6704 0.6709 -0.0004
nomao 0.9633 0.9644 -0.0011
adult 0.7957 0.7960 -0.0003
numerai28.6 0.5172 0.5193 -0.0021

Mean ↑ 0.8016 0.8013 0.0003

23

Published as a conference paper at ICLR 2024

Table 23: HPO 30 Trials Performance Comparison. We report the test macro F1-score (mean ±
stdev over 10 trials) based on a reduced HPO with only 30 trials. The datasets are sorted based on
the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.596 ± 0.047 (1) 0.567 ± 0.055 (3) 0.592 ± 0.046 (2) 0.564 ± 0.051 (4)
climate-model-simulation 0.841 ± 0.058 (1) 0.764 ± 0.073 (4) 0.782 ± 0.057 (3) 0.802 ± 0.035 (2)
cylinder-bands 0.799 ± 0.037 (1) 0.769 ± 0.040 (3) 0.787 ± 0.044 (2) 0.754 ± 0.040 (4)
wdbc 0.966 ± 0.019 (2) 0.959 ± 0.026 (4) 0.964 ± 0.022 (3) 0.966 ± 0.016 (1)
ilpd 0.656 ± 0.044 (1) 0.625 ± 0.052 (3) 0.650 ± 0.059 (2) 0.526 ± 0.069 (4)
tokyo1 0.933 ± 0.011 (1) 0.919 ± 0.012 (4) 0.925 ± 0.011 (2) 0.921 ± 0.010 (3)
qsar-biodeg 0.857 ± 0.025 (1) 0.841 ± 0.015 (3) 0.850 ± 0.030 (2) 0.836 ± 0.028 (4)
ozone-level-8hr 0.716 ± 0.007 (2) 0.676 ± 0.028 (4) 0.736 ± 0.027 (1) 0.703 ± 0.029 (3)
madelon 0.787 ± 0.014 (3) 0.833 ± 0.015 (2) 0.861 ± 0.012 (1) 0.571 ± 0.022 (4)
Bioresponse 0.794 ± 0.010 (3) 0.799 ± 0.011 (1) 0.797 ± 0.008 (2) 0.780 ± 0.011 (4)
wilt 0.934 ± 0.01 (2) 0.913 ± 0.011 (4) 0.919 ± 0.009 (3) 0.937 ± 0.017 (1)
churn 0.914 ± 0.013 (2) 0.899 ± 0.020 (3) 0.869 ± 0.014 (4) 0.930 ± 0.011 (1)
phoneme 0.855 ± 0.008 (4) 0.870 ± 0.008 (2) 0.881 ± 0.007 (1) 0.862 ± 0.013 (3)
SpeedDating 0.728 ± 0.007 (1) 0.704 ± 0.012 (4) 0.715 ± 0.015 (2) 0.707 ± 0.015 (3)
PhishingWebsites 0.966 ± 0.004 (3) 0.968 ± 0.008 (1) 0.964 ± 0.004 (4) 0.968 ± 0.006 (2)
Amazon employee access 0.622 ± 0.028 (3) 0.620 ± 0.008 (4) 0.671 ± 0.013 (1) 0.649 ± 0.009 (2)
nomao 0.955 ± 0.001 (4) 0.963 ± 0.004 (2) 0.964 ± 0.004 (1) 0.956 ± 0.001 (3)
adult 0.790 ± 0.006 (4) 0.798 ± 0.004 (1) 0.796 ± 0.005 (2) 0.794 ± 0.004 (3)
numerai28.6 0.521 ± 0.004 (1) 0.518 ± 0.002 (3) 0.519 ± 0.002 (2) 0.503 ± 0.010 (4)

Normalized Mean ↑ 0.694 (1) 0.430 (3) 0.676 (2) 0.336 (4)
Mean Reciprocal Rank (MRR) ↑ 0.636 (1) 0.434 (3) 0.579 (2) 0.434 (3)

Table 24: HPO Reduced Grid Performance Comparison (250 Trials). We report the test macro
F1-score (mean ± stdev over 10 trials) based on a HPO with a reduced parameter grid for GRANDE
(only one overall learning rate, focal factor, cosine decay steps and dropout) and 250 trials for all
methods. The datasets are sorted based on the data size.

