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Abstract

Limited computation and communication capabilities of clients pose significant1

challenges in federated learning (FL) over resource-limited edge nodes. A poten-2

tial solution to this problem is to deploy off-the-shelf sparse learning algorithms3

that train a binary sparse mask on each client with the expectation of training4

a consistent sparse server mask. However, as we investigate in this paper, such5

naive deployments result in a significant accuracy drop compared to FL with dense6

models, especially under clients’ low resource budgets. In particular, our investiga-7

tions reveal a serious lack of consensus among the trained masks on clients, which8

prevents convergence on the server mask and potentially leads to a substantial drop9

in model performance. Based on such key observations, we propose federated10

lottery aware sparsity hunting (FLASH), a unified sparse learning framework to11

make the server win a lottery in terms of a sparse sub-model, which can greatly12

improve performance under highly resource-limited client settings. Moreover, to13

address the issue of device heterogeneity, we leverage our findings to propose14

hetero-FLASH, where clients can have different target sparsity budgets based on15

their device resource limits. Extensive experimental evaluations with multiple16

models on various datasets (both IID and non-IID) show superiority of our models17

in yielding up to ∼10.1% improved accuracy with ∼10.26× fewer communication18

costs, compared to existing alternatives, at similar hyperparameter settings.19

1 Introduction20

Federated learning (FL) [30] is a popular form of distributed training, which allows multiple clients21

to learn a shared global model without the requirement to transfer their private data. However, clients’22

heterogeneity and resource limitations pose significant challenges for FL deployment over edge23

nodes, including mobile phones and IoT devices. To resolve these issues, various methods have24

been proposed over the past few years including efficient learning for heterogeneous collaborative25

training [27, 42], distillation [12], federated dropout techniques [15, 4], efficient aggregation for26

faster convergence and reduced communication [34, 25]. However, these methods do not necessarily27

address the growing concerns of highly computation and communication limited edge.28

Meanwhile, reducing the memory, compute, and latency costs for deep neural networks in centralized29

training is an active area of research. In particular, recently proposed sparse learning strategies30

[8, 20, 31, 5, 33] effectively train weights and associated binary sparse masks to allow only a fraction31

of model parameters to be updated during training, potentially enabling the lucrative reduction in32

both the training time and FLOPs [32, 33], while creating a model to meet a target parameter density33

denoted as d, and is able to yield accuracy close to that of the unpruned baseline.34

However, the challenges and opportunities of sparse learning in FL is yet to be fully unveiled. Only35

very recently, few works [2, 16] have tried to leverage sparse learning in FL primarily to show their36

efficacy in non-IID settings. Nevertheless, these works primarily used sparsity for non-aggressive37
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model compression, limiting the actual benefits of sparse learning, and assumed multiple local epochs,38

that may further increase the training time for strugglers making the overall FL process inefficient [40].39

Figure 1: Comparison of (a) accuracy at different
communication budget with, ZeroFL [32] and Fe-
dAvg. (w/ d = 1.0) (b) Accuracy vs. parameter
density of each client. Proposed approach can sig-
nificantly outperform the existing alternative [32]
at ultra-low target parameter density (d).

Moreover, the server-side pruning used in these40

methods may not necessarily adhere to the lay-41

ers’ pruning sensitivity1 [7] that often plays42

a crucial role in sparse model performance43

[20, 39, 35]. Another recent work, ZeroFL [32],44

has explored deploying sparse learning in FL set-45

tings with limited client epochs. However, [32]46

could not leverage any advantage of model spar-47

sity in the clients’ down-link communication48

cost and had to keep significantly more param-49

eters active compared to a target d to yield good50

accuracy. Moreover, as shown in Fig. 1(b), for51

d = 0.05, ZeroFL still suffers from substantial52

accuracy drop of ∼14% compared to the base-53

line.54

Our Contributions. Our contribution is fourfold. In view of the above limitations, we first identify55

crucial differences between a centralized and the corresponding FL model, in learning the sparse56

masks for each layer. In particular, we observe that in FL, the server model fails to yield convergent57

sparse masks. In contrast, the centralized model show significantly higher convergence trend in learn-58

ing sparse masks for all layers. We then experimentally demonstrate the utility of pruning sensitivity59

and mask convergence in yielding good accuracy setting the platform to close the performance gap in60

sparse FL.61

We then leverage our findings and present federated lottery aware sparsity hunting (FLASH), a62

sparse FL methodology addressing the aforementioned limitations. At the core, FLASH leverages63

a two-stage FL, a robust and low-cost layer sensitivity evaluation stage which identifies a good64

predefined sparse mask for the clients and a training stage. We claim the first stage to play a key role65

in communication-efficient learning of a model which yields SOTA accuracy in sparse FL.66

