
Imagine Beyond! Distributionally Robust
Auto-Encoding for State Space Coverage in Online

Reinforcement Learning

Nicolas Castanet
Sorbonne Université, CNRS, ISIR, F-75005 Paris, France

nicolas.castanet@isir.upmc.fr

Olivier Sigaud
Sorbonne Université, CNRS, ISIR, F-75005 Paris, France

olivier.sigaud@isir.upmc.fr

Sylvain Lamprier
Univ Angers, LERIA, Angers, France

sylvain.lamprier@univ-angers.fr

Abstract

Goal-Conditioned Reinforcement Learning (GCRL) enables agents to au-
tonomously acquire diverse behaviors, but faces major challenges in visual envi-
ronments due to high-dimensional, semantically sparse observations. In the online
setting, where agents learn representations while exploring, the latent space evolves
with the agent’s policy, to capture newly discovered areas of the environment.
However, without incentivization to maximize state coverage in the representation,
classical approaches based on auto-encoders may converge to latent spaces that
over-represent a restricted set of states frequently visited by the agent. This is
exacerbated in an intrinsic motivation setting, where the agent uses the distribution
encoded in the latent space to sample the goals it learns to master. To address
this issue, we propose to progressively enforce distributional shifts towards a
uniform distribution over the full state space, to ensure a full coverage of skills
that can be learned in the environment. We introduce DRAG (Distributionally
Robust Auto-Encoding for GCRL), a method that combines the β-VAE framework
with Distributionally Robust Optimization. DRAG leverages an adversarial neural
weighter of training states of the VAE, to account for the mismatch between the
current data distribution and unseen parts of the environment. This allows the
agent to construct semantically meaningful latent spaces beyond its immediate
experience. Our approach improves state space coverage and downstream control
performance on hard exploration environments such as mazes and robotic control
involving walls to bypass, without pre-training nor prior environment knowledge.

1 Introduction

Goal-Conditioned Reinforcement Learning (GCRL) enables agents to master diverse behaviors in
complex environments without requiring predefined reward functions. This capability is particularly
valuable for building autonomous systems that can adapt to various tasks, especially in navigation
and robotics manipulation environments [Plappert et al., 2018, Rajeswaran et al., 2018, Tassa et al.,
2018, Yu et al., 2021]. However, when working with visual inputs, agents face significant challenges:

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

observations are high-dimensional and lack explicit semantic information, making intrinsic goal
generation for exploration, reward calculation, and policy learning substantially more difficult.

A common approach to address these challenges involves learning a compact latent representation
of the observation space, that captures semantic information while reducing dimensionality [Nair
et al., 2018, Colas et al., 2018, Pong et al., 2019, Hafner et al., 2019a, Laskin et al., 2020, Gallouédec
and Dellandréa, 2023]. Assuming a compact - information-preserving - representation that encodes
the main variation factors from the whole state space, agents can leverage latent codes as lower-
dimensional inputs. In the GCRL setting, agents are conditioned with goals encoded as latent codes,
usually referred to as skills [Campos et al., 2020], which reduces control noise and enables efficient
training. Thus, many works build agents on such pre-trained representations of the environment
[Mendonca et al., 2023, Zhou et al., 2025], but usually leave aside the question of the collection of
training data, by assuming the availability of a state distribution from which sampling is efficient.
Without such knowledge, some methods use auxiliary exploration policies for data collection [Campos
et al., 2020, Yarats et al., 2021, Mendonca et al., 2021], such as maximum entropy strategies Hazan
et al. [2019] or curiosity-driven exploration Pathak et al. [2017], but these often struggle in high-
dimensional or stochastic environments due to density estimation and dynamics learning difficulties.

An alternative, which we focus on in this work, is the online setting: the representation is learned
jointly with the agent’s policy, using rollouts to train an encoder-decoder. This allows the representa-
tion to evolve with the agent’s progress and potentially cover the full state space. Unlike auxiliary
exploration, GCRL-driven representation learning aligns training with a meaningful behavioral
distribution, which naturally acts as a curriculum. A representative approach is RIG [Nair et al.,
2018], where a VAE encodes visited states, and latent samples from the prior are used as "imagined"
goals—creating a feedback loop between representation and policy learning.

However, this process suffers from key limitations. A common critique is that continual encoder
training leads to distributional shift—a well-known issue in machine learning—which destabilizes
policy learning and reduces exploration diversity. In this collaborative setting, we identify two distinct
sources of shift: one from the agent’s perspective, where the meaning of the latent codes it receives
as inputs continuously evolves; and one from the encoder’s perspective, in the distribution of visited
states to be encoded during rollouts. While policy instability caused by distributional shift from the
agent’s perspective can be mitigated using a delayed encoder, we argue that distributional shift in
the encoder’s input data—i.e., the states reached during rollouts—is not only desirable, but essential
for exploring the environment and expanding the representation. Rather than limiting such shift, we
propose to anticipate and deliberately steer it using a principled method, ensuring that it benefits
exploration and learning rather than undermining them.

Our main contribution is to leverage Distributionally Robust Optimization (DRO) [Delage and
Ye, 2010] to guide the evolution of the representation. By integrating DRO with a β-VAE [Higgins
et al., 2017a], we introduce DRAG (Distributionally Robust Auto-Encoding for GCRL), which uses
an adversarial weighter to emphasize underrepresented states. This allows the agent to build latent
spaces that generalize beyond its current experience, progressively covering the state space.

Our contributions are:

• We introduce a DRO-based VAE framework tailored to GCRL.

• We reinterpret SKEW-FIT [Pong et al., 2019] as a non-parametric instance of DRO-VAE.

• We propose DRAG, a - more stable - parametric DRO-VAE approach to encourage state
coverage through adversarial neural weighting.

• We show that when encoder learning anticipates distributional shift, explicit exploration
strategies become unnecessary in RIG-like methods; the latent prior alone generates mean-
ingful goals. This enables focusing on selecting goals of intermediate difficulty (GOIDs
Florensa et al. [2018]) to improve sample efficiency.

Our approach improves state space coverage and downstream control performance on hard exploration
environments such as mazes and robotic control involving walls to bypass, without pre-training nor
prior environment knowledge.

2

Figure 1: General framework of online VAE representation learning in RL. Green: RL loop using the
VAE encoder to convert high-dimensional states st to latent states zt. Blue: latent goal zg sampling
(from prior distribution or replay buffer) and selection. Red: Representation Learning with VAE,
using data from the replay buffer combined with Distributionally Robust Optimisation (DRO).

2 Background & Related Work

2.1 Problem Statement: Unsupervised Goal-conditioned Reinforcement Learning

In this work, we consider the multi-goal reinforcement learning (RL) setting, defined as an extended
Markov Decision Process (MDP)M =< S, T,A,G,Rg, S0, X >, where S is a set of continuous
states, T is the transition function, A the set of actions, S0 the distribution of starting states, X the
observation function and Rg the reward function parametrized by a goal g ∈ G. In our unsupervised
setting, we are interested in finding control policies that are able to reach any state in S from
the distribution of starting states S0. Thus, we consider that G ≡ S. S being continuous, we
set the reward function Rg as depending on a threshold distance δ from the goal g: for any state
s ∈ S, we consider the sparse reward function Rg(s) = 1[||s − g||2 < δ]. Rg(s) > 0 is only
possible once per trajectory. For simplicity, we also consider that any pixel observation x ∈ X
corresponds to a single state s ∈ S. Thus, given an horizon T , the optimal policy is defined as
π∗ = maxπ Eg∈GEτ∼π(τ |g)[

∑T
t=0 Rg(st)], where τ = (s0, a1, s1, ..., sT) is a trajectory, and π(τ |g)

is the distribution of trajectories given g in the MDP when following policy π.

2.2 Multi-task Intrinsically Motivated Agents

Multitask Intrinsically Motivated Agents provide a powerful framework in GCRL to tackle un-
supervised settings by enabling agents to self-generate and pursue diverse tasks without external
prior knowledge of the environment via an intrinsic goal distribution. This approach has proven
effective for complex problems such as robotic control and navigation, and has also shown benefits
in accelerating learning in supervised tasks where goals are known in advance [Colas et al., 2018,
Ren et al., 2019, Hartikainen et al., 2020, Gallouédec and Dellandréa, 2023]. Various criteria have
been investigated for the formulation of the intrinsic goal distribution. Many of them focus on
exploration, to encourage novelty or diversity in the agent’s behavior [Warde-Farley et al., 2018,
Pong et al., 2019, Pitis et al., 2020, Gallouédec and Dellandréa, 2023, Kim et al., 2023]. Among
them, MEGA [Pitis et al., 2020] defines a density estimator pSt from the buffer (e.g., via a KDE) and
samples goals at the tail of the estimated distribution to foster exploration. SKEW-FIT Pong et al.
[2019] maximizes the entropy of the behavior distribution. It performs goal sampling from a skewed
distribution pskewedt(s), designed as an importance resampling of samples from the buffer with a rate
1/pSt to simulate sampling from the uniform distribution. Other approaches are focused on control
success and agent progress, by looking at goals that mostly benefit improvements of the trained policy.
This includes learning progress criteria [Colas et al., 2019], or the selection of goals of intermediate
difficulty (GOIDs) [Sukhbaatar et al., 2017, Florensa et al., 2018, Zhang et al., 2020, Castanet et al.,
2022], not too easy or too hard to master for the agent, depending on its current level. Approaches
from that family, such as GOALGAN [Florensa et al., 2018] or SVGG [Castanet et al., 2022] usually
rely on an auxiliary network that produces a GOIDs distribution based on a success predictor.

