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Abstract

Active learning (AL) techniques optimally uti-001
lize a labeling budget by iteratively selecting002
instances that are most valuable for learning.003
However, they lack “prerequisite checks”, i.e.,004
there are no prescribed criteria to pick an AL005
algorithm best suited for a dataset. A practi-006
tioner must pick a technique they trust would007
beat random sampling, based on prior reported008
results, and hope that it is resilient to the many009
variables in their environment: dataset, labeling010
budget and prediction pipelines. The important011
questions then are: how often on average, do012
we expect any AL technique to reliably beat the013
computationally cheap and easy-to-implement014
strategy of random sampling? Does it at least015
make sense to use AL in an “Always ON” mode016
in a prediction pipeline, so that while it might017
not always help, it never under-performs ran-018
dom sampling? How much of a role does the019
prediction pipeline play in AL’s success?020

We examine these questions in detail for the021
task of text classification using pre-trained rep-022
resentations, which are ubiquitous today.023

Our primary contribution here is a rigorous024
evaluation of AL techniques, old and new,025
across setups that vary wrt datasets, text repre-026
sentations and classifiers. This unlocks multi-027
ple insights around warm-up times, i.e., num-028
ber of labels before gains from AL are seen,029
viability of an “Always ON” mode and the rel-030
ative significance of different factors. Addi-031
tionally, we release a framework for rigorous032
benchmarking of AL techniques for text classi-033
fication.034

1 Introduction035

Within a supervised learning setup, Active Learn-036

ing (AL) techniques use a Query Strategy (QS)037

to identify an unlabeled set of instances which038

is optimal in the following sense: if labelled and039

added to the training data, they lead to the great-040

est improvement in model accuracy, relative to any041

other same-sized set. In cases where labelling is 042

expensive, the value proposition of AL is that it is 043

cost-efficient compared to random sampling, and 044

a model reaches greater accuracy with a smaller 045

number of labelled instances. 046

In practice, an AL technique is selected based 047

on the strength of prior reported results, i.e., there 048

are no “prerequisite checks”: tests that one might 049

perform on an unlabeled dataset, that help to select 050

a technique suited to a problem1. This trust extends 051

to related decisions such as batch and seed sizes, 052

as well as the hyperparameters (if any) of the AL 053

technique since there is no way to empirically pick 054

them: to compare with random sampling, or among 055

techniques, labels are required. But if one had 056

labels, they wouldn’t need AL! In this sense, the 057

AL setup is unforgiving as one needs to make the 058

optimal choice in one shot. 059

This leads us to question the validity of the im- 060

plicit but consequential assumption of task transfer. 061

A related question is if it makes sense to use AL 062

in an “Always ON” mode in a data labeling work- 063

flow; this is akin to asking if AL might perform 064

worse than random sampling. We need to quantify 065

both the frequency and magnitude of gains from 066

AL, to be able to evaluate the cost of such pipeline; 067

even simple AL techniques require a model to be 068

evaluated over the unlabeled data pool, which can 069

be expensive depending on the model complexity, 070

size of the data pool and the latency allowed per 071

AL iteration. 072

To be clear, we don’t question if AL results are 073

reproducible within the original setups they were 074

reported in2; but whether any of those gains carry 075

forward to new setups, which is how AL is used in 076

practice. 077

1We refer to this as the practitioner’s decision model and
formalize it in §4.4.

2In the interest of fairness, we conducted limited repro-
duciblity tests for the AL techniques we benchmark here, and
were able to replicate reported results - see §D.
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We pick the area of text classification to inves-078

tigate these concerns. The larger area of NLP has079

seen a rapid infusion of novel ideas of late. Today,080

a practitioner has easy access to a variety of pow-081

erful classifiers via packages such as scikit-learn082

(Pedregosa et al., 2011), spaCy (Honnibal et al.,083

2020) and Hugging Face (Wolf et al., 2020), and084

text representations, such as Universal Sentence085

Encoding (USE) (Cer et al., 2018), MiniLM (Wang086

et al., 2021) and MPNet (Song et al., 2020). This087

makes it a fertile ground for testing AL’s utility.088

In all this, our motivation is to not disapprove089

of AL as an area for research, but to motivate the090

inclusion of multiple practical challenges in future091

studies.092

Contributions: Our primary contribution is a093

rigorous empirical analysis of the learning behav-094

ior of AL techniques over multiple text classifica-095

tion pipelines, that is targeted towards answering096

the questions asked above. Additionally, we open097

source an AL evaluation framework3, to enable re-098

searchers to not only reproduce our analysis, but099

also to rigorously evaluate their own contributions.100

2 Previous Work101

Critique of AL is not new. Attenberg and Provost102

(2011) criticize AL for its unpredictable (for a task)103

warm-up times, i.e., a minimum number of labeled104

instances before which gains over random sam-105

pling are evident. Margatina and Aletras (2023)106

point out problems with AL simulations. Lüth et al.107

(2023) identify key issues leading to a lack of real-108

istic AL evaluations and propose solutions that they109

apply to image classification. Lowell et al. (2019)110

study AL empirically but focus on the interesting111

notion of successor models, i.e., future models that112

would use the labeled data collected via AL using113

a specific model. Zhan et al. (2021) examine the114

empirical effectiveness of AL, but they don’t evalu-115

ate on NLP tasks. Siddhant and Lipton (2018) is an116

empirical study of AL effectiveness similar in spirit117

to ours, but they focus on deep Bayesian methods.118

This work differs from from existing literature119

wrt being a combination of: focusing on text classi-120

fication, being empirical, employing a breadth of121

models (traditional and deep learning based) and122

employing recent techniques, e.g., MPNet (Song123

et al., 2020), REAL (Chen et al., 2023). While some124

conclusions we draw here might be similar to those125

3Our code is available here: https://anonymous.4open.
science/r/On_the_Fragility_of_Active_Learners/
README.md.