To deal with resource heterogeneity, we further extend our methodologies to hetero-FLASH, where67

we assume a critical scenario of individual clients having different d. Here, to deal with the unique68

problem of the server selecting different sparse models for clients, we present server-side gradual69

mask sub-sampling, that identifies sparse masks via a form of layer sensitivity re-calibration, starting70

for models with highest to that with lowest density support.71

We conduct extensive experiments on MNIST, FEMNIST, and CIFAR-10 with different models72

for both IID and non-IID client data partitioning. Experimental results show that, compared to the73

existing alternative [32], at iso-hyperparameter settings, FLASH can yield up to ∼8.9% and ∼10.1%,74

on IID and non-IID data distribution of CIFAR-10 dataset, respectively, with reduced communication75

of up to ∼10.2× (Table 3).76

2 Related Works77

Model Pruning. Over the past few years, a plethora of research has been done to perform efficient78

model compression via pruning, particularly in centralized training [29, 9, 28, 38, 14]. Pruning79

essentially identifies and removes the unimportant parameters to yield compute-efficient inference80

models. More recently, sparse learning [8, 20, 5, 33], a popular form of model pruning, has gained81

significant traction due to its popularity in yielding FLOPs advantage and potential speed-up even82

during training. In particular, it ensures only d% of the model parameters remain non-zero during the83

training for a target parameter density d, potentially enabling training complexity reduction.84

Dynamic network rewiring (DNR). We leverage DNR [20], to learn the sparsity mask of each85

client. In DNR, a model starts with randomly initiated mask following the target parameter density d.86

After an epoch, the client evenly prunes the lowest pr% weights from each layer based on absolute87

magnitude, where pr is prune rate. Note, this pr% pruning happens on top of the sparse model88

with density d, allowing pr% weights to be regrown. DNR then ranks each layer based on the89

normalized contribution of the summed non-zero weight magnitudes. Finally, the client regrows total90

pr% weights in a non-uniform way, allowing more regrowth to the layers having higher rank. This91

1A layer with higher sensitivity demands higher % of non-zero weights compared to a less sensitive layer.
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process iteratively repeats over epochs to finally learn the mask. Federated learning for resource92

and communication limited edge. To address device heterogeneity, existing works have explored93

the idea of heterogeneous training [15, 6, 37] allowing different clients to train on different fractions94

of full-model based on their compute-budget. On a parallel track, various optimizations are proposed95

in FL training framework to yield faster convergence, thus requiring fewer communication rounds96

[11, 10, 41, 26, 34, 17, 1].97

A few research have leveraged pruning in FL [23, 18, 24]. In particular, in LotteryFL [23] and98

PruneFL [18], clients need to send the full model to the server regularly costing bandwidth. Moreover,99

in [23], each client trains a personalized mask to maximize the performance only on the local data.100

Only a few contemporary works [16, 2, 32] tried to leverage the benefits of sparse learning in101

federated settings. In particular, [16] relied on a randomly initialized sparse mask, and recommended102

keeping it frozen [21] throughout the training, yet failed to provide any supporting intuition. FedDST103

[2], on the other hand, leveraged the idea of RigL [8] to perform sparse learning of the clients and104

relied on magnitude pruning at the server-side that does not necessarily adhere to the layer sensitivity105

towards a target density. Moreover, both the approaches assumed all clients can support a fixed d, a106

large number of local epochs, and focused primarily on only highly non-IID data without targeting107

ultra-low density d. More importantly, neither of these works investigated the key differences between108

centralized and FL sparse learning. With similar philosophy as ours, ZeroFL [32] first identified109

a key aspect of sparse learning in FL in terms of all clients’ masks to be within 30% of the total110

model weights to yield good accuracy at high compression. However, ZeroFL suffered significantly111

in failing to exploit a proportional advantage in communication saving as even for low parameter112

density d, all clients had to download the dense model and send back at least a model with d = 0.3.113