3

2.3 Online Representation Learning with GCRL

Variational Auto Encoders (VAEs) present appealing properties when it comes to learning latent state
representations in RL. With their probabilistic formulation, the observation space can be represented
by the latent prior distribution, which enables several operations to take place, such as goal sampling
in GCRL [Nair et al., 2018, Pong et al., 2019, Gallouédec and Dellandréa, 2023] and having access
to the log-likelihood of trajectories for model-based RL and planning [Higgins et al., 2017b, Hafner
et al., 2019b,a, Lee et al., 2020b]. The seminal work RIG [Nair et al., 2018], which is the foundation
of our paper, is an online GCRL method that jointly trains a latent representation and a policy
π(a | zx, zg), where zg is a goal sampled in the latent space, and zx = qψ(x) is a VAE encoding of
observation x of the current state. During training, the agent samples a goal zg ∼ p(z), with p(z) the
prior (typically N (0, I)), and performs a policy rollout during T steps or until the latent goal and
the encoded current state are close enough. The policy is then optimized via policy gradient, using
e.g. a sparse reward in the latent space, and the visited states are inserted in a training buffer for the
VAE. This framework enables the agent to autonomously acquire diverse behaviors without extrinsic
rewards, by aligning representation learning and control. The policy collects new examples for the
VAE training, which in turn produces new goals to guide the policy, implicitly defining an automatic
exploration curriculum. To avoid exploration bottlenecks, which is the main drawback of RIG, the
SKEW-FIT principle introduced in the previous section for the sampling of uniform training goals
was also applied in the context of GCRL representation learning, on top of RIG. SKEW-FIT for visual
inputs [Pong et al., 2019] is, to our knowledge, the most related approach to our work, which can be
seen as an instance of our framework, as we show below.

Beyond generative models based on VAE, other types of encoder-decoder approaches have been
introduced in the context of unsupervised RL, including normalizing flows [Lee et al., 2020a] and
diffusion models [Emami et al., 2023], each offering different trade-offs in terms of expressivity,
stability, and sample quality. In addition, contrastive learning methods [Oord et al., 2018, Srinivas
et al., 2020, Stooke et al., 2021, Lu et al., 2019, Li et al., 2021, Aubret et al., 2023] have been
employed to learn compact and dynamic-aware representations, without relying on reconstruction-
based objectives. Some methods rely on pre-trained generalistic models such as DinoV2 to compute
semantically meaningful features from visual observations [Zhou et al., 2025], although usually
inducing additional computational cost.

In this work, we use the β-VAE framework [Higgins et al., 2017a], for simplicity and to follow the
main trend initiated by RIG Nair et al. [2018]. However, the principle introduced in Section 2.4 could
easily be applied to many other representation learning frameworks. The general framework of online
VAE representation learning in GCRL is depicted in Figure 1. Compared to RIG, it includes a DRO
resampling component, which we discuss in the following.

2.4 Distributionally Robust Optimization

This section introduces the general principles of Distributionally Robust Optimization (DRO) [Delage
and Ye, 2010, Ben-Tal et al., 2013, Duchi et al., 2021], developed in the context of supervised machine
learning to address the problem of distributional shift, which happens when a model is deployed on a
data distribution different from the one used for its training. DRO proposes to anticipate possible shifts
by optimizing model performance against the worst-case distribution within a specified set around
the training distribution. Formally, given a family of possible data distributions Q, DRO considers
the following adversarial risk minimization problem: minθ∈Θ maxq∈Q E(x,y)∼q [ℓ(fθ(x), y)], with ℓ
a specified loss function which compares the prediction fθ(x) with a given ground truth y.

In the absence of a predefined uncertainty setQ, DRO methods strive to define such an uncertainty set
relying on heuristics. This has been the subject of many research papers, see [Rahimian and Mehrotra,
2019] for a broad and comprehensive review of these approaches. In the following, we build on the
formulation proposed in [Michel et al., 2022], which considers Q as the set of distributions whose
KL-divergence w.r.t. the training data distribution p is upper-bounded by a given threshold δ.

4

Likelihood Ratios Reformulation AssumingQ as a set of distributions that are absolutely continu-
ous with respect to p1, the inner maximization problem of DRO can be reformulated using importance
weights r(x, y) such that q = rp [Michel et al., 2022]. In that case, we have:

E(x,y)∼q [ℓ(fθ(x), y)] = E(x,y)∼p [r(x, y)ℓ(fθ(x), y)], which is convenient as training data is as-
sumed to follow p.

Given a training dataset Γ = {(xi, yi)}Ni=1 sampled from p, the optimization problem considered in
[Michel et al., 2022] is then defined as:

min
θ

max
r

1

N

N∑
i=1

r(xi, yi)(ℓ(fθ(xi), yi)− λ log r(xi, yi)) s.t.
1

N

N∑
i=1

r(xi, yi) = 1, (1)

where the constraint ensures that the q function keeps a valid integration property for a distribution
(i.e.,

∫
X ,Y q(x, y)dxdy = 1). The term λ log r is a relaxation of a KL constraint, which ensures that

q does not diverge too far from p2. λ is an hyper-parameter that acts as a regularizer ensuring a
trade-off between generalization to shifts (low λ) and accuracy on training distribution (high λ).

From this formulation, we can see that the risk associated to a shift of test distribution can be mitigated
simply by associating adversarial weights ri := r(xi, yi) to every sample (xi, yi) from the training
dataset, respecting r̄ := 1

N

∑N
i=1 ri = 1. That said, r can be viewed as proportional to a categorical

distribution defined on the components of the training set.

Analytical solution: Given any function h : X → R, the distribution q that maximizes Eq[h(x)] +
λHq, with Hq the Shannon entropy of q, is the maximum entropy distribution q(x) ∝ eh(x)/λ.
Thus, we can easily deduce that the inner maximization problem of (1) has an analytical solution

in ri = N
el(fθ(xi),yi))/λ∑N
j=1 e

l(fθ(xj),yj))/λ
(proof in Appendix C.1). The spread of Q is controlled with a

temperature weight λ, which can be seen as the weight of a Shannon entropy regularizer defined on
discrepancies of q regarding p.

Solution based on likelihood ratios: While appealing, it is well-known that the use of this
analytical solution for r may induce an unstable optimization process in DRO, as weights may vary
abruptly for even very slight variations of the classifier outputs. Moreover, it implies individual
weights, only interlinked via the outputs from the classifier, while one could prefer smoother weight
allocation regarding inputs. This is particularly true for online processes like our RL setting, with
new training samples periodically introduced in the learning buffer.

Following Michel et al. [2022, 2021], we rather focus in our contribution in the next section on
likelihood ratios defined as functions rψ(x, y) parameterized by a neural network fψ , where we set:

rψ(xi, yi) = n
expfψ(xi,yi)∑n
j=1 exp

fψ(xj ,yj)
,∀ mini-batch {(xj , yj)}nj=1, (2)

where fψ is periodically trained on mini-batches of n samples from the training set, using fixed
current θ parameters, according to the unconstrained inner maximization problem of (1) for a given
number of gradient steps. This parameterization enforces the validity constraint at the batch-level,
through batch normalization hard-coded in the formulation of rψ. Though it does not truly respect
the full validity constraint from (1) in the case of small batches, this performs well for commonly
used batch sizes in many classification benchmarks [Michel et al., 2022]. Classifiers obtained through
the alternated min-max optimization of (1) are more robust to distribution shifts than their classical
counterparts. Using shallow or regularized networks fψ is advised, as strong Lipschitz-ness of r(x, y)
allows to treat similar samples similarly in the input space, which guarantees better generalization and
stability of the learning process. These generalization and stability properties lack to non-parametric
versions of DRO, such as a version using the analytical solution for inner-maximization presented
above, which could be viewed as the optimal rψ based on an infinite-capacity neural network fψ . In
the next section, we build on this framework to set a representation learning process for RL, that
encourages the agent to explore.

1In the situation where all distributions in Q are absolutely continuous with respect to p, for all measurable
subset A ⊂ X × Y and all q ∈ Q, q(A) > 0 only if p(A) > 0.

2This can be seen easily, observing that: KL(q||p) =
∫
q(x) log(q(x)/p(x))dx =

∫
p(x)r(x) log r(x)dx).

5

3 Distributionally Robust Auto-Encoding for GCRL

To anticipate distributional shift naturally arising in GCRL with online representation learning, we
first propose the design of a DRO-VAE approach, which was never considered in the literature to the
best of our knowledge3. Then, we include it in our GCRL framework, named DRAG, see Figure 1.