reported earlier, we note that it is important to re- 126

vise our collective mental models in a fast evolving 127

area such as NLP, and in enabling that, even such 128

conclusions are valuable. 129

3 Batch Active Learning - Overview 130

In this work, we specifically study the batch AL 131

setting for text classification. Here, a QS identifies 132

a batch of b unlabeled points, at each iteration t, 133

for T iterations. A model Mt, that is trained on 134

the accumulated labeled pool, is produced at the 135

end of each iteration. The first iteration uses a seed 136

set of s randomly sampled points (although other 137

strategies may be used). 138

We note that that Mt should be produced using 139

a model selection strategy (we use a hold-out set 140

here), and must also be calibrated (we use Platt 141

scaling (Platt, 2000; Niculescu-Mizil and Caruana, 142

2005)). The former ensures that Mt doesn’t overfit 143

to the labeled data, which is likely in the initial 144

iterations due to small quantities. The latter is 145

required since many query strategies rely on uncer- 146

tainty/confidence scores produced by Mt. Unfor- 147

tunately, in our experience, multiple implementa- 148

tions/studies miss one or both of these steps. 149

To avoid any ambiguity, we provide pseudo-code 150

for this AL setting in Algorithm 1 in §A. 151

4 Experiment Setup 152

In this section, we describe our experiment setup 153

in detail. 154

4.1 Configuration Space of Experiments 155

Our experiment configurations vary wrt datasets, 156

text representations, classifiers, the batch and seed 157

sizes, and of course, the QS. We study the follow- 158

ing QS here: (1) Random as baseline, (2) Mar- 159

gin4 (Scheffer et al., 2001; Schröder et al., 2022), 160

(3) Contrastive Active Learning (CAL) (Margatina 161

et al., 2021), (4) Discriminative Active Learning 162

(DAL) (Gissin and Shalev-Shwartz, 2019; Ein-Dor 163

et al., 2020), and (5) Representative Errors for 164

Active Learning (REAL) (Chen et al., 2023). We 165

picked these either because they are contemporary, 166

e.g., REAL, DAL, CAL, or have produced strong 167

contemporary results, e.g., Margin. 168

Figure 1 enumerates the configuration space. For 169

further details (including hyperparameters) see §B 170

and §E. Note that all representations used are based 171

4Also referred to as Smallest Margin or Breaking Ties, it is
still considered to be competitive (Schröder et al., 2022).
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Datasets

# Prediction Pipelines = 7

# Datasets = 5

# Query Strategies = 5

Representation

1. spaCy word vectors, 
averaged (WV)
(Honnibal et al., 2020)

1. sst-2
(Socher et al., 2013)

2. Margin
(Scheffer et al., 2001)

3. Contrastive Active 
Learning (CAL)
(Margatina et al., 2021)

4. Discriminatve Active 
Learning (DAL)
(Gissin and 
Shalev-Shwartz, 2019;
Ein-Dor et al., 2020)

5. Representative 
Errors for Active 
Learning (REAL)
(Chen et al., 2023)

1. Linear: Support 
Vector Machines with 
linear kernel (LinSVC)
(Cortes and Vapnik, 
1995)

3. MPNet (MP)
(Song et al., 2020)

4. RoBERTa
(Liu et al., 2019)

3. End-to-end: 
RoBERTa
(Liu et al., 2019)

2. Non-linear: Random 
Forest (RF) 
(Breiman, 2001)

2. Universal Sentence 
Encoding (USE)
(Cer et al., 2018)

Classifier Query Strategy

1. Random Sampling

2. imdb
(Maas et al., 2011)

3. agnews
(Zhang et al., 2015)

4. pubmed
(Dernoncourt and 
Lee, 2017)

5. dbpedia-5
(Zhang et al., 2015)

(batch_size, seed_size) 
Total configurations = 5 (datasets) x 7 (prediction pipelines) x 5 (query strategies) x 2 (batch/seed sizes) = 350

2

3

4

1

5

7

6

Figure 1: The space of experiments is shown. See §4.1 for description. All representations are produced by
pre-trained models, which are ubiquitous in practice today. The lines between the boxes “Representation” and
“Classifier” denote combinations that constitute our prediction pipelines. Note that RoBERTa is an end-to-end
predictor, where there are no separate representation and classification steps.