Furthermore, these algorithms sacrifice significant accuracy at ultra-low d.114

3 Revisiting Sparse Learning: Why Does it Miss the Mark in FL?115

Sparse learning uses proxies, including normalized momentum and normalized values of the non-zero116

weights [20, 5], to decide the layers and weights that are more sensitive towards pruning and update117

the binary sparse mask accordingly. Note, centralized training has shown significant benefits with118

sparse learning with FLOPs reduction during forward operations [8], and potential training speed-up119

of up to 3.3× [32] while maintaining close to the baseline accuracy, even at d ≤ 0.1. We now use a120

sparse learning, namely [20], in FL settings (refer to Table 1 for details) on CIFAR-10, where each121

client separately performs [20] to train a sparse ResNet18 and meet a fixed parameter density d,122

starting from a random sparse mask. After sending the updates to server, it aggregates them using123

FedAvg. We term this as naive sparse training (NST).124

Table 1: FL training settings considered in this work.
Dataset Model #Params. Data- RoundsClientsClients/RoundOptimizerAggregation #Local Sensitivity Batch

partioning (T ) (CN ) (cr, cd) type epochs(E)warmup(Ed) Size

MNIST MNISTNet 262K LDA 400 100 10, 10 32
CIFAR-10 ResNet18 11.2M 600 SGD FedAvg [30] 1 10
FEMNISTSame as [3] 6.6M [34] 1000 3400 34, 34 16

Observation 1. At high compression d ≤ 0.1, the collaboratively learned FL model significantly125

sacrifices performance, while the centralized sparse learning yields close to baseline performance.126

As shown in Fig.2(a), naive deployment of sparse learning significantly sacrifices accuracy in FL.127

In particular, for d = 0.1, the trained server-side model suffers an accuracy drop of 3.67%. At128

even lower d = 0.05, this drop significantly increases to 12.03%, hinting at serious limitations of129

sparse learning in FL. However, in centralized sparse learning, the model yields close to the baseline130

accuracy, even at d = 0.05.131

Observation 2. As the training progresses, the sparse masks in centralized training tend to agree132

across epochs, showing convergence, while server mask in FL does lack agreement across rounds.133

Definition 1. Sparse mask mismatch. For a model at round t, we define the sparse mask mismatch134

(SM) smt as the Jaccard distance that is measured as follows.135

smt = 1−
(
∑L
l=1Mt

l ∩M
t−1
l )

(
∑L
l=1Mt

l ∪M
t−1
l )

(1)
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Figure 2: (a-b) Accuracy vs. round plot on deployment of off-the-shelf [20] sparse learning in FL for
different d, (c-d) visualization of the Model’s SM in terms of Jaccard distance while training with
sparse learning for (c) centralized and (d) FL, respectively.

whereMt
l represents the sparse mask tensor for layer l at the end of round t. Interestingly, as depicted136

in Fig. 2(a), the SM for centralized learning tends to zero as the training progresses. In contrast,137

with the same model, dataset and d values, in FL, the SM remains > 0.4 indicating a substantial138

distinction in the sparse mask learning between centralized and federated learning.139

4 FLASH: Methodology140

To win a lottery of having a sparse network yielding high accuracy at reduced parameters, we identify141

a key characteristic of sparse learning, the pruning sensitivity. To explicitly adhere to this important142

aspect, in FLASH, we present a two-stage sparse FL method, stage1: targeting sensitivity analysis to143

identify good initial sparse mask for each layer, stage2: targeting training to weights. In particular,144

to evaluate layer sensitivity in stage1, the server randomly selects a small fraction of clients ([Cd]),145

each locally sparse learning [20] for few warm-up epochs (Ed) (L4-8 in Algo. 1). Upon collection of146

layer-wise sensitivity from the clients, for each layer l, the server calculates the average sensitivity147

per layer2 d̂l as
∑cd

i=1 d
l
i

cd
, where dli is the density at layer l in ith client. As these averaged layer-wise148

density values may not necessarily yield to the target density d, for a model with K parameters we149

follow the following density re-calibration150

dlc = d̂l.rf , where rf =
d×K∑L
l=1 d̂

l.kl
(2)

kl is dense model’s parameter size for layer l. For each layer l of the model, the server then creates a151

binary sparse mask tensor that is randomly initialized, with a fraction of 1s ∝ dlc (L9). In stage2, at152

each round, the clients train the model for E epochs (L19-24) with a mask frozen (L22).153