3.1 DRO-VAE

Classic VAE learning aims at minimizing the negative log-likelihood: L = −Ex∼p(x) log pθ,ϕ(x),
with pθ,ϕ(x) the predictive posterior, which can be written as: pθ,ϕ(x) =

∫
p(z)pθ(x|z)dz, where p(z)

is a prior over latent encoding of the data x, commonly taken asN (0, I), and pθ(x|z) is the likelihood
of x knowing z and the parameters of the decoding model θ. Given that this marginalization can
be subject to very high variance, the idea is to use an encoding distribution qϕ(z|x) to estimate this
generation probability [Kingma and Welling, 2013]. For any distribution qϕ such that qϕ(z|x) > 0
for any z with p(z) > 0, we have: pθ,ϕ(x) = Ez∼qϕ(z|x)p(z)pθ(x|z)/qϕ(z|x).
In our instance of the DRO framework, we thus consider the following optimization problem:

min
θ,ϕ

max
ξ∈Ξ
−Ex∼ξ(x) log pθ,ϕ(x), (3)

where Ξ is the uncertainty set of distributions of our DRO-VAE approach. As in standard DRO, we
introduce a weighting function r : X → R+ which aims at modeling ξ

p for any distribution ξ ∈ Ξ,
and respects both validity (i.e., Epr(x) = 1) and shape constraints (i.e., KL(ξ||p) ≤ ϵ, for a given
pre-defined ϵ > 0). Relaxing the KL constraint by introducing a λ hyper-parameter, we can get a
similar optimization problem as in classical DRO. However, as log pθ,ϕ(x) is intractable directly, we
consider a slightly different objective:

minθ,ϕ−Ex∼p r∗(x) log pθ,ϕ(x), (4)

with r∗ = arg max
r:Epr=1

−Ex∼p r(x)L̃θ,ϕ(x)− λEx∼p r(x) log r(x),

where the only difference is that the inner maximization considers an approximation L̃θ,ϕ(x) ≈
log pθ,ϕ(x). L̃θ,ϕ(x) is estimated via Monte-Carlo importance sampling, as L̃θ,ϕ(x) =

log
∑M
j=1 exp(log pθ(x|zj) + log pθ(z

j) − log qϕ(z
j |x)) − log(M) given M samples zj from

qϕ(z
j |x) for any x, which can be computed accurately (without loss of low log values) using

the LogSumExp trick.

This formulation suggests a learning algorithm which alternates between updating the weighting
function r and optimizing the VAE. At each VAE step, the encoder-decoder networks are optimized
considering a weighted version of the classical ELBO. Denoting as r the weighting function adapted
for current VAE parameters via (4), we have:

Ex∼p(x)r(x) log pθ,ϕ(x) ≥ Ex∼p(x)r(x)Ez∼qϕ(z|x) log
p(z)pθ(x|z)
qϕ(z|x)

≈
n∑
i=1

r(xi)

n

 1

m

m∑
j=1

log pθ(xi|zji)−KL(qϕ(z|xi)||p(z))

 , (5)

where this approximated lower-bound LDRO-VAE
θ,ϕ,r ({xi}ni=1) can be estimated at each step via Monte-

Carlo based on mini-batches of n data points (xi)ni=1 from the training buffer and m latent codes
(zji)

m
j=1 for each data point xi. Optimization is performed using the reparameterization trick, where

each latent code zji is obtained from a deterministic transformation of a white noise ϵji ∼ N (0, I).

3.2 DRAG

Plugging our DRO-VAE in our GCRL framework as depicted in Figure 1 thus simply comes down to
weight (of resample) each sample xi taken from the replay buffer with a weight ri.

3This is not surprising, as in classical VAE settings, the aim is to model p with the highest fidelity.

6

As shown in Section 2.4, classical DRO maximization in Equation (4) has a closed-form solution:
ri ∝ e−L̃θ,ϕ(xi)/λ. In Appendix C.2, we show that in our GCRL setting, this reduces to the SKEW-FIT
method, where VAE training samples are resampled based on their pskewed distribution.

We claim that the instability of non-parametric DRO, well-known in the context of supervised ML,
is amplified in our online RL setting, where the sampling distribution p depends on the behavior
of a constantly evolving RL agent. Our DRAG method thus considers the parametric version of the
weighting function, implying a neural weighter fψ : X → R as defined in Equation (2), trained
periodically for a given number of gradient steps on the inner maximization problem of (4).

In our experiments, we use for our weighter fψ a similar CNN architecture as the encoder of the
VAE, but with a greatly smaller learning rate for stability (as it induces a regularizing lag behind
the encoder, and hence enforces a desirable smooth weighting w.r.t. the input space). We also use
a delayed copy of the VAE to avoid instabilities of encoding from the agent’s perspective. The full
pseudo-code of our approach is given in Algorithm 1 in Appendix B.

4 Experiments

Our experiments seek to highlight the impact of DRAG on the efficiency of GCRL from pixel input4.
As depicted in Figure 2, we structure this section around two experimental steps that seek to answer
the two following research questions in isolation:

• Representation Learning strategy: Does DRAG helps overcoming exploration bottlenecks of
RIG-like approaches? (Figure 2a)

• Latent goal sampling strategy: What is the impact of additional intrinsic motivation when using
the representation trained with DRAG? (Figure 2b)

(a) Representation Learning strategy experiments. (b) Latent Goal selection strategy experiments

Figure 2: Our two questions: (a) how does DRAG perform as a representation learning approach? (b)
how does DRAG impact goal sampling approaches from the literature?

In all experiments, the policy πθ(·|z, zg) is trained using the TQC off-policy RL algorithm [Kuznetsov
et al., 2020], conditioned on the latent state and goal. Learning is guided by a sparse reward in
the latent space, defined as Rg(s) = r(zx, zg) = 1 [|zx − zg|2 < δ], where x stands as the pixel
mapping of s and zx its encoding. Experimental details are given in Appendix A.

Evaluation Our main evaluation metric is the success coverage, which measures the control of any
policy π on the entire space of states, defined as:

S(π) =
1

|Ĝ|

∑
g∈Ĝ

E
[
1[∃s ∈ τ, ||s− g||2 < δ|τ ∼ π(.|z0 = qψ(X(s0)), zg = qψ(X(g))), s0 ∼ S0]

]
,

where Ĝ is a test set of goals evenly spread on S, and X(.) stands for the projection of the input
state to its pixel representation. Note that goal achievement is measured in the true state space. The
knowledge of S is only used for evaluation metrics, remaining hidden to the agent.

4The code is available at https://github.com/nicolascastanet/DRAG

7

Environments We consider two kinds of environments, with observations as images of size 82×82.
Additional results on image of size 128× 128 are also provided in appendix D.5. In Pixel continuous
PointMazes, we evaluate the different algorithms over 4 hard-to-explore continuous point mazes.
The action space is a continuous vector (δx, δy) = [0, 1]2. Episodes start at the bottom left corner
of the maze. Reaching the farthest area requires at least 40 steps in any maze. States and goals are
pixel top-down view of the maze with a red dot highlighting the corresponding xy position. Pixel
Reach-Hard-Walls is adapted from the Reach-v2 MetaWorld benchmark [Yu et al., 2021]. We add
4 brick walls that limit the robotic arm’s ability to move freely. At the start of every episode, the
robotic arm is stuck between the walls.

4.1 Representation Learning strategy

In this initial stage of our experiments, we set aside the intrinsic motivation component of GCRL and
adopt the standard practice of sampling goals from the learned prior of the VAE, i.e. zg ∼ N (0, I).
Our objective is to compare DRAG, which trains the VAE on data sampled from a distribution
proportional to rψ(x) pπθ (x), with the classical RIG approach, which samples uniformly from the
replay buffer, i.e. prig(x) ∝ pπθ (x). We also include a variant taken from SKEW-FIT, where the VAE
is trained on samples drawn from a skewed distribution defined as pskewed(x) ∝ pπθ (x)

α, with α < 0
an hyper-parameter that acts analogously to λ from DRAG (with α = −1/λ, see Appendix C.2).

Figure 3: Evolution of the success coverage over PointMazes and Reach-Hard-Walls environments
(6 seeds each) for 4M steps (shaded areas as standard deviation). Bottom: Median, Interquartile
Mean, Mean and Optimality Gap of success coverage across the all runs after 4M steps. We plot
these metrics and confidence intervals using the Rliable library [Agarwal et al., 2021].

Success Coverage evaluation Results in Figure 3 show the evolution of the success coverage
over 4M steps. We see that DRAG significantly outperforms RIG and SKEW-FIT. These results
corroborate that online representation learning with RIG is unable to overcome an exploration
bottleneck. Therefore, a RIG agent can only explore and control a very small part of the environment.
Furthermore, the success coverage of RIG is systematically capped to a certain value. SKEW-FIT is
often able to overcome the exploration bottleneck but suffers from high instability, which indeed
corresponds to the main drawback of non-parametric DRO, highlighted in Michel et al. [2021].
Therefore, SKEW-FIT is unable to reliably maximize the success coverage. On the other hand,
DRAG is more stable due to the use of parametric likelihood ratios and is able to maximize the
success coverage. Additional results and visualizations on these experiments are presented in
Appendix D.1. In particular, they show a greatly better organized latent space with DRAG than with
other approaches. We also show in appendix D.2 that DRAG obtains better latent representations
in terms of the trustworthiness score [Venna and Kaski, 2001], which measures the preservation of

8

the local neighborhood structure in the input space. Metrics regarding computational runtime are
reported in appendix D.6.

4.2 Latent Goal selection strategy

Our second question is on the impact of goal selection on the maximization of success coverage. As
depicted in Figure 2b, we compare several goal selection criteria from the literature, on top of DRAG,
as follows. The selection of each training latent goal is performed as follows. First, we sample a set
of candidate goals Cg = {zi}Ni=1 from the latent prior N (0, I). Then, the selected goal is resampled
among such pre-sampled candidates Cg , using one of the following strategies. Among them, MEGA
and LGE only focus on exploration, GoalGan and SVGG look at the success of control:

• MEGA - Minimum Density selection, from [Pitis et al., 2020]: pmega(zg) ∝ δc(zg), where δc is
a Dirac distribution centered on c, which corresponds to the code from Cg with minimal density
(according to a KDE estimator trained on latent codes from the buffer);

• LGE - Minimum density geometric sampling, from [Gallouédec and Dellandréa, 2023]: plge(zg) =

(1− p)R(zg)−1p, where R(zg) stands for the density rank of zg (according to a trained KDE) among
candidates Cg , and p is the parameter of a geometric distribution.