on pre-trained models which have grown quite pop-172

ular in the past few years. For classification, we173

picked one each of a linear, non-linear and Deep174

Learning based classifier. Since batch or seed sizes175

are inconsistent in AL literature, e.g., DAL, REAL176

and CAL respectively use batch sizes of 50, 150,177

2280 - we vary these settings as well.178

For an idea of the breadth of this search space,179

see Figure 2 which shows results for the dataset180

agnews and batch/seed size of (200, 200).181

4.2 Metrics and Other Settings182

The classifier accuracy metric we use is the F1183

(macro) score, since it prevents performance wrt184

dominant classes from overwhelming results. For185

measuring the effectiveness of a QS,we use the186

relative improvement wrt the random QS of the187

classifier score (see Equation 1). The size of the188

unlabeled pool is 20000 at the start of each exper-189

iment. If the original dataset has more than than190

20000 instances, we extract a label-stratified sam-191

ple, to retain the original class distribution. The192

size of the test set is 5000 - also a label-stratified193

sample from the corresponding test set of the origi-194

nal dataset.195

We run an experiment till the size of the labeled196

set has grown to 5000 instances5. This implies 197

T = (5000 − 200)/200 = 24 iterations for the 198

batch/seed size setting of (200, 200), and similarly 199

T = 9 iterations for the (500, 500) setting. 200

As shown in Figure 1 we have 350 unique con- 201

figurations. We also execute each configuration 202

three times in the interest of robust reporting. This 203

gives us a a total of 350 × 3 = 1050 trials. For 204

each AL iteration of each of these trials, we follow 205

the due process of model selection and calibration6. 206

207

4.3 Notation and Terminology 208

We introduce some notation here that will help us 209

precisely describe our analysis in later sections. 210

Let f be a function that computes the model 211

metric of interest, e.g., F1-macro. This accepts, 212

as parameters, the random variables h, q, d, b, s, n, 213

which are defined as follows: 214

• h ∈ H , the set of prediction pipelines. 215

• q ∈ Q, the set of query strategies. For con- 216

venience, we also define qR to be the random 217

5Beyond this labeled set size (unrelated to the test set size)
different QSes produce similar gains - see §C.

6RoBERTa is the only exception since it is naturally well-
calibrated (Desai and Durrett, 2020).
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Figure 2: F1 macro scores on the test set at each iteration, for the dataset agnews and batch size of 200. The x-axes
show size of the labeled data, the y-axes show the F1-macro scores on the test data.

QS, and QNR = {cal, dal, real,margin},218

i.e., the subset of non-random QS.219

• d ∈ D, the set of datasets.220

• (b, s) ∈ V , the set of batch and seed size com-221

binations, i.e., V = {(200, 200), (500, 500)}222

• n is the size of the labeled data. In our experi-223

ments, s ≤ n ≤ 5000.224

A specific value is indicated with a prime symbol225

on the corresponding variable, e.g., h′ is a specific226

prediction pipeline.227

QS Effectiveness: We evaluate a non-random228

QS by measuring the relative improvement wrt the229

random QS, at a given number of labeled instances230

n′. We use the shorthand δ:231

δ(f(h, q, d, b, s, n′)) =232

f(h, q, d, b, s, n′)− f(h, qR, d, b, s, n′)

f(h, qR, d, b, s, n′)
(1)233

4.4 Decision Model234

Before looking at the results, we formalize the de-235

cision model of a practitioner using our notation.236

This helps us justify the aggregations we perform 237

over results of individual experiments. 238

Because of lacking prerequisite checks, there 239

is no preference for picking a factor in combina- 240

tion with others. We model them as independent 241

variables, i.e., the probability of a configuration is 242

p(h)p(q)p(d)p(b, s). Since each of these probabil- 243

ities is also uniform, e.g., the general practitioner 244

is equally likely to encounter any dataset d ∈ D, 245

each configuration has an identical probability of 246

occurrence7: 1/(|H| × |Q| × |D| × |V |). In other 247

words, any expectation we wish to compute over 248

these settings under this decision model is a simple 249

average. 250

5 Results 251

We are now ready to look at the results of our ex- 252

periments. 253
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Figure 3: Expected relative improvement in F1-macro score over random. (a)-(e) show this for different predictors
and QS, at different training sizes (see titles). These correspond to Equation 2. (f) and (g) show marginalized
improvements for different predictors and QSes respectively; see equations 3 and 4.

5.1 Expected Gains from AL254

Figure 3 shows the expected relative improvement,255

grouped in the following ways:256

1. Figure 3(a)-(e): These heatmaps show the257

expected δ at a given number of instances258

n′ ∈ {1000, 2000, 3000, 4000, 5000}. A cell259

for predictor h′ and a QS q′ ∈ QNR in the260

heatmap for n′ training instances shows8:261

Ed,b,s[δ(f(h
′, q′, d, b, s, n′))] (2)262

The rows are arranged roughly in increasing263

order of classifier capacity, i.e., LinSVC, RF,264

RoBERTa, and within a group, in increasing265

order of approximate representation quality:266

word vectors (WV), USE, MPNet9.267

7They may inherit an environment with a specific predic-
tion pipeline or a query strategy - we also present these condi-
tional results. But within these conditions, the other factors
are assumed to be independent and individually uniform.

8This expectation is over batch and seed sizes at given
values of n′; but note, different batch sizes don’t produce
same values for n′. This is explicitly reconciled - see §F.