However, in FL settings, the masks often show poor convergence (§3, Obs. 2). To address this, in154

stage 2, we present the idea of sparse FL with pre-defined layer masks at initialization (L13). The155

frozen mask allows all the clients to have a forcefully convergent mask (smt = 0 for all t). Moreover,156

as FLASH disentangles the sensitivity evaluation stage from the training, the pre-defined mask in this157

scenario benefits from the notion of layer sensitivity. Interestingly, earlier research [2] hinted at poor158

model performance with pre-defined masks, contrasting ours where we see significantly improved159

model performance, implying the importance of stage1 (as will be elaborated in §5).160

Extension to support heterogeneous parameter density. To support different density budgets161

for different clients, we now present hetero-FLASH. Let us assume a total of N support densities162

dset = [d1, .., dM ], where di < di+1. First, we perform a sensitivity warm-up, to create the masks for163

the clients’ with the highest density dN . For any other density di, a sparse mask is subsampled from164

the mask with density di+1. Note, while creating the mask from di+1 to di, we follow the layer-wise165

density re-calibration approach as mentioned earlier. In hetero-FLASH, server aggregates the update166

following weighted fedAvg (WFA) instead of fedAvg. In particular, with similar inspiration as [6], to167

give equal importance to each parameter update in such heterogeneous settings, WFA averages the168

values by their number of non-zero occurrences among the participating clients.169

5 Experiments170

Datasets and Models. We evaluated the performance of FLASH on MNIST[22], Federated EMNIST171

(FEMNIST) [3], and CIFAR-10 [19] datasets with the CNN models described in [30], [3], and172

ResNet18, respectively. For data partitioning of MNIST and CIFAR-10, we use Latent Dirichlet173

2For a sparse model it is evaluated as the ratio # of non-zero layer parameters
# layer parameters [7].
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Algorithm 1: FLASH Training.
Data: Training rounds T , local epochsE, client set [CN ], clients per rounds cr , target density d , sensitivity warm-up epochsEd,

density warm up client count cd, initial value of freeze masksmfreez = 0 and aggregation type taggr .
1 Minit ← createRandomMask(d)

2 Θinit ← initMaskedWeight(Minit)
3 serverExecute:
4 Randomly sample cd clients [Cd] ⊂ [CN ]
5 for each client c ∈ [Cd] in parallel do
6 Θc ← clientExecute(Θinit, Ed, 0) #m_freeze = 0
7 Sc ← computeSensitivity(Θc)

8 end
9 M0 ← initMask([Sc], d)

10 Θ0 ← initMaskedWeight(M0)
11 mfreez ← 1
12 for each round t← 1 to T do
13 Randomly sample cr clients [Cr] ⊂ [CN ]
14 for each client c ∈ [Cr] in parallel do
15 Θt

c ← clientExecute(Θt−1, E,mfreez)
16 end
17 Θt ← aggrParam([Θt

c], taggr)

18 end
19 clientExecute(Θc, E,mfreez) :
20 Θc0 ← Θc

21 for local epoch i← 1 to E do
22 Θci ← doSparseLearning(Θci−1 ,mfreez)

23 end
24 return ΘcE

Table 2: Results with FLASH and its comparison with NST and PDST.
Dataset Data Distribution Density Baseline NST PDST FLASH

(d) Acc % Acc % Acc % Acc %
1.0 98.79± 0.06 – – –

IID (α = 1000) 0.1 – 97.57± 0.11 97.09± 0.18 98.21± 0.06
0.05 – 95.19± 0.56 94.8± 1.04 97.46± 0.14
1.0 98.76± 0.06 – – –

MNIST non-IID (α = 1.0) 0.1 – 97.36± 0.19 96.82± 0.25 97.96± 0.13
0.05 – 95.75± 0.31 95.34± 0.77 97.3± 0.26
1.0 98.45± 0.17 – – –

non-IID (α = 0.1) 0.1 – 96.19± 0.22 94.41± 1.23 97.22± 0.43
0.05 – 91.66± 1.74 91.06± 1.1 95.7± 0.37