• GoalGan - Goals of Intermediate Difficulty selection, from [Florensa et al., 2018]: pgoid(zg) =
U(GOIDs), GOIDs = {zg ∈ Cg|Pmin < D(zg) < Pmax}, where D(zg) is a success prediction
model, and thresholds are arbitrarily set as Pmin = 0.3 and Pmax = 0.7, following recommended
values in [Florensa et al., 2018];

• SVGG - Control of goal difficulty, from [Castanet et al., 2022]: pskills(zg) ∝ exp (fα,β(D(zg)),
where D is a success prediction model trained simultaneously from rollouts, fα,β is a beta distribution
controlling the target difficulty, α = β = 2, smoothly emphasize goals such that D(zg) ≈ 1/2.

Figure 4: Impact of goal resampling on DRAG. Evolution of the success coverage for different goal
sampling methods (6 seeds per run). DRAG directly uses goals sampled from the prior (i.e., same
results as in figure 3), DRAG + X includes an additional goal resampling method X, taken among
the four strategies: LGE, MEGA, GOALGAN or SVGG.

Success Coverage evaluation The success coverage results in Figure 4 reveal an interesting pattern:
methods that incorporate diversity-based goal selection on top of DRAG, such as MEGA and LGE,
do not lead to any improvement over the original DRAG approach using goals sampled from the
prior distribution p(z). This suggests a redundancy between these diversity-based criteria and our
core DRO-based representation learning mechanism, which already inherently fosters exploration.
Integrating a GOALGAN-like GOID selection criterion degrades DRAG ’s performance, likely due to
its overly restrictive goal selection strategy, which hinders exploratory behaviors—hard goals sampled
from the prior must be given a chance to be selected for rollouts in order to support exploration.

In contrast, the SVGG resampling distribution - which leverages the control success predictor in a
smoother and more adaptive manner - significantly outperforms direct sampling from the trained prior.
In general, control-based goal selection is ineffective when using classical VAE training in GCRL (as

9

exemplified by RIG), since goals that are not well mastered tend to be poorly represented in the latent
space. However, the representation learned with DRAG enables goal selection to focus entirely on
control improvement, as it ensures a more structured and meaningful latent space. Additional results
on these experiments are presented in Appendix D.3.

4.3 Conclusion

In this work, we introduced DRAG, an algorithm leveraging Distributional Robust Optimization, to
learn representation from pixel observations in the context of intrinsically motivated Goal-Conditioned
agents, in online RL, without requiring any prior knowledge. We showed that by taking advantage of
the DRO principle, we are able to overcome exploration bottlenecks in environments with discontinu-
ous goal spaces, setting us apart from previous methods like RIG and SKEW-FIT.

As future work, DRAG is agnostic to the choice of representation learning algorithm, so we might
consider alternatives such as other reconstruction-based techniques [Van Den Oord et al., 2017,
Razavi et al., 2019, Gregor et al., 2019], or contrastive learning objectives [Oord et al., 2018, Henaff,
2020, He et al., 2020, Zbontar et al., 2021]. Besides, DRAG does not leverage pre-trained visual
representations, though they could greatly improve performance on complex visual observations
[Zhou et al., 2025]. In particular, we may incorporate pre-trained representations from models specific
to RL tasks as VIP [Ma et al., 2022] and R3M [Nair et al., 2022] as well as general-purpose visual
encoders such as CLIP [Radford et al., 2021] or DINO models [Caron et al., 2021, Oquab et al., 2024].
DRAG also opens promising avenues for discovering more principled and effective goal resampling
strategies, made possible by a better anticipation of distributional shifts that previously constrained
the potential of the behavioral policy.

Acknowledgements

This work was granted access to the HPC resources of IDRIS under the allocation AD010615934
and AD011014032R2 made by GENCI. We acknowledge funding from the European Commission’s
Horizon Europe Framework Programme under grant agreement No 101070381 (PILLAR-robots
project).

10

References
R. Agarwal, M. Schwarzer, P. S. Castro, A. Courville, and M. G. Bellemare. Deep reinforcement

learning at the edge of the statistical precipice. Advances in Neural Information Processing Systems,
2021.

A. Aubret, L. Matignon, and S. Hassas. DisTop: Discovering a topological representation to learn
diverse and rewarding skills. IEEE Transactions on Cognitive and Developmental Systems, 15(4):
1905–1915, 2023.

A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen. Robust solutions of
optimization problems affected by uncertain probabilities. Management Science, 59(2):341–357,
2013.

V. Campos, A. Trott, C. Xiong, R. Socher, X. G. i Nieto, and J. Torres. Explore, discover and learn:
Unsupervised discovery of state-covering skills, 2020. URL https://arxiv.org/abs/2002.
03647.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
properties in self-supervised vision transformers, 2021. URL https://arxiv.org/abs/2104.
14294.

N. Castanet, S. Lamprier, and O. Sigaud. Stein variational goal generation for adaptive exploration in
multi-goal reinforcement learning. arXiv preprint arXiv:2206.06719, 2022.

C. Colas, P. Fournier, O. Sigaud, and P.-Y. Oudeyer. CURIOUS: intrinsically motivated multi-task
multi-goal reinforcement learning. In ICML, 2018.

C. Colas, P. Fournier, M. Chetouani, O. Sigaud, and P.-Y. Oudeyer. CURIOUS: intrinsically motivated
modular multi-goal reinforcement learning. In International conference on machine learning,
pages 1331–1340. PMLR, 2019.

E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty with application
to data-driven problems. Operations research, 58(3):595–612, 2010.

J. C. Duchi, P. W. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized
empirical likelihood approach. Mathematics of Operations Research, 46(3):946–969, 2021.

B. Emami, D. Ghosh, A. Zeng, and S. Levine. Goal-conditioned diffusion policies for robotic
manipulation. In Conference on Robot Learning (CoRL), 2023.

C. Florensa, D. Held, X. Geng, and P. Abbeel. Automatic goal generation for reinforcement learning
agents. In International conference on machine learning, pages 1515–1528. PMLR, 2018.

Q. Gallouédec and E. Dellandréa. Cell-free latent go-explore. In International Conference on
Machine Learning, pages 10571–10586. PMLR, 2023.

K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber. Temporal difference variational
auto-encoder, 2019. URL https://arxiv.org/abs/1806.03107.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi. Dream to control: Learning behaviors by latent
imagination. arXiv preprint arXiv:1912.01603, 2019a.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and J. Davidson. Learning latent
dynamics for planning from pixels. In International conference on machine learning, pages
2555–2565. PMLR, 2019b.

K. Hartikainen, X. Geng, T. Haarnoja, and S. Levine. Dynamical distance learning for semi-supervised
and unsupervised skill discovery, 2020. URL https://arxiv.org/abs/1907.08225.

E. Hazan, S. Kakade, K. Singh, and A. Van Soest. Provably efficient maximum entropy exploration.
In International Conference on Machine Learning, pages 2681–2691. PMLR, 2019.

K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
representation learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9729–9738, 2020.

11

https://arxiv.org/abs/2002.03647
https://arxiv.org/abs/2002.03647
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/1806.03107
https://arxiv.org/abs/1907.08225

O. Henaff. Data-efficient image recognition with contrastive predictive coding. In International
conference on machine learning, pages 4182–4192. PMLR, 2020.

I. Higgins, L. Matthey, A. Pal, C. P. Burgess, X. Glorot, M. M. Botvinick, S. Mohamed, and
A. Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework.
ICLR (Poster), 3, 2017a.

I. Higgins, A. Pal, A. Rusu, L. Matthey, C. Burgess, A. Pritzel, M. Botvinick, C. Blundell, and
A. Lerchner. Darla: Improving zero-shot transfer in reinforcement learning. In International
Conference on Machine Learning, pages 1480–1490. PMLR, 2017b.

S. Kim, K. Lee, and J. Choi. Variational curriculum reinforcement learning for unsupervised discovery
of skills. arXiv preprint arXiv:2310.19424, 2023.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

A. Kuznetsov, P. Shvechikov, A. Grishin, and D. Vetrov. Controlling overestimation bias with
truncated mixture of continuous distributional quantile critics, 2020. URL https://arxiv.org/
abs/2005.04269.

M. Laskin, A. Srinivas, and P. Abbeel. CURL: Contrastive unsupervised representations for rein-
forcement learning. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 5639–5650. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
laskin20a.html.

A. X. Lee, B. Eysenbach, E. Parisotto, and S. Levine. Stochastic latent actor-critic: Deep reinforce-
ment learning with a latent variable model. In Advances in Neural Information Processing Systems
(NeurIPS), 2020a.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model, 2020b. URL https://arxiv.org/abs/1907.00953.

S. Li, L. Zheng, J. Wang, and C. Zhang. Learning subgoal representations with slow dynamics. In
International Conference on Learning Representations, 2021.

X. Lu, S. Tiomkin, and P. Abbeel. Predictive coding for boosting deep reinforcement learning with
sparse rewards. arXiv preprint arXiv:1912.13414, 2019.

Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang. VIP: Towards universal
visual reward and representation via value-implicit pre-training. arXiv preprint arXiv:2210.00030,
2022.

R. Mendonca, O. Rybkin, K. Daniilidis, D. Hafner, and D. Pathak. Discovering and achieving goals
via world models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 24379–24391. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf.

R. Mendonca, S. Bahl, and D. Pathak. Structured world models from human videos, 2023. URL
https://arxiv.org/abs/2308.10901.