GRANDE XGB CatBoost NODE

dresses-sales 0.590 ± 0.042 (1) 0.581 ± 0.059 (3) 0.588 ± 0.036 (2) 0.564 ± 0.051 (4)
climate-model-simulation 0.800 ± 0.055 (2) 0.763 ± 0.064 (4) 0.778 ± 0.050 (3) 0.802 ± 0.035 (1)
cylinder-bands 0.783 ± 0.040 (2) 0.773 ± 0.042 (3) 0.801 ± 0.043 (1) 0.754 ± 0.040 (4)
wdbc 0.964 ± 0.007 (2) 0.953 ± 0.030 (4) 0.963 ± 0.023 (3) 0.966 ± 0.016 (1)
ilpd 0.645 ± 0.030 (1) 0.632 ± 0.043 (3) 0.643 ± 0.053 (2) 0.526 ± 0.069 (4)
tokyo1 0.928 ± 0.017 (1) 0.915 ± 0.011 (4) 0.927 ± 0.013 (2) 0.921 ± 0.010 (3)
qsar-biodeg 0.859 ± 0.024 (1) 0.853 ± 0.020 (2) 0.844 ± 0.023 (3) 0.836 ± 0.028 (4)
ozone-level-8hr 0.733 ± 0.016 (1) 0.688 ± 0.021 (4) 0.721 ± 0.027 (2) 0.703 ± 0.029 (3)
madelon 0.809 ± 0.010 (3) 0.833 ± 0.018 (2) 0.861 ± 0.012 (1) 0.571 ± 0.022 (4)
Bioresponse 0.783 ± 0.009 (3) 0.799 ± 0.011 (2) 0.801 ± 0.014 (1) 0.780 ± 0.011 (4)
wilt 0.921 ± 0.014 (2) 0.911 ± 0.010 (4) 0.919 ± 0.007 (3) 0.937 ± 0.017 (1)
churn 0.888 ± 0.017 (3) 0.900 ± 0.017 (2) 0.869 ± 0.021 (4) 0.930 ± 0.011 (1)
phoneme 0.859 ± 0.010 (4) 0.872 ± 0.007 (2) 0.876 ± 0.005 (1) 0.862 ± 0.013 (3)
SpeedDating 0.725 ± 0.016 (1) 0.704 ± 0.015 (4) 0.718 ± 0.014 (2) 0.707 ± 0.015 (3)
PhishingWebsites 0.970 ± 0.006 (1) 0.968 ± 0.006 (2) 0.965 ± 0.003 (4) 0.968 ± 0.006 (3)
Amazon employee access 0.643 ± 0.024 (3) 0.621 ± 0.008 (4) 0.671 ± 0.011 (1) 0.649 ± 0.009 (2)
nomao 0.956 ± 0.004 (4) 0.965 ± 0.003 (1) 0.964 ± 0.002 (2) 0.956 ± 0.001 (3)
adult 0.791 ± 0.005 (4) 0.798 ± 0.004 (1) 0.796 ± 0.004 (2) 0.794 ± 0.004 (3)
numerai28.6 0.519 ± 0.005 (2) 0.518 ± 0.001 (3) 0.519 ± 0.002 (1) 0.503 ± 0.010 (4)

Normalized Mean ↑ 0.659 ± 0.509 (2) 0.488 ± 0.497 (3) 0.721 ± 0.373 (1) 0.346 ± 0.561 (4)
Mean Reciprocal Rank (MRR) ↑ 0.610 ± 0.531 (1) 0.425 ± 0.469 (4) 0.596 ± 0.456 (2) 0.452 ± 0.627 (3)

24

Published as a conference paper at ICLR 2024

Table 25: Hyperparameters GRANDE (Part 1). We report the hyperparameters for GRANDE
based on the extensive HPO with 250 trials.

depth n estimators lr weights lr index lr values lr leaf

dresses-sales 4 512 0.0015 0.0278 0.1966 0.0111
climate-simulation-crashes 4 2048 0.0007 0.0243 0.0156 0.0134
cylinder-bands 6 2048 0.0009 0.0084 0.0086 0.0474
wdbc 4 1024 0.0151 0.0140 0.1127 0.1758
ilpd 4 512 0.0007 0.0059 0.0532 0.0094
tokyo1 6 1024 0.0029 0.1254 0.0056 0.0734
qsar-biodeg 6 2048 0.0595 0.0074 0.0263 0.0414
ozone-level-8hr 4 2048 0.0022 0.0465 0.0342 0.0503
madelon 4 2048 0.0003 0.0575 0.0177 0.0065
Bioresponse 6 2048 0.0304 0.0253 0.0073 0.0784
wilt 6 2048 0.0377 0.1471 0.0396 0.1718
churn 6 2048 0.0293 0.0716 0.0179 0.0225
phoneme 6 2048 0.0472 0.0166 0.0445 0.1107
SpeedDating 6 2048 0.0148 0.0130 0.0095 0.0647
PhishingWebsites 6 2048 0.0040 0.0118 0.0104 0.1850
Amazon employee access 6 2048 0.0036 0.0056 0.1959 0.1992
nomao 6 2048 0.0059 0.0224 0.0072 0.0402
adult 6 1024 0.0015 0.0087 0.0553 0.1482
numerai28.6 4 512 0.0001 0.0737 0.0513 0.0371

Table 26: Hyperparameters GRANDE (Part 2). We report the hyperparameters for GRANDE
based on the extensive HPO with 250 trials.