9The relative ordering of USE vs MPNet was obtained
from the Massive Text Embedding Benchmark (MTEB) rank-
ings, where MPNET leads USE by ∼ 100 positions today.

2. Figure 3(f): This shows δ only for prediction 268

pipelines, marginalizing over QSes. This is 269

easy to show in a standard line-plot. The y- 270

value for x = n′ for predictor h′ denotes: 271

Ed,b,s,q∈QNR
[δ(f(h′, q, d, b, s, n′))] (3) 272

3. Figure 3(g): This is analogous to (f) and 273

shows δ for QSes while marginalizing over 274

predictors. The y-value for a specific x = n′ 275

for QS q′ ∈ QNR denotes: 276

Ed,b,s,h[δ(f(h, q
′, d, b, s, n′))] (4) 277

Observations: In Figure 3(a)-(e), we see that as 278

we move towards the right, the number of cells with 279

δ ⪆ 0 increases. This suggests that, in general, as 280

the pool of labeled instances grows, AL becomes 281

more effective. This might seem promising at first, 282

but note that (a) we cannot predict when this hap- 283

pens in practice: we lack the theoretical tools, and 284

it varies wrt both the predictor and the QS, and (b) 285

if you look closely, its not that AL is becoming 286

more effective but, rather, all configurations are 287
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converging towards10 δ = 0. In other words, in288

low label regimes, where we expect AL to benefit289

us, there can be a lot of variance - it might even290

under-perform random sampling - and at high la-291

bel regimes, their performance, even if positive, is292

not very different from random sampling.293

Among predictors (Figure 3(f), but this is also294

apparent in (a)-(e)), for RoBERTa we consistently295

observe δ > 0. Among QSes, REAL and Margin,296

seem to do well at larger data regimes - as visible297

in Figure 3(g), but also in (d) and (e). The perfor-298

mance of Margin might seem somewhat surprising,299

since this is an old technique (proposed in Scheffer300

et al. (2001)), but similar observations have been301

reported elsewhere (Schröder et al., 2022).302

5.2 Always ON Mode303

Another question we might ask is that even if AL304

doesn’t always surpass random, is there a down-305

side to making it a permanent part of a labeling306

workflow - multiple tools allow this today11, e.g.,307

Montani and Honnibal; Tkachenko et al. (2020-308

2022)?309

Table 1 shows some relevant numbers.310

Avg. for % times δ < 0 δ≥0 δ

Overall 51.82 0.89 -0.74

LinSVC-WV 61.71 0.70 -1.90
LinSVC-USE 61.57 0.46 -0.64
LinSVC-MP 63.71 0.40 -1.48
RF-WV 47.29 1.31 -0.30
RF-USE 60.57 0.71 -0.63
RF-MP 60.14 0.60 -1.24
RoBERTa 7.71 1.29 1.01

CAL 55.60 0.81 -1.07
DAL 70.12 0.82 -1.29
Margin 38.45 0.97 -0.25
REAL 43.10 0.89 -0.34

Table 1: The %-age of times model F1-macro scores
are worse than random are shown. Also shown are the
average δs when scores are at least as good as random,
and average δs in general. These are relevant to the
“Always ON” mode, discussed in §5.2. See Table 6 in
§G for standard deviations.

10This is something we observe in a separate analysis as
well - see §C. In fact, this is the reason why we grow the
labeled set to only 5000 instances in our experiments - men-
tioned in §C.

11Important: We have not evaluated these tools. They
are cited as examples of common tools used in data labeling
workflows in the industry.