1.0 88.56± 0.06 – – –
IID (α = 1000) 0.1 – 84.89± 0.26 86.72± 0.09 88± 0.28

0.05 – 77.48± 0.54 84.38± 0.12 86.99± 0.14
1.0 87.13± 0.18 – – –

CIFAR-10 non-IID (α = 1.0) 0.1 – 83.46± 0.19 85.07± 0.24 86.42± 0.49
0.05 – 75.1± 0.76 83.33± 0.14 85.64± 0.58
1.0 77.64± 0.49 – – –

non-IID (α = 0.1) 0.1 – 71.18± 1.23 74.82± 0.72 76.74± 1.46
0.05 – 61.29± 2.76 72.32± 1.05 75.47± 2.31

1.0 84.68± 0.20 – – –
FEMNIST non-IID 0.1 – 76.92± 0.42 76.01± 1.26 82.70± 0.26

0.05 – 61.9± 2.6 63.65± 0.86 81.18± 0.36

Allocation (LDA)[34] with three different α (α = 1000 for IID and α = 1 and 0.1 for non-IID). For174

FEMNIST, we employ the same setting as in [11], which partitions the data based on the writer into175

3400 clients, making it inherently non-IID.176

Training Hyperparameters. We use Clients’ starting learning rate (ηinit) as 0.1 that is exponentially177

decayed to 0.001 (ηend) at the end of training. Specifically, learning rate for participants at round t178

is ηt = ηinit(exp( tT log(
ηinit

ηend
))). In all the sparse learning experiments, prune rate is set to 0.253.179

Summary of the rest of the hyperparameters can be found in 1. Furthermore, we report the final180

results as the averaged accuracy with corresponding std of three different seeds in the tables.181

5.1 Experimental Results with FLASH182

To understand the importance of stage1 in FLASH methodology, we identify a baseline training183

with uniform layer sensitivity driven pre-defined sparse training (PDST) in FL. Table 2 details the184

performance of FLASH at different levels of d, for various choices of sparse learning methods. In185

particular, as we can see in Table 2 column 5 and 6, the performance of both NST and PDST produced186

models cost heavy accuracy drop at ultra low parameter density d = 0.05. For example, on CIFAR-10187

(α = 0.1), models from NST and PDST sacrifice an accuracy of 16.35% and 5.32%, respectively.188

3Prune rate controls the fraction of non-zero weights participating in the redistribution during sparse learning.
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Table 3: Comparison of FLASH on various performance metrics with existing alternative sparse
federated learning schemes.

Dataset Data Distribution Method Density Acc% Down-link Up-link
Savings Savings

ZeroFL [32] 0.1 82.71± 0.37 1× 1.6×
IID FLASH (ours) 0.1 88± 0.28 9.8× 9.8×

ZeroFL [32] 0.05 78.22± 0.35 1× 1.9×
CIFAR-10 FLASH (ours) 0.05 86.99± 0.14 19.5× 19.5×

ZeroFL [32] 0.1 81.04± 0.28 1× 1.6×
non-IID FLASH (ours) 0.1 86.42± 0.49 9.8× 9.8×

(α = 1.0) ZeroFL [32] 0.05 75.54± 1.15 1× 1.9×
FLASH (ours) 0.05 85.64± 0.58 19.5× 19.5×
ZeroFL [32] 0.05 77.16± 2.07 1× 17.7×

FEMNIST non-IID FLASH (ours) 0.05 81.18± 0.36 14.6× 14.6×

Table 4: Performance of hetero-FLASH where support density set is dset = [0.1, 0.15, 0.2].
Dataset Data Distribution Max Client Density Hetero-FLASH Acc %

IID (α = 1000) 98.29± 0.05
MNIST non-IID (α = 1.0) 0.2 98.29± 0.09

non-IID (α = 0.1) 97.63± 0.22

IID (α = 1000) 87.19± 0.26
CIFAR-10 non-IID (α = 1.0) 0.2 86.16± 0.04

non-IID (α = 0.1) 75.23± 1.26

FEMNIST non-IID 0.2 82.58± 0.24

However, at comparatively higher density (d = 0.1), both can yield models with a lower accuracy189

difference from the baseline by around 6.46% and 2.82%. FLASH, on the other hand, can maintain190

close to the baseline accuracy at even ultra-low density for all data partitions. These results clearly191

highlight the efficacy of both sensitivity driven spare learning (as FLASH > PDST) and early mask192

convergence in FL settings. Moreover, as in FLASH, the clients’ do not need to send the mask at all,193

allowing us to yield proportional communication advantage as the model sparsity.194