P. Michel, T. Hashimoto, and G. Neubig. Modeling the second player in distributionally robust
optimization, 2021.

P. Michel, T. Hashimoto, and G. Neubig. Distributionally robust models with parametric likelihood
ratios, 2022.

A. Nair, V. Pong, M. Dalal, S. Bahl, S. Lin, and S. Levine. Visual reinforcement learning with
imagined goals. arXiv preprint arXiv:1807.04742, 2018.

S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta. R3M: A universal visual representation for
robot manipulation, 2022. URL https://arxiv.org/abs/2203.12601.

12

https://arxiv.org/abs/2005.04269
https://arxiv.org/abs/2005.04269
https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html
https://arxiv.org/abs/1907.00953
https://proceedings.neurips.cc/paper_files/paper/2021/file/cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/cc4af25fa9d2d5c953496579b75f6f6c-Paper.pdf
https://arxiv.org/abs/2308.10901
https://arxiv.org/abs/2203.12601

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding.
arXiv preprint arXiv:1807.03748, 2018.

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li,
I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou, J. Mairal, P. Labatut, A. Joulin,
and P. Bojanowski. Dinov2: Learning robust visual features without supervision, 2024. URL
https://arxiv.org/abs/2304.07193.

D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell. Curiosity-driven exploration by self-supervised
prediction. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 2778–2787.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pathak17a.html.

N. Perrin-Gilbert. xpag: a modular reinforcement learning library with jax agents, 2022. URL
https://github.com/perrin-isir/xpag.

S. Pitis, H. Chan, S. Zhao, B. Stadie, and J. Ba. Maximum entropy gain exploration for long horizon
multi-goal reinforcement learning. In H. D. III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 7750–7761. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/
v119/pitis20a.html.

M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker, G. Powell, J. Schneider, J. To-
bin, M. Chociej, P. Welinder, et al. Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv preprint arXiv:1802.09464, 2018.

V. H. Pong, M. Dalal, S. Lin, A. Nair, S. Bahl, and S. Levine. Skew-fit: State-covering self-supervised
reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision, 2021. URL https://arxiv.org/abs/2103.00020.

H. Rahimian and S. Mehrotra. Distributionally robust optimization: A review. arXiv preprint
arXiv:1908.05659, 2019.

A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine. Learning
complex dexterous manipulation with deep reinforcement learning and demonstrations, 2018. URL
https://arxiv.org/abs/1709.10087.

A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high-fidelity images with vq-vae-2.
Advances in neural information processing systems, 32, 2019.

Z. Ren, K. Dong, Y. Zhou, Q. Liu, and J. Peng. Exploration via hindsight goal generation.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
57db7d68d5335b52d5153a4e01adaa6b-Paper.pdf.

A. Srinivas, M. Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for reinforce-
ment learning. In International Conference on Machine Learning (ICML), 2020.

A. Stooke, K. Lee, P. Abbeel, and M. Laskin. Decoupling representation learning from reinforcement
learning. In International conference on machine learning, pages 9870–9879. PMLR, 2021.

S. Sukhbaatar, Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus. Intrinsic motivation and
automatic curricula via asymmetric self-play. arXiv preprint arXiv:1703.05407, 2017.

Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, T. Lillicrap, and M. Riedmiller. Deepmind control suite, 2018. URL
https://arxiv.org/abs/1801.00690.

13

https://arxiv.org/abs/2304.07193
https://proceedings.mlr.press/v70/pathak17a.html
https://github.com/perrin-isir/xpag
https://proceedings.mlr.press/v119/pitis20a.html
https://proceedings.mlr.press/v119/pitis20a.html
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/1709.10087
https://proceedings.neurips.cc/paper_files/paper/2019/file/57db7d68d5335b52d5153a4e01adaa6b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/57db7d68d5335b52d5153a4e01adaa6b-Paper.pdf
https://arxiv.org/abs/1801.00690

A. Touati and Y. Ollivier. Learning one representation to optimize all rewards. Advances in Neural
Information Processing Systems, 34:13–23, 2021.

A. Trott, S. Zheng, C. Xiong, and R. Socher. Keeping your distance: Solving sparse reward tasks
using self-balancing shaped rewards, 2019. URL https://arxiv.org/abs/1911.01417.

A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

J. Venna and S. Kaski. Neighborhood preservation in nonlinear projection methods: An experimental
study. In International conference on artificial neural networks, pages 485–491. Springer, 2001.

D. Warde-Farley, T. Van de Wiele, T. Kulkarni, C. Ionescu, S. Hansen, and V. Mnih. Unsupervised
control through non-parametric discriminative rewards. arXiv preprint arXiv:1811.11359, 2018.

D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Reinforcement learning with prototypical representa-
tions. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 11920–11931.
PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/yarats21a.html.

T. Yu, D. Quillen, Z. He, R. Julian, A. Narayan, H. Shively, A. Bellathur, K. Hausman, C. Finn,
and S. Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning, 2021. URL https://arxiv.org/abs/1910.10897.

J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. Barlow twins: Self-supervised learning via
redundancy reduction. In International conference on machine learning, pages 12310–12320.
PMLR, 2021.

Y. Zhang, P. Abbeel, and L. Pinto. Automatic curriculum learning through value disagreement. arXiv
preprint arXiv:2006.09641, 2020. doi: 10.48550/ARXIV.2006.09641. URL https://arxiv.
org/abs/2006.09641.

G. Zhou, H. Pan, Y. LeCun, and L. Pinto. Dino-wm: World models on pre-trained visual features
enable zero-shot planning, 2025. URL https://arxiv.org/abs/2411.04983.

14

https://arxiv.org/abs/1911.01417
https://proceedings.mlr.press/v139/yarats21a.html
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/2006.09641
https://arxiv.org/abs/2006.09641
https://arxiv.org/abs/2411.04983

A Experimental details

A.1 Environments

In both environments below, we transform 2D states and goals into 82× 82 pixel observations.

Pixel continuous point maze: This continuous 2D maze environment is taken from [Trott et al.,
2019]. The action space is a continuous vector (δx, δy) = [0, 1]2. Original states and goals are
2D (x, y) positions in the maze and success is achieved if the L2 distance between states and goal
coordinates is below δ = 0.15 (only used during the evaluation of success coverage), while the
overall size of the mazes is 6× 6. The episode rollout horizon is T = 50 steps. Examples of pixel
observation goals are shown in Figure 5.

Figure 5: Example of decoded pixel goals in maze environment: we sample latent goals from the
latent prior z ∼ p(z) = N (0, I) and plot the corresponding decoded pixel goals pθ(x|z). Images
were obtained using the decoder trained with DRAG.

Pixel Reach hard walls: This environment is adapted from the Reach-v2 MetaWorld benchmark
[Yu et al., 2021] where the gripper is initially stuck between four walls and has to navigate carefully
between them to reach the goals. The original observations are 49-dimensional vectors containing the
gripper position as well as other environment variables, the actions and the goals are 3-dimensional
corresponding to (x, y, z) coordinates. Success is achieved if the L2 distance between states and goal

15

coordinates is less than δ = 0.1 (only used during the evaluation of success coverage). The episode
rollout horizon is T = 300 steps.

We transform states and goals into pixels observation using the Mujoco rendering function with the
following camera configuration:

DEFAULT_CAMERA_CONFIG = {
"distance": 2.,
"azimuth": 270,
"elevation": -30.0,
"lookat": np.array([0, 0.5, 0]),

}

The walls configuration is obtained with the addition of the following bodies into the "worldbody" of
the xml file of the original environment:

<body name="wall_1" pos="0.15 0.55 .2">
<geom material="wall_brick" type="box" size=".005 .24 .2" rgba="0 1 0 1"/>
<geom class="wall_col" type="box" size=".005 .24 .2" rgba="0 1 0 1"/>

</body>

<body name="wall_2" pos="-0.15 0.55 .2">
<geom material="wall_brick" type="box" size=".005 .24 .2" rgba="0 1 0 1"/>
<geom class="wall_col" type="box" size=".005 .24 .2" rgba="0 1 0 1"/>

</body>

<body name="wall_3" pos="0.0 0.65 .2">
<geom material="wall_brick" type="box" size=".4 .005 .2" rgba="0 1 0 1"/>
<geom class="wall_col" type="box" size=".4 .005 .2" rgba="0 1 0 1"/>

</body>

<body name="wall_4" pos="0.0 0.35 .2">
<geom material="wall_brick" type="box" size=".4 .005 .2" rgba="0 1 0 1"/>
<geom class="wall_col" type="box" size=".4 .005 .2" rgba="0 1 0 1"/>

</body>

Examples of pixel observation goals are shown in Figure 6.

A.2 β-VAE

A.2.1 Training schedule

During the first 300k steps of the agent, we train the VAE every 5k agent steps for 50 epochs of 10
optimization steps (on a dataset of 1000 inputs uniformly sampled from the buffer, divided in 10
minibatches of 100 examples). Afterward, we train it every 10k agent steps.

The following other schedules have been experimented, each getting worse average results for any
algorithm:

1. During the first 300k steps of the agent, train the VAE every 10k agent steps. Afterward,
train it every 20k steps.

2. During the first 100k steps of the agent, train the VAE every 5k agent steps. Afterward, train
it every 10k steps.

3. During the first 100k steps of the agent, train the VAE every 2k agent steps. Afterward, train
it every 5k steps.

A.2.2 Encoder smooth update

To enhance the stability of the agent’s input representations, actions are selected based on a smoothly
updated version of the VAE encoder, denoted by parameters ϕ̂. This encoder is refreshed after each
VAE training phase and used to produce latent states:

at = πθ(.|zt, zg), zt = qϕ̂(xt)

16

Figure 6: Example of decoded pixel goals in fetch environment: we sample latent goals from the
latent prior z ∼ p(z) = N (0, I) and plot the corresponding decoded pixel goals pθ(x|z). Images
were obtained using the decoder trained with DRAG.