Observations: In general, (first row, “Overall”), 311

the number of incidents where the relative im- 312

provement was strictly negative (counted at var- 313

ious labeled data sizes across configurations) is 314

51.82%. This might be suggested by the heatmaps 315

in Figure 3(a)-(e) as well, where approximately the 316

left upper triangle of the plots combined indicates 317

δ < 0. The average improvement when AL is as 318

good as random is low, i.e., δ≥0 = 0.89, and on 319

the whole this quantity is actually negative, i.e., 320

δ = −0.74. Again, the use of RoBERTa leads to 321

favorable scores. Among QSes, Margin and REAL 322

perform relatively well. 323

Under our decision model - §4.4 - the practical 324

implication is bleak: in the “Always ON” mode, 325

stopping labeling early risks negative improvement. 326

The only way to ensure δ ≥ 0 is to accumulate 327

quite a few labels, i.e., move out of the left upper 328

triangular region in Figure 3(a)-(e), but then the av- 329

erage improvement is low. Essentially, the “Always 330

ON” mode is viable if the small relative gains from 331

labeling 4000−5000 instances are useful. 332

5.3 Effect of Prediction Pipeline vs QS 333

Papers on AL typically contribute QSes. Here 334

we ask if that focus is warranted, i.e., what has a 335

greater impact? - the QS or the prediction pipeline? 336

We might suspect that it is the pipeline, given 337

the performance of RoBERTa in both Figure 3 and 338

Table 1. To precisely assess their relative effect, 339

we use the Friedman test (Friedman, 1937) in the 340

following way: 341

1. Take the example of QSes. For each 342

non-random QS q′, we list the scores 343

δ(f(h, q′, d, b, s, n)) for different values of 344

h, d, b, s, n. Since there are four non-random 345

QSes, this gives us four sets of matched obser- 346

vations. 347

2. We calculate the p-value on these observations. 348

A low value indicates a high sensitivity to 349

changing the QS. 350

We follow an analogous procedure for prediction 351

pipelines, where we obtain seven matched observa- 352

tion sets. These are the p-values we obtain: 353

• QSes: 8.45e−129. 354

• Prediction Pipelines: 5.39e−186. 355

The lower p-value for prediction pipelines indicates 356

that they have a greater influence on the relative 357
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Predictor p-value QS p-value
LinSVC-WV 0.18 CAL 0.77
LinSVC-USE 0.41 DAL 0.02
LinSVC-MP 0.60 Margin 0.32
RF-WV 0.13 REAL 0.07
RF-USE 0.03
RF-MP 0.03
RoBERTa 1.32e−10

Overall: 0.90

Table 2: The p-values for a two-sided Wilcoxon signed-
rank test over δ values, from using batch/seed size
(200, 200) vs (500, 500). See §5.4 for details.

improvement. This complements our other observa-358

tions that relative improvements are not consistent359

for QSes alone.360

5.4 Effect of Batch/Seed Size361

We perform a Wilcoxon signed-rank test (Wilcoxon,362

1945) to assess the effect of batch/seed sizes on363

δ. This is a paired test and ideally we should364

match observations δ(f(h, q, d, 200, 200, n)) and365

δ(f(h, q, d, 500, 500, n)). However, recall that366

since different batch/seed sizes don’t lead to the367

same values of n - we explicitly align the sizes for368

such comparison (detailed in §F).369

The overall p-value of 0.90 indicates that370

our batch/seed settings don’t influence δ in gen-371

eral. The exception is RoBERTa, with p-value=372

1.32e−10. A further one-sided test tells us that373

the batch/seed size setting of (200, 200) leads to374

greater δ values (p-value= 6.57e−11).375

5.5 Effect of Representation376

Finally, we assess the effect of text representation377

on relative improvements. Since we want to evalu-378

ate representations alone (the prediction pipeline as379

a whole was already evaluated in §5.1), we ignore380

RoBERTa for this exercise, since its an end-to-end381

classifier.382

Figure 4 shows how the relative improvement δ383

varies with the embedding used, marginalized over384

other configuration variables.385

We note that USE outperforms MPNet. This386

is surprising to us because on the MTEB (Muen-387

nighoff et al., 2022) benchmarks MPNet scores388

much higher. A hypothesis that might explain both389

results is that USE doesn’t capture fine-grained con-390

texts as much as MPNet does; while this might be391

problematic for MTEB (esp. tasks that rely on pre-392

cise similarity measurement, such as retrieval), the393
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Figure 4: Effect of text representations on the relative
improvement.

fuzzier embedding space of USE is better in terms 394

of covering the concept space in the dataset earlier 395

in the AL process. This enables better assessment 396

of informativeness, and therefore, sampling, by a 397

non-random QS. 398

6 Summary and Conclusion 399

After extensive evaluation of different AL algo- 400

rithms, we are forced to conclude that it is difficult 401

to practically benefit from AL. Gains from QSes are 402

inconsistent across datasets, prediction pipelines 403

and text representations. In fact, between QSes 404

and prediction pipelines, the latter seems to have 405

a greater influence on the relative improvement 406

over random (§5.3). The only general pattern we 407

see is that positive relative improvements become 408

likely as labeled instances accumulate; but these 409

improvements are too small to be broadly useful 410

(§5.1). Another reason as to why it is hard to derive 411

any practical advice is that we lack the tools, theo- 412

retical or empirical, to identify a settings-specific 413

warm-start size; when do we stop labeling to re- 414

alize gains, however small? Further, we noted in 415

§5.2 that using AL in an “Always ON” mode can 416

actually perform worse than random sampling. 417

The use of RoBERTa as the prediction pipeline 418

is the only (isolated) case where we see consistent 419

positive relative improvements. Our hypothesis as 420

to why is that an end-to-end classifier has a more 421

coherent view of the overall distribution, and there- 422

fore informativeness of a sample. But, obviously, 423

we can’t discount the role that RoBERTa’s specific 424

pre-training might play here, and further experi- 425

mentation is required to disentangle their respective 426

influences. 427
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Although extensive, this study may be consid-428

ered “limited” relative to real-world variances, e.g.,429

many more choices of classifiers, datasets, which430

leads us to suspect that the true picture is probably431

more dismal.432

What might we do to make the field of AL more433

useful? We feel the biggest problem in AL use is434

that practitioners have to blindly guess what spe-435

cific AL technique will work best for their problem.436

As a field we need to embrace a broader discourse437

where the success of a technique needs to be tied438

to fundamental properties of datasets, e.g., topo-439

logical features (Chazal and Michel, 2021), and440

predictors, e.g., VC dimension (Vapnik, 1995), that441

are identifiable in an unsupervised manner in novel442

settings.443

7 Limitations444

Being an empirical work, our conclusions are tied445

to the algorithms and settings analyzed.446
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A Pseudo-code for Batch Active Learning639