dropout selected variables data fraction focal factor cosine decay steps

dresses-sales 0.25 0.7996 0.9779 0 0.0
climate-simulation-crashes 0.00 0.6103 0.8956 0 1000.0
cylinder-bands 0.25 0.5309 0.8825 0 1000.0
wdbc 0.50 0.8941 0.8480 0 0.0
ilpd 0.50 0.6839 0.9315 3 1000.0
tokyo1 0.50 0.5849 0.9009 0 1000.0
qsar-biodeg 0.00 0.5892 0.8098 0 0.0
ozone-level-8hr 0.25 0.7373 0.8531 0 1000.0
madelon 0.25 0.9865 0.9885 0 100.0
Bioresponse 0.50 0.5646 0.8398 0 0.0
wilt 0.25 0.9234 0.8299 0 0.0
churn 0.00 0.6920 0.8174 0 1000.0
phoneme 0.00 0.7665 0.8694 3 1000.0
SpeedDating 0.00 0.8746 0.8229 3 0.1
PhishingWebsites 0.00 0.9792 0.9588 0 0.1
Amazon employee access 0.50 0.9614 0.9196 3 0.0
nomao 0.00 0.8659 0.8136 0 100.0
adult 0.50 0.5149 0.8448 3 100.0
numerai28.6 0.50 0.7355 0.8998 0 0.1

25

Published as a conference paper at ICLR 2024

Table 27: Hyperparameters XGBoost. We report the hyperparameters for GRANDE based on the
extensive HPO with 250 trials.

learning rate max depth reg alpha reg lambda

dresses-sales 0.1032 3 0.0000 0.0000
climate-simulation-crashes 0.0356 11 0.5605 0.0000
cylinder-bands 0.2172 11 0.0002 0.0057
wdbc 0.2640 2 0.0007 0.0000
ilpd 0.0251 4 0.3198 0.0000
tokyo1 0.0293 3 0.2910 0.3194
qsar-biodeg 0.0965 5 0.0000 0.0000
ozone-level-8hr 0.0262 9 0.0000 0.6151
madelon 0.0259 6 0.0000 0.9635
Bioresponse 0.0468 5 0.9185 0.0000
wilt 0.1305 8 0.0000 0.0003
churn 0.0473 6 0.0000 0.3132
phoneme 0.0737 11 0.9459 0.2236
SpeedDating 0.0277 9 0.0000 0.9637
PhishingWebsites 0.1243 11 0.0017 0.3710
Amazon employee access 0.0758 11 0.9785 0.0042
nomao 0.1230 5 0.0000 0.0008
adult 0.0502 11 0.0000 0.7464
numerai28.6 0.1179 2 0.0001 0.0262

Table 28: Hyperparameters CatBoost. We report the hyperparameters for GRANDE based on the
extensive HPO with 250 trials.

learning rate max depth l2 leaf reg

dresses-sales 0.0675 3 19.8219
climate-simulation-crashes 0.0141 2 19.6955
cylinder-bands 0.0716 11 19.6932
wdbc 0.1339 3 0.7173
ilpd 0.0351 4 5.0922
tokyo1 0.0228 5 0.5016
qsar-biodeg 0.0152 11 0.7771
ozone-level-8hr 0.0118 11 3.0447
madelon 0.0102 10 9.0338
Bioresponse 0.0195 11 8.1005
wilt 0.0192 11 1.1095
churn 0.0248 9 7.0362
phoneme 0.0564 11 0.6744
SpeedDating 0.0169 11 1.5494
PhishingWebsites 0.0239 8 1.6860
Amazon employee access 0.0123 11 1.6544
nomao 0.0392 8 2.6583
adult 0.1518 11 29.3098
numerai28.6 0.0272 4 18.6675

26

Published as a conference paper at ICLR 2024

Table 29: Hyperparameters NODE. We report the hyperparameters for GRANDE based on the
grid suggested by the authors Popov et al. (2019).

num layers total tree count tree depth

dresses-sales 2 2048 6
climate-simulation-crashes 2 1024 8
cylinder-bands 2 1024 8
wdbc 2 2048 6
ilpd 4 2048 8
tokyo1 4 1024 8
qsar-biodeg 2 2048 6
ozone-level-8hr 4 1024 6
madelon 2 2048 6
Bioresponse 2 1024 8
wilt 4 1024 6
churn 2 1024 8
phoneme 4 2048 8
SpeedDating 4 1024 6
PhishingWebsites 2 1024 8
Amazon employee access 2 2048 6
nomao 2 2048 6
adult 4 1024 8
numerai28.6 2 1024 8

27

	Introduction
	Background: Gradient-Based Decision Trees
	GRANDE: Gradient-Based Decision Tree Ensembles
	From Decision Trees to Weighted Tree Ensembles
	Differentiable Split Functions
	Instance-Wise Estimator Weights
	Regularization: Feature Subset, Data Subset and Dropout

	Experimental Evaluation
	Experimental Setup
	Results
	Case Study: Instance-Wise Weighting for the PhishingWebsites Dataset

	Related Work
	Conclusion and Future Work
	Benchmark Dataset Selction
	Additional Results
	Additional Benchmarks
	Discussion Weighting Statistics
	Hyperparameters