Analogous to the use of a target network for Q-function updates in RL, the delayed encoder qϕ̂ is
updated using an exponential moving average (EMA) of the primary encoder’s weights qϕ:

ϕ̂← τ ϕ̂+ (1− τ)ϕ (6)

Figure 7 illustrates how the smoothing coefficient τ influences success coverage with DRAG. We
observe that τ = 0.05 provides a good balance, yielding stable performance. In contrast, setting
τ = 1 (no smoothing) leads to less stability, while τ = 0.01 results in updates that are too slow. This
value was observed to provide the best average results for other approaches (i.e., RIG and SKEW-FIT).
We use it in any experiment reported in other sections of this paper.

A.3 Methods Hyper-parameters

The hyper-parameters of our DRAG algorithm are given in Table 2. Notations refer to those used
in the main paper or the pseudo-code given in Algorithm 1. Hyper-parameters that are common to
any approach were set to provide best average results for RIG. RIG, SKEW-FIT and DRAG share
the same values for these hyper-parameters. The skewing temperature for SKEW-FIT, which is not
reported in the tables below, is set to α = −1. This value was tuned following a grid search for
α ∈ [−100,−50,−10,−5,−1,−0.5,−0.1].

17

Figure 7: Impact of the exponential moving average smoothing coefficient (τ in Equation (6))
experiment on success coverage (6 seeds per run).

Table 1: Hyper-parameters used for the VAE used in the experiments (same for every approach, top)
and values used specifically in DRAG, for the specification of our DRO weighter (bottom).

VAE Hyper-Parameters Symbol Value

β-VAE
Latent dim d [Maze env :2, Fetch: 3]
Prior distribution p(z) N (0, Id)
Regularization factor β 2
Learning rate ϵ 1e-3
CNN channels (3, 32, 64, 128, 256)
Dense layers (512,128)
Activation Function ReLu
CNN Kernel size 4
Training batch size n 100
Optimization interval (in agent steps) freqOpt 10e3
Nb of training steps nbEpochs 50
Size of training buffer |R| 1e6
Number of samples per epoch N 1e3

DRO Weighter rψ
Learning rate ϵ 2e-6
Convolutional layers channels (3, 32, 64, 128, 256)
Dense layers (512,128)
Activation Function ReLu
Temperature λ 0.01

18

Table 2: Off-policy RL algorithm TQC parameters
TQC Hyper-Parameters Value

Batch size for replay buffer 2000
Discount factor γ 0.98
Action L2 regularization 0.1
(Gaussian) Action noise max std 0.1
Warm up steps before training 2500
Actor learning rate 1e-3
Critic learning rate 1e-3
Target network soft update rate 0.05
Actor & critic networks activation ReLu
Actor & critic hidden layers sizes 5123

Replay buffer size (|B|) 1e6

Table 3: goal criterion hyper-parameters
Goal criterion Hyper-parameters Symbol Value

Kernel density Estimation for MEGA and LGE
RBF kernel bandwidth σ 0.1
KDE optimization interval (in agent steps) 1
Nb of state samples for KDE optim. 10.000
Nb of sampled candidate goals from p(z) 100

Agent’s skill model Dϕ for SVGG and GOALGAN
Hidden layers sizes (64, 64)
Gradient steps per optimization 100
Learning rate 1e-3
Training batch size 100
Training history length (episodes) 500
Optimization interval (in agent steps) 5000
Nb of training steps 100
Activations Relu

A.4 Compute ressources & code assets

This work was performed with 35,000 GPU hours on NVIDIA V100 GPUs (including main experi-
ments and ablations).

Algorithms were implemented using the GCRL library XPAG [Perrin-Gilbert, 2022], designed for
intrinsically motivated RL agents.

B DRAG algorithm

Algorithm 1 reports the full pseudo-code of our DRAG approach. RIG and SKEW-FIT follow the same
procedure, without the DRO weighter update loop (line 9 to 12), and replacing LVAE-DRO

θ,ϕ,rψ
({xi}ni=1) in

line 15 by:

• RIG (classical ELBO):

LVAE
θ,ϕ({xi}ni=1) =

n

N

n∑
i=1

 1

m

m∑
j=1

log pθ(xi|zji)−KL(qϕ(z|xi)||p(z))


19

• SKEW-FIT:

LVAE-SkewFit
θ,ϕ ({xi}ni=1) =

n

N

n∑
i=1

pskewed(xi)

 1

m

m∑
j=1

log pθ(xi|zji)−KL(qϕ(z|xi)||p(z))

 ,

where pskewed(xi) is the skewed distribution of SKEW-FIT, that uses an estimate L̃θ,ϕ(xi) of the
generative posterior of xi from the current VAE, obtained from M codes sampled from qϕ(z|xi).
More details about pskewed are given in section C.2. For comparison, as a recall, for DRAG we take:

• DRAG:

LVAE-DRO
θ,ϕ,ψ ({xi}ni=1) =

1

N

n∑
i=1

rψ(xi)

 1

m

m∑
j=1

log pθ(xi|zji)−KL(qϕ(z|xi)||p(z))

 ,

where the weighting function rψ is defined, following equation 2, as: rψ(xi) = n expfψ(xi)∑n
j=1 expfψ(xj)

, for

any minibatch {xi}ni=1.

Algorithm 1 Distributionally Robust Exploration

1: Input: a GCP πθ, a VAE: encoder qϕ(z|x) and smoothly updated version qϕ̂(z|x), decoder
pϕ(x|z), latent prior p(z), DRO Neural Weighter rψ, buffers of transitions B, reached statesR,
train size N , batch-size n, number m of sampled noises for each VAE training input, number M
of Monte Carlo samples used to estimate L̃θ,ϕ for each input image, temperature λ, number of
optimization epochs nEpochs, frequence of VAE and policy optimization freqOpt.

2: while not stop do
3: ▷ Data Collection (during freqOptim steps): Perform rollouts of πθ(.|zt, zg) in the latent

space, conditioned on goals sampled from prior zg ∼ p(z) or the buffer (with possible
resampling depending on the goal selection strategy), and latent state zt = qϕ̂(xt), with xt a
pixel observation;

4: Store transitions in B, visited states inR;
5:
6: ▷ Learning Representations with VAE
7: for nEpochs epochs do
8: Sample a train set of N states Γ fromR
9: for every mini-batch {xi}ni=1 from Γ do

10: ▷ DRO Weighter Update
11: Update weighter by one step of Adam optimizer, for the maximization problem

from (4) with temperature λ, using L̃θ,ϕ estimated from M samples from qϕ(z|xi) for
each xi.

12: end for
13: for every mini-batch {xi}ni=1 from Γ do
14: ▷ Weighted VAE Update
15: Update encoder qϕ and decoder pϕ by one step of Adam optimizer on

−LVAE-DRO
θ,ϕ,rψ

({xi}ni=1), as defined in (5), with m sampling noises (ϵji)
m
j=1 for each xi.

16: Perform smooth update of ϕ̂ as a function of ϕ according to equation (6).
17: end for
18: end for
19:
20: ▷ Agent Improvement
21: Improve agent with any Off-Policy RL algorithm (e.g., TQC, DDPG, SAC...) using

transitions from B;
22: end while

C Skew-Fit is a non-parametric DRO

In this section we show that SKEW-FIT is a special case of the non-parametric version of DRO.

20

C.1 Non-parametric solution of DRO

We start from the inner maximization problem stated in (1), for a given fixed θ:

max
r

1

N

N∑
i=1

r(xi, yi)l(fθ(xi), yi))− λ
1

N

N∑
i=1

r(xi, yi) log r(xi, yi) (7)

st
1

N

N∑
i=1

r(xi, yi) = 1.

From this formulation, we can see that the risk associated to a shift of test distribution can be mitigated
by simply associating adversarial weights ri := r(xi, yi) to every sample (xi, yi) from the training
dataset, respecting r̄ := 1

N

∑N
i=1 ri = 1. This can be viewed as an infinite capacity function r, able

to over-specify on every training data point. Equivalently to (7), we thus have:

max
(ri)Ni=1

1

N

N∑
i=1

rili − λ
1

N

N∑
i=1

ri log ri (8)

st
1

N

N∑
i=1

ri = 1,

where li := l(fθ(xi), yi)). The Lagrangian corresponding to this constrained maximization is given
by:

L =
1

N

N∑
i=1

rili − λ
1

N

N∑
i=1

ri log ri − γ(
1

N

N∑
i=1

ri − 1) (9)

where γ is an unconstrained Lagrangian coefficient.

Following the Karush-Kuhn-Tucker conditions applied to the derivative of the Lagrangian function L
of this problem in ri for any given i ∈ [[1, N]], we obtain:

∂L
∂ri

= 0⇔ li − λ(log ri − 1)− γ = 0⇔ ri = e
li−γ
λ −1 = ze

li
λ (10)

with z := e
−γ
λ −1.

The KKT condition on the derivative in γ gives: ∂L∂γ = 0⇔ 1
N

∑N
i=1 ri = 1. Combining these two

results, we thus obtain:

1

N

N∑
i=1

ri =
1

N

N∑
i=1

ze
li
λ = 1⇔ z =

N∑N
i=1 e

li
λ

Which again gives, reinjecting this result in Equation (10):

ri = N
e
li
λ∑N

j=1 e
lj
λ

This leads to the form of a Boltzmann distribution, which proves the result.