Algorithm 1: Batch Active Learning.
Input: Unlabeled data XU , test data

(Xtest, Ytest), query strategy Q,
seed set selection strategy A, search
space Θ for modelM, seed size s,
batch size b, number of iterations T ,
metric V

Result: Scores on test set at various
iterations
{(V0, 0), (V1, 1), ..., (VT , T )}

1 result← {} // to be returned
2 XL,0, XU,0 ← A(XU , s)
3 (XL,0, YL,0)← obtain labels for XL,0

4 M0 ← argmaxθ∈ΘMθ((XL,0, YL,0))
// both model selection and
calibration are performed

5 V0 ← V(M0(Xtest), Ytest)
6 result← result ∪ {(V0, 0)}
7 for t← 1 to T do
8 Xnew

L,t , XU,t ←
Q(Mt−1, XU,t−1, (XL,t−1, YL,t−1), b)

9 (Xnew
L,t , Y new

L,t )←
obtain labels for Xnew

L,t

10 (XL,t, YL,t)←
add (Xnew

L,t , Y new
L,t ) to (XL,t−1, yL,t−1)

11 Mt ← argmaxθ∈ΘMθ((XL,t, YL,t))
Vt ← V(Mt(Xtest), Ytest)

12 result← result ∪ {(Vt, t)}
13 end
14 return result

At a high-level, at every AL iteration 1 ≤ t ≤ T ,640

we use a query strategy Q to select a b-sized batch641

of instances from the unlabeled pool of data (line642

8). We obtain labels for this set (line 9) and add it643

to the existing pool of labeled data (line 10). We644

then train a model Mt over this data (line 11). We645

emphasize that:646

1. The model Mt is obtained after performing647

model selection over its hyperparameter space648

Θ, using grid-search against a validation set.649

The validation set is a label-stratified subset (a650

20% split) of the current labeled set; the rest651

is used for training.652

2. The model is also calibrated12. This is crit-653

ical since query strategies Q often use the654

12A notable exception is in our use of the RoBERTa model,
which already is well calibrated (Desai and Durrett, 2020).

predicted class probabilities from Mt. We 655

use Platt scaling (Platt, 2000; Niculescu-Mizil 656

and Caruana, 2005). 657

The process is initialized by selecting a seed set 658

of size s from the unlabeled data pool, using a 659

strategy A (line 2). We use random selection for 660

this step. 661

We also note that a “model” here might mean a 662

combination of a text representation, e.g., word vec- 663

tors, and a classifier, e.g., Random Forest; further 664

detailed in Section 4.1. 665

B Experiment Configurations 666

In our experiments, we vary classifiers, text rep- 667

resentations (we often jointly refer to them as a 668

prediction pipeline), batch size, seed size and, of 669

course, query strategies. These combinations are 670

visualized in Figure 1, and are detailed in Section. 671

These combinations are listed below: 672

1. Prediction pipeline: There are two categories 673

of pipelines we use: 674

(a) Separate representation and classifier: 675

The representations used are USE (Cer 676

et al., 2018), MPNet (Song et al., 2020) 677

and word vectors13 (we use the models 678

provided by the spaCy library (Honnibal 679

et al., 2020)). For classification, we use 680

Random Forests (RF) (Breiman, 2001) 681

and Support Vector Machines (Cortes 682

and Vapnik, 1995) with a linear kernel - 683

we’ll term the latter as “LinearSVC”. 684

We use off-the-shelf representations and 685

they are not fine-tuned on our data. Only 686

the classifiers are trained on our data. 687

(b) End-to-end classifier: This does not re- 688

quire a separate representation model. 689

We use RoBERTa (Liu et al., 2019) (a 690

variant of BERT). This is fine-tuned on 691

the labeled data at each AL iteration. 692

Hyperparameter search spaces are detailed 693

in Section E.2 of the Appendix. As noted 694

in Section 3, model selection and calibration 695

are performed during training of a prediction 696

pipeline. The only exception is RoBERTa, 697

which has been shown to be well-calibrated 698

out of the box (Desai and Durrett, 2020). 699

13The vectors of all words in a sentence are averaged to
obtain its representation.
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The first category gives us 2 × 3 = 6 com-700