Comparison with ZeroFL. Despite leveraging a form of sparse learning [33], ZeroFL required195

significantly higher up-link/down-link communication cost compared to the target density d. This196

enables FLASH to gain a significant advantage in communication saving over ZeroFL, particularly197

for FLASH, as it only asks for the reduced size parameters to be communicated between the server198

and clients. In particular, we evaluate the communication saving as the ratio of the dense model size199

and corresponding sparse model size with the tensors represented in compressed sparse row (CSR)200

format [36]. As depicted in Table 34, FLASH can yield an accuracy improvement of up to 10.1% at a201

reduced communication cost of up to 10.26× (computed at up-link when both send sparse models).202

5.2 Experimental Results with Hetero-FLASH203

Table 4 shows the performance of hetero-FLASH where the clients can have three possible density204

budgets as defined by the dset. To train on all the density values, we split clients into three groups,205

each having 40%, 30%, and 30% of total clients, and corresponds to density 0.2, 0.15, and 0.1,206

respectively. Then, every round, 10% from each group is sampled to participate in training the model.207

6 Conclusions208

This paper presented federated lottery-aware sparsity hunting methodologies to yield low parameter209

density server models with insignificant accuracy drop compared to the dense counterparts. In particu-210

lar, we demonstrated an efficient sparse learning solution tailored for FL, enabling better computation211

and communication benefits over existing sparse learning alternatives. We experimentally showed212

the superiority of our model in yielding up to ∼10.1% improved accuracy with ∼10.26× fewer213

communication costs compared to the existing alternatives [32], at similar hyperparameter settings.214

Societal impact. FLASH can efficiently learn low parameter FL models potentially reducing the215

energy budget thus carbon footprint of edge devices participating in FL.216

4We understand for FEMNIST, ZeroFL reported significantly higher up-link saving, however, to the best of
our understanding it should be similar to their report on other datasets, i.e. ∼1.9×.
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7 Supplementary375

7.1 Model Architectures376

Table 5 shows the model architectures used for MNIST and FEMNIST datasets. For CIFAR-10 we377

used ResNet18 [13] with the first CONV layer kernel size as 3× 3 instead of original 7× 7.

Table 5: Architecture used for MNIST and FEMNIST datasets
MNIST FEMNIST

CONV5× 5(Co = 10) CONV5× 5(Co = 32)
max_pool max_pool

CONV5× 5(Co = 20) CONV5× 5(Co = 64)
max_pool max_pool

FC(5120, 50) FC(3136, 2048)
FC(50, 10) FC(2028, 62)

378

7.2 Hetero-FLASH Algorithm379

Algorithm 2 details the training algorithm in hetero-FLASH.380
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Algorithm 2: Hetero-FLASH Training.
Data: Training rounds T , local epochs E, client set [[CN1 ], ..., [CNM ]], clients per rounds cr , target density

set dset = [d1, ..., dM ], sensitivity warm-up epochs Ed, density warm up client count cd, initial value
of freeze masks mfreez = 0 and aggregation type taggr .

1 Minit ← createRandomMask()

2 Θinit ← initMaskedWeight(Minit)
3 serverExecute:
4 Randomly sample cd clients [Cd] ⊂ [CNM ]
5 for each client c ∈ [Cd] in parallel do
6 Θc ← clientExecute(Θinit, Ed, 0)
7 Sc ← computeSensitivity(Θc)
8 end
9 M0 ← initMask([Sc], dset)

10 Θ0 ← initMaskedWeight(M0)
11 mfreez ← 1
12 for each round t← 1 to T do
13 Randomly sample cr clients [Cr] ⊂ [CN ]
14 for each client c ∈ [Cr] in parallel do
15 Θt−1

c ← applyClientMask(Θt−1, c)

16 Θt
c ← clientExecute(Θt−1

c , E,mfreez)
17 end
18 Θt ← aggrParam([Θt

c], taggr)
19 end
20 clientExecute(Θc, E,mfreez) :
21 Θc0 ← Θc

22 for local epoch i← 1 to E do
23 Θci ← doSparseLearning(Θci−1 ,mcfreez )
24 end
25 return ΘcE
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