C.2 Application to GCRL with VAE and Relation to Skew-Fit

SKEW-FIT resamples training data points from a batch {xi}ni=1 using a skewed distribution defined,
for any sample x in that batch, as:

pskewed(x) ≜
1

Zα
wt,α(x), (11)

Zα =

n∑
i=1

wt,α (xi) ,

21

where wt,α is an importance sampling coefficient given as:

wt,α(x) := pθ,ϕ(x)
α, α < 0, (12)

with pθ,ϕ(x) the generative distribution of samples x given current parameters (θ, ϕ).

Applied to a generative model defined as a VAE, we have:

pθ,ϕ(x) = Ez∼qϕ(z|x)
p(z)pθ(x|z)
qϕ(z|x)

dz,

where p(z) is the prior over latent encodings of the data x, pθ(x|z) is the likelihood of x know-
ing z and qϕ(z|x) the encoding distribution of data points. As stated in Section 3.1, this can
be estimated on a set of m samples for each data point using the log-approximator: L̃θ,ϕ(x) =

log
∑M
j=1 exp(log pθ(x|zj) + log pθ(z

j)− log qϕ(z
j |x))− log(M).

Thus, this is equivalent as associating any i from the data batch with a weight ri defined as:

ri := pskewed(xi) =
1

Zα
eαL̃θ,ϕ(xi), (13)

Zα =

n∑
j=1

eαL̃θ,ϕ(xj),

for any α < 0. Setting α = − 1
λ , we get pskewed(xi) ∝ e−L̃θ,ϕ(xi)/λ, for any temperature λ > 0.

Reusing the result from Section C.1, this is fully equivalent to the analytical closed-form solution of
DRO when applied to−L̃θ,ϕ(xi) as we use in our DRO-VAE approach. Using pskewed with α = − 1

λ
for weighting training points of a VAE thus exactly corresponds to the non-parametric version our
DRAG algorithm.

D Aditional results

D.1 Visualization of Learned Latent Representations

Figure 8: Learned Representation of DRAG after 1 million training steps in Maze 0. Left: every
colored dot corresponds to the pixel observation x of its specific xy coordinates. Middle: Every
pixel observation x on the left is processed by the VAE encoder to get the learned latent posterior
distribution qϕ(z|x) = N (z|µϕ(x), σϕ(x)). Colored ellipsoids correspond to these 2-dimensional
Gaussian distributions. Right: we sample latent goals from the latent prior z ∼ p(z) = N (0, I) and
we decode the corresponding pixel observations pθ(x|z) (red dots correspond to the xy coordinates
of the pixel observations).

Figure 8 presents our methodology to study latent representation learning. We uniformly sample data
points in the maze and process them iteratively from 2D points to pixels, then from pixels to the latent
code of the VAE. Using the same color for the source data points and the latent code, this process
allows us to visualize the 2D latent representation of the VAE in the environment (Figure 8 left and

22

middle). In addition, to get a sense of what part of the environment is encoded in the latent prior,
we sample latent codes from p(z) and plot the 2D coordinates of the decoded observations using
pθ(x|z), which corresponds to the red dots. The blue distribution corresponds to a KDE estimate
fitted to the red dots.

Figure 9: First row of each method: evolution of learned representations. Second row of each method:
evolution of the intrinsic goal distribution when sampling from the latent prior p(z) = N(0, 1). Third
row of each method: evolution of the success coverage. (See Figure 8 for details on how we obtain
these plots).

23

Figure 10: Evolution of the prior distribution in the Fetch environment for the DRAG, SKEW-FIT, and
RIG methods: We sample latent goals from the latent prior z ∼ p(z) = N (0, I) and we decode the
corresponding pixel observations pθ(x|z) (black dots correspond to the 3D xyz coordinates of the
pixel observations).

In order to gain a deeper insight into the performance of RIG, SKEW-FIT, and DRAG, we show in
Figure 9 the parallel evolution of the prior sampling z ∼ N (0, I), and the corresponding learned 2D
representations for the maze environment.

One can clearly see that RIG is stuck in an exploration bottleneck (which in this case corresponds to
the first U-turn of the maze): the VAE cannot learn meaningful representations of poorly explored
areas (red part of the maze in Figure 9). As a consequence, the prior distribution p(z) only encodes a
small subspace of the environment. On the other hand, SKEW-FIT and DRAG manage to escape these
bottlenecks and incorporate an organized representation of nearly every area of the environment, with
the difference that DRAG is more stable and therefore reliably learns well organized representations.

In order to quantify the evolution of latent representations to highlight the differences in terms
of latent distribution dynamics between RIG, SKEW-FIT, and DRAG, we introduce the following
measurement:

∀t = 1...T, dt(x) ≜
1

n

n∑
i=1

∥ µϕt(xi)− µϕt−1(xi) ∥, (14)

where x = {xi}ni=1 is a batch of pixel observations uniformly sampled from the environment state
space using prior knowledge (only for evaluation purposes). With this metric, we measure the
evolution of the embedding of every point xi, using the movement of the expectation µϕ(xi) from the

24

latent posterior distribution qϕ(z|xi) = N (z|µϕ(xi), σϕ(xi)), throughout updates of VAE parameters
ϕ.

Figure 11: Evolution of the embedding over 4 different PointMazes (6 seeds each) for 4M steps
(shaded areas correspond to standard deviation). Every point corresponds to the shift of representation
between step t and step t + 1 of VAE training: 1

n

∑n
i=1 ∥ µϕt+1(xi) − µϕt(xi) ∥. For every

pixel observation xi and timestep t, we have qϕt(z|xi) = N (z|µϕt(xi), σϕt(xi)). We compute
representation shifts between t and t+ 1 every 40, 000 training steps.

Figure 11 shows that the embedding movement d of DRAG is higher and less variable across seeds,
indicating that the learned representations evolve more consistently. Meanwhile, the VAE training
process of SKEW-FIT is prone to variability, and the evolution of the embedding in RIG is close to
null after a certain number of training steps.

D.2 Representation quality

We assess the quality of the obtained representations in term of the trustworthiness score [Venna and
Kaski, 2001], which measures to what extent the local neighborhood structure in the input space is
preserved in the latent space. Higher trustworthiness indicates better preservation of task-relevant
information across the encoding. We computed this trustworthiness metric (with 5 nearest neighbors)
using a batch of 1K uniformly sampled observations from the valid state space, identical to the batch
used for success coverage. Our experiments show that DRAG consistently improves this score over
baseline encoders across environments.

Table 4: Mean trustworthiness of obtained representations across environments after 4M training
steps.

Methods Trustworthiness [Venna & Kaski, 2001]
DRAG 98.7%
SKEWFIT 93.3%
RIG 88.5%

D.3 Ablations

We study the impact of the main hyper-parameters, namely λ and M .

D.3.1 Impact of λ

Figure 12 illustrates the effect of varying the regularization parameter λ on the performance of DRAG.
As discussed in the main paper, lower values of λ bias the training distribution to emphasize samples
from less covered regions of the state space. Conversely, higher values of λ lead to flatter weighting
distributions across batches, eventually resembling the behavior of a standard VAE (as used in RIG)
when λ becomes very large. In fact, setting λ =∞ makes DRAG behave identically to RIG.

The reported results show that DRAG achieves the highest success coverage for λ values between 10
and 100, with a slight edge at λ = 100. This range represents a good trade-off: too small a λ can
lead to unstable training, where the model places excessive weight on underrepresented samples;
too large a λ leads to overly strong regularization toward the marginal distribution p(x), limiting
generalization, and hence exploration.

25

Figure 12: Impact of the regularization parameter λ on the performances of DRAG (6 seeds per run).
Results obtained with goals directly selected from the prior (as in Section 4.1). Note that λ = ∞
comes down to the RIG approach, as weights converge to a constant (over-regularization).

For comparison, SKEW-FIT performs best at α = −1, which corresponds to λ = 1 in the DRO
(non-parametric) formulation (see Section C for theoretical equivalences). This much lower value
reflects a key difference: SKEW-FIT relies on pointwise estimations of the generative posterior, while
DRAG uses smoothed estimates provided by a neural weighting function. As a result, SKEW-FIT
requires less aggressive skewing to avoid instability.

D.3.2 Impact of M (number of samples for the estimation of L̃θ,ϕ)

Figure 13: Impact of the number of samples M , used for the estimation of L̃θ,ϕ in DRAG and
SKEW-FIT (6 seeds per run). Results obtained with goals directly selected from the prior (as in
section 4.1).

Both SKEW-FIT and DRAG need to estimate the generative posterior of inputs in order to build
their VAE weighting schemes. This estimator, denoted in the paper as L̃θ,ϕ(x) for any input x, is
obtained via Monte Carlo samples of codes from qϕ(z|x). The number M of samples used impacts
the variance of this estimator. The higher M is, the more accurate the estimator is, at the cost of
an increase of computational resources (M samples means M likelihood computations through the
decoder). This section inspects the impact of M on the overall performance. Figure 13 presents the
results for SKEW-FIT and DRAG using M = 1 (as in the rest of the paper) and M = 10. While one
might expect more accurate estimates of L̃θ,ϕ(x) with M = 10, this improvement does not translate
into better success coverage for the agent. According to the results, the value of M does not appear
to significantly impact the agent’s performance for either algorithm. In fact, on average, increasing
M even slightly decreases success coverage.