binations. Counting RoBERTa, we have 7701

prediction pipelines in our study.702

2. Query Strategy: we list these below, with the703

year of publication mentioned, to show our704

focus on contemporary techniques:705

(a) Random: the batch is selected uniformly706

at random. This forms our baseline.707

(b) Margin14 (Scheffer et al., 2001) (2001):708

this selects instances with the smallest709

differences between the confidence of the710

most likely and the second-most likely711

predicted (by the current classifier15)712

classes. Despite being a relatively old713

technique, it continues to be competitive714

(Schröder et al., 2022).715

(c) Contrastive Active Learning (CAL)716

(Margatina et al., 2021) (2021):717

chooses instances whose predicted718

class-probability distribution is the most719

different (based on KL divergence) from720

those of their k-nearest neighbors. This721

is similar to another work (Nguyen and722

Ghose, 2023), where such conflicts are723

detected using the explanation space724

produced by XAI techniques.725

(d) Discriminative Active Learning (DAL)726

(Gissin and Shalev-Shwartz, 2019; Ein-727

Dor et al., 2020) (2019): a binary clas-728

sifier (a feedforward neural network) is729

constructed to discriminate between la-730

beled and unlabeled data, and then se-731

lects unlabeled instances with the great-732

est predicted probability of being un-733

labeled. This picks examples that are734

most different from the labeled instances735

in this classifier’s representation space.736

While the original work (Gissin and737

Shalev-Shwartz, 2019) only considers738

image datasets, a separate study shows739

its efficacy on text (Ein-Dor et al., 2020).740

(e) Representative Errors for Active Learn-741

ing (REAL) (Chen et al., 2023) (2023):742

identifies clusters in the unlabeled pool743

and assigns the majority predicted label744

as a “pseudo-label” to all points in it. In-745

stances are then sampled whose predic-746

14Also referred to as Smallest Margin or Breaking Ties.
15Note that in reference to Algorithm 1, at iteration t, the

query strategy Q uses model Mt−1.

tions differ from the pseudo-label. The 747

extent of disagreement and cluster size 748

are factored into the sampling step 749

We use a total of 5 query strategies. 750

3. Datasets: we use 5 standard datasets: ag- 751

news, sst-2, imdb, pubmed and dbpedia-5 (a 752

5-label version of the standard dbpedia dataset 753

that we created). These are detailed in Table 3. 754

The extent of class imbalance is represented 755

by the label entropy column, which is calcu- 756

lated as
∑

i∈C −pi log|C| pi, with C being the 757

set of classes. 758

4. Batch and Seed sizes: We use batch and 759

seed size combinations of (200, 200) and 760

(500, 500). This is a total of 2 combinations. 761

5. Trials: For statistical significance, we run 3 762

trials for each combination of the above set- 763

tings. 764

C In what data regimes do query 765

strategies most differ? 766

We would intuitively expect that F1-macro scores 767

from different QSes (for a given pipeline and 768

dataset) should converge as we see more data due 769

to at least two reasons: 770

• The concept space in the data would be even- 771

tually covered after a certain number of in- 772

stances. Adding more data isn’t likely to add 773

more information, i.e., there are diminishing 774

returns from adding more data. 775

• At later iterations, there is less of the unla- 776

beled pool to choose from. 777

Indeed, Figure 5 confirms this. We first compute 778

variances in F1-macro scores for each different 779

pipeline/dataset combination16 across QSes at a 780

given labeled set size. And then we average these 781

variances across datasets and pipelines - this is the 782

y-axis. We see that the expected variance shrinks 783

after a while, and at 5000 labeled points it is close 784

to zero, i.e., the differences from using different 785

QSes, pipelines etc isn’t much. This is why we 786

restrict the labeled set size to 5000 instances in our 787

experiments (as mentioned in §4.2). 788

16This step comes first since the accuracies obtained by a
LinearSVC would be very different from those by RoBERTa,
and we don’t want to mix them.
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Dataset # classes Label en-
tropy

Description

sst-2 2 1.0 Single sentences extracted from movie reviews with their sentiment
label (Socher et al., 2013).

imdb 2 1.0 Movie reviews with corresponding sentiment label (Maas et al.,
2011).

agnews 4 1.0 News articles with their topic category (Zhang et al., 2015).
pubmed 4 0.9 Sentences in medical articles’ abstracts which are labeled with their

role on the abstract (Dernoncourt and Lee, 2017).
dbpedia-5 5 1.0 A subset of dbpedia (Zhang et al., 2015) which contains Wikipedia

articles accompanied by a topic label. The original dataset’s instances
are evenly distributed across 14 classes. To form dbpedia-5, we use
only the first 5 classes: Company, EducationalInstitution, Artist,
Athlete, OfficeHolder. This was done to reduce the training time of
one-vs-all classifiers, e.g., LinearSVC.

Table 3: Datasets used. Label entropy represents class imbalance - see §B for description.

0 1000 2000 3000 4000 5000
train_size

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

E
xp

ec
te

d 
va

r. 
of

 F
1 

m
ac

ro

Expected var. of F1 macro scores

batch_size
200
500

Figure 5: Expectation over variance of F1-macro given a
pipeline and dataset, plotted against size of labeled data.
Note that the batch/side sizes don’t strongly influence
trends.