26

This is a noteworthy finding, as it suggests that the improved stability of DRAG compared to SKEW-
FIT is not due to more accurate pointwise likelihood estimation (which could benefit DRAG through
the inertia introduced by using a parametric predictor), but rather due to greater spatial smoothness.
This smoothness arises from the L-Lipschitz continuity of the neural network: inputs located in the
same region of the visual space are assigned similar weights by DRAG’s neural weighting function.
In contrast, SKEW-FIT may overemphasize specific inputs, with abrupt weighting shifts, particularly
when those inputs are poorly represented in the latent space, despite being located in familiar visual
regions.

D.4 RIG+Goal selection criterion

Figure 14: Impact of goal resampling with classical (unbiased) VAE training, as in RIG. Evolution of
the success coverage for different goal sampling methods (6 seeds per run). RIG directly uses goals
sampled from the prior (i.e., same results as RIG in figure 3), RIG + X includes an additional goal
resampling method X, taken among the four strategies: LGE, MEGA, GOALGAN or SVGG. This
figure presents the same experiment as in Figure 4, but using a standard VAE instead of our proposed
DRO-VAE.

Figure 14 presents the results of combining the RIG representation learning strategy (i.e. without
biasing VAE training) with a goal selection criterion, following the same experimental setup as in
Figure 2b. These results highlight two key insights.

First, the results show that the exploration limitations inherent to the RIG strategy cannot be effectively
addressed by improved goal selection alone. Even the best-performing combination (RIG + LGE)
achieves less than 60% success coverage on average across environments, while DRAG alone reaches
80%. This highlights the critical role of DRAG’s representation learning capability in overcoming
exploration bottlenecks in complex environments. When relying solely on the latent space of a
standard VAE, sampling —even when guided by intrinsic motivation— remains limited to regions
already well-represented in the training data. The model cannot generate goals in poorly explored
areas, as no latent codes exist that decode to such states.

Second, we observe a reversal in the relative effectiveness of goal selection criteria compared to
the DRAG experiments in Figure 2b. In the case of RIG, both LGE and MEGA outperform SVGG,
which contrasts with the pattern observed with DRAG. This can be explained by the fact that RIG
is inherently limited in its ability to explore, and thus benefits more from goal selection strategies
that explicitly promote exploration. In contrast, strategies based on intermediate difficulty, such as
SVGG, are less effective when the agent is confined to a limited region of the environment. Latent
codes associated with intermediate difficulty typically decode to well-known states, while those
corresponding to poorly explored areas often lead to posterior distributions with higher variance. As
a result, the latter are more likely to be classified as too difficult and filtered out. Therefore, these
strategies tend to foster learning around familiar areas, without actively pushing the agent toward
under-explored or novel regions that are critical for improving coverage. This type of goal selection
can therefore only be effective when built on top of representations—such as the one learned by
DRAG — that are explicitly encouraged to include marginal or rarely visited states.

27

D.5 Image size study

To complement our experiments, we ran the three methods (i.e. RIG, SKEW-FIT and DRAG) on all
environments with a higher image resolution (128x128 instead of 82x82 in the main experiments). We
observe that all methods degrade slightly with higher resolution, but DRAG retains a clear advantage.

Table 5: Mean success coverage across maze and robotic environment for 128x128 pixels observations
(success coverage for 82x82 is given for comparison).

Methods 1M 2M 3M 4M steps
DRAG 42% 58% 71% 79%

82x82 comparison 46% 66% 74% 81%

SKEWFIT 28% 44% 57% 65%
82x82 comparison 33% 51% 59% 66%

RIG 22% 29% 35% 38%
82x82 comparison 28% 34% 39% 42%

D.6 Runtime

To assess the impact of the overhead induced by the additional likelihood estimation (for SKEWFIT
and DRAG compared to RIG) and the use of a neural weighter (for DRAG), Table 6 reports mean
execution runtime for Maze and Metaworld environments averaged over 6 seeds on each environment.
We observe that DRAG and SKEWFIT require on average about 200 seconds for 20k steps, against
176 seconds for RIG. This slight overhead is negligible compared to the time spent in environment
interactions. This is because we only use one sample (i.e.) for the likelihood estimation in DRAG and
SKEWFIT (see appendix D.3.2 for a comparative study with more samples, which does not impact
the results of both methods). Also, no notable difference in runtime is observed when comparing
DRAG to SKEWFIT.

Table 6: Mean execution runtime on V100 GPU (32GB) for MAZE and METAWORLD environments.
Method Time per 20K steps (s) Time for 4M steps (s)
DRAG 211 42,200 (11.72 h)
SKEWFIT 208 41,600 (11.55 h)
RIG 176 35,200 (9.77 h)

To better link performance to runtime, Table 7 also shows success coverage over wall-clock time
(82×82, same runs as Fig. 3):

Table 7: Success coverage metric per hour.
Hour DRAG (%) SKEWFIT (%) RIG (%)

1 34 31 26
3 45 42 28
5 60 50 32
7 70 58 36
9 77 63 40

11 81 66 42

E Limitations

The main limitations of our work are the following.

28

Latent space reward definition While our study makes progress on learning representations online
and generating intrinsic goals from high-dimensional observations, it does not address how to measure
when a goal has truly been achieved. Throughout our experiments, we relied on a simple sparse
reward rt = 1

[
||zxt − zg||2 < δ

]
which, although common in goal-conditioned RL, sidesteps the

challenges of defining a dense feedback signal. In particular, the Euclidean metric used in dense
rewards often fails to reflect the true topology of the environment and can mislead the agent.

Representation Learning algorithm Our DRO-based approach is agnostic to the choice of repre-
sentation learning algorithm, suggesting future work should benchmark alternatives such as other
reconstruction-based techniques [Van Den Oord et al., 2017, Razavi et al., 2019, Gregor et al., 2019],
or contrastive learning objectives [Oord et al., 2018, Henaff, 2020, He et al., 2020, Zbontar et al.,
2021].

Notably, contrastive methods [Stooke et al., 2021] and Forward-Backward approaches [Touati and
Ollivier, 2021] aim to incorporate dynamics by bringing temporally adjacent states closer or by
modeling universal rewards. However, these methods generally assume access to transitions from a
representative part of the environment. To our knowledge, they do not include any explicit mechanism
to avoid collapse onto narrow parts of the state space—a critical issue in hard exploration settings
without expert priors.

Addressing this limitation is precisely the aim of our DRO-based reweighting, which promotes
state space coverage even in sparse reward regimes. While our implementation focuses on β-VAEs
for interpretability and disentanglement, our DRO framework is general and not tied to a specific
representation architecture.

In fact, any representation learning method trained from replay buffer samples using a loss ℓ(fθ(x))
can be reweighted using the DRO objective:

min
θ

max
r

1

N

N∑
i=1

r(xi)(ℓ(fθ(xi)))− λr(xi) log r(xi) s.t.
1

N

N∑
i=1

r(xi) = 1

This includes diffusion-based decoders, contrastive losses (e.g., InfoNCE), and temporal-difference-
based objectives (e.g., in Forward-Backward RL). For generative losses, as in VAEs or diffusion
models, the optimization must rely on likelihood estimates (i.e., log pθ,ϕ(x)), similarly to our
alternate optimization strategy described in (4).

Leveraging Pre-trained Representations Our study did not leverage pre-trained visual representa-
tions, that could greatly improve performance on complex visual observations as demonstrated in
[Zhou et al., 2025]. In particular, future work should explore incorporating into our setting pre-trained
representations from models specific to RL tasks as VIP [Ma et al., 2022] and R3M [Nair et al., 2022]
as well as general-purpose visual encoders such as CLIP [Radford et al., 2021] or DINO models
[Caron et al., 2021, Oquab et al., 2024].

29

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper’s contribution clearly reflects the claim made in the abstract: we
design a new GCRL method to learn representations online to foster exploration and agent
performance.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We briefly address the key limitation of our work in the conclusion and develop
them in more details in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

30

Answer: [Yes]
Justification: All theoretical results are either justified in the main paper or a complete proof
is provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details needed to reproduce the results are provided in the
appendix. The codebase will be made publicly available upon acceptance of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

31

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The github repository of the code for experiments reproducibility is provided
in the main paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details needed to reproduce the results are either included in
the main paper or provided in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The number of runs with different seeds for each run are provided in the main
paper. Furthermore, to assess the statistical significance of our results, we compute the
median, interquartile mean, mean and optimality gap metrics and confidence intervals using
the Rliable library [Agarwal et al., 2021], specialized on statistical analysis of Deep RL
methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

32

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute ressources used to conduct our experiments are listed in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All authors are familiar and have respected the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Due to the theoretical nature of this work, we believe, to the best of our
knowledge, that no societal impact is at stake. Furthermore, RL does not work with data
that could include bias with societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

33

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our work does not make use of pretrained language models, image generators,
nor scraped datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets used in this work are listed in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

34

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

35

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

36

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background & Related Work
	Problem Statement: Unsupervised Goal-conditioned Reinforcement Learning
	Multi-task Intrinsically Motivated Agents
	Online Representation Learning with GCRL
	Distributionally Robust Optimization

	Distributionally Robust Auto-Encoding for GCRL
	DRO-VAE
	DRAG

	Experiments
	Representation Learning strategy
	Latent Goal selection strategy
	Conclusion

	Experimental details
	Environments
	-VAE
	Training schedule
	Encoder smooth update

	Methods Hyper-parameters
	Compute ressources & code assets

	DRAG algorithm
	Skew-Fit is a non-parametric DRO
	Non-parametric solution of DRO
	Application to GCRL with VAE and Relation to Skew-Fit

	Aditional results
	Visualization of Learned Latent Representations
	Representation quality
	Ablations
	Impact of
	Impact of M (number of samples for the estimation of ,)

	RIG+Goal selection criterion
	Image size study
	Runtime

	Limitations