D Reproducibility Experiments789

As mentioned earlier, our intention is not to suggest790

that the techniques we evaluate, e.g., REAL, CAL,791

DAL, don’t work. In the specific settings discussed792

in their respective papers, they most likely perform793

as reported. In the interest of fairness, we have794

conducted limited independent tests that confirm795

this.796

In all cases, we have attempted to replicate the797

original settings, e.g. same train/development/test798

data split, model type, seed/batch sizes, number of799

AL iterations as shown in Table 4. For CAL, REAL,800

we report the F1-macro scores on agnews, in which801

classes are evenly distributed, instead of the ac-802

curacy provided in the original papers. For DAL,803

we use the dataset cola17 and utilise the Hugging 804

Face library to finetune BERT (while the original 805

work employs TensorFlow18, but we use equivalent 806

settings). Figure 6 shows a comparison between 807

our results and the reported ones in these papers 808

(Margatina et al., 2021; Chen et al., 2023; Ein-Dor 809

et al., 2020) for CAL, REAL, DAL, respectively. 810

Despite some minor differences in the setups, we 811

observe that these AL methods work as described 812

in their respective papers in these settings. 813

One significant difference between these set- 814

tings compared to our methodology is the use of 815

a predetermined labeled development set for all 816

BERT/RoBERTa model finetuning. This set is rela- 817

tively larger than the AL batch or seed size and is 818

not part the labeled data available at each AL itera- 819

tion. This is impractical in scenarios where AL is 820

typically used: labeling is expensive. Moreover, in 821

some cases, there is no model selection performed, 822

which we remedy in our experiments (Section 3). 823

E Hyperparameters 824

E.1 Query Strategy (QS) hyperparameters 825

For each QS’s hypeparameters, we use the values 826

recommended by the authors in corresponding pa- 827

pers. This means setting number of nearest neigh- 828

bors in CAL to 10, number of clusters in DAL to 829

25, and keeping the same discriminative model in 830

REAL. 831

17https://nyu-mll.github.io/CoLA/
18https://www.tensorflow.org/
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AL Dataset AL loop Classifier & text representation QS parameters Metric

CAL agnews b=2280
s=1140
T = 7

BERT (bert-base-cased)
[CLS] at the last hidden layer
learning rate = 2e-5
train batch size = 16
# epochs = 3
sequence length = 128
warmup ratio = 0.1
# evaluations per epoch = 5

# neighbors=10 F1-macro

DAL cola b=50
s=100
T = 5

BERT (bert-base-uncased)
[CLS] at the pooled layer
learning rate = 5e-5
train batch size = 50
# epochs = 5
sequence length = 50
warmup ratio = 0
# evaluations per epoch = 1

- Accuracy

REAL agnews b=150
s=100
T = 8

RoBERTa (roberta-base)
[CLS] at the last hidden layer
learning rate = 2e-5
train batch size = 8
# epochs = 4
sequence length = 96
warmup ratio = 0.1
# evaluations per epoch = 4

# clusters=25 F1-macro

Table 4: Settings for reproducibility experiments.

E.2 Hyperparameters search for prediction832

pipelines833

Table 5 shows the search space for hyperparameters834

we use for each classifier.835

F Averaging over Different Batch-Sizes836

When computing expectations over different837

batch/seed sizes (like in Equation 2) a challenge838

is that different settings don’t lead to same num-839

ber of instances. For ex., for b = 200, s = 200,840

the size of the trained pool assumes the values841

200, 400, .., 5000, and for b = 500, s = 500, the842

sizes are 500, 1000, .., 5000. To compute an expec-843

tation of the form Eb,s[., n
′], we use the sizes from844

the larger batch, i.e., n′ ∈ {500, 1000, .., 5000},845

and map the closest sizes from the smaller batch to846

them. For ex., here are some size mappings from847

the small batch case to the larger one: 800 →848

1000, 1000 → 1000, 1200 → 1000, 1400 →849

1500, 1600→ 1500.850

G Always ON Mode 851

Table 6 presents standard deviations for the “Al- 852

ways ON” case, and is a companion to Table 1 in 853

§5.2. Note the extremely high variances in moving 854

across combinations of the configurations and size 855

of the labeled set. 856
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Classifier Hyperparameters

RoBERTa roberta-base
[CLS] at the last hidden layer
learning rate = {3e-5, 5e-5}
train batch size = 16
# epochs = {5, 10}
sequence length = 128
warmup ratio = 0.1
# evaluations per epoch = 5

LinearSVC C = {0.001, 0.01, 0.1, 1, 10, 100, 1000}
class weight = balanced

RF min samples leaf = {1, 5, 9}
# estimators = {5, 10, 20, 30, 40, 50}
max depth = {5, 10, 15, 20, 25, 30}
class weight = balanced
max features = sqrt

Table 5: Hyperparameters for each classifier in the prediction pipelines.

Avg. for % times δ < 0 δ≥0 δ

Overall 51.82 0.89 ± 0.92 -0.74 ± 3.02

LinSVC-WV 61.71 0.70 ± 0.60 -1.90 ± 3.94
LinSVC-USE 61.57 0.46 ± 0.49 -0.64 ± 1.85
LinSVC-MP 63.71 0.40 ± 0.44 -1.48 ± 3.53
RF-WV 47.29 1.31 ± 1.01 -0.30 ± 2.63
RF-USE 60.57 0.71 ± 0.69 -0.63 ± 1.85
RF-MP 60.14 0.60 ± 0.55 -1.24 ± 3.59
RoBERTa 7.71 1.29 ± 1.17 1.01 ± 1.94

cal 55.60 0.81 ± 0.86 -1.07 ± 3.23
dal 70.12 0.82 ± 0.94 -1.29 ± 3.22
margin 38.45 0.97 ± 0.88 -0.25 ± 2.78
real 43.10 0.89 ± 0.99 -0.34 ± 2.67

Table 6: The %-age of times model F1-macro scores are worse than random, the average δs when scores are at least
as good as random and average δs in general. These are identical to the values in Table 1 in §5.2, but the standard
deviations are additionally shown here.
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Figure 6: Comparison between published results in (Margatina et al., 2021; Chen et al., 2023; Ein-Dor et al., 2020)
and ours with the same settings for CAL, REAL, DAL.
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